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ABSTRACT

Models for strategic and tactical planning decisions concerning the transport system and modus
operandi of an Emergency Medical Service (EMS) have been systematically investigated in recent years.
In particular, researchers have put significant work on theoretical models and mathematical formulations,
e.g. to optimize operational metrics to locate stations or allocate emergency vehicles, as well as on
heuristics to solve these formulations. However, the continuous growth in complexity requires solving tools
that rely on oversimplification or disregard of real-world conditions, such as the cyclic and dynamic
fluctuations in time and space of people and traffic. However, in fact, these key players define two of the
most important parameters of any EMS Transport System model: demand - which directly correlates with
people location, and, vehicles drivability - which directly correlates with traffic conditions. These

parameters become even more important when serving a dense urban area.

As per the extensive body of research on EMS related decision making when planning for the
underlying transport system, the state of the art relies often on classic performance metrics. These classic
performance metrics essentially constitute the core of any strategic and tactical optimization model for
EMS and focus on operational measures such as average response time or coverage. However, these
state-of-the-art models generally lack to incorporate and test for alternative metrics such as victim survival
or are note taking advantage of the properties of victim heterogeneity, for instance when looking at classic

vehicle dispatching rules.

In essence, oversimplifications, the neglecting of demand characteristics and the absence of victim
survivability in theoretical formulations, would then raise questions about whether what works on paper,

performed equally well in practice.

This thesis aims to address these problems by studying strategic and tactical models implemented in
a dynamic urban area, specifically focusing on demand and drivability changes of temporal and spatial
nature and providing empirical evidence of how each model would perform in the real world. A
methodology is designed to feed theoretical models with real-life-data that afterward are further assessed
in a simulation to provide empirical evidence. Using simulation rather than a real experiment is justified
by the fact that experimenting emergency services in urban areas is prohibitive, on a minor degree due to

time and budget constraints, but most importantly due to social, moral and ethical standards.
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This thesis demonstrates how the dynamics of urban life require proper consideration within theoretical
EMS models. Furthermore, we give evidence that the use of survival functions and the acknowledgement
of demand heterogeneity increases the social benefit of EMS. Finally, we support claims in literature that
strategic and tactical decisions should be integrated into a unique planning process and that the standard

dispatching rule - dispatching the closest vehicle - is in fact not an optimal procedure.

Keywords: Emergency Medical Service, Transport System, Strategic decisions, Tactical Decisions,

Facility location, Vehicle Dispatching
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RESUMO

Modelos de decisdo para o planeamento estratégico e tatico do sistema de transporte do servigco de
emergéncia medica (SEM) tém vindo a ser sistematicamente investigados nos ultimos anos. Em
particular, a academia tém-se focado em modelos teoricos e correspondentes formulacdes matematicas.
Como por exemplo na otimizacdo do desempenho operacional a quando da localizacdo de postos de
emergéncia ou alocacdo de veiculos de emergéncia, e também em heuristicas para resolver as
formulagdes mais complexas. No entanto, os avancos no desenvolvimento destes modelos, que levou a
aumentos da sua complexidade, requer ferramentas para a sua resolucdo que assentam em
simplificacdes ou ndo consideram condi¢Bes reais de operacao, e.g. flutuacdes ciclicas, no tempo e no
espaco, das condi¢cBes da populacao e trafego. Populacao e trafego definem dois dos mais importante
parametros de qualquer modelo do sistema de transporte do SEM. A procura — que se relaciona
diretamente com a populacéo, e a acessibilidade dos veiculos — que se relaciona diretamente com as

condi¢des do trafego. Estes parametros sdo ainda mais importantes em ambiente urbano.

O estado da arte, no que toca a modelos de decisédo e planeamento do sistema de transporte do SEM,
ainda depende em métricas de desempenho classicas. Estas métricas classicas constituem o corpo dos
modelos de decisfes estratégicas e taticas para o SEM e focam-se em medidas operacionais tais como
o tempo de resposta média ou a cobertura. No entanto, os atuais modelos encontrados na literatura
falham na incorporacdo de novas métricas tais como a sobrevivencia, ou negligenciam as propriedades
heterogénicas das vitimas, como por exemplo a quando do envio de um veiculo para respodner a uma

emergéncia.

No geral, simplificagbes excessivas, a negligencia das caracteristicas da procura e a auséncia da
incorporagdo de fungbes de sobrevivéncia nas formulagbes toericas pde em duvida se os modelos

teoricos formulados fazem sentido na pratica.

Esta tese procura resolver estes problemas ao investigar modelos estratégicos e taticos a serem
implementados em zonas urbanas e oferecendo provas empiricas, com especial foco nas mudancas
temporais e espaciais da procura e das condicdes de trafego. E proposta uma metodologia que combina
dados reais com modelos tedricos que posteriormente sdo avaliados numa simulagcdo como prova

empirica das suas capacidades. O uso da simulacdo vem substituir experiéncias em ambiente real pois
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estas sdo impossiveis de se realizar devido a limites de tempo e orgamento, mas principalmente pelas

implicacdes sociais, morais e éticas.

Os resultados presentes nesta tese demonstram como a dindmica existente numa zona urbana requer
consideragBes especificas nos modelos teoricos de SEM. E mostrado que o uso de fungdes de
sobrevivéncia e a implementacéo do caracter heterogénico da procura levam a uma melhor resposta do
SEM do ponto de vista social. Por fim s&o ainda suportadas as mais recentes afirmacdes na literatura no
gue diz respeito a integracdao, num plano Unico, de decisdes estratégicas e taticas, e ao uso de regras
classicas de envio de veiculos tais como o envio da unidade mais préxima, onde se demonstra que esta

nao séo o procedimento 6timo.

Papavras-chave: Servico de Emergéncia Médica, Sistemas de Transporte, Decisdes estratégicas,

Decisdes taticas, Localizacdo de estagfes, Envio de veiculos
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1. THESIS FRAMEWORK

1.1.INTRODUCING THE URBAN EMERGENCY MEDICAL SERVICE

1.1.1. KEY TERMS AND SCOPE

Before we elaborate on the motivation, objectives and methodology of this thesis it is important that
we first describe our study subject so that the reader can have an overview of how the urban Emergency
Medical Service transport system operates and that the better grasps the concepts that we will present

afterwards.

We define urban Emergency Medical Service, subsequently called uEMS, as the service that responds
to ‘habitual’ medical emergencies thus it can be provided by a single organization. Therefore, disaster
services and specific hazard emergencies are out of this thesis scope. Furthermore, we go deeper in this
definition and we use the term urban not only to define the uEMS as the service that responds to ‘habitual

emergencies’ but as an Emergency Medical Service that operates in an urban area.

For this thesis, an urban area is a metropolitan area, a city or a block where there is a dense mass of
population, visitors and commuters and where a road network with high demand exists. For such areas,

we assume the effect of city dynamics.

We define city dynamics as an urban area where dynamism exists, and dynamism is described as a
force that stimulates changes in short periods, such as hours or days. Therefore, the mass of population,
visitors and commuters is not homogenous through the urban area nor throughout the temporal spectrum,
although cyclic patterns are assumed. Similarly, the traffic conditions change according to temporal

variables, but it is also assumed that a cyclical pattern exists.

When it comes to design and decide, the urban Emergency Medical Service stakeholders plan the
transport system at strategic and tactical levels. The strategic level represents decisions that have
consequences for the long term, e.g. definition of facility locations to store the EMS resources such as the
emergency vehicles. Oppositely, the tactical level comprises of decisions that have consequences for a

short term such as the next hours or days of operation, e.g. dispatching of an emergency vehicle.
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In this thesis we aim to study the urban factors that mostly influence uEMS transport system decisions
both at the strategic and tactical level. The focus of the research is transport system plan when it comes
to locating vehicle facilities, allocating vehicles to facilities and dispatching vehicles during response time.
For that we investigate different models by comparing them and infer empirical evidence to support our

findings.

The next section will dive in the overall emergency response service scheme by focusing on how the
service stacks in the different types of emergencies and the respective institutions that respond to them.
After, we focus in the Medical Emergency Service and describe how the system responds to a call for aid
from the moment it arrives in the national/international emergency number to the moment the service

dispatches a vehicle.

1.1.2. THE EMERGENCY SERVICE SYSTEM

Worldwide, any person can request the emergency service (ES) through a unique telephone
number. In Europe this number, 112, is part of the Global System for Mobile communications (GMS)
standard, thus all the GMS-compatible telephones can dial this number even if the device is blocked or
there is no SIM card, depending on the country technology. In some countries outside Europe this number
redirects the caller to the national emergency number through the GMS protocol (e.g. to the 911 if it is

dialed in the USA). A similar calling system exists in the USA.

In general, when the emergency number is dialed a call center answers it and redirects the caller to
the proper emergency department. These can be the police department, the fire department or the
emergency medical service (EMS) department. However, in some countries the system is only divided in
Police and Fire departments. In this case, the fire department manages the medical emergencies, as

displayed in Figure 1.

In terms of resources, either the station facilities, and consequently the medical units and its staff, can
belong to the city, regional or national service, thus public, or they are owned and operated privately. This
means that there might not exist a direct control of the department over all the emergency medical
transport resources, though the EMS responsible department has the authority to request any idle vehicle,
be it public or private, to answer to a call for aid. It is a fact that not all EMS systems can design strategic
and tactical plans independently. For this work, we will assume that the uEMS is independent and the

department owns all available resources.
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Figure 1. Emergency service structure

1.1.3. THE MEDICAL EMERGENCY SERVICE SYSTEM

At emergency call time, as previously mentioned, the caller is pointed to the proper emergency
department. In Portugal, emergency calls are answered by the police force and those that concern medical
emergencies are forwarded to one of the “Urgent Patient Guidance Centers” (CODU) of the “Institute of

Medical Emergencies of Portugal” (INEM).

An operator, professionally trained, processes the call using a software that consists of a predefined
inquiry where a sequence of questions is asked to the caller. The answers to these questions feed a
background algorithm that is responsible to assess the medical emergency and activate a request for the
proper vehicle when required. The use of such algorithm allows for an unbiased assessment of the

medical emergency through the use of quantitative metrics.

During the previous process, the operator instructs the caller for possible assistance techniques to
delay the worsening of the victim’s status. In the meantime, if the algorithm flags an emergency priority
(i.e. the victim needs urgent professional medical assistance) a request is sent to another operator who
has access to the available response vehicles and can query the system for their position and availability.
However, if the vehicles are not equipped with GPS and transmitting their coordinates in real-time, the
operator only has access to the location of idle vehicles (assuming they are at the original facility). Figure

2 resumes the call processing and decision sequence.

The dispatching rule of INEM consists of the dispatch of the closest idle vehicle. This is a common

rule worldwide spread and at practice. Furthermore, another relevant operational characteristic of most
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EMS transport system is that at dispatching time, the closest idle vehicle is assessed using static metrics

i.e. traffic conditions are usually not considered.

Inquiry
Police L Police unit continues in
department parallel
Call Fire . . [ SR
ter[[| department [ Fire unit
cen P Operator
Operator gives pre-
INEM— | |copu - call P assistance
= : - —  assess M
Public entity center
emergency
. Dispatch
Automatically Operator P
Assessment . . closest
. —flags a vehicle— assesses idle — .
algorithm . idle
request vehicle .
vehicle

Figure 2. The Portuguese example on how a UEMS call is processed.

1.2. MOTIVATION AND RESEARCH DEVELOPMENT

1.2.1. GENERALITIES

This thesis is a ramification of the project tooLs for Injury preVEntion (LIVE)! (Amorim et al., 2014d,
Ferreira and Amorim, 2014) which proposed several tools to assess and quantify road crash outcomes.
These assessment tools were built to support further analysis when it comes to road crash injury severity
reduction. A fundamental aspect of the project outcomes was to build an initial view on how improvements

in the emergency medical service transport system could minimize or reduce road crash victims’ severity.

This view came in line with the World Health Organization (WHQO) global plan for road safety for the
decade of actions of 2011 — 2020. In this plan, WHO defines several pillars where post-crash response is
pillar 5 and includes one activity that explicitly encourages the research community to improve the post-

crash response.

Nevertheless, one can assume that a system that is public and aims the public health should not

prioritize certain events without proof that such policy is advantageous and will not degrade the service

1 https://citta.fe.up.pt/projects/4-5-live-tools-to-injury-prevention.
Final report available at https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/projects/live.pdf
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performance to other events. This brings another interesting dilemma: what is the best way to measure
such service performance? Should we keep it operational oriented, or should a public health service focus
on the victims’ outcomes thus its performance be measured accordingly? Moreover, after defining a metric
that is able to assess accurately the UEMS performance, how can we be sure that the theoretical models

used at decision time correctly translate each of the stakeholders’ objectives?

This sequence of questions motivated our research and defined its developed. The next sections will

further detail on it.

1.2.2. DEPARTURE POINT

The last step of the LIVE project focused on how the uEMS could integrate road safety research,
particularly how road safety assessment could give valuable input when designing or planning EMS

strategic and tactical decisions.

Road safety assessments are highly applied and carried out mostly to help reduce the number or the
severity resulting from a road crash (Elvik et al., 2009). In developed countries the standards for road
safety reached such high levels that, more and more, new measures have a less visible impact, i.e. road
characteristics, safety policies, vehicles safety and drivers education are so far developed that most of
road crashes result from unavoidable actions or specific situations because no system is perfect. It is
important to remember that we assume as of now, the safety improvements reachable through the

implementation of automation in the driving process, are not yet feasible.

Worldwide, the number of people killed in road crashes each year is estimated at almost 1.24 million,
and between 20 and 50 million of people sustain non-fatal injuries (WHO, 2013). However, more than
90% of road crash deaths occur in low- and middle-income countries which have just around 50% of the
worldwide registered vehicles (WHO, 2013).

The departure hypothesis of this thesis states that although road safety measures are usually taken
directly in the source, which makes all the sense, it is possible to reduce road crash outcomes if
improvements are made a posteriori, i.e. improving the emergency medical service transport system. This
is also the view of the World Health Organization and many road safety researchers (WHO, 2013,

Sanchez-Mangas et al., 2010).

The initial approach intended to address the Emergency Medical Service, EMS, with focus on Urban
Service, UEMS, and investigate how to support strategic and tactical decisions, with focus in the decisions
related to the emergency vehicles and their stations. The subject falls mainly in the Operational Research
framework of facility location, and vehicle allocation and dispatching however, it bonds interest with road

safety and demand modeling topics.

Plants, distribution centers and other facilities that have an influence radius of action, and need to

supply a certain demand within it, are operational for several years, thus subject to substantial temporal
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and physical changes of the environment they will settle in. These classical facility location problems have
usually highly uncertain costs, demands, travel times as well as other, hard to correctly measure inputs.
Therefore, these types of problems require, many times, decision-making tools to deal with these
uncertainties or else there will be the risk of underestimate or overestimate their design, which on the

other hand can return a negative impact, mainly monetary.

UEMS belong to the family of facility location problems; however, there are particularities that draft
them out from the common problems. While under- or overestimation of the earlier mentioned facility
location problems might have mostly a monetary impact, in uEMS problems there is also a social impact,
particularly a bad decision can lead to e.g. higher response times which may seriously reduce the survival
probability of the victims to be rescued. For instance, Sanchez-Mangas et al. (2010) indicated that a
reduction of 10 minutes in the emergency response time could result in a 30% reduction of traffic accident
fatalities. Although this number can vary depending on many factors, one can assume that a quicker
medical response will result in an improved medical assistance — considering that the medical team can
give a “better” assistance the “more recent” the occurrence is. Not only with road crashes, as per the
presented reference, but also in any other case of medical emergency, a faster arrival at the calling site
will always result in a better assessment of the problem resulting in an earlier engagement hence in most
cases providing better results. However, the rate at which survival degrades is strongly associated with

the type of medical emergency, thus medical emergencies have heterogeneous characteristics.

Two concepts are derived from the above statements - the demand for EMS is heterogeneous and its
satisfaction is not solely operational, i.e. reduce average response times might not be optimal in the
victims’ perspective; the outcomes of an EMS response is tied to the emergency type and different medical
emergencies require different types of assistance which in turn lead to different success rates. To simplify,

victims’ survival probability is the target performance to satisfy EMS demand.

1.2.3. STANDARD TOOLS FROM LITERATURE TO ASSESS UEMS IMPROVEMENTS

The concepts of demand heterogeneity and victims’ survival were applied at the start of our research
development motivated by uUEMS strategic models that focus on road crashes (Kepaptsoglou et al., 2012).

To achieve this goal, first, it was necessary to study the impact of the EMS response on road crash victims.

The literature? shows a lot of controversy when it comes to measure survival rates of road crash
victims. In fact, the only well-defined survival functions are those that concern cardiac-arrest victims.
Nevertheless, project LIVE allowed for a detailed database that comprise of hospital and police road crash

records. These two databases, when combined, could describe a road crash victim in terms of

2 The reader may at this point kindly refer to chapter 2 for an in-depth state of the art.
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demographics, crash location and characteristics, and detailed injury information such as the length of

stay in the hospital, the international classification of diseases and detailed severity and costs.

The development of this research started with a linkage methodology to allow connecting police and
hospital road crash related datasets and with it build the necessary database to study pre-hospital time
impact on road crash victims (Amorim et al., 2014c). Further development of the core ideas was developed
in Amorim et al. (2014a).

With such rich database several modeling approaches were possible and insightful scientific output
positively contributed to the state of the art when it comes to road safety assessment and road crash
social impacts (Ferreira et al., 2015, Couto et al., 2016). Furthermore, with the study of different injury
scales, it was possible to select an injury classification, easy to implement but also with the essential detalil

to build insightful performance metrics (Ferreira et al., 2016, Ferreira et al., 2018).

Finally, with the necessary tools at hand, we ramified our research into the study of the impact of pre-
hospital time on road crash victims. The goal was to define a metric system that would equate with the
existing survival functions for cardiac arrest emergencies. A study was conducted after an in-depth

literature review and several modeling trials to produce the necessary input (Ferreira et al., 2019).

However, every effort made, lead to similar conclusions: such survival functions are usually not
accurate for road crash injuries because these have a wide range of injuries types and such information
does not arrive to the EMS department at call time. Moreover, road crash emergencies are complex
situations where many times victims are at a difficult access point, which require previous intervention of
other rescue teams. This complexity in addition to the wide range of possible types of injuries makes

survival modeling very hard and inaccurate, invalidating its use to our objectives.

1.2.4. FROM A ROAD SAFETY Focus To A GENERALIZED APPROACH

Road safety is a constant concern worldwide and in developed countries, authorities and agencies
already pointed out that a way to reduce the outcomes of road crash victims is to improve the EMS
response. Little work has been developed in this area, therefore we ask: is it possible for road safety

authorities to support the EMS and have a direct benefit from it?

We saw, that to quantitatively assess performance gains (in the context presented similar to survival
rates) when responding to road crash injuries it is necessary to have a robust metric that can consistently
give us unbiased survival rates for each victim. However, in the previous section we demonstrated our

effort and concluded that these kinds of metrics are hard to define when it comes to road crash victims.

Following the works of Kepaptsoglou et al. (2012) we developed a method to assess how road safety
investments in the EMS could help reduce road crashes outcomes (chapter 3), (Amorim et al., 2017).

Even though we could not apply the expected survival functions to road crashes, this study gave rich
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insight on what should be the next steps in this research by demonstrating that a generalized approach —

taking into account all types of emergencies — is the best moral and operational choice in our view.

From this point out, we investigated strategic and tactical UEMS decisions under the scope of the
complete medical range. To simplify our approach, we clustered all types of emergencies into life-
threatening and non-life-threatening emergencies segregating cardiac-arrest emergencies and road crash
emergencies when required. In the end, and from the results presented in chapter 3, we assume that
improving the UEMS transport system as a whole will also improve the response to each medical

emergency type, at least when it comes to life-threatening situations.

1.3.RESEARCH PURPOSE AND OBJECTIVES

Emergency Medical Service responds to medical aid calls with the objective of protect and ensuring
public health and safety. In urban areas, as previously defined, highly dynamic environments actuate over

the urban Emergency Medical Service’s demand and in the drivability conditions.

For this service, demand is very hard to categorize because of its heterogeneous characteristics and
its satisfaction is not easy to quantify. Nevertheless, the use of operational performance metrics such as
the average response time, demand coverage and other time or space measures might not be the proper
way if we want victims’ outcome to be the focus of our approach — which gives value for tax payer, aligns
with constitutional rights and reduces external costs for society. Therefore, survival functions are a

possible metric to better assess the service performance.

Moreover, as will be shown in the state of the art, the uEMS research has been focused on the
mathematical and theoretical problems to solve facilities and vehicle location. These models are many
times very simplified representations of the real world. The real improvement they might achieve is hard
to quantify because testing and comparing in the real world is prohibitive. It is important that research

focus on providing real evidences, or at least empirical evidence, of these models’ potential.

What is it that a certain approach or model is improving? — What looks optimal on paper might not

correctly, or fully, translate into practice.

We claim that UEMS transport system is highly dependent on city dynamics and optimal or improved
solutions require proper empirical evidences — these evidences should focus on the victims’ outcomes

rather than on operational metrics due to the heterogeneity of the demand.

To support our claim this thesis aims to analyze the different planning levels that define strategic and
tactical decisions and how these decisions will perform in an urban environment highly dynamic,
particularly, an environment where people location and traffic behavior are in constant change. To achieve

this, we explored optimization models and performance metrics to support strategic and tactical decisions
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and applied simulation to assess these models and provide empirical evidence. With this approach, we

addressed different gaps that exist in the state of the art:

Traditional models use objective functions that intend to maximize coverage or minimize time
response;

Most of the works have no regards for the emergency calls priority or heterogeneity;

Traffic and demand are usually rough estimations and daily changes are not accounted for;

Most of the research focus on the “the closest vehicle” dispatching rule.

Our approach comes in line with the UEMS research tendencies and last findings:

new approaches use survival objective functions for the optimization model

some studies start to address specific medical emergency types, e.g. road crashes
the use of scenario and multi-period approach to account for dynamic effects
integrated strategical and tactical decisions model

dispatching the closest vehicle is not always the best solution

Therefore, the objectives of this research are summarized as follows:

Identify the possibility of isolating the demand heterogeneity by studying a service focused on road
crashes;

Identify and compare different performance metrics and assess their value when it comes to
victims’ outcomes;

Assess different location models and how to implement city dynamics to produce more robust
solutions;

Provide a platform that allows for empirical inference of solutions performance to support strategic
and tactical decisions;

Explore dispatching rules and technological advantages that can be used during call time.

1.4. RESEARCH QUESTIONS

Within the boundaries traced by the previous section the following research questions were formulated

to guide the research focus and produce insightful results:

RQ1. Does it make sense to segregate EMS demand and tailor specific services for specific medical

emergencies such as road crashes?

RQ2. How should we measure EMS transport system performance? Through which metrics and how

to quantify them to allow comparison of solutions?

RQ3. Should strategic and tactical planning decisions be integrated in a unique model?
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RQA4. Is the closest idle vehicle the best dispatching rule, and how can new technologies improve

these rules?

To answer these questions a global methodological approach is proposed using data-driven
theoretical models that are afterwards tested in a simulation of the real world to obtain empirical evidences,
section 1.5. This approach resulted in six chapters, chapter 3 - 8, in the format of scientific papers that
were submitted to peer reviewed journals of high interest for the research scope. In Table 1 the
correspondence of each research question and the chapter (and corresponding scientific papers) where
they are addressed.

Table 1. Map of the thesis research questions and the respective chapters where they are investigated.

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8
RQ1 X X
RQ2 X X X
RQ3 X X
RQ4 X X

Paper 1 — Chapter 3 Road Safety and The Urban Emergency Medical Service (UEmS): Strategy

Station Location

This paper consists of a research that analyse the possibility to segregate EMS heterogeneous
demand, particularly in urban environments. The demand is modeled by emergency type, e.g. cardiac
arrest and road crashes; and an optimization model is proposed to locate key vehicle stations according
to operational constrains or the requirements of each emergency type and by implementing simplified

survival functions.

Paper 2 — Chapter 4. How do Traffic and Demand Daily Changes define Urban Emergency Medical

Service (UEMS) Strateqic Decisions? A multi-period survival approach

This paper dives deeper in the uUEMS demand heterogeneity and the use of survival functions as
objective function of the optimization model. It researches on the topic of dynamic cities using a scenario-
based approach to capture the different states of the demand and traffic cycle. A deep analysis of the
requirements of stations versus average response time and the demand heterogeneity is made. Finally,
different optimization models are compared for different performance objectives and levels of

stochasticity.
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Paper 3 — Chapter 5. An Active Learning Metamodeling Approach for Policy Analysis: Application to

an Emergency Medical Service Simulator

This paper implements machine-learning techniques, particularly an active learning model using
Gaussian Processes, to make a metamodel of the simulated environment that allows for a quick analysis
of station and vehicle location using both the average response time and the survival rate as performance
metrics. This model accounts for stochasticity of the traffic and demand. Its outcome is mainly theoretical
and serves as the supporting tool for — Chapter 6. However, the model on its own allows for the analysis
of frontier solutions for stations and vehicles location, allowing to support decision-makers during solution

analysis.

Paper 4 — Chapter 6. An Integrated Approach for Strateqic and Tactical Decisions for the Emergency

Medical Service: Exploring Optimization and Metamodel-Based Simulation for Vehicles Location

This paper further develops the concepts presented in chapter 4 and adds to the optimization model
the possibility to allocate vehicles to the proposed stations through an integrated approach. Afterwards, a
metamodel is used to refine vehicles allocation according to empirical evidences. This approach allows to
assess the myopic solutions that the desegregated approach (strategic and tactical decisions are made
at different stages) produces and show the advantages of integrating these planning stages. Furthermore,
the proposed methodology is applied to other types of strategic and tactical problems to show its validity

and wide applicability.

Paper 5 — Chapter 7. Emergency Medical Service Response: Analyzing Vehicle Dispatching Rules

In this paper the dispatch of vehicles is analyzed by comparing the classical rule (always dispatch the
closest idle vehicle) and using a rule that considers the system survival status. The different rules are
tested for a big urban area, San Francisco city, using a very detailed simulation model to assess how
each rule behaves in different periods of the day, month and year, inclusive during specific city or holiday

events. An initial assessment of the use of real travel time information and vehicles configuration is done.

Paper 6 — Chapter 8. Emergency Vehicles Dispatching Technological Advantages: Implementing

Survival and Real-Time Information

This paper finalizes our research by diving deep in tactical decisions. Particularly, it further develops
the proposed dispatching rule that takes into account survival, demand heterogeneity and city dynamics.
The use of technological improvements is assessed to analyze the possible contribution they can add to

the uEMS performance.
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1.5.PROPOSED METHODOLOGY

1.5.1. OVERVIEW

To answer the formulated research questions a general methodology was framed to bridge theory and
practice. The main pillar of this methodology is the use of the real environment to empirically support

theoretical knowledge provided by the mathematical models.

The main features of the methodology are the empirical evidence model and the theoretical model.
Both can be implemented alone or be used together. A data module collects real data from the real
system, filters it and if needed models the required parameters to feed both the theoretical and empirical

models.

The idea underlining this platform, presented in Figure 3, is to provide a framework where different
location or dispatching models can be implemented and afterwards tested in a simulation of the real world
to provide empirical evidence of each solution performance. This brings us to one final feature of the
platform: the performance metric. Operational and survival metrics are implemented to satisfy every

stakeholder requirements and objectives.
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Figure 3.Methodological scheme.

1.5.2. THEORETICAL MODELS AND FOUNDATIONS

As previously mentioned a location problem usually assumes that the system will be up for many years
thus its success depends on how it will adapt to the many changes that the urban area goes through the

years, e.g. continuous changes in the spatial dimension and its distribution.

The line of research that focus on the management of UEMS regards two fundamental aspects: vehicle

station location — a garage that shelters a group of medical emergency vehicles — and vehicle dispatching.

The station location problem usually aims to cover all the influence area in a manner that there is no
single demand unit that cannot be reached within a specific time window — maximum response time limit.
However, many studies start to deviate from this rigid rule and focus on a maximal coverage aspect, with

the intention of covering the largest possible area within certain maximum response thresholds, leaving

PhD thesis on Transport Systems — University of Porto, Faculty of Engineering, MIT Portugal 25



Marco Amorim — Analyzing Strategic and Tactical Decisions in the urban Emergency Medical Service (UEMS) Transport System

certain demand points over the maximum response time limit. There are many situations where the
physical and economic conditions of the city simply do not allow a fair use of resources if full coverage is

implemented; therefore, many studies assess performance measures to define standards of response.

In the last years, as Erkut et al. (2008) point out that the research direction is to substitute the covering
concept as the base to optimize UEMS with concepts that account for survival probability. Furthermore,
the temporal changes of the city as well as the daily inhabitants’ movements through the city points to
dynamic models for uEMS. However, UEMS facilities have a strong static aspect if we think of them as a
group of garages for emergency vehicles. Therefore, a question rises whether these two concepts can
coexist. The primary idea that rises is to have the facilities statics and reallocate assistance units between
facilities in order to fit the service to the continuous morphological change of the city, firstly studied by
Berman and Odoni (1982) as a scenario-based approach. Another example is the campus problem
addressed by Carson and Batta (1990) where the movements of students through the day lead to a
solution of dividing the day in four time periods. If we have in mind a metropolis area with a center that is
daily fed by satellite zones that are used as city dorms, we can imagine the spatial variation of inhabitants

along the day, thus dynamical concepts are more than plausible.

City dynamics have a big impact on traffic; arterial, collector and local roads have different purposes
and with-it different drivability conditions for the emergency vehicles. Time and traffic are highly correlated
in high populated cities or urban areas - unless everyone’s origins and destinations would be in the same
spatial unit. Vehicle dispatching is then affected by how other vehicles are dispersed in the road
infrastructure. The subject is widely studied and many works have already implemented stochastic traffic
scenario and real time traffic information together with dynamic routing, e.g. we can point out Xiang et al.
(2008) but a deep review to dynamic and stochastic routing problems is further addressed through Pillac
et al. (2013) and pickup and delivery routing problems through Berbeglia et al. (2010). The point here is
that with the evolution and introduction of intelligent transport systems (ITS) in this problem, there is a
UEMS dispatching problem that can be improved considering that we have the tools to predict traffic and

demand conditions at key operational times.

Moreover it has been proven that although under light traffic conditions using a myopic allocation
policy® will lead to an optimal solution, when the objective is to minimize the long run average cost for
heavy traffic the optimal policy can deviate from the myopic policy (Katehakis and Levine, 1986, Jarvis,
1981).

3 myopic allocation policy — this policy states that to each demand request the model will assign always the closest available
server, e.g. the closest ambulance or request the closest facility.
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1.5.3. EMPIRICAL EVIDENCE

To demonstrate how each of the theoretical models or assumptions would perform in a real
environment an experiment should take place. However, experimenting in a real UEMS situation is

prohibitive, thus the second-best option is to create a simulation of the real environment.

We developed a simulation that is based on a multi-agent model and reflects the key aspects of this

research: demand and traffic changes.

Dynamic environments are in constant change; in cities this translates into land demographic
occupation changes, such as daily periods when people cluster in business and industrial areas, and night
periods when people cluster in residential and nightlife areas. Moreover, when residential areas exist and
cluster far from the business and industrial areas, traffic flow differs during commuting times; in the
morning towards the city’s business, industrial and commercial areas and in the evening towards the

residential areas.

When studying vehicle allocation and dispatching, the assistance time and driving conditions are
usually unknown. To cope with variables where their distribution is unknown or that vary in a random way,
simulation allows us to introduce randomness in our model. The main idea behind the proposed simulation
model is to feed a simulated environment where a UEMS system exists with an infinite number of possible
vehicle and station configurations can be requesting through different dispatching policies and using

different available technologies.

To simulate the system, an agent-based model is used, where an authority agent, the city agent,
controls lower level agents: the event agent, road network agent, ambulance agent, and node agent.
These agents coexist in an environment that simulates a spatial area defined by nodes, key locations,

and a set of arcs connecting those nodes (Algorithm 1).

Algorithm 1 General simulation algorithm

Definitions:

T = simulation period
t = timestamp

j = step

j=60s

t=0

Whilet<T

1. Update city
e Sets the environment conditions, s, from possible status S = {s, S, ..., S}, Where s =
f(time)
e Move events from events waiting listEv= {e;, €, ..,en}t0 events active
list E2 if the timestamp of event en(t) < time, and generate assistance time required, e.2im

2. For all vehicles in the network:
o Vehicle time to destination, ad, is updated — ast = aq' - j
o If as =0 — transfer vehicle to destination
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3. For all active events e;2 € E:

if no vehicle is allocated — run Vehicle dispatching algorithm, Algorithm 2

If vehicle is at the occurrence location — Update assisting timer, e.ime = gyatime -

If exime < 0, assisting time ended — run vehicle to hospital routing algorithm, Algorithm

we e o

4. Update nodes of type Hospital
If vehicle arrived — Transfer event to hospital
o Ask network to return vehicle to its station — set new ad
5. Update results dictionary, Rgg, withi=tand j = a
o For all vehicle in the network — if not in original station, a’%, Rgg= Rag+ 1, withi =1t
and j = a
6. Ift<Tgobacktol.

Algorithm 2 Vehicle dispatching algorithm

Definitions:

Stations, €S ={sy, S, ..., S,YWHO (2011)

Spe={s, % ..., 52} is a list of ambulances parked at s,

C ={t, ts, ..., &} is a set of timestamps t

e is the maximum allowed response time for e,

Time(sy, en). is the minimum time travel between station s, and e at scenario ¢ €C = {ci, C,, ...,

Cn}

1. ForallcinC:iftinc—q=c

2. For all s,in S: order S by Time(s,, em)q Or other dispatching rule function F(a, b,
c...N) in ascending order

3. Foralls,inS:if S2# {@} and Time(Sy, em)s <en™ — a = s;!, proceed to 5

4, Select s; — create sit, a = s;* or wait for a vehicle to become available

5. Allocate a to e, and return to Algorithm 1

Algorithm 3 Vehicle to hospital routing algorithm

Definitions:

Node of type Hospital h eH = {h, h, ..., s}

C={t, ts, ..., t} is a set of timestamps t

Time(en, h:). is the minimum time travel between e, and h; at scenario c from list C = {c,, ¢, ...,

Cm}

a is the vehicle allocated to en, and a¢ is the destination of vehicle a

ForallcinC:iftinc—qg=c

For all h, in H: order H by Time(en, hr)q in ascending order
Selecth, — a?=nh

Return to Algorithm 1

el NS
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The city agent is responsible for generating and dispatching vehicles when required and activating the
events at the right time. The city is also accountable for storing all other agents and gives update orders

to them.

The event agent is responsible for feeding the city agent with events and informing the city agent of
its current state, asking for a vehicle agent to be allocated when it is activated (Algorithm 2). When being
assisted, the event agentis responsible for generating a random assisting time and when this time
terminates it will request the network agent to be transported to the closest node agent of type
hospital (Algorithm 3).

Algorithm 2 step 3 goes through a list of ordered stations and chooses the one with an inactive vehicle
if the time between this station and the event is lower than the maximum time allowed to assist the event
or through other pre-defined dispatching rule or policy. When there is no available vehicle, step 4 creates

a new vehicle or puts the service at hold.

Algorithm 3 simply chooses the closest hospital (in terms of trip time) by ordering a vector of available

hospitals, step 2, and then selecting the first member of the ordered vector, step 3.

The network agent is responsible for routing all vehicle agents and choosing the closest hospital when
a vehicle agent is transporting an event agent. It is also responsible for computing the fastest real time
Origin-Destination (OD) route.

The vehicle agent keeps track of its position in the network agent and informs the network when it
arrives at any destination. It travels to the node where the event occurs, assists the event, brings the event

to the closest hospital and returns to its base. It is completely dependent on orders given by other agents.

The node agent can be of three types: simple node, hospital node and station node. This agent assists

the network and city agents by storing vehicles and events.

1.5.4. PERFORMANCE METRIC

Usually uEMS strategic and tactical decisions simply care to minimize response time or/and maximize
coverage. The measurements of the improvements they serve are most of the time quantified by relative
arguments facing what other models have reached. To complete our methodology, we give a better
understanding of the improvements we might reach by providing metrics that allow to measure the social

and economic impact of each solutions.

The extended variability of medical emergencies that might arise makes it a long task to try to
categorize, in an economic and social manner, the impact of the response time for the different medical
emergency call types. The task would require many studies over different medical pathologies and how a

quick response might affect them, falling within the scope of medical research rather than in the transport
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system view. Therefore, our research focused solely on road crashes, cardiac arrest and other life-

threatening emergencies, and how the improved medical response might affect the injuries survival.

To implement such measure, besides any other intermediary measures intrinsic to each of the planned
tasks and tools, it is required to make a thorough treatment of the database through a standardized
methodology. These kinds of metrics exist in the literature for cardiac arrest events, however none was
found for road crash injuries. To cover this problem, we had to develop a linkage algorithm that links police
reports with hospital reports of road crash victims to connect each crash with its social and economic
impact and assess the improvements of a faster medical response on those. Because of the difficulties
previously presented and because this is not the primary focus of this thesis, we ended up relying in the
tools provided by the state of the art. Nonetheless we developed a linkage methodology (Amorim et al.,
2014b) and researched on the topic of pre-hospital time impact on road crash injuries (Ferreira et al.,
2019).

1.5.5. DATA BASE

1.5.5.1. GENERALITIES

The work produced through the European Commission co-funded project LIVE allowed a compilation

of road crash and EMS related datasets.

The resulting database from the project is divided in four datasets: road crash injuries information,
UEMS calls, and traffic and population demographics. These data refer to the municipalities of Porto, Vila
Nova de Gaia, Matosinhos and Maia and regards the period between 2006 and 2011. Not all the four
databases exist for every municipality thus we focused on the Porto city region, which was the only
complete set. Furthermore, a dataset with the “Calls-For-Service” of all the fire units’ responses to calls to

medical emergencies corresponding to the city of San Francisco is also part of our database.

Finally, we built a SQL dataset with the traffic and demographics of the study areas using the Googles
Direction API and the Statistics Portugal (INE) web database. The next sections further detail these

datasets.

1.5.5.2. ROAD CRASH INJURIES DATABASE - PORTO

The road accidents injuries database was obtained through different datasets from the Portuguese
road safety authority ASNR and several hospitals that covers Porto’s metropolitan area: Hospital S&o
Jodo, Hospital and Santo Antdnio, covering a 6-year period (2006-2011). Hospital Sdo Jodo has two
different datasets, one for emergency entries and other for inpatient time, therefore these two datasets

required a linkage process.
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To connect the various datasets a linkage methodology was produced (Amorim et al., 2014b) which
resulted in a total of 2,802 links. This result leads to a matching success of 42% (2,802/6,741). For the
Hospital S&o Joao, the linkage between the emergency and inpatient entries resulted in 1,114 matches
out of 9,370 emergency records. From the latter, only 1,182 required inpatient time, bringing the linkage
rate success to 85%. To confirm a true match, it was assumed that if the destination field reports an
inpatient, the match is true and false otherwise. A total of 1,001 true positive matches, 181 false negative

matches and 114 false positive matches were assessed, leading to a positive predictive value of 90%.

Finally, when the three data sets are connected, a linkage success rate of 40% was obtained. The
ambulance service data set of 2010 with road crash victims transport timestamped was used for validation.
After the data treatment, it was possible to verify 98% of matched records, denoting that the linkage
process has a potential of 98% of true matches. Detailed description on the methodology is annexed and
published as Amorim et al. (2013).

The GPS coordinates of the accidents were computed through Google Maps API using the police

crash address information. These coordinates were then attached to each injury after the linkage process.

1.5.5.3. UEMS CALLS DATABASE - PORTO

The uEMS calls database was collected from the Instituto “Nacional de Emergéncia Médica”, INEM,
“Centros de Orientagdo de Doentes Urgentes”, CODU, of Porto. The database includes all the calls with
source location on Porto, Gaia, Gondomar and Maia municipalities between the 10" May 2012 and the
10t May 2013.

The database contains information on the Date and time of the call, call ID, Type of occurrence (a total
of 42 types including cardiac arrest and road crashes), the facility from where the ambulance was
dispatched, the priority (the type of vehicle dispatched, e.g. INEM vehicle, assistance unit), and the

address of the occurrence (sometimes not complete).

There is a total of 87 481 occurrences whereas 1 125 are resulting from a cardiac arrest and 3 285
from road crashes. It is important to remember that a road crash call might refer to various injuries with

different degrees of severity.

1.5.5.4. UEMS CALLS DATABASE — SAN FRANCISCO

A second UEMS calls database was collected. This database refers to the city of San Francisco and
is part of the U.S. Government’s open data of the strategic American resources and consists of a collection
of Calls-For-Service datasets, which includes all the fire units’ responses to calls in a total of 4.4 million
vehicles dispatched between 2000 and 2017. The fire department is responsible for managing the EMS
calls and responses, requesting a private unit when required. Thus, the database also records the dispatch

of private units (to 911 calls).
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Each data entry was characterized by a unique ID, an event ID, the GPS location of the block where

the call originated, the type of vehicle dispatched, the priority and the timestamp.

The data were processed and filtered into a SQL database for easy access and data manipulation.

From the same open data source, fire station locations were acquired and added to the SQL database.

The city was divided in a grid of 500 m x 500 m cells and each unit is represented by a node
corresponding to its center, totaling 518 nodes. 46 fire stations were identified and assigned to the closest
node as well as three fictional hospitals to represent the major San Francisco hospitals. The lack of
information on the destination hospital for each call required a random allocation of calls to hospitals based

on their proximity.

1.5.5.5. TRAFFIC AND DEMOGRAPHICS

To complement the UEMS databases and enable a data-driven simulation of the study cases it was

necessary to collect traffic and demographic data for each study case.

Traffic data is required in order to tailor the optimization models to real case studies. Moreover, travel-
times are required to investigate how vehicle dispatching behave within a real traffic situation using a
simulation model. The simulation model also allowed for an empirical assessment of the system

performance by using travel-time as the response time in the survival function of each medical emergency.

The collection of such data is very hard because cities do not have a detailed record of traffic density
for each road and at different times of the day. Nevertheless, the goal was to obtain the real travel time
for each period in analysis thus we can directly collect travel times instead. Here, the 10T (Internet of
Things) comes into place and several phone apps collect driving characteristics such as driving speed or
route times. Google has a powerful app, Google maps, which has been collecting data for many years.

Using Google Direction API it is possible to access travel times for specific days and times.

We designed a Python script to access Google Direction APl and collect the travel-times for the city
OD matrices for different periods of the week and different periods of the day. This data was, afterwards,

processed into a SQL database for easy access and manipulation.

The demographics of the study zone are important to infer relations between the randomness of an
UEMS call and the population-land use characteristics. The INE (National Institute of Statistics) keeps
demographic data in open access. This data was collected directly from the INE web databased and

imported to the GIS software gGIS.
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1.6. RESEARCH SCOPE, LIMITATIONS, ASSUMPTIONS AND BENEFITS

The outcomes of this research consist of a platform to assess strategic and tactical decisions in
dynamic environments through a data-driven simulation model that provides empirical proof for theoretical
models with the goal to study the heterogeneity of the demand, the use of survival metrics and the

implementation of city dynamics in the modeling process.
We provide three optimization models that focus in different levels of planning:

e A global static long-term optimization model that defines key locations for EMS stations
supported by a heterogeneous demand model,

e A model that implements discrete time scenarios to allow for a more robust solution on station
positioning; and

e A model that introduces an integrated approach on strategic and tactical planning, i.e. location
of stations together with the location of vehicles.

With the analysis of the proposed models and when compared to other models that do not account for
heterogeneous demand, survival metrics or city dynamics, we were then able to provide useful insight on

the weakness of theoretical models and to identify where EMS research should focus.

For real-time tactical decision, we focused on the dispatching policies and used the methodology to
test the classical dispatching policy and propose a new one, which focuses on victims’ survival and city
dynamics. We go further in our research and complement the study of dispatching rules with the study of
new technologies by assessing the advantages of using intelligent predictive models both for demand and

for travel times.

The methodology and proposed models have the potential to assist stakeholders during the decision-
making process to balance or compare different solutions or policies. The different assessments carried
out through this research provide educated insight on three important and actual problems in EMS
(research):

¢ A non-integrated strategic and tactical approach produces myopic solutions thus effort should
focus on models that integrate the two levels of decision;

e The classic dispatching policy, heavily focused on dispatching the closest idle vehicle, is not
optimal and it is not even clear that a single policy or rule is enough to reach optimality; and

e Operational performance metrics are far from satisfying the victims’ needs and effort should be

put on the use of survival approach.

Our research tackles a very wide subject and at very different planning levels. However, for obvious

reasons, we had to limit our research to the following essential assumptions and simplifications;

¢ It was assumed that we know the real travel-time of the emergency vehicles;
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o The problem of vehicle routing was left out of this research. Vehicle reallocation or rerouting
was also not part of the scope because we only focused on the decision making till the vehicle
dispatching;

e The survival functions were simplified as well as the demand heterogeneity because this is still
an active research topic waiting for new inputs; and

e The proposed models are intended to be solved in short time for different runs without the use
of approximated heuristics. The goal of this research is to study the consequences of certain

decisions or approaches, not the mathematical or computational aspect of finding solutions.

Overall, the output of this thesis can benefit primarily the emergency medical service institution, public

health organizations, a wide range of research areas, and eventually the public, i.e. the urban citizens.

Research-wise- as of today, the contributions from this work lead to the creation of a dedicated session
in the TRB Annual meeting, which, due to its success, expanded to the creation of a new subcommittee
solely focused on the EMS transport system and the implementation of new technologies and approaches.
The national emergency medical service, INEM, is also benefiting from our results and guidelines
particularly at dispatching time.

1.7.THESIS OUTLINE

This thesis is divided in 9 chapters. Chapter 1 introduces the thesis scope and the transport system
here at study: The Emergency Medical Service. A brief description of the different concepts used along
our research is presented and a résumeé of the research development is provided. We also present of

methodology that follows this thesis objectives and research questions.

Chapter 2 gives a global literature review on the main concepts of this thesis; these are the EMS

demand characteristics, EMS performance and EMS strategic and tactical decisions.

Chapter 3 through chapter 8 -, in line with Table 1 - present the six scientific papers that resulted from

our research. A brief abstract of each of the papers is presented in subchapter 1.4.

Finally, chapter 9 wraps up the research by highlighting the main research results, findings and

conclusions. Some guidelines for further development of this research are proposed.
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2. THEORETICAL MODELS — A LITERATURE
REVIEW

2.1. SURVIVAL AND MEDICAL RESPONSE

One of the greatest impacts of planning UEMS is the medical response time and how that can affect
victims’ survival. Most of the research on survival rates due to UEMS response times focuses on cardiac
arrests (Erkut et al., 2008). However, as previously presented, there is also an interest in understanding
how these survival rates work for road crashes (or any other type of medical emergency) and how to

implement it in UEMS with road crash focus (Kepaptsoglou et al., 2012).

Focusing in cardiac arrest, which is where survival functions are deeper developed, there is a study
by Eisenberg et al. (1990) who evaluates the survival rates of cardiac arrest in out-of-hospital individuals.
Hypothetical survival curves suggest that the ability to resuscitate is a function of time, type, and sequence
of therapy, and early cardiopulmonary resuscitation (CPR) permits definitive procedures, including
defibrillation, medications, and intubation, to be more effective (Eisenberg et al., 1990). There is a big
advantage in rapidly assisting such medical conditions. The deeper analysis of the previous study
indicates that without any intervention the survival rate of a cardiac collapse drops, linearly, to zero after
10 minutes. With CPR techniques the linear slope decreases however keeping its negativity. Stabilization
of the patient is only assumed when paramedics administrate medication and intubation. But if there is no
local assistance, stabilization is assumed when the patient arrives at the hospital. In the latter, that would
mean to assume that the period between the cardiac arrest and the arrival at the hospital must not exceed

10 minutes plus the gain of using CPR techniques.

Another study that shows the differences mentioned before is the one from Valenzuela et al. (2000)
held in a casino where the security officers were trained for CPR and defibrillation. The author concludes
that the survival rate for those who received their first defibrillation no later than three minutes after a
witnessed collapse was of 74 percent, and for those who received their first defibrillation after more than

three minutes the rate dropped to 49 percent.
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Erkut et al. (2008) point out four relevant studies that estimate such survival functions and that we will

address next.

Larsen et al. (1993) use data from a cardiac arrest surveillance system in place since 1976 in King
County, Washington, where they selected 1,667 cardiac arrest patients with a high likelihood of survival:
they had underlying heart disease, were in ventricular fibrillation, and had arrested before arrival of
emergency medical services (EMS) personnel. The authors provided us with a survival rate S as per

equation (2.1):
s=0.670—-0.023I ., —0.0111 5, —0.0211 , ¢ (2.1)
Where:

| . is the duration from collapse to CPR,

| s, 1S the duration from collapse to defibrillation, and

| s is the duration from collapse to Advance Cardiac Life Support (ACLS)

The authors made proofs that there was little or none correlation between the independent variables

thus the addictive equation presented a good approach.

Moreover, Valenzuela et al. (1997) indicate that the time interval needed for EMTs or paramedics to
attach the defibrillator and clear the patient for defibrillation once CPR was in progress was estimated to
be 2 minutes past EMT arrival or 1-minute past time of initiation of CPR by EMTs. They then present a

Logistic Regression Survival Model, equation (2.2), to calculate the survival rate:

1
S =
1+exp{—0.260+0.106 1 +0.13901 |

(2.2)

It is however interesting to point out that the survival function overestimates the probability of survival

when the response time is large, as reported by the authors.

The third study mentioned by Erkut et al. (2008) is the one from Waalewijn et al. (2001) using a dataset
of cases from out-of-hospital nontraumatic cardiac arrests of patients older than 17 years of age between
1 June 1995 and 1 August 1997. The authors included in their logistic regression a binary variable to
indicate whereas the cardiac arrest was witnessed or not by EMS staff. For our analysis, this variable is
set to zero because we assume that there is a delay between the cardiac arrest event and the arrival of
the uUEMS ambulance. Therefore the model built by Waalewijn et al. (2001) is transformed into the

equation (2.3):

1
S =
1+exp {0.040+0.3001 g, +0.140(I e — leor) |

(2.3)
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Where:

| is the time response in minutes.

response

Finally the last presented model belongs to De Maio et al. (2003) with the use of stepwise logistic
regression to estimate survival at various defibrillation response intervals. The data was from January 1,
1991, to December 31, 1997, containing 392 (4.2%) survivors among an overall of 9 273 patients treated.
The model construction had several steps in order to find a final model with only the response time as a
dependent variable, as per equation (2.4):

1

S =
1+exp{0.679+0.2621

(2.4)

In a recent study of UEMS response to cardiac arrest Gold et al. (2010) observed data showed survival
declined, on average, by 3% for each minute that EMS was delayed, following the collapse. However,
survival rate did not decline significantly if the time between collapse and arrival of EMS was 4 min. or
less but they declined by 5.2% per minute between 5 and 10 minutes. EMS arrival between 11-15 minutes

after collapse showed a less steep decline in survival, 1.9% per minute.

Interestingly, when looking at trauma incidents, Newgard et al. (2010) indicate that there was no
significant association between time and mortality for any uUEMS interval: activation, response, on-scene,
transport, or total UEMS time, using multivariable analyses of a set of trauma patients with field-based
physiologic abnormality. The dataset corresponded of transported victims by 146 EMS agencies to 51
Level | and Il trauma hospitals in 10 sites across North America from December 1, 2005, through March
31, 2007. This study indicates that certain injury profiles do not benefit from an earlier medical treatment

within the range of UEMS arrival.

In general terms, Wilde (2013) finds that a one minute increase in response time causes an 8% change
in survival within one day of the initial incident using a dataset from the 2001 Utah Pre Hospital Incident

Dataset. .

Wilde (2013) concludes that response times are very important for survival from cardiac arrest but less
important for survival from other conditions. This is based on the fact that most of the studies fall on the
cardiac arrest condition and in the results from the works of Newgard et al. (2010), Pons and Markovchick
(2002) and Esposito et al. (1995) which found no association between response times and survival in
other types of conditions. However, it is interesting to note that the study by Pons and Markovchick (2002)
only clarifies that there was no difference in survival after traumatic injury when the 8 minutes real-time
ambulance criteria were exceeded (mortality odds ratio 0.81, 95% CI 0.43-1.52). There was also no
significant difference in survival when patients were stratified by injury severity score group. Moreover,
Pons and Markovchick (2002) used a database that comprises all types of uUEMS calls, where each

ambulance of the system is equipped with advanced life support (ALS) and where victims had significant
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trauma requirements. Backing up this view is the study made by Pepe et al. (1987) whose results indicate
that, even in a geographically large urban EMS system, the time factor involved in managing and
transporting hypotensive penetrating injury victims directly to a regional trauma center does not appear to
be related to an adverse outcome, at least during the first hour after injury. The study comprises of a 30-
month-period and 498 consecutive victims of penetrating injury. Moreover, Jones and Bentham (1995),
with police data on serious and fatal road crashes between the period of 1987 and 1991, complete these
claims stating that although elevated probability of death was found among old, pedestrians, casualties
involved in multiple crashes, and casualties on roads with higher speed limits, no relationship was found
between outcomes and the estimated time taken to reach victims and convey them to hospital, either

before or after adjustment for other factors.

On the other hand, to simply evaluate UEMS response by looking at the survival rate on hospital
outcomes would bias the view for our work, where the intention is to reduce the road crash social impact,
which starts with the survival at site. In other words: Would a death before arrival be avoided if the
emergency vehicle would arrive quicker? In a more recent study on road crash outcomes and their relation
with the UEMS response time, Sanches-Mangas et al. (2010) show that the medical response time
appears as a significant variable to explain the probability of death for both types of roads (conventional
roads and motorways). The authors go further and even indicate that the partial effect of a 10 minutes
response time reduction, from 25 to 15 minutes, in motorway road crashes, lead to an increase of the

survival ratio of around 33%. For conventional roads, a similar value is obtained (32%).

The list of authors that found a positive relationship between higher distance or time for road crash
assistance and higher probability of dead is long (Brodsky, 1990, Brodsky, 1992, Brodsky, 1993,
Gonzalez et al., 2009, Li et al., 2008, Durkin et al., 2005, Zwerling et al., 2005, Muelleman and Mueller,
1996, Clark and Cushing, 2002, Evanco, 1999) .

This review concludes that the cardiac arrest survival rate is clearly dependent on the UEMS time
response and empirical equations, (2.1), (2.2), (2.3) and (2.4) are provided and widely used to calculate
survival. For other types of conditions, there are not enough evidence that correlate survival rates with
UEMS time response. However, road crash injuries and their survival rates have been demonstrated to
have some correlation with UEMS response time. Most of the authors support the latter claims despite

some studies that show otherwise.

2.2.DEMAND ON UEMS

UEMS demand varies spatially and is fluctuating temporally throughout the week, depending on the
day of the week, and the time of day (Channouf et al., 2007). Usually, authors assume that demand follows
a Poisson process, either by showing theoretical proof (Henderson, 2005) or by empirical evidence, e.g.,
the works of Brown et al. (2005), Gunes and Szechtman (2005) and Zhu et al. (1992).
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Henderson (2005) proves that Gaussian and Poisson random fields have an important role to play in
simulation models of spatial phenomena, due to their relative tractability and physical interpretations. The
use of the Poisson properties tracks back to the Palm-Khintchine Theorem (see Arthur, 1985) which states
that the arrival process that arises from a large number of independent sources, where no source

contributes too much to the arrivals, is approximately a Poisson process (Cinlar, 1972).

Another approach to such studies lies in the demand patterns analysis, e.g., moving average.
Autoregressive integrated moving average (ARIMA) models are very used in forecasting arrivals to call
centers. The bibliography is rich of works that predict daily volumes and:

e incorporate advertising effects (Andrews and Cunningham, 1995); that show the benefits of

outlier elimination (Bianchi et al., 1998);
e with unobserved components such as the dynamic harmonic regression (Tych et al., 2002); and
e that predict arrival rates over short intervals in a day via linear regression on the previous day’s

call volume (Brown et al., 2005).

Such forecasts have helped UEMS managers make more effective resource allocation decisions
(Setzler et al., 2009). However these aggregated forecasts, when applied to entire regions, are not
sufficient to effectively deploy the often-limited transportation resources in order to minimize response
time to an emergency call (Goldberg, 2004).

Setzler et al. (2009) provide an interesting division on the demand model requirements according to
the use they will have: dynamic deployment or real-time repositioning. The authors state that for the
dynamic deployment the uEMS manager uses call volume forecasts for the next few hours to reallocate
the fleet in anticipation of space and amount shifting. For the real-time repositioning, the fleet is reallocated
when an ambulance is dispatched in order to maximize the coverage. Moreover, the authors add that in
both cases, it is a common practice that when an ambulance finishes a call, it can be dispatched
immediately from its current position to a new or pending call. In case of no pending call, the vehicle can
be sent to a location that may not be its original base but rather is in the area of the city that currently has
the biggest “coverage hole”. For dynamic allocation demand forecast, further information can be seen in
Rajagopalan et al. (2008) and Channouf et al. (2007).

One of the earliest works in modeling demand is the work of Aldrich et al. (1971) using least squares
regression and socioeconomic variables. The model uses dependent variables that address total demand
and type of incident (road crashes, accidents, cardiac problems, poisonings, other ilinesses, and dry runs)
and 31 independent variables describing the study area demographics. The author concludes that
demand for public ambulances appears to be highly predictable when using socioeconomic, land-use and
service variables. Areas with elderly people or of low age seem to be more demanding. The calls pattern

seems to be stable over time for each call type.
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Another earlier works in modeling demand for pre-hospital care is the one of Kamenetzky et al. (1982).
The authors provide models for uEMS based on population demographics such as inhabitants and
employment. The age demographic is deeper analyzed in the work of McConnel and Wilson (1998). The
work indicates that the pattern of utilization associated with age can be divided into three modes. Further
figures in the same work show that compared to the age group 45 to 64 years of age, rates of utilization
for those aged 85 years and older were 3.4 times higher for total UEMS incidents, 4.5 times higher for

emergency transports and 5.2 times higher for incidents of a life-threatening nature.

Other representative studies with similar methodologies, but with just slight changes in the dependent
and independent variables, are those of Siler (1975), Kvalseth and Deems (1979), Kamenetzky et al.
(1982) and Cadigan and Bugarin (1989).

Within the short breaks of the previously mentioned models such as autocorrelation, multicollinearity,
and the difficulty of finding meaningful explanatory variables, new models that implement exponential

smoothing to the previous ones or use ARIMA model are studied (Winters, 1960, Trudeau et al., 1988).

Channouf et al. (2007) collected several time series models and applied it to the real case study of the
city of Calgary in Alberta, Canada. The authors concluded that it is possible to generate a forecast of the
number of calls few days in advance when using autoregressive models. Using a devised conditional
distribution approach, it was possible from the daily predicted volume to estimate hourly demands.

Moreover, the authors addressed the importance of spatial studies to strengthen the forecasts.

Nevertheless, real-time management requires a detailed description of the demand, which these
models lack to address. State of the art forwards then to the use of Artificial Neural Networks (ANN) to

overcome such disadvantages (Cao et al., 2005, Denton, 1995).

Setzler et al. (2009) provided a comparative study using ANN and a moving average formula. The
authors conclude that the moving average only overperforms the ANN for high resolution grids. They
indicate that future studies could investigate the use of population and demographic variables, perhaps in
addition to historical call volumes, and a better description of the population demographics such as
population shifts hour-by-hour and key demographic elements such as age, employment status, and

income level.

Finally, Henderson (2005) indicates that we must attempt to calibrate models with very little (relatively
speaking) data. The author justifies this claim by stating that we are trying to model a multidimensional
random vector (or even a full-time series) rather than a univariate random vector. The curse of
dimensionality is the key problem. The author concludes that this difficulty with calibration suggests that
methods for addressing input uncertainty will play an important role in simulations involving random

vectors with complicated joint distributions.
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2.3.UEMS OPTIMIZATION MODELS

2.3.1. CLASSICAL MODELS

The optimization of emergency response (ER) and emergency medical services (EMS) is tightly
connected to operational research (OR), and usually, it is the driver that conducts OR trends. The common
topics of study are generally divided into three major groups, Urban Services, Disaster Services, and
Hazard-Specific. The study by Simpson and Hancock (2009) Fifty years of operational research and
emergency response indicates that over the years, from 1965 to 2007, the OR community focus lies on
the latter two mentioned groups. Specific historic events drive the attention from the operational research

academy in particular to those subthemes of disaster and hazard-specific.

The foundational stream of research for emergency response tracks back to the year of 1955 with fire
station location planning studies by Valinsky (1955). Additionally, Hogg (1968) together with Savas (1969)
fill the base archetypes for this theme, being the latter focused on the EMS and the two former ones
concerning fire-fight facilities.

Further developments in the generalized OR problems lead to the so called Hakimi property which
states that there is an optimal solution to a network location problem in which the facilities are located on
the nodes of the network and not along the edges (Hakimi, 1965, Hakimi, 1964). This statement might be
one of the most well-known properties presented in all the upcoming OR for facility location in nodal

networks.

However, the two most relevant works that truly drove the OR community interest in EMS were those
of Toregas et al. (1971) and Church and Velle (1974). The former one presents a solution to solve the
location set covering problem (LSCP) making sure all demand is covered within a time or distance

maximum radius, equations (2.5) and (2.6):

j=J
Minimize > z=>"y, (2.5)
-1

Subject to:

>y =1 (2.6)

ieN;
With:
i being any node of the network node set 1

] being any possible node of the node set J where a facility can be established,

y; being the decision variable, which takes value 1 if a facility is established at point Jj and 0 otherwise,
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Ni :{jldij SS}

S being the acceptable time distance from jto i and

dij being the response time or distance from any node i to node j .

Nonetheless, full coverage is hard to reach especially when resources are limited, which is the case
of any practical problem. Li et al. (2011) reviewed covering models for uEMS in their work “Covering
models and optimization techniques for emergency response facility location and planning: a review.” The
authors point out many future models that relax some of the Toregas et al. (1971)’s assumptions. The
discrete points network of Toregas et al. (1971) is changed to a continuous region in Aly and White (1978)
work on probabilistic formulations for the emergency service problem using stochastic response time. A
hierarchical vision of the LSCP is proposed by Daskin and Stern (1981) with the objective of minimizing
the number of facilities, providing full coverage within a distance standard first and then maximizing the
number of demand points with multiple coverages. A probabilistic version of the LSCP is formulated by
ReVelle and Hogan (1989) with the requirement that all the demand points must be covered with a

reliability level « . Further specifications of this model will be presented in due time.

To integrate the concept of ambulance service capacity into the LSCP and consider the road condition
and the population distribution, Shiah and Chen (2007) propose an Ambulance Allocation Capacity Model
(AACM). The new approach presented considerable improvements with increases from 49% to 91% in
coverage rate and decrease from 48% to 18% in overlapping rate within the study area and using almost

the same number of ambulances.

Church and Velle (1974) point out a solution for a maximal coverage location problem (MCLP) that
intends to overcome the resources limitation of the Toregas et al. (1971) problem. For this problem,

Church and Velle (1974) add a new decision variable,
X; , which defines whereas a demand node is served or not by any facility, knowing that:
P is the number of facilities to be located and
a;is the population on i.

Therefore the earlier solutions (equations (2.5) and (2.6)) become as equations (2.7), (2.8) and (2.9):

i=|
maximize >z =) ax, 2.7)
i=1

Subiject to:

>y =x Viel (2.8)

jeN;

44 PhD thesis on Transport Systems — University of Porto, Faculty of Engineering, MIT Portugal



Marco Amorim — Analyzing Strategic and Tactical Decisions in the urban Emergency Medical Service (UEMS) Transport System

Zyj =P (2.9)

The objective function, equation (2.7), holds now a maximization objective while in Toregas et al.
(1971) the goal was a minimization. The difference relies on the fact that one wants to minimize the
number of facilities to be used in order to cover all demand points while the other knows that resources
are limited thus the number of facilities is known a priori, therefore, the goal is to maximize the population
served. Although both works have no references to the archetype works earlier mentioned, later work by
Toregas and ReVelle (1972) “Optimal location under time or distance constraint” brings references to

Savas (1969) paper, which is a simple development of his initial idea.

Li et al. (2011) point out the studies of Jia et al. (2007) and Dessouky et al. (2006) as an extension of
the MCLP. These studies fall in large scale EMS using multiple quality levels and multiple quantities of
facilities at each quality level for demand points. The earlier mentioned study suggests that the minimum
number of facilities that must be allocated to demand point i to achieve a certain quality level of coverage
should be determined by population, a weighted factor, and an emergency occurrence likelihood at each

demand point.

Other extensions of the MCLP are addressed by Schilling et al. (1979) where coverage is provided
by two distinct types of servers, one of which is the Tandem Equipment Allocation Model (TEAM). In the
same framework falls the Backup Double Covering Model, BDCM (Basar et al., 2009). Moreover, the work
of Hogan and ReVelle (1986) introduces the notion of Backup Coverage Problem by maximizing the
population coverage with more than two facilities while forcing all demand points to be covered once.
Alsalloum and Rand (2003) and (2006) developed Goal Programming models and extend the MCLP.
Initially, by determining the locations of faciliies to maximize expected demand coverage and
subsequently by adjusting the capacity of each station while meeting the minimum performance
requirements. Marianov and Serra (1998) propose a queuing version of the MCLP and calls it Maximal
Covering Location-Allocation Problem (MCLAP). They propose new linear models for locating service
centers in a congested situation. These models explicitly include a constraint on service quality,
specifically the waiting time or queue length at each center, and are solved through heuristic solutions
which are compared to the solutions obtained by commercial optimization packages. Finally, it is important
to refer the work of Erkut et al. (2008) which incorporates a survival function into the covering model and
formulates the Maximum Survival Location Problem (MSLP). The author's model falls as per equations
(2.10), (2.11), (2.12) and (2.13):

| J
Maximize — > 4> s(t; +t,)y; (2.10)

=l j=l

Subiject to:
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|
Dy <Ixy;,j=1..J (2.11)
i=1
J
Dy =1i=1..1 (2.12)
i
Dy, <P (2.13)

Where:

A;is the demand on i,

t; is the travel time from j to demand node i,

t, is the pretravel delay,
s(tji +t,) is a function of time and can be obtained from equation (2.4), and
Yi is equal to 1 if node i is served by an EMS in position j .

The survival function is a monotonic decreasing function, mapping response time to survival rate and

the model is tested with out-of-hospital cardiac arrest emergencies (Li et al., 2011).

Bringing closer attention to the first approach, maximal coverage models, we can conclude that this
method is more a generalized facility location problem solution rather than specifically intended to solve
EMS problem, i.e. in an EMS network every single demand point — every household — must be covered.
It is, of course, understandable that some households will be of quicker reach than others will, but there
must always be a minimum assistance time. Thus every network node must be within that predefined
reach time of a facility.

The classical interpretation of the facility location problem, in particular to urban emergency services,
soon was overcome by uncertainty approaches leading to double coverage, scenario approach, stochastic
and robust optimization problems as well as dynamic location. Some were already presented as
extensions of the two classic models, MCLP and LSCP. However, Cooper (1974) explored the stochastic
approach by assuming a bivariate normal distribution to solve the Weber problem. In this approach, the
location of the demand points may be random, and an iterative algorithm was developed to solves the
first-order conditions; Sheppard (1974) followed a scenario approach to facility location, although the first
rigorous approach was from Mirchandani and Oudjit (1980); It was not up until the ’80s, between 1981 —

1984 up to 1990, that OR focus on Urban Services reached its peak (Simpson and Hancock, 2009).
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Following the previous models and each one’s problems, new views from different authors were
proposed. Focusing on the fact that once a facility is called for service the demand points under its
coverage are no longer covered, Daskin and Stern (1981), (1983) and Hogan and ReVelle (1986), (1989)
account for facility busy probability and reliability. The former ones solving the maximum expected
covering location problem (MEXCLP) and the latter defining the maximum availability location problem
(MALP).

Daskin and Stern (1981) and (1983) propose extending the original LSCP (Toregas et al., 1971) to a
hierarchical objective problem by keeping the first objective, minimize the number of facilities, and adding
a new objective with the intention to maximize the number of times a node is covered. Equations (2.5)
and (2.6) of the LSCP (Toregas et al., 1971) problem now become equations (2.14) and (2.15) of the
MEXCLP (Daskin, 1983):

j=J
Minimize >z, =)y,
1

2 (2.14)

i=|
Maximize — z, = > M,

i=1
Subiject to:

DY-M 21 viel (2.15)

jeN;
With:
M; being the number of times node iis covered in addition to 1.

Nevertheless, it is important to remember that demands are not evenly distributed temporally and
spatially, thus the busy probability varies from facility to facility leading to the maximal expected coverage
location model with time variation (TIMEXCLP) from Repede and Bernardo (1994), where varying

temporal demands are incorporated.

Again, the review from Li et al. (2011) indicated several other extensions of the MEXCLP. Fujiwara et
al. (1987) and Fujiwara et al. (1988) applied simulation to make further analysis on the optimality of an
EMS location problem in Bangkok with the use of MEXCLP. Saydam and McKnew (1985) reformulated
the MEXCLP into a nonlinear form using a separable programming approach. Later, Rajagopalan et al.
(2007) employ a statistical experimental design to guide and evaluate the development of four meta-
heuristics applied to a probabilistic location model, specifically to solve the MEXCLP. Finally, and not long
ago, with the idea of incorporating local reliability estimation, Sorensen and Church (2010) formulated
Local Reliability-based MEXCLP (LR-MEXCLP). A hybrid model that combines the local business
estimates of Maximum Availability Location Problem (MALP) with the maximum coverage objective of
MEXCLP.
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Contrasting with the MEXCLP the Maximum Availability Location Problem (MALP) proposed by Hogan
and ReVelle (1986) and ReVelle and Hogan (1989), developed with roots from the MCLP (Church and
Velle, 1974) and the LSCP, seeks to position P facilities in such a way that maximizes coverage within a
distance or time-of-travel standard S and a reliability of & . MALP has two versions, MAPL | and MALP Il,
however for the sake of generalization we will just contemplate the second version as this one assumes
that the busy fraction of the facilities may differ across different city sections while MALP | assumes that
all facilities are equally busy. The definition of busy fraction q leads to the creation of a chance constraint

on service availability originally presented by Charnes and Cooper (1959) in order to determine the service

requirements of the demand areas as per inequality (2.16):

D % =h, (2.16)
jeN;
Where:
bi = {M} (2.17)
log (¢ )
Moreover,
t- a
q = YR (2.18)
24Zj€Ni Yi
With:

a being the reliability of the facilities,
t being the average duration of a call (hours), including all the time the vehicle is out,

(; being the busy fraction of a facility and
M. being the set of demand nodes within S travel time of node i .

The goal of MALP Il is to maximize the population of demanding areas which have b facilities within

S, in other words, to maximize the population with « reliability. The MCLP problem of Church and Velle
(1974) presented in equations (2.7), (2.8) and (2.9) becomes the MALP Il solution presented by ReVelle
and Hogan (1989) as per equations (2.19), (2.20) and (2.21):

i=|
Maximize — z =) ax;, (2.19)

i=1

Subject to:
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b

Dy =D X Viel (2.20)
jeN; k=1

x >x | Vi€l 2.21)
k-1 = "Mk k=2,...,bi .

With:

Xy, being 1 if server b is placed in N,, and 0 otherwise, and

X, being 1 if demand area i has at least K facilities within S .

Ball and Lin (1993) established a new version of the probabilistic LSCP, MALP. In their model, the
uncovered probability of each demand point must be below a preset value. Marianov and ReVelle (1996)
based on the MALP introduces the Queuing Probabilistic Location Set Covering Problem (QPLSCP) by

relaxing the assumption that servers were operated independently. The main difference between the new

proposed model and the MALP resides in the way b is calculated. Also, the travel distances or times are

seen as random and consequently derives possible different sets of N,.

Galvao et al. (2005) dropped the simplified assumptions of the original models MALP | and MEXCLP,
and embedded Larson's hypercube model* (Larson, 1974) into local search methods to which they called
the Extended Maximum Availability Location Problem (EMALP). As per Li et al. (2011) review, the authors

state that it was necessary to identify which server was located at which site, therefore they changed the

decision variable y;into y,, which is equal to 1 if and only if facility Kk is located at node jand O

otherwise.

Another important model for double coverage is the Double Standard Model (DSM). DSM aims to
allocate facilities among potential sites in order to fully cover the entire study region within a longer
distance standard while maximizing the coverage within a shorter distance standard. Gendreau et al.

(1997) proposed a tabu search to solve this problem and in between develops its own DSM. The model
proposes to maximize the demand covered by two facilities within a radius I, . Gendreau et al. (1997)

define the problem on a graph with two vertices sets representing the demand points and the potential

local sites where:

7;is a binary coefficient that takes 1 if t; ., <1 (i is covered within the smaller radius I;) and 0

i,n+j =

otherwise,

4 The Larson's hypercube model analyzes the behaviors of a multi-server queuing system with distinguishable servers. The
study region is partitioned into several cells or geographical atoms with a certain fraction of region wide workload.
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5ij is a binary coefficient that takes 1 if t <r, (i is covered within the larger radius I,) and 0

i, N+ j
otherwise,

a is the proportion of total demand that must be covered within I; (in the MALP Il model it was the
reliability of the facility, i.e., having or not an ambulance to satisfy the demand), and

¢ is a binary variable equal to 1 if demand node i is covered at least k times with k =1v 2.

The problem is solved by equations (2.22), (2.23), (2.24), (2.25), (2.26) and (2.27):

|
Maximize — z = A x (2.22)
i=1
Subiject to:
J
D 5y, =21 viel (2.23)
j=1
| |
D AT zad A (2.24)
i=1 i=1
J
DY ZXTHENT vied (2.25)
j=1
X2 <Xt viel (2.26)
J
>y, =P 2.27)

The main difference between the DSM and the MALP is that the DSM directly assumes that two rules
must be sastified when setting a UEMS. First rule is that a maximum time response must be fulfilled within
a certain radius, as per the previous studied models. Second rule is that a more tight time response exists
to double cover the demand points being it the goal of the maximization problem; On the other hand,
MALP assumes that facilities might be busy at certain periods thus a different facility must cover the busy
facility demand points. As we will see further, the interest of DSM is that we might be able to adapt it to

improve the time response to road crashes which can be seen here as the tighter radius fulfillment.

Based on the later model, the DSM, Doerner et al. (2005) and (2008) propose some models where
they augmented the penalty terms to the objective function to avoid unmet coverage requirements and

uneven workload.

This concludes the basics of the classical approaches for UEMS facilities optimizations. The drive for

this sub-section was to build the base for the upcoming specific approaches of uncertainty to deal with
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the demand and time. The problem at hand enters in field of randomization where demand occupies an

important role, as previously mentioned.
Rosenhead et al. (1972) presents three possible scenarios for each problem at hand:

e Certainty — all parameters are deterministic and known

e Risk - uncertain parameters, values governed by known probability distributions
(Stochastic optimization problems)

e Uncertainty — uncertain parameters, unknown probability distributions (robust

optimization problems)

In stochastic optimization problems the goal usually orbits around the optimization of the expected
value of some objective function, while in a robust optimization problem the goal is to optimize the worst-

case performance of the system.

Both Stochastic and Robust optimization have the common goal of finding the solution that will perform
well under any possible realization of the random parameters (Snyder, 2006). To do so both optimization
formulations require the choice of appropriated performance measures as part of their modeling
processes. Continuous and discrete random parameters are considered in different solution approaches,

usually using probabilistic functions or scenarios-based approaches.

Snyder (2006) points out some disadvantages for both approaches, which are interesting in the way
that they show possible expected problems and how to accommodate them. For the scenario approach
Snyder (2006) points out two main drawbacks: the first (and the obvious one) is that identifying scenarios,
and, even more, the probabilities tied to them, is an overwhelming and difficult task; the second drawback
is that usually we would prefer to limit our number of scenarios due to computational reasons, however,
this would limit the range of future states under which decisions are evaluated. For the drawbacks of
continuous approaches, Snyder (2006) indirectly presents them by pointing out the scenario approach
main advantages: resulting in more manageable models and allowing statistically dependent parameters.
Dependency is of course important particularly for us if we want to further model demand according to

time and city demographics, thus correlation with time periods and geographic locations is necessary.

Before we proceed further with deeper analysis on the different solutions presented along the years
by a vast group of researcher and faculties, it is important to mention the complexity of these types of
problems. Usually the stochastic and robust facility location problems fall in the category of NP-hard as
per their base construction settled in classical facility location problems (Snyder, 2006). The latter
research over the vast existing bibliography, up until 2004, indicates that “minisum” models such those of
P-Median Problem (PMP) (Hakimi, 1964) and the “uncapacitated” fixed-charge location problem (UFLP)
(Balinski, 1965), both stochastic problems, are relatively easy to solve. In the other hand resides the
minimax structured problems, usually robust location problems, which are more difficult to solve to their

optimality. Snyder (2006) sustains that the later type of robust problems can be solved in the same amount
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of time of a stochastic similar problem but with one order of magnitude more. These conclusions show

the parallel difference in difficulty between deterministic minisum and minimax problems.
2.3.2. STOCHASTIC OPTIMIZATION PROBLEMS

2.3.2.1. GENERALITIES

Most of the stochastic problems that have been solved during the last decades have the objective to
minimize expected cost or maximize expected profit (of the system), while others may take a probabilistic
approach (Snyder, 2006). The probabilistic approach consists of maximizing a certain qualitative

parameter that defines the solution, e.g. the solution is “good”.

One of the first attempts on uncertainty tracks back to the 1970’s where Cooper (1974) considers the
locations of the demand points may be random within Weber problem. The Weber problem, capacitated
multisource Weber problem (CMWP), results in the location of a certain number of facilities in a Euclidian
plane and allocates them to the customers in order to satisfy their demand at a minimum total costs
knowing the location and demand (Brimberg et al., 2000). A branch of this problem is when we put aside
the deterministic assumption and consider customer locations are randomly distributed, the so called
probabilistic CMWP (PCMWP).

Cooper (1974) resolves the problem by assuming a two dimensional plan with Cartesian coordinates

(x°, y°) where PJ. ( P being the number of facilities, P, is the facility located at j) has associated a

probability density function f.(x¢, y¢). If r. =(x¢, y¢) and r=(X%, Y°)then the expected value of a
! J yJ J J yJ y

function H(r, r;)is given by equation (2.28):

E[HE r)]= [ [ He 0oy, (2.28)

If we assume that the influence area of a facility P, is circular, this is, every point distant from P by a

certain radius is at the same time or distant reach by P,, the function that is of interest is the same as the

one in Cooper (1974) and takes the form of equation (2.29):

1

2 2 |2
H(r, r;) =5 {(xf—x") +(y?—yc) } (2.29)
Where f; >0 and is a known weight.

Obvious this is more interesting for a long-term model where a general view is set over the area in
analysis and the only goal is to settle a certain number of facilities thus not requiring an analysis of the

city transport infrastructure if we assume traffic homogeneity. For mid-term models where the goal is not
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only to cover the city but to reduce as much as possible the time response to emergency medical calls

then more sophisticated functions that account for the existent infrastructures might be of interest.

Cooper (1974) presents the density function for the bivariate normal distribution as per equation (2.30)

and assuming that xj? and y; are not correlated:

2 2
c c 1 1 XJ? _’uxq yj: _’Uyc
fi(X{, yj) = ————xexp—= L+ ! (2.30)
2no .o, 2 o, o

C
Xj i Xj Yi

All results from Cooper (1974) are valid to a very wide range of density functions as proven by Katz
and Cooper (1974). We can then assume that other types of density functions are plausible to be

implemented in such type of mathematical model.

The final objective function to be minimized goes as equation (2.31):

J

Minimize - 2(x", y)=> [ [ H(r r)f(r,)dxdy, (2.31)

J=1 o0~

In the end, Cooper (1974) proves that the objective function is convergent and presents
computationally effective method to solve the probabilistic version of Weber problem. This solution is a
good starting point for the most common stochastic problem objective - optimize the average outcome of

the system.

Altinel et al. (2009) computes E[H(r, rj)} for specific distance functions and probabilistic

distributions, among which the Euclidian, squared Euclidian, rectilinear and Weighted I, , —norm

distances and the bivariate symmetric hormal and exponential distribution. The authors implemented a
location-allocation heuristic and conclude that exact expected distances evaluations are only possible for
few cases. Therefore, he proposes an average distance approximation to solve with the most accuracy

and simplicity any of the distance function and customers location distribution.

Mousavi and Niaki (2013) work on a capacitated location allocation problem, of the type PCMWP, with
fuzzy customer demands and stochastic locations of the customers. The authors use fuzzy demands in
order to escape the difficulties to assign probability distributions to the demands in real environment and
solve the problem with a simplex algorithm, a fuzzy simulation, and a modified genetic algorithm which
they integrate in a hybrid intelligent algorithm. Previously Zhou and Liu (2007) considered the PCMWP

with fuzzy demands in which the customers’ locations were deterministic, while Wen and lwamura (2008a)
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proposed a fuzzy facility location allocation model under the Hurwicz criterion® (more about the Hurwicz
criterion can be found on Jaffray et al. (2007)) and in another work (2008b) utilizes a random fuzzy
environment. Also Abiri and Yousefli (2010) proposed an application of the probabilistic programming

approach to model the fuzzy PCMWP where demands were fuzzy and locations were deterministic.

2.3.2.2. DYNAMIC LOCATION PROBLEM

Another problem on the stochastic location for UEMS is the dynamic location problems. Mostly these

problems arrive to solve the problem of relocating facilities/ambulances.
Maxwell et al. (2009) classified research on dynamic allocation problems into three categories:

e First category - solving the model in real-time each time a redeployment decision is to be made
(Brotcorne et al., 2003, Kolesar and Walker, 1974, Gendreau et al., 2001, Nair and Miller-Hooks,
2006),

e Second category - involves computing optimal ambulance positions for every number of available
ambulances via a similar integer programming formulation in an offline preparatory phase
(Ingolfsson, 2006, Gendreau et al., 2005).

e Third category - intends to incorporate system randomness into the model by:

o Modeling the problem as a Markov decision process (Berman, 1981c, Berman, 1981b,
Berman, 1981a, Zhang et al., 2008, Alanis et al., 2013, Berman and Odoni, 1982, Jarvis,
1981) .

o Making decisions under particular system configurations (Andersson and Varbrand, 2006,
Andersson, 2005).

To enter in the dynamic formulations let us first address static facility location in which a Single Facility
Location Problem (SIFLP) is assumed. One example is the problem addressed by Wesolowsky (1973)
which falls in a generalization of the Weber problem where the objective function is to minimize the cost

to satisfy the demand by locating a new facility from a set of existing facilities sites, as per equation (2.32)

Minimize - Z = > wd (P, x,) (2.32)

i=1
Where:

m is the total number of candidate destinations for the facility,

5 Hurwicz criterion: the value of a decision is a weighted sum of its lowest possible expected values (pessimist evaluation)
and of its highest ones (optimistic evaluation).
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W, is a weight transforming distances into costs for the existing node i, and

d(P, Xi) is distance between node X; and the facility P .

The problem can afterwards be extrapolated to a dynamic model. Wesolowsky (1973) proposes an

optimal location in which P time periods | are considered instead of a single period, as per equation:

p.M p
Minimize > > > f.(x°, y°)+ ¢z, (2.33)
1=1 i=1 1=2
Subject to:
0ifd,,, =0,
= : forl =1 .. 2.34
| {1elseifd,_l’,>0} ort=24-Pp (2:39)
Where:

m, is the total number of candidate destinations in period |,

i (x*, y°) is the shipping cost between a facility located at (X", Y°) and destination i,

C, stands for the moving cost in period | and
d ., is the distance by which the facility is transited in period | .

Berman and Odoni (1982) develop a dynamic model based on the generalization of the p-median
problem by allowing facilities to be moved at a certain cost in order to better accommodate to network
changes. The same idea might be applied to the reallocation of ambulances, therefore the solution
Berman and Odoni (1982) takes as assumption that the network, at any instant, can be at a finite number
of states and the state transitions are made dynamically with Markovian® dependence among the states
of the network.

Another assumption is that whereas in a p-median facility problem the facilities are to be located once
and for all, in their problem there is the option to relocate them with a certain cost associated. The
parallelism to ambulance allocation can easily be made if we change the decision variable. The model

presented by Berman and Odoni (1982) assumes that in a network there is:

I nodes from the set |,

6 A stochastic process has the Markov property if the conditional probability distribution of future states of the process

(conditional on both past and present values) depends only upon the present state, not on the sequence of events that preceded
it.
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| links of the set L,

r representing the network state,

S representing the network state #I'and

tr(i, J) representing the travel time between i and j inthe network state r.
Then there is at least one I(i, j) where equation (2.35) applies:
t. @, D=t j) (2.35)

Without going into deeper details, we bring from Berman and Odoni (1982) the required notion of

strategy, which can be viewed as a vector K = (K (1), K(2), ..., K(m)) of M elements K(r), r e M that

provides the set of P;locations where the facilities/ambulances will be located/allocated when the network

is at the state r. Finally, we have:

D, (K(r), x) as the shortest travel time between any point in the set K(r) and a specific point X,

dI (Ka (), Ky(S)) as the shortest travel time between the « -th point in set K(r) and the 5 " element
inset K(s) forany=1 2, ..., p,

| as a new state that complies with the inequality in equation (2.35),

W, (K, (r), K,(s)) as a binary variable that takes 1 if ambulance at K, (r)is reallocated to K_(s)
when the state of the network changes from I to s, and

P as an ergodic” Markov transition matrix with

P,, € P as the probability of a transition from a state I' to a state S, and
m

n(7P =, Z?T =1) as the steady-state probability vector of the matrix P
r=1

Within the previously mentioned assumptions and notations, Berman and Odoni (1982) grant the

following solution for the problem as per equations (2.36), (2.37) and (2.38):
Minimize > Z = A+ B (2.36)

Subject to:

7 In mathematics, the term ergodic is used to describe a dynamical system which, broadly speaking, has the same behavior
averaged over time as averaged over the space of all the system's states (phase space).
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ZP:WI(Ka(r), K,()=1 fory=12, .., p; Vr, leM; r =l (2.37)
a=1
iV\/l(Ka(r), K,(1))=1 fora=1 2 .., p; vr, leM; r =l (2.38)
=1
Where:
m |
A=>> zhD,(K(r), i) (2.39)

r=1 i=1

h. is the conditional probability that a demand comes from node i given that a demand was generated,

and

r:l a=1 y=1

B=).> 7By {iivv.m(r), <, 00)- f (K, (1), Kya))} (2.40)

The quantity A gives the long term (steady-state) expected travel time to facilities on the network per

transition epoch.

The same problem is studied further by Carson and Batta (1990). In this study the authors face the
problem of reallocating a single ambulance in the Amherst campus of SUNY Buffalo as the population
moves throughout the day. Due to the difficulty in identifying probabilistic distributions and estimating
relocation costs in practice, the authors propose a discrete dynamic facility location model with four

uneven day periods and solves a 1-median problem in each.

Moreover we can point out the more recent works on facility/ambulance location-reallocation
elaborated by Alanis et al. (2013) who analyze an UEMS system by a two-dimensional Markov chain
model that repositions ambulances using a compliance table policy, a common operational practice. The
model has the same data requirements and can produce the same outputs as the Hypercube Queueing
Model (HQM) (Larson, 1974) but models repositioning policies are not considered by the HQM. The
authors also develop procedures to estimate the parameters of the analytical model; validate the model
against a realistic simulation model and, among others, find that the Markov chain model provides a good
approximation to several performance measures. Moreover, they demonstrate that the Markov chain
model can be used to identify solutions that are near-optimal, as measured by a realistic simulation model.
Finally Alanis et al. (2013) results show that different compliance tables may lead to large variations in

performance, which demonstrates the importance of using a well-designed compliance table.

In fact, when addressing dynamic location models the bibliography tend to show its relation with multi-
period location models (discrete time models) which are much more useful than single period (continuous

time) models. This is proved by Miller et al. (2007) and resumed in three points by Boloori Arabani and
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Farahani (2012) which characterizes the achievements that are possible to reach when using multi period

location models:

e the appropriate timing of location decision,
e clarifying the best location(s), and
e allowing a firm to better anticipate any favorable/unfavorable fluctuations in market demand in the

corresponding time horizon,

In contrast, single-period models (continuous time horizon) do not show the mentioned characteristics.
Further statements by Boloori Arabani and Farahani (2012) refer to the advantage of multi-period models
over single-period models since in each subordinate planning horizon a decision maker can deal with
changing parameters more effectively in comparison with single-period models in which the decision
maker is hardly able to cope with the uncertain essence of changing parameters. As proof, the authors
point the works of Hale and Moberg (2003), Sahin and Sdral (2007), ReVelle and Eiselt (2005), Melo et
al. (2009), Klose and Drexl (2005) and Snyder (2006).

Another interesting view is the dynamic DMS (DDMS) from Gendreau et al. (2001) which considers
real time redeployment of uUEMS ambulances. The model is based in the previous mentioned DSM of the
same author in section 2.3.1 Classical Models. In the aforementioned work, the authors implement to the
DSM some extra variables required to allow dynamism in the model:

M}l is the penalty coefficient of reallocating ambulance | of the set of L ambulances from its current

site to new site | at time t, and
y; is a binary variable that takes value 1 if and only if ambulance | is located at j and 0 otherwise.

The new model objective function subtracts to the DSM equation (2.22) the penalization of reallocating

an ambulance, as per function (2.41):

| J L
Maximize — > Ax =D > M} xy, (2.41)
i=1

=L 1=

Subject to the same equations of the DSM, equations (2.23), (2.24), (2.25), (2.26) and (2.27). The only

difference is the variable y, which now is y; . The author solves the problem using a tabu search

heuristic and applies it to a real-life case.

One extra view that can be made in dynamic models is to incorporates the hypercube theory, with
facilities working independently with different busy probabilities, and dividing the time horizon into clusters

based on significant change of demands. Rajagopalan et al. (2008) developed the Dynamically Available
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Coverage Location (DACL) model for dynamic redeploying facilities to time-varied demands as per the

assumptions mentioned.

2.3.3. RoBUST OPTIMIZATION PROBLEMS

Sometimes the uncertain parameters cannot be described with probability functions, or it is simply not
possible to determine a parameter probability because the event might be random. In our study we look
for the separation of UEMS calls in medical occurrences, such of cardiac arrest, and road crash
occurrences. While cardiac arrest might have a visible correlation with the population demographics over
the study area, road crash casualties might not be that obvious, or even be random. The study LIVE by
CITTA at University of Porto, demonstrates difficulties in correlating severity of road crash injuries and
geographical location, as per Amorim et al. (2014). Therefore, robust optimization comes at hand as a
relatively studied tool applied in facility location and that might give a measure of robustness for several

solutions probabilities are unknown.

Snyder (2006) studied facility location under uncertainty as a review of the existing work up to 2005.
He described robust location problems as the type of problems where no probability information is known
about uncertain parameters. Robust problems rely on measures of robustness and usually the two more
common ones are minimax cost and minimax regret. Other types of robustness measures have been

studied by Kouvelis and Yu (1997) but appear to be comparatively less common.

To better understand robust measures we rely on the definitions by Snyder (2006). Minimax cost
solution is the one that minimizes the maximum cost across all scenarios. The author states that this
measure is overly conservative and emphasizes the worst possible scenario. However, minimax cost may
be the appropriate measure for a situation in which it is critical for the system to perform well even in the
worst case, as is a UEMS. Another measure considers the regret solution which is described as the
opportunity loss — the difference between the quality of a given strategy and the quality of the strategy
that would have been chosen if we had known what the future holds. These types of models that seek to
minimize the maximum regret across all scenarios are the minimax absolute regret and minimax relative
regret models. Moreover, with just the difference of a constant, minimax cost problems can be transformed

into minimax regret problems, and vice-versa.

To understand this type of problems let take the example from Snyder (2006) where:

C,, is the objective function coefficient,
2, is the optimal scenario objective,

{, is the scenario probabilities, and

R, is the regret measure as per equation (2.42):
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|
R, =D CoxX—2 Vse$ (2.42)
i=1
Thus the objective function comes as in (2.43):
S
Minimize — > g, xR, (2.43)
S

The focus of the work (placed in robust optimization) is to find ways to solving problems as stated in
equation (2.43). Several authors worked in deterministic solutions which are possible for a single facility

location, be it 1-median or 1-center, although the 1-center problem proves to be harder - Chen and Lin

(1998) presents an O(n3) algorithm for the 1-median minimax-regret problem while Averbakh and Berman

(2000) reaches an O(ns)algorithm for the minimax-regret for the 1-center problem. Nevertheless, for

special cases with certain restrictions the complexity could be reduced.

However for multiple-facility location problems, on general, networks under minimax objectives, the
difficulty of the problem significantly raises, and usually solution can only be reached heuristically (Snyder,
2006). Sstill, Averbakh and Berman (2003), Averbakh and Berman (1997) demonstrate that in some cases

minimax can be used and solve deterministically for multiple-facility problems if:

e For the minimax cost problem all the uncertain parameters are set to their upper bounds and
solution is reached by obtaining the resulting deterministic problem;

e Forthe minimax absolute and relative regret problems we solve m deterministic problems, in which
each of them we set one parameter to its upper bound and the others to their lower bounds, plus

one more deterministic problem. With m being the number of uncertain parameters.

Moreover, the author proves that a polynomial-time algorithm for the deterministic problem implies a
polynomial-time algorithm for the minimax cost and minimax relative regret problems, but not necessarily

for the minimax absolute regret problem.

Focusing on the general cases where the points mentioned above are not applicable or might make
no sense or have appear not to be of interest, the literature finds several heuristic approaches to solve
such problems. For instance Snyder (2006), Serra and Marianov (1998) who solve the minimax cost and
minimax regret problems for the p-median problem (PMP), also under scenario-based demand
uncertainty. Further, when the number of facilities or ambulances is uncertain, Current et al. (1998)
propose a scenario based approach and solve the problem with a general-purpose mixed integer

programming (MIP) solver.
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