22 research outputs found

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Semi-algebraic colorings of complete graphs

    Get PDF
    We consider mm-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The case m=2m = 2 was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric objects and for other graphs arising in computational geometry. Considering larger values of mm is relevant, e.g., to problems concerning the number of distinct distances determined by a point set. For p≥3p\ge 3 and m≥2m\ge 2, the classical Ramsey number R(p;m)R(p;m) is the smallest positive integer nn such that any mm-coloring of the edges of KnK_n, the complete graph on nn vertices, contains a monochromatic KpK_p. It is a longstanding open problem that goes back to Schur (1916) to decide whether R(p;m)=2O(m)R(p;m)=2^{O(m)}, for a fixed pp. We prove that this is true if each color class is defined semi-algebraically with bounded complexity. The order of magnitude of this bound is tight. Our proof is based on the Cutting Lemma of Chazelle {\em et al.}, and on a Szemer\'edi-type regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erd\H{o}s and Shelah

    Semi-algebraic Ramsey numbers

    Get PDF
    Given a finite point set P⊂RdP \subset \mathbb{R}^d, a kk-ary semi-algebraic relation EE on PP is the set of kk-tuples of points in PP, which is determined by a finite number of polynomial equations and inequalities in kdkd real variables. The description complexity of such a relation is at most tt if the number of polynomials and their degrees are all bounded by tt. The Ramsey number Rkd,t(s,n)R^{d,t}_k(s,n) is the minimum NN such that any NN-element point set PP in Rd\mathbb{R}^d equipped with a kk-ary semi-algebraic relation EE, such that EE has complexity at most tt, contains ss members such that every kk-tuple induced by them is in EE, or nn members such that every kk-tuple induced by them is not in EE. We give a new upper bound for Rkd,t(s,n)R^{d,t}_k(s,n) for k≥3k\geq 3 and ss fixed. In particular, we show that for fixed integers d,t,sd,t,s, R3d,t(s,n)≤2no(1),R^{d,t}_3(s,n) \leq 2^{n^{o(1)}}, establishing a subexponential upper bound on R3d,t(s,n)R^{d,t}_3(s,n). This improves the previous bound of 2nC2^{n^C} due to Conlon, Fox, Pach, Sudakov, and Suk, where CC is a very large constant depending on d,t,d,t, and ss. As an application, we give new estimates for a recently studied Ramsey-type problem on hyperplane arrangements in Rd\mathbb{R}^d. We also study multi-color Ramsey numbers for triangles in our semi-algebraic setting, achieving some partial results

    New Constructions of Weak ε-Nets

    Get PDF
    A finite set N⊂RdN \subset \R^d is a {\em weak \eps-net} for an nn-point set X⊂RdX\subset \R^d (with respect to convex sets) if NN intersects every convex set KK with |K\,\cap\,X|\geq \eps n. We give an alternative, and arguably simpler, proof of the fact, first shown by Chazelle et al., that every point set XX in Rd\R^d admits a weak \eps-net of cardinality O(\eps^{-d}\polylog(1/\eps)). Moreover, for a number of special point sets (e.g., for points on the moment curve), our method gives substantially better bounds. The construction yields an algorithm to construct such weak \eps-nets in time $O(n\ln(1/\eps))

    An Efficient Algorithm for Generalized Polynomial Partitioning and Its Applications

    Get PDF
    In 2015, Guth proved that if S is a collection of n g-dimensional semi-algebraic sets in R^d and if D >= 1 is an integer, then there is a d-variate polynomial P of degree at most D so that each connected component of R^d Z(P) intersects O(n/D^{d-g}) sets from S. Such a polynomial is called a generalized partitioning polynomial. We present a randomized algorithm that computes such polynomials efficiently - the expected running time of our algorithm is linear in |S|. Our approach exploits the technique of quantifier elimination combined with that of epsilon-samples. We present four applications of our result. The first is a data structure for answering point-enclosure queries among a family of semi-algebraic sets in R^d in O(log n) time, with storage complexity and expected preprocessing time of O(n^{d+epsilon}). The second is a data structure for answering range search queries with semi-algebraic ranges in O(log n) time, with O(n^{t+epsilon}) storage and expected preprocessing time, where t > 0 is an integer that depends on d and the description complexity of the ranges. The third is a data structure for answering vertical ray-shooting queries among semi-algebraic sets in R^{d} in O(log^2 n) time, with O(n^{d+epsilon}) storage and expected preprocessing time. The fourth is an efficient algorithm for cutting algebraic planar curves into pseudo-segments

    Line Intersection Searching Amid Unit Balls in 3-Space

    Get PDF

    On Range Searching with Semialgebraic Sets II

    Full text link
    Let PP be a set of nn points in Rd\R^d. We present a linear-size data structure for answering range queries on PP with constant-complexity semialgebraic sets as ranges, in time close to O(n1−1/d)O(n^{1-1/d}). It essentially matches the performance of similar structures for simplex range searching, and, for d≥5d\ge 5, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz [arXiv:1011.4105], which shows that for a parameter rr, 1<r≤n1 < r \le n, there exists a dd-variate polynomial ff of degree O(r1/d)O(r^{1/d}) such that each connected component of Rd∖Z(f)\R^d\setminus Z(f) contains at most n/rn/r points of PP, where Z(f)Z(f) is the zero set of ff. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications

    A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

    Get PDF
    We show that the k-SUM problem can be solved by a linear decision tree of depth O(n^2 log^2 n),improving the recent bound O(n^3 log^3 n) of Cardinal et al. Our bound depends linearly on k, and allows us to conclude that the number of linear queries required to decide the n-dimensional Knapsack or SubsetSum problems is only O(n^3 log n), improving the currently best known bounds by a factor of n. Our algorithm extends to the RAM model, showing that the k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above bound on the number of linear queries. Our approach relies on a new point-location mechanism, exploiting "Epsilon-cuttings" that are based on vertical decompositions in hyperplane arrangements in high dimensions. A major side result of the analysis in this paper is a sharper bound on the complexity of the vertical decomposition of such an arrangement (in terms of its dependence on the dimension). We hope that this study will reveal further structural properties of vertical decompositions in hyperplane arrangements
    corecore