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Resumo 
A medicina de emergência desempenha um papel fundamental no desenvolvimento da 
Sociedade, onde o objetivo é prestar assistência médica no menor tempo possível. 
Consequentemente, os sistemas que apoiam as operações de emergência precisam de ser 
robustos, eficientes e eficazes na gestão dos recursos limitados. Para isso, são analisados dados 
históricos no intuito de encontrar padrões em ocorrências passadas que possam ajudar a prever 
o volume futuro de chamadas. Esta é uma tarefa demorada e muito complexa que poderia ser 
resolvida com o uso de soluções de Machine Learning, que têm funcionado adequadamente no 
contexto da previsão de séries temporais. Só depois de conhecida a demanda futura poderá ser 
feita a otimização da distribuição dos recursos disponíveis, com o objetivo de suportar zonas de 
elevada densidade populacional. O presente trabalho tem como objetivo propor um sistema 
integrado capaz de apoiar a tomada de decisão em operações de emergência num ambiente de 
tempo real, atribuindo um conjunto de unidades disponíveis dentro de uma área de serviço 
com base em previsões volume de chamadas a cada hora. A arquitetura de sistema sugerida 
emprega uma abordagem de microserviços juntamente com comunicações baseadas em 
eventos para permitir interações em tempo real entre os componentes. Esta dissertação centra-
se nos componentes de previsão do volume de chamadas e otimização da atribuição. Foram 
usados modelos de séries temporais tradicionais e Deep Learning para modelar dados históricos 
de chamadas de emergência de Virginal Beach entre os anos de 2010 e 2018, combinadas com 
informações relacionadas ao clima. As soluções de Deep Learning ofereceram melhores 
métricas de erro, com WaveNet a ter um valor MAE de 0,04. No que diz respeito à otimização 
da localização dos veículos de emergência, a solução proposta baseia-se num problema de 
Programação Linear para minimizar o número de veículos em cada estação, com um mecanismo 
de vizinho, denominado EVALP-NM, para adicionar unidades adicionais às estações próximas 
de uma zona de alta densidade de chamadas. Esta solução foi comparada com um algoritmo 
genético que teve um desempenho significativamente pior em termos de tempo de execução 
e resultados. O desempenho do EVALP-NM foi testado em simulações com configurações 
diferentes, como número de zonas, estações e ambulâncias. 

Palavras-chave: Medicina de Emergência, Previs ão de série temporal, Atribuição espacial 
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Abstract 
Emergency medicine plays a critical role in the development of a community, where the goal is 
to provide medical assistance in the shortest possible time. Consequently, the systems that 
support emergency operations need to be robust, efficient, and effective when managing the 
limited resources at their disposal. To achieve this, operators analyse historical data in search 
of patterns present in past occurrences that could help predict future call volume. This is a time-
consuming and very complex task that could be solved by the usage of machine learning 
solutions, which have been performed appropriately in the context of time series forecasting. 
Only after the future demands are known, the optimization of the distribution of available 
assets can be done, for the purpose of supporting high-density zones. The current works aim to 
propose an integrated system capable of supporting decision-making emergency operations in 
a real-time environment by allocating a set of available units within a service area based on 
hourly call volume predictions. The suggested system architecture employs a microservices 
approach along with event-based communications to enable real-time interactions between 
every component. This dissertation focuses on call volume forecasting and optimizing allocation 
components. A combination of traditional time series and deep learning models was used to 
model historical data from Virginal Beach emergency calls between the years 2010 and 2018, 
combined with several other features such as weather-related information. Deep learning 
solutions offered better error metrics, with WaveNet having an MAE value of 0.04. Regarding 
optimizing emergency vehicle location, the proposed solution is based on a Linear Programming 
problem to minimize the number of vehicles in each station, with a neighbour mechanism, 
entitled EVALP-NM, to add a buffer to stations near a high-density zone. This solution was also 
compared against a Genetic Algorithm that performed significantly worse in terms of execution 
time and outcomes. The performance of EVALP-NM was tested against simulations with 
different settings like the number of zones, stations, and ambulances. 

Keywords: Emergency Medicine, Time Series Forecasting, Spatial Allocation 
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1 Introduction 

This chapter presents some initial considerations of the work described in this dissertation such 
as the context, motivation, and relevance of the work, general objectives, and the document 
structure. 

1.1 Contextualization 
Over the years, Urbanization has been noticeably accelerating, bringing new challenges to how 
society should manage their cities. According to the United Nations, 55% of the world’s 
population lives in urban areas, which should increase to 68% by the end of 2050 (2022). Cities 
have the potential to provide a better quality of life for their citizens, and they are the backbone 
of the economic development of many countries. At the same time, cities struggle with traffic 
congestion, poverty, and pollution at dangerous levels, and have the record of being the 
epicentres of massive epidemics with consequences for the well-being of the population 
(Kuddus et al., 2020; Louf et al., 2015). Because of inflation, food prices are also rising (Artuc et 
al., 2022), and together with the abundance of fast-food choices currently available (Wu et al., 
2017), it will make it more challenging, particularly for low-income households, to have a 
healthy diet (Conklin et al., 2019). This has been pointed out to be one of the reasons behind 
the exponential increase in obesity cases which is known to cause several problems such as 
diabetes, cardiovascular diseases, cancer, high blood pressure, and strokes (World Health 
Organization. Regional Office for Europe, 2022). Also, transportation can suffer a noticeable 
impact since more people will be traveling within the city, which can increase traffic-related 
accidents (Louf et al., 2015), which cost most countries 3% of their gross domestic product. As 
a result, health service systems have a vital role in shaping the future of the population living in 
the cities.  

Emergency medical services (EMS) are critical infrastructures as they manage every aspect of 
pre-hospital care, making them the first respondents when an emergency happens. However, 
the intensification of the number of calls driven by urbanization will pressure the resources 
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already in place, which can lead to a decrease in service quality (Kuddus et al., 2020). More than 
ever, all the systems involved in coordinating emergency operations must be efficient, quick to 
help, and able to adapt in case the parameters change. For this reason, city governments must 
be alert and provide some indicators to evaluate patient outcomes and the overall quality of 
the EMS. One of the most impactful is the response time (RT), which is the period between the 
moment the medical services register a new emergency occurrence and when the first 
respondents arrived at the scene to provide care. 

Many pieces of research suggest that RT is a determinant factor for increasing survival rates in 
patients that experienced out-of-hospital cardiac arrests (OHCA), traffic accidents, strokes, and 
overall trauma accidents (Bürger et al., 2018; Byrne et al., 2019; Heemskerk et al., 2021; Holmén 
et al., 2020). Also, on a socioeconomic level, lower-income areas are known to be neglected in 
terms of care delivery. A US national study concluded that low-income regions had a 10% higher 
RT than high-income areas, which can explain the income-mortality gap also noticed between 
these locations (Friedson, 2018; Hsia et al., 2018). Aside from the differences in investment, 
profit-driven ambulance management companies are pointed out to be one of the reasons 
behind these discrepancies for delivering, deciding to cover areas where patients can pay better 
(Friedson, 2018). Other aspects can also be considered in patients’ outcomes like bystanders’ 
intervention, age, medical history, etc (Bürger et al., 2018; Byrne et al., 2019; Heemskerk et al., 
2021; Holmén et al., 2020). Still, RT is the aspect that EMS can directly influence over it, and 
policymakers have begun to set standards to ensure low levels of mortality or complications 
related to RT (Alharbi et al., 2022). 

Introducing modern planning approaches into the EMS is pivotal for increasing efficiency and 
quality of service. To reach the goal of seamless coordination it is important to have accurate 
forecasting systems, that can handle the uncertainty of the environment in which the EMS 
operates (Jaklič et al., 2015; Reuter-Oppermann et al., 2017). However, existing methodologies 
seem to be inadequate to manage resources, since it uses averages of a few data points that 
produce a lot of spikes resulting in under-resourcing and over-resourcing (Matteson, McLean, 
Woodard, & Henderson, 2011). On the other hand, intelligent dispatching strategies must also 
work alongside the forecasting systems to be able to maintain a suitable overall coverage. In 
many cities, when an ambulance becomes available (after finishing a service) it must return to 
a pre-defined base, instead of reallocating to another station that requires more operatives 
(Reuter-Oppermann et al., 2017). 

1.2 Research Questions and Objectives 
Even though the main goal of this master's thesis is to propose an intelligent EMS capable of 
supporting decision-making operations in all phases of pre-hospital emergency care, is possible 
to define a collection of research questions (RQ) that will guide this work, as follows: 

• RQ1 – What is the current state-of-the-art of EMS, especially in the context of 
forecasting emergency demands and allocating emergency vehicles? 
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• RQ2 – Can traditional systems architectures support real-time decision-making 
platforms empowered by AI models in emergency medicine?  

• RQ3 – Do traditional forecasting models perform well for short-term predicting of 
emergency demands? 

• RQ4 – Does spatial allocation reduce RT in emergency resource management? 
 

As a result of the conception of the above RQ, five objectives (O) were also defined, as follows: 

• O1 – Investigate the current state-of-the-art in demand forecasting and geographical 
allocation. 

• O2 – Identifying what is lacking in the current techniques for demand forecasting and 
geographical allocation. 

• O3 – Propose a new architecture to implement an EMS to support the use of forecasting 
and allocation models in real-time. 

• O4 – Testing the multiple forecasting models to identify the suitable model architecture 
for short-window forecasting. 

• O5 – Testing the proposed allocation of emergency vehicles optimization in several 
geographical environments. 

1.3 Structure 
This document is organized into multiple sections, described as follows. Chapter 2 describes the 
general modus operandi of an EMS and the state of the art regarding solutions that could be 
used to solve both problems. The literature review is presented on Chapter 3. Chapter 4 
delineates the proposed architecture of the EVA system, with greater detail on the time series 
forecasting and spatial allocation components. On Chapter 5, the results of each solution in 
both contexts are presented using a selected dataset. Chapter 6 discusses this work's overall 
findings and proposes future work. 
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2 State of the Art 

More than ever, patients expect Healthcare services to meet the highest standards of care with 
state-of-the-art medical equipment, and that begins with emergencies. Decisions made by 
emergency administrators (EA) can have an impact beyond the call they are operating. They are 
experienced professionals, but the human species has a limited capacity to process data. 
Therefore, advanced information technologies need to assist in the decision-making process to 
reach the best possible considering all the variables.  

2.1 Emergency Medical Services 
Aside from countries' regulations, EMS systems can be categorized into two types: the Anglo-
American system and the Franco-German system which can be differentiated by the first having 
paramedics trained to administer any treatment necessary, while the latter having specialized 
doctors that are called only in severe cases (Reuter-Oppermann et al., 2017). 

2.1.1 Emergency Medical Services planning strategies 

The main goal of the EMS is to reach patients in the shortest time possible to assess, stabilize 
and, if necessary, transport them to hospitals for further treatment. Every day, EA need to make 
decisions in two phases: call assessment and vehicle dispatch. First, they need to determine the 
severity and urgency of the occurrence to know which type and how many vehicles it is needed 
on the scene. Only then, can decisions be made to better dispatch the ambulances. 
Consequently, planning strategies are essential for this complex system to respond to entire 
communities effectively. It is an ongoing task in an uncertain environment that requires 
constant monitoring of a collection of performance indicators that assert the various aspects of 
the system (Brotcorne et al., 2003).  
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According to Matinrad (2022), emergency planning can be divided into four phases: Mitigation, 
Preparedness, Response, and Recovery. In each stage, the necessary measures are accessed to 
minimize the outcomes of daily emergencies. Bélanger et al. (2019), detailed that decisions are 
made at three levels:  Strategic, Tactical, and Operational. The first two have long-term and 
short-term implications, respectively, and are usually done during the Preparedness phase (e.g., 
location of ambulance stations and personnel’s shift schedule). On the other hand, the 
Operational level decisions are related to the Responsive stage which encompasses real-time 
actions carried out after an emergency occurrence (e.g., dispatching and relocation).  

Most of the recent work regarding planning strategies in the EMS has focused on solving static 
allocation problems that fall on the Strategic and Tactical levels. Although these solutions 
improve the quality of care and equity of service, demands can change during short periods, 
causing the current plan to not meet the standards. Therefore, a continuous assessment is 
necessary to be able to adapt to unexpected circumstances (Aringhieri et al., 2017; Bélanger et 
al., 2019).  

2.1.2 Challenges to the Emergency Management Services 

Over the years, much research has been done to mitigate the challenges in the EMS context, 
which can be categorized into four sections to be presented as follow: 

• Forecasting – To better provide assistance and to prevent the waste of resources, EMS 
systems need to account for future demands to better plan their course of action in an 
effective way. At the moment, EMS uses basic approaches to forecast the volume of 
emergency presentations, using the averages of past days in relation to the current day 
(King et al., 2022).  

• Static Location – Out-of-hospital resources need to be dispersed throughout the area it 
is destined to serve. Stationary base locations and ambulance base assignments are the 
main pains since they have longer consequences.  

• Dispatching – EA have policies to evaluate the urgency at the emergency scene that 
helps dispatch the correct number and type of ambulances needed at the emergency 
scene. However, EA also need help managing the available resources to avoid over-
dispatching without taking into consideration the void that it will produce. 

• Relocation – Flexibility is required to always maintain adequate levels of coverage, 
meaning that even though ambulances are assigned to a station, if there is a sudden 
rise in demand anywhere else, these resources could rearrange. 

Most of the research usually concentrates on only one of these problems so there is a lack of 
focus on the integration aspect in the literature. Forecasting demands are pivotal for effective 
allocation and dispatch models since they are usually trying to maximize coverage, minimize 
response times, etc., whose values result from assessing historical data and trying to infer future 
needs. Therefore, to have a complete support system at every step of the EMS response actions, 
it needs to have state-of-art forecasting models to analyse the necessary demands to serve as 
input for the allocation, dispatching, and relocation problems. 
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2.2 Time Series Forecasting 
Time Series Forecasting (TSF) is an analytical technique that specializes in the prediction of 
sequential future occurrences of events based on patterns and trends identified in historical 
data. TSF techniques involve using statistical, machine learning and deep learning-like models 
to capture cause-effect relationships in temporal data and extrapolate the same patterns into 
the future. Not all temporal data can be modelled using TSF methods.  

TSF can be classified into Univariate (UTSF) and Multivariate (MTSF) models depending on the 
number of variables it is trying to predict. To use the TSF approach, the data must have some 
characteristics (Brockwell et al., 2002): 

• Trend: Normal behaviour of the variable value in the time series. Normally refers to an 
increase or decrease over time. 

• Seasonality: Patterns can be observed within a timeframe (e.g., daily, monthly, yearly, 
etc.). This can be due to external factors that only happen at certain times like holidays 
and weather conditions based on the season. 

• Residual: This encompasses the rest of the data that outliers from the above 
characteristics (e.g., holidays). 

2.2.1 Exponential Smoothing 

Holt (2004) and Winters (1960) suggested Exponential Smoothing (ES) to produce accurate 
estimations of future values based on a weighted average of past occurrences. “Weighted” in 
this context refers to giving a level of confidence to the past data, whose value diminishes as 
the data is older. This is because recent data have more correlation with future perdition by 
helping identify the current trends, than older data. Holt-Winters method involves one forecast 
equation and three smoothing equations, as follow: 

𝑦"!"#|! = 𝑙! + ℎ𝑏! + 𝑠!"#%&((")) (1) 
  

𝑙! = 𝛼(𝑦! − 𝑠!%&) + (1 − 𝛼)(	𝑙!%) + 𝑏!%)) (2) 
 

𝑏! = 𝛽∗(𝑙! − 𝑙!%)) + (1 − 𝛽∗)𝑏!%) (3) 
 

𝑠! = 𝛾(𝑦! − 𝑙!%) − 𝑏!%)) + (1 − 𝛾)𝑠!%&, (4) 
 
where 𝑙! denotes an estimate of the level of the series at the time 𝑡, 𝑏! denotes an estimate of 
the trend of the series at time 𝑡, 𝛼 is a smoothing parameter for the level and 𝛽∗ is the 
smoothing parameter for the trend. 𝑠!is the seasonal equation and shows a weighted average 
between the current seasonal index and the seasonal index of the same previous 𝑚 period.  
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2.2.2 Autoregressive Integrated Moving Averages 

Like other regression models, an autoregression model forecasts the target variable using the 
linear combination of the past values of the variable (R.J. Hyndman et al., 2021). 

𝑦! = 𝑐 + 𝜙,𝑦!%,	+	𝜀!, (5) 
 

where 𝜀!is noise and 𝜙,𝑦!%, are lagged values of 𝑦! of order 𝜌. 

Autoregressive models work with stationary data only and can become very complex when 𝜌 >
3. Therefore, rather than using past values of the target variable, the moving average model 
uses past forecast errors for the regression model. 

𝑦! = 𝑐 + 𝜀! + 𝜙)𝜀!%) + 𝜙-𝜀!%- +…+ 𝜙.𝜀!%., (6) 
 

where 𝜀!is noise and 𝜙.𝜀!%. are lagged values of the noise of order 𝑞. The combination of these 
two approaches can result in a non-seasonal autoregressive integrated moving average model 
(ARIMA). 

Stationarity is a key concept in time series prediction since is used to assess if it is possible to 
find patterns in the data or if it has a high percentage of uncertainty and randomness. Stationary 
data has a constant mean and variance over time which makes it easy to model and produce 
accurate forecasts. On the other hand, non-stationary time series have mean and variance 
values changing because the data show fluctuations over time (R.J. Hyndman et al., 2021). 
Figure 1 represents the Google stock price over 200 days in which it can be seen trends and 
levels (non-stationary) and the annual total of lynx trapped in the McKenzie River district of 
northwest Canada (stationary). 

 

Figure 1 – Non-stationary data (left) vs. stationary data (right) (R.J. Hyndman et. al, 2021). 

This property of the data is important for models, including ARIMA, since to make reliable 
predictions, data need to be stationary. If a time series is non-stationary, a technique called 
differencing can be applied by subtracting the current value from the previous one resulting in 
a series of differences between consecutive data points. Differencing helps stabilize the mean 
and variance of the series, making it more amenable to modelling and prediction. 
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Even though ARIMA models are widely used, these models are more suggestible to large trend 
errors, especially in long-term predictions (e.g., when patterns have major gaps between each 
occurrence) or are very sensible to outliers such as sudden rises because of holidays.  

2.2.3 Prophet 

Prophet is an innovative forecasting model developed Taylor et al. (2018) for Facebook and 
revolves around the idea that a time series can be analysed in a way that allows one to identify 
the different components contributing to a specific behaviour. Prophet combines three main 
factors such as trend, seasonality, and holidays, as follow: 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀! , (7) 
 

where 𝑔(𝑡) denotes the non-periodic changes, 𝑠(𝑡) the periodic changes and ℎ(𝑡) represents 
the holidays which are irregular occurrences with a random duration period typically short. 

The main component of the Prophet model is the trend term, 𝑔(𝑡) which tries to infer how data 
will behave in the future based on how it behaved in the past. Currently, two trend models are 
available to use: a linear and a nonlinear saturation growth model. Growth forecasting is based 
on analysing the evolution of predicted variable and how is expected to continue to evolve. For 
variables that does not experience saturation growth the trend component cam be defined as 
follow: 

𝑔(𝑡) = (𝑘 + 𝑎(𝑡)/𝛿)𝑡 + (𝑚 + 𝑎(𝑡)/𝛾), (8) 
 

where 𝑘 is a constant for growth rate, 𝑚 is an offset parameter. 𝑎(𝑡)/𝛿 and 𝑎(𝑡)/𝛾 are 
adjustments made to each constant. 

On the other hand, if a saturation growth is present the data is usually modelled based of a 
logistic function, as follow: 

𝑔(𝑡) = 0(!)
)"123	(%(("5(!)!6)(!%(&"5(!)!7)))

, (9) 
 

where 𝐶(𝑡)is the carrying capacity at time 𝑡. In the EMS context, calls are expected to increase 
based on the growth of the population within the city. 

Seasonality is captured using periodic functions to analyse the effects on a time series that 
repeats over several periods, as 

𝑠(𝑡) = 𝑋(𝑡)𝛽 (10) 
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where 𝑋(𝑡) is a standard Fourier series to model arbitrary smooth seasonal effects and 𝛽 
constant to provide smoothing. Emergency calls fluctuate during each day, but it can be seen a 
slight increase after office hours for short-term seasonality. 

The last component is related to the know events that disrupted the normal flow of the time 
series and since there is not a specific pattern of occurrence it cannot be modelled. Instead, 
Prophet has the option of including these events as a list when modelling the data. 

2.2.4 Transformers 

The Transformers model was introduced by Vaswani et al., 2017 as a groundbreaking encoder-
decoder architecture (Figure 2) to process sequential data, having the most significance in the 
field of natural language processing (NLP).  

 

Figure 2 - The Transformer - model architecture (Vaswani et al., 2017). 

The encoder maps the input sequence, whose representation enables the decoder to generate 
the output sequence by applying autoregressive mechanisms. An encoder and decoder layer 
have each two sub-layers: the multi-head attention and a feed-forward network. The decoder 
has an additional multi-head attention layer for the output of the encoder (Vaswani et al., 
2017). The attention mechanism is what captures the meaningful relationships between 
different elements of sequential data. Each input is associated to a learnable matrix 	
𝑚	(𝑉, 𝐾, 𝑄), that is project ℎ	 times and applied a softmax function (Scaled Dot-Product 
Attention) (Ahmed et al., 2023). The outputs are then concatenated to produce the final 
solution as it can be seen in Figure 2 - The Transformer - model architecture (Vaswani et al., 
2017).Figure 2. 
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Figure 3 - Multi-head attention consists of several attention layers running in parallel (Vaswani 
et al., 2017) 

Like previous mentions of autoregression in Section 2.2.2, Transformers models use previous 
outputs as the inputs for each step which is suitable for scenarios where forecasts are 
influenced by their own past predictions. Also, these models offer a way to tackle some of the 
problems of other deep learning architectures such as recursive neural networks (RNN), long 
short-term memory (LSTM) and gated recurrent unit (GRU) face, by having mechanisms such as 
self-attention and positional encoding that address the problems with overfitting predictions 
(Ahmed et al., 2023). 

2.2.5 Evaluation Metrics 

• Mean Absolute Error (MAE) 
It is a simple metric for evaluating the performance of a forecasting model that calculates the 
average of the differences between the prediction and the real values, given by: 

𝑀𝐴𝐸 =	
1
𝑛
∗K|𝑟𝑒𝑎𝑙8 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑8|

9

8:;

 

 

(11) 

, where 𝑛 is the number of data points in the dataset, 𝑟𝑒𝑎𝑙8  represents the actual value at the 
data point	𝑖,	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑8  represents the predicted value at the data point	𝑖.	

• Mean Absolute Percentage Error (MAPE) 

This metric is the percentage equivalent to the MAE value, given by: 

𝑀𝐴𝑃𝐸 =
1
𝑛
∗K|𝑟𝑒𝑎𝑙8 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑8|

9

8:;

∗ 100 (12) 

• Mean Squared Error (MSE) 
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MSE is very commonly used when using forecasting models, because of the extra impact it has 
when the models have bigger errors between what was predicted and the real value. I can be 
represented has: 

𝑀𝑆𝐸 =
1
𝑛
∗K(𝑟𝑒𝑎𝑙8 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑8)-

9

8:;

 (13) 

2.3 Spatial Density Grouping 
Spatial Density Grouping (SDG) is a useful technique for finding different patterns between 
geographical data and assessing how they can be grouped together. Clustering is the basis of 
SDG and as an unsupervised learning method, it does not rely on labelled data for training. 

2.3.1 K-Means Algorithm 

K-Means is a partitional clustering algorithm which means it aims to group data into a pre-
specified number of clusters (K) so that the sum of the squared distances between data points 
and the cluster’s centroid is minimized (Praveen et al., 2016). 

The algorithm starts by randomly choosing K centroids following the objective function and 
assigning the data points more closely to each centroid, separating the plane into several 
regions, equivalent to a Voronoi diagram. Each iteration optimizes the locations of the centroids 
and regroups the data points from one cluster to another, halting when there is no more 
movement between the current clustering layout and the previous. 

Although K-Means algorithm offer a multitude of opportunities such simplicity in implementing, 
speed and scalability when dealing with many features and large datasets. However, it also has 
some limitations such as having to define the K value in advance, being dependant on the 
initialization of the centroids leading to multiple solutions depending on initial centroid 
placement, and assumptions relating the clusters being equally spherical and having similar 
densities. 

2.3.2 Density-based Clustering 

Density-based Clustering (DBC) was firstly presented by Martin et al. (1996) with the name of 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), addressing the 
limitations of the K-Means algorithm by introduction the concept of density when generating 
the clusters. This property improves the definition of each cluster by evaluating the 
concentration of data in certain spaces, which also helps spot the noise in the dataset since is 
usually less dense. This type of clustering is useful for samples like the ones shown in Figure 4. 
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Figure 4 - Sample databases from Martin et al. (1996) 

The algorithm evaluates if a point is related to another if the concept of reachability and 
connectivity are present. Let 𝑝 and 𝑞 be two points in space, 𝑝 is density-reachable from 𝑞 if 
they can be connected by a set of intermediate point that are density-connected. On other 
hand, 𝑝 and 𝑞 are density-connected if there is an intermediate point 𝑜 that can connect them 
within their area. Density-reachability and density-connectivity are represented in Figure 5. 

 

Figure 5 - Density-reachability and Density-connection concepts in DBSCAN. 

As shown in Figure 5, 𝑝 and 𝑞 are density-connected by and 𝑜, therefore belong to the same 
cluster, while 𝑠 is outside of the radius projected by 𝑜, making 𝑠 belong to another cluster. This 
radius value is one of DBSCAN parameters, often represented as 𝜀, alongside a threshold value 
of the number of data points necessary for a cluster to be recognized as dense, 𝑚𝑖𝑛𝑃𝑡𝑠. The 
clustering process of DBSCAN models is represented in Figure 6. 
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Figure 6 - Clustering sequence of a DBSCAN algorithm. 

The algorithm iterates over a set of points and tries to produce a cluster by recursively getting 
the neighbours points within the radius 𝜀. The ambiguity of this parameter dificults the tuning 
of an DBSCAN model. 

2.3.3 Evaluation Metrics 

In this section some performance metrics are presented that can be used to evaluate clustering 
models. 

• Silhouette Index (Shutaywi et al., 2021) 
Silhouette Index (SI) measures how each data point in a cluster is similar to other members of 
the same cluster compared to the rest of the clusters. It helps evaluate the separation of 
clusters and can be represented as: 

𝑆𝐼(𝑥8) =
<(=")%5(=")

&5={<(="),5(=")}
, (14) 

where, 𝑎(𝑥8) is the average distance between the data point to all the members of the same 
cluster and 𝑏(𝑥8) is the average distance from the data pint to all the other outside its cluster. 
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𝑆𝐼(𝑥8) can take the value -1 to 1 by the first indicates that the data point was assign to the 
wrong cluster and the latter being that the data was well clustered.  

• Cakinski-Harabasz Index (X. Wang et, 2019) 
Cakinski-Harabasz Index (CHI), also known as the Variance Ratio Criterion, measure assesses the 
quality of the cluster, 𝐾, by comparing the variance inter-cluster, 𝐵(𝐾), to the variance of intra-
cluster 𝑊(𝐾), as: 

𝐶𝐻𝐼(𝐾) = A(B)(C%B)
D(B)(B%))

, (15) 
The higher the value for CHI the more in common each data point in a cluster have with the 
member of the same cluster. 

• Davies-Bouldin Index  (Ros, Riad, & Guillaume, 2023) 
Davies-Bouldin Index (DBI) evaluates the degree of similarity between a cluster and other 
clusters, and can be represented as, 

𝐷𝐵𝐼(𝑘) =
1
𝑘
Kmax

8EF
_
𝑆8 + 𝑆F
𝑑(𝑥G̀, 𝑥H̀)

a
(

8:)

 (16) 

where, 𝑆8  is the average distance between the cluster’s centroid and all the members. This 
measure helps determine the optimal number of clusters, in case it is needed to be predefined 
before training. The lower the DBI shows that each cluster is distinct and well separated. 

2.4 Maximum Coverage Problem 
Maximum Coverage Problem (MCP) is a type of optimization problem for the purpose of finding 
an ideal strategy when selecting a subset of elements from a larger group to maximize the 
coverage of a certain property. MCP practical applications can be seen in many domains such 
as: 

• Logistics – Choosing the location of a new facility to ensure the expansion of services 
to places where it could positively impact the business (Shariff et al., 2012). 

• Wireless networks – In under-provisioned networks the placement of limited devices 
(e.g., IoT devices) needs to guarantee optimal coverage of the targets while in over-
provisioned networks have also the problem of minimizing the number of devices 
(Alibeiki et al., 2021).  

• Advertising and Marketing – “One-fit-for-all” campaigns are not as effective as target 
advertising when trying to maximize the impact of a campaign and, therefore, reach 
the most relevant audience (Zhao et al., 2019).  

Fundamentally, an MCP can be formulated as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 K 𝑦F
I#∈K

 (17) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	K𝑥8 ≤ 𝑘 (18) 

K 𝑥8 ≥ 𝑦F
I#∈L"

 (19) 

𝑦8 ∈ {0,1} (20) 
𝑥8 ∈ {0,1} (21) 

where, 𝑦F  is the coverage of each element to be maximized, 𝑥8  is a set of elements that will 
cover the target, 𝑘 is a constant to limit the number of sets to select. 

2.4.1 Coverage 

For the development of MCP models, defining the notion of coverage within the requirements 
of the problem is vital to achieving high-quality solutions. Chen et al. (2023) defines coverage 
as a property that specifies how well a certain target can rely on the availability of a service. 
This translates into coverage being represented as a space/area surrounding the element 
providing the service as represented in Figure 7. 

 

Figure 7 - Efficient Coverage Area. 

2.4.2 Linear Programming 

Linear Programming (LP) is an optimization method that aims to use mathematical functions to 
achieve the best solution for a given problem, and it is used in a wide range of fields. At its core, 
the LP algorithm can be defined as: 

𝑓𝑖𝑛𝑑	𝑥 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒		𝐹(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝐶 

where 𝑥 is the set of variables to be determined, 𝐹(𝑥) is the objective function to optimize and 
𝐶 is the set of constraints for the solution space of the function. 
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The process of developing an LP solution involves converting real-world problems into a 
mathematical representation, which can be a hard endeavour for problems that are far too 
complex to be represented as an equation or in cases where there are many solutions. 

2.4.3 Genetic Algorithms 

Initially proposed by Holland J. (1992, Genetic Algorithm (GA) is a metaheuristic approach that 
offers optimal solutions when there is a lot of uncertainty, by using adapted principles of natural 
selection such as mutation, crossover, and selection. A GA utilizes a set of potential solutions to 
a problem, denominated population, with the primary goal of improving these solutions over 
successive iterations. In each step, each solution is evaluated on how well it performs with 
respect to the problem’s objective, using a fitness function, whose values will impact the 
selection of the solutions that will proceed to produce the solutions for the next iteration. To 
refine the selected solutions, crossover and mutation mechanisms are implemented to help 
explore the solution space, introduce diversity, and prevent suboptimal solutions. Poor quality 
solutions are disregarded, and the process restarts until some termination conditions are met 
(e.g., a good enough solution is found, no improvement between iterations, execution time 
conditions, etc.). The general structure of a GA is represented in Figure 8. 

 

Figure 8 - The general structure of GA by (Kuok et. al, 2011) 

To develop a GA for any context several parameters and settings need to be configured that 
influence the behaviour and performance of the model, such as population size, selection 
method, crossover and mutation rates and termination criteria. 
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3 Literature Review 

An emergency can happen at any time and place, making uncertainty an important aspect to 
consider in EMS planning. To achieve high levels of efficiency in such an ambiguous 
environment, EMS needs to be able to predict the demands of service based on historical data.  
Only after assessing what is necessary based on the current parameters can a plan be 
formulated or adjusted.  

3.1 Forecasting demand 
According to the literature, forecasting models are built with the assumption that future 
outcomes can be predicted based on the circumstances that lead to their occurrence in the 
past. Future predictions have been attempted to be done across centuries, but in the last 50 
years forecasting competitions (or M Competitions) have become a trend among the research 
community. The last was the M5 Competition was focused on retail forecasting demand that 
supports supermarket companies in their planning strategies (e.g., stocks management, and 
promotions…) (Makridakis et al., 2022). These events have been used to enhance old 
forecasting models' accuracy and propose new approaches for this problem in several fields 
(e.g., energy, tourism, and retail) (Rob J. Hyndman, 2020). Consequently, these competitions 
opened the door for the same foundations and models to be used in other domains such as in 
the EMS. 

According to recent systematic reviews and comparative studies (Etu et al., 2022; Sudarshan, 
Brabrand, Range, & Wiil, 2021; Whitt & Zhang, 2019) forecasting demand solutions can be 
categorized into Regression models (RM), Traditional Time Series (TTS) and hybrid solutions. 
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3.1.1 Regression Models 

Regression models provide a function that describes a correlation between one or multiple 
independent variables and a target, dependable, variable. Many types of regression models are 
used in prediction analysis. To use the correct regression approach to model the data, 
researchers commonly do a first comprehensive analysis to evaluate the quality of the data with 
one of the most important aspects being the data’s distribution. 

Steins et al. (2019) studied the use of a Poisson regression approach to predict real-time 
demand at the emergency department. It provided a collection of explanatory factors that were 
added to the data that are known to correlate with changes in emergency demand (e.g., 
population age groups, road length, number of points of interest). Even though the Poisson 
regression model performed better than the current implementation in the EMS, it was not 
clear that changing to the new model would be beneficial. However, the Poisson regression 
model gave relevant information about which and at what length variables influence the 
demands. 

King et al., (2022) present a forecast pipeline to aggregate multiple predictions for effective bed 
management attending to current and future needs. Unlike the work presented before, this 
pipeline computes current emergency department patients’ probability of admission 
accumulated with the predictive volume of patients yet to arrive, within a prediction window. 
The patient’s probability of admission was generated using a binary logistic loss function with 
an extreme gradient boosting classifier model. For the patient's forecast, the author used the 
Poisson regression model with temporal predictors such as prediction time, seasonality, and 
day of the week. 

3.1.2 Traditional Time Series 

Many authors use an ARIMA model to predict emergency demands over various time series. 
Boyle et al. (2012) develop a software solution that could be able to predict hospital admissions 
to assist in bed management. It was discovered that the models performed worse - have a 
higher MAPE – on shorter time intervals due to the smaller sample size (Monthly: 2%; Daily: 
11%, 4-hourly: 38%; Hourly: 50%). The methods perform poorly for real-time assessment of the 
demand and were no evidence of impact analysis after its implementation. Wong & Lai (2014) 
studied whether climate forecasting data (e.g., temperature, humidity) could improve the 
ARIMA model's 7-day prediction capability. The metric selected for evaluating this model was 
the root mean squared error (RMSE) which is a better metric than MAPE to understand the 
model’s performance. It was found that including average temperature improved the RMSE of 
the models by decreasing the metric’s value by 8.8% of the 1-day forecast (RMSE: 53 vs. 58). 

Vollmer et al. (2021) propose a new approach that compares RM and TTS models to be used 
in online platforms that provide demand predictions of one, three, and seven days into the 
future. Data sources were used from eight years of daily presentations at the St. Mary’s and 
Charing Cross Hospitals in London to train and validate the models. For both hospitals, TTS 
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performed worse than RM, regarding MAPE and MAE (Figure 9; 

 
Figure 10). MAE values for RM get higher on longer prediction intervals, but the same cannot 
be verified in TTS. These models had a higher value in the three-prediction period than in the 
seven-prediction period. Aside from the modelling development, there was presented a 
comprehensive analysis of the data resulted in the identification of weekly and monthly trends 
that can be used as predictors (e.g., demand increases during flu seasons and Mondays have 
the highest demand…). 

 

Figure 9 – Comparation of MAE error rates from TSA and ML for St. Mary's Hospital. Source: 
Vollmer et al. (2021) 
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Figure 10 – Comparation of MAE error rates from TSA and ML for Charing Cross Hospital. 

Source: Vollmer et al. (2021) 

Etu et al., (2022) compared the performance between UTSF and MTSF models in predicting 
emergency patient arrivals during the COVID-19 pandemic over different time series (1, 7, 14, 
21, and 30 days). RMSE was used to assess performance for both UTSF and MTSF models, which 
can be seen in Figure 11. On UTSF models Holt-Winters (HW) was the one that performed better 
in short time series (1 - 7 days), seasonal autoregressive integrated moving average (SARIMA) 
on the 14 days horizon, and Univariate LSTM had substantially decent results on the longer time 
series (21 and 30 days). On MTSF models Multivariate LSTM had the lowest RMSE value in all 
time horizons. 

 

Figure 11 – Comparation of RMSE errors of different time series models (UTSF vs MTSF). 
Source: Source: Vollmer et al. (2021) 

1 3 7
10,00 

11,00 

12,00 

13,00 

14,00 

15,00 

16,00 

17,00 

18,00 

Forecast window (days)

M
AE

Charing Cross hospital

ARIMA

ETS

StructTS

STLM

lm

gbm

glmnet

knn

rf

1 7 14 21 30
25,00

35,00

45,00

55,00

65,00

75,00

85,00

95,00

Forecast window (days) 

RM
SE

UTTS vs MUTTS

SARIMA 

U-FP 

HW 

U-LSTM 

SARIMAX 

M-FP 

M-LSTM 



 

38 
 

3.1.3 Hybrid solutions 

Huang et al. (2019) propose a Poisson Neural Network (PNN) which is a combination of the 
Poisson regression model with a neural network. A GA was used to train the PNN as an 
optimization mechanism that is known to improve the neural network parameters (weights and 
thresholds). Also, to further improve the accuracy of the PNN it included a Residual Error 
Correction (REC) model that tries to predict the residual error to sum to the PNN predicted 
result. A version of each individual model used in the combined model was used to compare 
and evaluate the PNN in terms of MAPE and the RMSE values, which showed that PNN was 
superior (MAPE: 7.44%; RMSE: 6.46%). 

3.2 Ambulance deployment problem 
Ambulance location and relocation problems have been the focus of a lot of research work, 
particularly since is one of the biggest challenges in the EMS context (Aringhieri et al., 2017). 
First studies develop static models based on deterministic and probabilistic static approaches 
(Aringhieri et al., 2017; Brotcorne et al., 2003) that were very useful for the strategic level but 
lacked the flexibility for real-time changes during operation.  

3.2.1 Linear Programming 

Andersson et. Al (2004) and Andersson et al. (2016) propose a new approach for assessing 
coverage of allocation plans that encompasses the current and future demand needs using the 
preparedness measure. Some of the recent work in ambulance deployment uses the 
preparedness equation as the objective function in their implementations (Carvalho et al., 
2020; T. C. van Barneveld et al., 2016; T. van Barneveld et al., 2018). 

Naoum-Sawaya et al. (2013) developed a two-stage stochastic optimization model that aims 
firstly to minimize ambulance relocations within a time horizon while maintaining an acceptable 
service level. The second stage is related to the dispatching mechanism that assigns vehicles to 
emergency calls, excluding those that do not meet response time requirements. This work 
introduces the use of thresholds to assess the need for relocations, making the system flexible 
but at the same time reliable. 

(Chen et al., 2023) propose a mixed integer programming model to select a set of new facilities 
to open that will maximize the coverage for the customer's demands and minimize the cost of 
opening a new facility by having a budget. This paper introduces the notion of cost, which is 
monetary in this case, but could be extended in the context of relocation constraints when 
moving ambulances dynamically. 
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3.2.2 Genetic Algorithms 

Shariff et al. (2012) propose a GA-based model to address the capacity constraints of the limited 
ambulances and stations available. By assuming all demand nodes will not change, the objective 
function tries to maximize the number of ambulances in each node, which results in a hard 
dependency between the prediction of demand and the allocation. This could cause not having 
enough backup units to accommodate sudden rises in demand in lower-demand zones. 

Zaheeruddin et al. (2021) developed a multi-component framework that focuses on providing 
a deployment plan that allocates a set of ambulances on stations based on the frequency of 
accidents registered in a specific area and the RT of each ambulance to the sites. This framework 
poses a great asset to analyse how impactful the number of ambulances is on the average RT 
but evaluates the current solution based on RT only, neglecting to provide a way to incorporate 
redeployment measures in case of variable changes as well as demonstrating the system 
performance in real-time conditions. 

Kaur (2021) uses a GA to maximize the overall coverage by assigning each available ambulance 
to some coordinates independent from the stations. This can be achieved by computing the 
area that each ambulance is covering as a circle and making sure that in each iteration the GA 
produces fewer and fewer ambulances with zero crossing points with another ambulance. One 
important advantage of this approach is that the area coverage increases exponentially within 
a few iterations which is helpful to test this solution in a real-time environment. However, a 
downside was pointed out by the author related to the limited number of ambulances that this 
method supports. 

Wang et al. (2022) proposed a serial-number-coded GA to improve the computation time by 
shortening the length of the chromosome (possible solution) and the quality of the convergence 
against a standard GA. The chromosomes are represented as an array and were encoded by 
having the serial number of the medical unit in each element and the demand points serial 
numbers as the index. In the crossover, it was used a multi-point approach that demonstrates 
very effective in exploring the search space and did not have the fittest random solutions 
covered together making it a hard dependency on the initialization of the population. 

3.2.3 Tabu Search 

Gendreau et al. (2001) suggest a tabu search (TS) model based on a parallel heuristic approach 
for real-time relocations. The authors also include a penalty constraint to avoid multiple 
relocations for the same ambulance and longer relocation time between locations. On the 
simulation data, the TS model was able to have a suitable functioning since 98% of urgent calls 
were covered within 7 minutes. However, TS failed to provide feasible redeployments on 
concurrent calls or even when the time between calls is too short which is a common 
occurrence in EMS.  
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3.3 Privacy, security, and ethical considerations 
Data protection legislation enforces some policies for the storage and use of personal 
information. Care organizations have a commitment to the public in keeping their medical 
information secure and not sharing medical records without patients’ informed consent. 
Artificial Intelligence tools often use sensitive data to make predictions, and recommendations, 
and support both patients and medical personnel. Aside from ensuring privacy and security, 
transparency in addressing the public should be focused on by the organizations to bring 
awareness about what their data is being used (Ngiam et al., 2019).  

One way to ensure privacy is making sure only those with legitimate needs for using the data 
have access to it. Data repositories need to be secure and when sharing data with third parties, 
organizations need to handle only the necessary data points and, in case of sensitive data, 
perform anonymization and be active in the feedback to the public. In the case of the 
forecasting models, these need data on the emergency calls received in the past to make 
predictions of the future. Therefore, implementing this tool would require access to emergency 
records and for those to be updated sometimes daily. 

Ethical concerns have been raised for years about the use of intelligent approaches in 
healthcare. An unbalanced and unrepresentative dataset could originate a model that has 
biases that could originate inequalities, unfairness, and discrimination when providing care. On 
forecasting demands, data should be analysed prior to modelling to ensure the quality of 
information and the importance of each data feature on the predictions. This will help to 
effectively evaluate the performance of the model. Also, predictions should offer 
“explainability” to be able to assert more confidence for the decision-makers. For the allocation 
problems, the system must give special attention to high call rate areas and those in remote 
locations, but also make sure to have enough resources for outliers that come with such an 
uncertain domain. Since variables can rapidly change, continuous assessment of the current 
allocation plan should be a must in ensuring a rapid diagnostic of coverage deficiencies and 
correcting them. 

The author commits to performing ethical and responsible research practices and ensuring the 
integrity and credibility of the research results. 
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4 Event-based vehicle allocation system 
for future emergency demands 

This chapter describes the proposed solution to integrate demand prediction of emergency 
incidents with vehicle allocation algorithms in an event-based solution. Initially, the foundations 
of an event-driven software architecture are introduced, with a focus on communication 
patterns. In the following sections, it is proposed an architecture solution based on events, that 
can support real-time responsiveness, with particular attention to the presentation of the 
forecasting modelling and vehicle allocation optimization. 

4.1 Event-Driven Architecture 
Event-driven architecture (EDA) is a modern software design concept used in many real-time 
decision-support systems across multiple domains such as streaming services, Internet of 
Things (IoT) applications and geospatial data infrastructures. Events in EDA are random 
occurrences that have a direct influence on the system state (Dunkel et al., 2011). These events 
can originate from a multitude of sources, and they can be categorised based on their 
importance for the decision process as seen in Figure 12. 
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Figure 12 - Event hierarchy by (Dunkel et al., 2011). 

EDA relies on asynchronous communication which is a characteristic not achievable by other 
architectures such as Representational State Transfer (REST) or Simple Object Access Protocol 
(SOAP), which are better suited for request-response interactions. Asynchronous means that 
events are independent of each other and do not require immediate responses. Other 
characteristics include: 

• Lightweight data transfer – Often event payloads do not contain a lot of information, 
since the focus is more towards the fact that something happened. 

• Decoupled infrastructure – services communicating via events have no dependencies 
between them, in fact, they are usually not aware that other components exist. This 
offers flexibility and security to continue adding new components with minimal 
interferences. 

• Horizontal scalability – Due to the flexibility mentioned before, the workload can be 
managed by distributing more event processing units to handle an increase in events. 

4.1.1 Publisher/Subscriber Pattern 

As previously mentioned, EDAs follow an asynchronous communication model between every 
component that enables the consumer to target the types of events that are relevant to their 
functionality. On the other hand, the events need to be created by another service that acts as 
a producer of specific messages. This pattern is known as the publisher/subscriber pattern 
where the subscriber consumes events from a topic of interest, while the publisher produces 
events related to a topic (Rieke et al., 2018) The interaction between the publisher and the 
subscriber is achieved by a middleware-like module often addressed in the literature as the 
message broker, event channel or event server, with the main responsibility of maintaining the 
state of the topics and their subscriptions as shown in Figure 13. 
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Figure 13 - Publisher/Subscriber Pattern communication model 

There are two models for the subscriber to consume a topic: client-initiated (pull-based) or 
server-initiated (push-based). The difference between both approaches relies on whether it is 
necessary for the consumer to be connected to the topic or if the producer pushes an event to 
a consumer whenever the event occurs (Jacobsen, 2009). Several message protocols follow the 
client or server-initiated approaches, some as follows: 

• WebSocket – is a bidirectional communication protocol to send data across a 
connection channel if the connection is alive. This protocol is used on real-time 
applications with a front-end component where data displayed is continuously being 
sent by the server (V. Wang et al., 2013). 

• Message Queuing Telemetry Transport (MQQT) – is a TCP/IP-based message protocol 
with minimal message payloads, making it efficient in low-bandwidth networks. MQQT 
is the preferred protocol for IoT systems as they often have limitation of central 
processing unit (CPU) and battery life (V et al., 2022). 

• Server-Sent Events (SSE) – This protocol implements a server-initiated approach in the 
sense that instead of clients continually pooling for new information, the producer 
pushes as soon as new data is available. The use cases for SSE are live notification 
displays, location tracking and financial services (Torre et al., 2019). 

• Apache Kafka (https://kafka.apache.org/) – Apache Software Foundation solution for 
data streams comes to target concerns regarding data traffic, especially for complex 
and heavy messages (images, videos, live streams). Kafka is a distributed streaming 
platform in the sense that messages arriving at the broker (cluster) are separated and 
allocated into different partitions enabling parallel message transfer (Figure 14). 
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Figure 14 - Apache Kafka message protocol diagram. 

4.1.2 Microservices 

EDA enables the separation of a complex application into independent modules integrated with 
each other using communication models such as the ones presented in Section 4.1.1. This is the 
concept behind the microservices technology which has gained popularity in recent years, due 
to their flexible, scalable, and agile way of designing applications. Each microservice can be 
developed, deployed, and maintained without affecting other microservices' functionality, and 
the communications between them are done using well-defined application processing 
interfaces (API). The main concern when dealing with microservices architectures is that 
services need to be specialized in a segment of the whole system, and, if necessary, broken 
down into smaller services in case complexity increases (Newman, 2015). Figure 15 presents a 
visual representation of a microservice architecture, the interactions between each other and 
other external components. Common services usually are segregated into containers to also 
incentivize the low decoupling strategy, having at least one service communicating with 
external components such as storage or clients. 
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Figure 15 - Microservices architecture 

4.2 Solution Design 
The architectural design is fundamental for its proper functioning of a system, especially one 
that relies heavily on real-time data for enabling decision-making processes. As an event-based 
critical computing system, EMS need to keep up to date on new ways to improve performance, 
robustness, and security. Traditional architectural designs fail meet the requirements to 
develop end-to-end solutions mainly because of scalability issues, where microservices 
architectures does not seem to be affected. 

The current work proposes the boilerplate architecture presented for emergency vehicle 
allocation (EVA) in Figure 16 to develop decoupled EMS. This architecture is based on a 
microservices approach, and each interaction between different services is done through an 
event-like, low-latency communication channel. Each individual service works separately 
without being dependent on other components, which improves the maintenance of the 
system in an agile development environment. The goal of this system is to support a visual 
platform with the information needed to build dashboards, maps, and other types of graphical 
components to help users understand the status of operations and how can they be improved. 
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Figure 16 - EVA's architecture. 

4.2.1 Visualization Component 

Visualization tools such as dashboards have been the preferred way of simplifying large 
amounts of data into visual digestive information. These tools empower the user to make 
informed decisions based on the analysis at hand, especially for real-time systems that need to 
always have the most updated version of the data available. 

In such complex architecture, accurate data representation holds an important role in the 
usability of the proposed solution. The visualization component has the responsibility to 
provide a simplified view of the ongoing conditions of the allocation layout of each ambulance 
like location and status, and each zone’s coverage evaluation. This component is the gateway 
between the EVA’s platform, which is the user interface, and the business logic behind what is 
presented. 

4.2.2 Control Centre Component 

Logistics operations often need a centralized facility to manage the entirety of the operations. 
The same principle was applied in the proposed architecture, represented by the Control Centre 
component functioning as the supervisor of the current state and decision-maker of the 
necessary actions to be taken. 
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For the sake of representing the current layout of operations and their relationships, the 
solution proposes the State, an entity serving as a single point of truth. Countries have multiple 
EMS that serve in a specific service area (e.g., city), which can be further divided into zones 
based on census information (Figure 17) to make it easy to serve the population. 

 

Figure 17 - Virginia Beach city council districts. 

Each zone may differ in demand for emergency services, so the zone’s individual coverage 
needs to be considered during the allocation of emergency vehicles. To ensure adequate 
coverage, stations are constructed to which a set of ambulances can be assigned, especially in 
rural areas. Station locations are long-term decisions that restrict future improvements due to 
the costs of building the facility and adding a new facility may not be the most viable decision. 
On the other hand, the number of ambulances in each station can be adjusted during shift 
management. This relationships can be each entity is shown in the diagram of Figure 18. 

 

Figure 18 - Domain diagram representing the State. 
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The Control Centre need to hold the real state of the operations and be the only one that can 
apply changes to it, through the means of the Terraformer module. As the name suggested, 
Terraformer is the only module with the business logic to deal with updates on the State, to 
avoid discrepancies entering to have redundancy on update a single object. However, the 
Terraformer alone cannot make any changes without having an event that causes it to enforce 
some action. 

The Sentinel component is the protection layer between the external services and the State. It 
focuses on two areas: load balancing for Terraformer and inspecting the quality of the State. 
The first is managing the external requests for changes from outside of the Control Centre. The 
second. Is checking the health of the state, meaning if there is an optimal solution currently in 
the state or it has been degradation in terms of quality. 

4.2.3 Forecast Demand Component 

As mentioned before, effective planning for the distribution of emergency vehicles 
encompasses anticipating the demands of the population, which essentially means the number 
of calls the EMS will receive. The Forecast Demand component's primary goal is to offer a state-
of-the-art forecasting model that results from training several types of machine learning and 
deep learning architectures with the historical data of past emergency calls. To achieve this, it 
is necessary to implement several Machine Learning Model Operationalization Management 
(MLOps) Pipelines like the one presented in Figure 19. 

 

Figure 19 - MLOps Pipeline to produce forecasting models. 

Each pipeline begins with fetching the necessary historical data from a source, followed by 
applying data processing techniques to evaluate data quality and clean the dataset. Featuring 
engineering is then used to enrich with additional information, that together with the original 
data could become features if they capture relevant patterns and relationships that can lead to 
more accurate predictions. Next, the features will be used to model against a target variable 
and then test the accuracy for new predictions. The monitoring stage is pivotal in evaluating the 
degradation of the model's accuracy over time, by comparing the prediction made with the real 
values and computing a score. This score will determine if the model needs to be retrained, 
which could happen if old patterns are deprecated. 

The choice of which is the right forecasting model to use in a production environment benefits 
from this Pipeline approach. The literature review does not provide a clear answer on what is 
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the best architecture for volume/frequency forecasting instead, it offers a variety of approaches 
that perform better under certain scenarios (e.g., short vs. long window forecasting). This 
means that to choose the best, a sort of competition should be encouraged among the known 
model’s architecture. 

4.3 Density Demand Prediction 
As mentioned before, predicting the future volume of emergency incidents is crucial in any EMS. 
Besides this, having a model capable of selecting areas where it has been reported a bigger 
density of calls can improve the preparedness of the emergency services when managing their 
resources.  

Temporal prediction alight with geographical density clustering is a powerful combination for a 
single model to achieve. Therefore, this paper proposes a hybrid solution represented in Figure 
20. 

 

Figure 20 - Demand prediction with Hot-Spot location clustering 

There are three key parts of the hybrid model: 

• Time Series Prediction 
It is a Time Series model focused on finding patterns that could help predict the volume of calls 
for a specific time window (e.g., hourly).  

• Hot-Spot Clustering 
Hot-Spot Clustering model (HSC) is dedicated to spatial prediction of the volume of calls to spot 
high density areas where the demand for emergency medicine was greater. The model is based 
on the DBSCAN algorithm presented on Section 2.3.2, tailored to focus on the clusters with the 
higher density of data points. It is used the same data for training as for the time series 
prediction, with a restriction on how further back the records would go, as a configurable 
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parameter (𝑠𝑖𝑛𝑐𝑒_𝑤ℎ𝑒𝑛) according to the domain knowledge. This decision was made under 
the assumption that location patterns for emergency calls can change with time, so it should 
take into consideration the amount historical data feed to the model. 

• Prediction-Location Combination 
Both above models focus on a specific part of the problem, consequently their outputs need to 
be merged representing the future prediction for each individual hot-spot zone 𝐻𝑆8M, as follow: 

𝐻𝑆8M =	𝐷8 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛M 
 

(22) 

where, 𝐷8  is the density score of the cluster 𝑖, resulting from the HSC model and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛M 
the output from the time series model which is the value of the volume of calls for the next 
window 𝑤. 

4.4 Optimization of ambulance allocation 
The main goal of optimizing allocation is for it to be efficient and use the minimum of resources 
without compromising the quality of service. It is known that for every emergency call at least 
an ambulance is deployed to assist on scene. As protocol dictates, the chosen ambulance is 
always the one closer (in time) to the local that originated the incident. 

To allocate ambulances in a service area (SA) it is required some à priori knowledge about 
variables that can impact the chosen location, such as: 

• The number of ambulances – this number will impact the allocation plan since one of 
the goals of this optimization is deploying only the essential number of vehicles.  

• Demand points – this is the output of the forecasting models in and the focus of the 
objective function for the optimization models. 

• Stationary ambulance location (SAL) – this usually represents the stations where 
ambulances can park and wait for a new dispatch order, but it could also be parking 
spaces or other facilities that provide support to available ambulances (e.g., fire 
stations). 

This section provides a comprehensive understanding of the developed algorithms supporting 
ambulance distribution. 

4.4.1 Emergency vehicle allocation LP with a neighbour mechanism 

Emergency Vehicle Allocation LP with a neighbour mechanism (EVALP-NM) was developed to 
distribute the ambulances for each station with the assumption that stations already provide 
suitable coverage of the entire SA. It is constituted by two LP problems as represented in Figure 
21. 
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Figure 21 - Sum of ambulances minimizer with a neighbour mechanism structure 

The first problem allocates the available ambulances by the stations, giving the remaining 
number of available ambulances to be allocated to stations to serve as support to adjacent 
stations, in the second problem. 

• Ambulance allocation with prediction 
Let 𝐴N, the decision variable of this problem, be the number of ambulances located at the 
station 𝑠, which can assume the value of 1…𝑁N, with 𝑁N being the total number of stations in 
a service area. The objective function can be represented as: 

𝑀𝐼𝑁𝐼𝑀𝐼𝑍𝐸	K𝐴N

C$

8:)

 (23) 

subject to, 

K𝐴N

C$

8:)

<	𝑁O 

 

(24) 

𝐴N ≥ 	1 
 

(25) 

𝐴N ≥	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛P/𝑁NP, 
 

(26) 

where 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛P is the value of the number of calls forecasted for the zone 𝑧 and 𝑁NP is the 
number of stations in zone 𝑧. 

• Neighbour mechanism 
The thought behind the neighbour mechanism was that stations near stations from other zones 
could have a buffer of available units. When predicting call frequency for a zone, there is no 
indication of the distribution of calls in that zone, meaning that the calls made near a border 
should increase both zones' demands. Following the first allocation algorithm, a set of 
ambulances that were not allocated to any station, 𝑁OQ , can be used to allocate to stations near 
the border with zones that have a higher prediction of calls. The objective function for this 
mechanism can be represented as: 

𝑀𝐼𝑁𝐼𝑀𝐼𝑍𝐸	K𝐴N

C$

8:)

 (27) 

subject to, 

K𝐴N

C$

8:)

<	𝑁OQ  
(28) 
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𝐴N ≥	𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟_𝑧𝑜𝑛𝑒𝑠N 

 
(29) 

where, 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟_𝑧𝑜𝑛𝑒𝑠N is the number of zones where the borders are within a station 
coverage area, as follows: 

	K𝑍N

C$

8:)

 

 

(30) 

subject to, 

𝑑NP ≥	𝑟RSTIU5VI 
 

(31) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛P ≥ 	𝛼 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛P%  
 

(32) 

where,	 𝑑NP is the distance from station 𝑠 to zone’s border 𝑧, 𝑟RSTIU5VI is the radius of the 
coverage area provided by the stations,  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛P%  is the volume of calls predicted for the 
neighbour zone and 𝛼 is a constant value to spot neighbour zones with impactful differences in 
predictions. 

4.4.2 Genetic Algorithm for Reducing RT 

A GA is a suitable approach for testing multiple solutions when there is a lot of uncertainty, 
which is the case for the ambulance deployment problem. The main objective is minimizing the 
RT of the ambulances to the demand points while maintaining good overall coverage of an SA. 

• Initial population 
GA requires generating an initial population with, in most cases, a random set of possible 
solutions. Each individual is a vector with integers whose values represent the number of 
ambulances located at each SAL. A graphic representation of a solution is portrayed in Figure 
22. 

 

Figure 22 - Visual representation of a solution (individual) in the proposed genetic algorithm 
for ambulance deployment 

SAL
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In the end, the fittest solution will be decoded to identify the coordinates for the SAL by using 
the index of each position of the vector as an identifier. Each individual component of the GA 
can be described, as follows: 

• Fitness function 
The objective function is used on the selection phase of the GA in each iteration and computes 
the sum of the RT of the proposed solution using a geolocation service. It is important to 
mention that it was assumed that each ambulance has the same speed for each RT calculation. 
Therefore, the fitness function can be defined as: 

𝑚𝑖𝑛	 rK𝑅𝑇8

9

8:;

u 

 

(33) 

𝑅𝑇8 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝐴𝐿8 , 𝐷𝑃8) ∗ 𝑣, 
 

(34) 

where 𝑅𝑇8  is the RT of each index 𝑖 given by the distance between the 𝑆𝐴𝐿8  and the 𝐷𝑃8  times 
the velocity 𝑣 which is a constant. 

• Selection 
The selection mechanism applied to the ambulance deployment problem is based on a simple 
version of the Roulette Wheel Selection which assigns a probability to each individual in the 
population proportional to their fitness value, so they have a better chance to be chosen to 
perform crossover. 

• Crossover and Mutation 
Regarding crossover, this step is done by using a single-point crossover technique on the results 
of the selection, by enforcing two crossovers: i) between the best individuals of the selection 
and ii) between the best individuals and the worst ones. This was done because the worst 
individuals could improve the already admissible solutions and improve them further. 
Concerning mutation, it is performed randomly by incrementing/decrementing 1 value to a 
random position of the vector. However, some constraints must be considered since the sum 
of the genotype of the mutated individual cannot be above the limit of the number of 
emergency vehicles or lower than 0. 

The final step of the iteration is generating the next population based on the best individuals to 
keep, the offspring’s individuals resulting from crossover and mutation steps, and some 
randomly generated individuals to achieve the population size and to impose randomness in 
the process. Figure 23 is a visual representation of the next generation population based on the 
probabilities of the offspring to keep.  
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Figure 23 - Visual representation of the partition of each offspring for the next population in 
the proposed genetic algorithm for ambulance deployment
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5 EVA - A Virginia Beach Case Study 

In this chapter, the proposed solution will be applied to the Virginia Beach city case study. The 
reason behind the selection of this case study was the availability and quality of the provided 
by the City of Virginia Beach. 

5.1 Historical Data Source 
Forecasting models need a substantial amount of data to make more accurate inferences based 
on historical data. To improve transparency and support the scientific communities, EMS 
departments began to make available their data related to the calls for service (CFS). In this 
work, it was used a dataset from Virginia Beach, a city in the state of Virginia in the United States 
of America, with the CFS from 2010 until 2018. This data is from a public repository for data 
published by the City of Virginia Beach (https://gis.data.vbgov.com/). The data has no explicit 
personal data that can be used to identify an individual, nor is relevant to the current work. 
Table 1 has some metadata insights about the dataset, divided into 12 columns, summing to 
326609 rows of raw data. 

Table 1 - Schema metadata of the Virginia Beach dataset. 

Column Name Type Format 
EMS Call Number Integer N/A 
Block Address String N/A 
City String Virginia Beach 
State String VA 
Call Priority Integer 1-5 
Rescue Squad Number String N/A 
Call Date and Time Date Time YYYY-MM-DD hh:mm:ss 
Entry Date and Time Date Time YYYY-MM-DD hh:mm:ss 
Dispatch Date and Time Date Time YYYY-MM-DD hh:mm:ss 
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En route Date and Time Date Time YYYY-MM-DD hh:mm:ss 
On Scene Date and Time Date Time YYYY-MM-DD hh:mm:ss 
Close Date and Time Date Time YYYY-MM-DD hh:mm:ss 

 

EMS Call Number, City, State, Rescue Squad Number, and all the DateTime columns except Call 
Date and Time are irrelevant and were dropped from the dataset and the analysis to reduce 
noise. Call Date and Time columns were split into the date and the time to improve analysis, 
data visualization, and storage. 

As previously mentioned, forecast prediction is only possible if the data follows some pattern 
(trend), and if that pattern is observed within a timeframe (seasonality), which was detected in 
the Virginia Beach dataset using the Call Date and Time (Figure 24). 

 

Figure 24 – Seasonal decomposition using moving averages between 2010-2018 in Virginia 
Beach city. 

However, in such a larger dataset is advantageous to use a more advanced technique to 
evaluate and understand the relationships between the time series data with itself over time. 
For the current work it was used Autocorrelation Analysis which shows a weak correlation 
between the values of the time series at different time instances, suggesting that past 
observations lack the predictive power to forecast future occurrences. This makes it difficult for 
models that heavily rely on seasonality and trend to be used in this context, such ARIMA and 
ES. The results of this study can be seen in the graphic present in Figure 25, where the values 
are relatively close to 0. 
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Figure 25 - Autocorrelation analysis for the Virginia Beach dataset. 

Although it could be used the plot above to visualize the distribution of data over time, a deep 
analysis using boxplots was done in Appendix A.1. It detected some outliers that were not 
removed because, in the current context, models should be sensible to outliers, like Christmas. 

5.1.1 Feature Engineering 

The original dataset lacks additional information that could be used to capture complex 
relationships and enhance the model’s accuracy and reliability, such as: 

• Geographical metadata – the original dataset column Block Address was used to 
retrieve coordinates using a geolocation API, alongside the service area a specific call 
belongs to. These features can help the model recognize localized trends and disparities 
in emergency call volumes. 

• Weather insights – weather-related conditions such as temperature, humidity, 
precipitation, snow depth, wind speed and visibility can help understand how weather 
conditions impact emergency call patterns. 

• Temporal parameters – day of the week and holidays can help the model to identify 
very specific variations. 

• Historical call volume – Embedding the prior context before an increase/decrease in call 
volume in each hour, the model can gain the ability to anticipate future demands by 
analysing short-term trends. It was added two columns with the number of calls in the 
previous hour and the number of calls in the previous day. 

These new features could make the model more susceptible to subtle variations leading to 
perditions close to real-world values. With newly added features is important to have a 
statistical test to determine the usefulness of the feature. The Augmented Dickey-Fuller unit 
root test assesses the presence of a unit root, which indicates non-stationarity in the dataset. 
ADF tests were used on the features mentioned above and selected the variables that exhibit 
consistent patterns. 
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5.1.2 Data Split and Tunning 

In TSF models training and testing are usually dependent on the amount of time series into the 
future the model will try to predict, also known as the horizon of the prediction (HoP). The 
training set in each training iteration will be all the data less the rows corresponding to the value 
of the horizon. 

Hyperparameters tunning efforts were performed to find optimal values for some of the 
hyperparameters of the models such as the use of the cross-validation approach. The goal is to 
split the data as mentioned, generate iteratively random values for the hyperparameters, fit 
the data using the generated values, and compare each performance metric resulting from the 
iterations. Additionally, for the clustering models, it was used the Grid Search Cross Validation 
from sklearn for tunning, by using different combinations of the specified hyperparameters, 
calculating the performance under a specific metric and choosing the best combination. 

5.1.3 Frameworks and Libraries 

Several libraries were used to help the development of the models, as follows: 

• StatsForecast (https://nixtla.github.io/statsforecast/) – Offers a pool of univariate 
time series forecasting models optimized for high performance and scalability.  

• Scikit-learn (https://scikit-learn.org/) – It provides many efficient tools for predictive 
data analysis integrated with data processing, visualization, and evaluation metrics. 

• Tensorflow (https://www.tensorflow.org/) – Is an open-source platform for building 
and deploying a multitude of machine and deep learning models. 

• Openrouteservice (https://openrouteservice.org/) – Provides geographic services 
using free data directly from OpenStreetMap. It was used to compute travel times 
between the locations and the demand points. 

• Pulp (https://coin-or.github.io/pulp/) – LP modeller to solve optimization problems. It 
was used in the allocation models. 

5.2 Models Performance 
As presented in the architectural design of the proposed solution, a collection of models is used 
to enable the function of EVA’s system. For each individual category, it was studied several 
models, based on what is present in the literature, and their performance when modelling the 
historical data – for the volume prediction and clustering – or assessing their robustness – for 
the allocation of ambulances. 

For call volume forecasting it was used some traditional time series forecasting models such as 
ARIMA and ES, more specifically the HW, which are univariate. This was done to stablish a 
baseline for the impact of additional features when predicting calls. Both models have the 
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season_length and horizon have hyperparameters and since the focus is on hourly data, it was 
set to 24 and 1, respectively.  

For regression, it was chosen the Vector Autoregression (VAR) model, which supports 
multivariate forecasting. The hyperparameter lag_order represents the amount of data needed 
prior to the data point in order to predict its value and is essential to understanding the 
seasonality and trends. It can be determined using domain knowledge about the features and 
how they impact the target variable. It was used the value using the Autoregression Analysis 
shown previously in Section 5.1.1, which was 23. 

Because of the limited autocorrelation, other models capable of capturing complex patterns in 
the data like GRU, WaveNet, Prophet and Transformer. For all these architectures, 
hyperparameters were tuned to find the best configuration. 

All the models were trained and validated using the complete dataset, except for the 
Transformer model due to hardware constraints. For this situation, the dataset was divided into 
smaller ones (yearly) and each sub-dataset was used to train a transformer model. The results 
from each model alongside relevant configurations are presented in Table 2. 

Table 2 - Call volume prediction models performance using MSE and MAPE evaluation metrics. 

Model Hyperparameters Evaluation Metrics 

MSE MAPE (%) 

ARIMA season_length = 24 
horizon = 1 

6.27 - 

ES (HW) season_length = 24 
horizon = 1 

9.12 - 

VAR lag_order = 22 7.62 80.85 

GRU First GRU Layer: 
• units = 64 
• input_shape = 

number_of_features 
• return_sequences = True 

Second GRU Layer: 
• units = 32 
• input_shape = from the 

1st layer 
• return_sequences = False 

Dropout: 20% 
Output Layer: 

• units = 1 
Optimizer: Adam 

7.26 85.15 

WaveNet Input Layer: 
• units = 

number_of_feature 

0.04 66.48 
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Prophet It takes a set of regressors which 
are the features. 

5.22 60.36 

Transformer input_dim = number_of_features 
output_dim = 1 
num_heads = 4 
num_layers = 2 
optimizer = Adam 

1.26* 72.14* 

 

As expected, traditional time series models, ARIMA, ES and VAR, performed poorly compared 
to the deep learning alternatives. WaveNet was the one that had the lowest MAE value, and 
therefore the model chosen to implement for the forecast component in EVA system. 

Regarding spatial clustering of the emergency calls, it was selected K-Means and DBSCAN 
models. The Elbow Method was used to discover the optimal K value to be used as an 
hyperparameter for K-Means, which was 6 as shown in Figure 26. 

 

Figure 26 - Elbow Method to find the K value for the K-Means model. 

As for DBSCAN, finding the best configuration for the hyperparameters 𝜀 (eps) and minPts is 
more complex in the current context, due to the unclear meaning of the 𝜀 value. Initially, was 
used the GridSearchCV to determine the optimal values combination for the model. After, these 
parameters could be tuned further to have clusters that are dense but not large since the main 
goal for these models is to find zones in a city where there is a greater concentration of demand 
for emergency medicine. Table 3 shows the performance of both models, alongside their 
configuration. In this table, was achieved satisfactory metric values, except when we tried to 
increase the number of clusters on the K-Means model.  
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Table 3 – Spatial Clustering performance between K-Means and DBSCAN with hyperparameter 
optimization. 

Model Hyper- 
Parameters 

Evaluation Metrics 
Clusters Silhouette 

Score 
Cakinski-
Harabasz Score 

Devies-Bouldin 
Score 

K-Means K = 5 5 0.0289 550.2886 5.7615 
K = 47 47 -0.0587 1925.9542 11.0123 

DBSCAN eps = 0.001 
minPts = 5 

333 0.2494 41.9474 1.7869 

eps = 0.0045 
minPts = 22 

47 0.2609 439.5925 1.9747 

 

The Silhouette Score for K=47 is negative which indicates that some data points are assigned to 
the wrong clusters, due to many factors such as overlapping of clusters, which can be seen in 
Figure 27. On the other hand, when we tuned the DBSCAN to reduce the number of clusters, 
we see an improvement in the scores. 

 

Figure 27 – K-Means visual result of the clusters when K takes the value of 47 

Using all the data available since 2010, would allow it to capture the overall distribution of calls, 
which may not align with the current situation. This means that the density of the clusters can 
change over time, which is not visible if the models use the entire dataset. Figure 28 represents 
the differences between clusters modelled by DBSCAN with data from 2010 and 2017. Although 
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some clusters can be found in both years, others shifted, their density changed or even 
disappear. 

 

Figure 28 - Density clusters of emergency calls using different time windows. 
 
Finally, the allocation models were developed with an extra goal, besides optimizing allocation, 
which was they had to be fast to be able to support the decision-making. Alongside the 
evaluation of the solutions provided by them, the time that takes to reach them was also 
assessed. The optimization models selected were the EVALP, EVALP-NM and a GA described in 
Section 2.4. 

In order to evaluate these models, some simulations were created, which essentially are various 
combinations of the input variables. The simulation configurations and performance metrics 
are presented in  Simulation 1 is relatively simple with 3 zones, and 5 stations, and tries to 
allocate 10, 7, and 3 ambulances. Simulation 2 increases the number of zones to 11, stations to 
20, and tries to allocate 40, 34 and 20 ambulances. 

Table 4. Let Z be the number of zones with their volume forecast, S the number of stations (each 
assigned to their respective zone) and A the number of ambulances as the input variables; A’ 
the number of ambulances allocated by the optimization model and T the execution time of the 
model, as the performance metrics.  It was decided to maintain the number of Z and S in the 
same simulation but change A in order to assess if the model does perform well in minimizing 
when there is a higher number than what is needed, and otherwise when the number is not 
enough for optimal solution. Simulation 1 is relatively simple with 3 zones, and 5 stations, and 
tries to allocate 10, 7, and 3 ambulances. Simulation 2 increases the number of zones to 11, 
stations to 20, and tries to allocate 40, 34 and 20 ambulances. 

Table 4 - Simulation configurations and performance results for optimizing ambulance 
allocation. 

Model Simulation 1 Simulation 2 
Input Variables Performance Input Variables Performance 
Z S A A’ T Z S A A’ T 
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EVALP 3 5 10 5 0.072s 11 20 40 29 0.061s 
7 5 0.068s 34 29 0.056s 
3 3 0.056s 20 20 0.035s 

EVALP-NM 10 5 + 2 0.096s 40 29 + 5 0.085s 
7 5 + 2 0.053s 34 29 + 5 0.053s 

3 3 + 0 0.034s 20 20 + 0 0.050s 
GA 10 6 71.583s 40 40 7.482m 

  7 5 4.594s   34 34 6.293m 
  3 - Inf   20 20 6.044m 

 

The LP-based optimization models prevailed against the GA model, which did not offer 
appealing execution times, which is a huge disadvantage, especially in a context where time is 
crucial for their usability. Also, in terms of solutions, it also failed to achieve optimal solutions 
since it often used all the available ambulances in the allocation. Regarding the two LP solutions, 
EVALP-NM has a slightly higher execution time, which is not seen as a downside because of the 
gain the neighbour mechanism provides to the quality of the solutions. As it can be seen, when 
for the cases of allocating 3 and 20 ambulances both models cannot find the optimal solutions, 
however, EVALP-NM prioritizes the allocation of the available units before adding extra to 
support the neighbours.  

The visualization of the optimal solution modelled by EVALP-NM for Simulation 1 is presented 
in Figure 29 where can be seen the effects of the NM on zones 2 and 3. They both have a 
predicted call volume of 1 call but for stations 2 and 4 it was added an additional unit to support 
Zone 1 which has the double predicted volume of calls. 

 

Figure 29 – Simulation 1 visual representation of the optimal solution (A’= 7) using EVALP-NM. 

The same was done for Simulation 2, which outputs the visual representation shown in Figure 
30, where NM can also be viewed, this time in zone 11 with stations 5 and 18 having an 
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additional unit being added. It is relevant to note that even though Zone 8 has a higher value, 
there is no station with a cover zone intercepting this zone. 

 

Figure 30 – Simulation 2 visual representation of optimal solution (A’= 34) using EVALP-NM.
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6 Conclusions 

This chapter presents the main conclusion drawn from this work, circling back to the objective 
and research questions, and identifying future work to improve the proposed solution. 

6.1 Main Conclusion 
As cities continue their demographic expansion, inefficient resource management can reduce 
the quality of life of the citizens, especially in the medical domain. Pre-hospital care solutions 
need to have demand information to make accurate and reliable decisions to impact ambulance 
distributions to reduce RT and prevent service overloading or underloading. To achieve this, 
EMS systems need to be embedded with state-of-the-art models with the modelling power to 
analyse large data sources of information, correlate many features and perform at a reasonable 
speed. On the other hand, optimizing ambulance’s locations to serve the found needs, is an 
asset in maintaining the coverage of hot-spot areas while keeping enough redundancy for 
unpredictable scenarios. 

The objectives introduced in Chapter 1 were accomplished during the course of this 
dissertation. O1 was addressed in Chapter 2 with the presentation of multiple architectures for 
forecasting demands and special allocation of vehicles. O2 was tackled in Chapter 3, by 
presenting a review of the literature for both topics and assessing the improvements needed 
on the presented solutions. O3 was answered in Chapter 4, by proposing a base model for an 
architecture that could sustain the use of forecasting and allocation models focused on the 
important aspect of this system: real-time. O3 and O4 were achieved in Chapter 5, with the 
presentation of the performance results of using these models in a real-case scenario. 

With the completion of the defined objectives, it was possible to formulate the answers to the 
research questions also presented in Chapter 1, as follows: 
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• RQ1 – What is the current state-of-the-art of EMS, especially in the context of 
forecasting emergency demands and allocating emergency vehicles? 

o Forecasting tools have been widely available for contexts related to business 
intelligence, but the same principles can be applied in emergency care since 
both try to model historical trends that could explain some future 
phenomenon. However, in emergency care can be difficult to consider models 
that depend on very rigid and defined trends, like TSF models, which leads to 
the search for a more complex solution that also analyses sequential data such 
as deep learning techniques. 

o Optimizing ambulance location has a hard dependency on knowing the 
demands so that the model can allocate emergency vehicles towards a goal. 
LP-based solutions seem to be the most effective and time-efficient. 

• RQ2 – Can traditional systems architectures support real-time decision-making 
platforms empowered by AI models in emergency medicine?  

o No, traditional system architectures based on REST or SOAP lack some 
important features required for a robust real-time system, such as low latency, 
lightweight communication channels, and scalability with multiple connections. 
An alternative approach lies in microservices architecture with event-based 
communication. These types of architectures have already been used for 
complex IoT systems. 

• RQ3 – Do traditional forecasting models perform well for short-term predicting of 
emergency demands? 

o No, TTS models require data to have strict, well-defined patterns that could 
explain past occurrences in order to use the same knowledge to predict future 
occurrences. In the Virginia Beach case, this cannot be observed in the datasets, 
reasons why it impacted the performance results of these models. However, it 
was also shown that deep learning models can model these complex patterns, 
even in short-term prediction windows.  

• RQ4 – Does spatial allocation reduce RT in emergency resource management? 
o While the optimization metric was not the RT itself, the fact that the proposed 

allocation models have a neighbour mechanism to increase the area of 
coverage by adding some redundancy, can put ambulances near the scene of 
the emergency, therefore reducing the time needed to get there. On the other 
hand, it is a minimization problem, which leaves some available units to be 
distributed if edge cases are noticed. 

6.2 Future Work 
Although the objectives of this master thesis were accomplished, the system's complexity 
opens the door for future expansions into the concepts that build this solution. One critical area 
of improvement is the implementation and demonstration of the architecture in a practical 
setting, where external factors (such as the arrival of emergency calls) could be simulated as 
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closely as in a real environment. Every component should work seemly together, but 
independently at the same time, bringing to the user the full picture of what is happening and 
what decisions can be made to improve resource management. 

On a more focused revision, emergency demand forecasting models should turn the focus to 
deep-learning architectures like transformers, which have been getting impressive results in 
modelling sequential data. On the side of the allocation optimization, the model should be 
improved to consider allocating a single ambulance which has become available into an already 
defined distribution. 
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Appendices 

Appendix A Data Analysis 

Appendix A.1 Boxplots representing the monthly distribution of the Virginia Beach 
dataset between 2010 and 2018. 
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