5,526 research outputs found

    The Mundane Computer: Non-Technical Design Challenges Facing Ubiquitous Computing and Ambient Intelligence

    Full text link
    Interdisciplinary collaboration, to include those who are not natural scientists, engineers and computer scientists, is inherent in the idea of ubiquitous computing, as formulated by Mark Weiser in the late 1980s and early 1990s. However, ubiquitous computing has remained largely a computer science and engineering concept, and its non-technical side remains relatively underdeveloped. The aim of the article is, first, to clarify the kind of interdisciplinary collaboration envisaged by Weiser. Second, the difficulties of understanding the everyday and weaving ubiquitous technologies into the fabric of everyday life until they are indistinguishable from it, as conceived by Weiser, are explored. The contributions of Anne Galloway, Paul Dourish and Philip Agre to creating an understanding of everyday life relevant to the development of ubiquitous computing are discussed, focusing on the notions of performative practice, embodied interaction and contextualisation. Third, it is argued that with the shift to the notion of ambient intelligence, the larger scale socio-economic and socio-political dimensions of context become more explicit, in contrast to the focus on the smaller scale anthropological study of social (mainly workplace) practices inherent in the concept of ubiquitous computing. This can be seen in the adoption of the concept of ambient intelligence within the European Union and in the focus on rebalancing (personal) privacy protection and (state) security in the wake of 11 September 2001. Fourth, the importance of adopting a futures-oriented approach to discussing the issues arising from the notions of ubiquitous computing and ambient intelligence is stressed, while the difficulty of trying to achieve societal foresight is acknowledged

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    Get PDF
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented.Postprint (author's final draft

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Context-aware prioritization of information: an architecture for real-time in-vehicle information management

    Get PDF
    Human Machine Interfaces (HMIs) are the communication devices between in-vehicle applications and the driver. Frequently, independent HMIs are used for different applications which may cause information overload situations at the driver. Hence, a common HMI design that determines the application interface with an HMI Manager that provides rules for prioritizing information from different applications is needed. The design takes into account: application transparency, driver situation awareness, driver workload and surrounding external influences. By reducing distraction, especially when the situation requires more attention of the driver, the need for controlling the information flow emerges. This paper presents a driver-centred unified approach for in-vehicle information managemen

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    The AmICriM Project: A Truly Body Area Network Application

    Get PDF
    http://www.emse.fr/~picard/publications/garcia08amicrim.pdfInternational audienceThe major aim of this work is to present the AmICriM (Ambient Intelligence for Crisis Management) current activities as an upcoming research challenge in the area of body area networking by using intelligent embodied devices for supporting new crisis management services. The research outcomes of the AmICriM project will show also future directions in the area of body-area networks and communications, as well as its applications to novel approaches in which firemen would receive critical and valuable information when acting in real situations of crisis, as in case of fire in a building. This work will boost development of new technologies and solutions that will be used in the future for networking embodied intelligent devices. Moreover, the AmICriM developed technologies will be evaluated through a real service for assisting firemen in crisis situations

    Human behaviour modelling in complex socio-technical systems : an agent based approach

    No full text
    For many years we have been striving to understand human behaviour and our interactions with our socio-technological environment. By advancing our knowledge in this area, we have helped the design of new or improved work processes and technologies. Historically, much of the work in analysing social interactions has been conducted within the social sciences. However, computer simulation has brought an extra tool in trying to understand and model human behaviours. Using an agent based approach this presentation describes my work in constructing computational models of human behaviour for informing design through simulation. With examples from projects in two main application areas of crisis and emergency management, and energy management I describe how my work addresses some main issues in agent based social simulation. The first concerns the process by which we develop these models. The second lies in the nature of socio-technical systems. Human societies are a perfect example of a complex system exhibiting characteristics of self-organisation, adaptability and showing emergent phenomena such as cooperation and robustness. I describe how complex systems theory may be applied to improve our understanding of socio-technical systems, and how our micro level interactions lead to emergent mutual awareness for problem-solving. From agent based simulation systems I show how context awareness may be modelled. Looking forward to the future, I discuss how the increasing prevalence of artificial agents in our society will cause us to re-examine the new types of interactions and cooperative behaviours that will emerge.Depuis de nombreuses annĂ©es, nous nous sommes efforcĂ©s de comprendre le comportement humain et nos interactions avec l'environnement sociotechnique. GrĂące Ă  l'avancĂ©e de nos connaissances dans ce domaine, nous avons contribuĂ© Ă  la conception de technologies et de processus de travail nouveaux ou amĂ©liorĂ©s. Historiquement, une part importante du travail d'analyse des interactions sociales fut entreprise au sein des sciences sociales. Cependant, la simulation informatique a apportĂ© un nouvel outil pour tenter de comprendre et de modĂ©liser les comportements humains. En utilisant une approche Ă  base d'agents, cette prĂ©sentation dĂ©crit mon travail sur la construction de modĂšles informatiques du comportement humain pour guider la conception par la simulation. A l'aide d'exemples issus de projets des deux domaines d'application que sont la gestion des crises et de l'urgence et la gestion de l'Ă©nergie, je dĂ©cris comment mon travail aborde certains problĂšmes centraux Ă  la simulation sociale Ă  base d'agents. Le premier concerne le processus par lequel nous dĂ©veloppons ces modĂšles. Le second problĂšme provient de la nature des systĂšmes sociotechniques. Les sociĂ©tĂ©s humaines constituent un exemple parfait de systĂšme complexe possĂ©dant des caractĂ©ristiques d'auto-organisation et d'adaptabilitĂ©, et affichant des phĂ©nomĂšnes Ă©mergents tels que la coopĂ©ration et la robustesse. Je dĂ©cris comment la thĂ©orie des systĂšmes complexes peut ĂȘtre appliquĂ©e pour amĂ©liorer notre comprĂ©hension des systĂšmes sociotechniques, et comment nos interactions au niveau microscopique mĂšnent Ă  l'Ă©mergence d'une conscience mutuelle pour la rĂ©solution de problĂšmes. A partir de systĂšmes de simulation Ă  base d'agents, je montre comment la conscience du contexte peut ĂȘtre modĂ©lisĂ©e. En terme de perspectives, j'expliquerai comment la hausse de la prĂ©valence des agents artificiels dans notre sociĂ©tĂ© nous forcera Ă  considĂ©rer de nouveaux types d'interactions et de comportements coopĂ©ratifs
    • 

    corecore