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Abstract. A finite set N ⊂ Rd is a weak ε-net for an n-point set X ⊂ Rd (with respect to
convex sets) if N intersects every convex set K with |K ∩ X | ≥ εn. We give an alternative,
and arguably simpler, proof of the fact, first shown by Chazelle et al. [8], that every point set
X in Rd admits a weak ε-net of cardinality O(ε−d polylog(1/ε)). Moreover, for a number
of special point sets (e.g., for points on the moment curve), our method gives substantially
better bounds. The construction yields an algorithm to construct such weak ε-nets in time
O(n ln(1/ε)).

1. Introduction

Weak ε-nets with respect to convex sets as defined in the abstract were introduced by
Haussler and Welzl [10] and later found many applications in discrete geometry, most
notably in the spectacular proof of the Hadwiger–Debrunner (p, q)-conjecture by Alon
and Kleitman [3].

For 0 < ε < 1 and X ⊂ Rd , let f (X, ε) denote the minimum cardinality of a weak
ε-net for X , and let

f (d, ε) = sup{ f (X, ε) : X ⊂ Rd finite}.
Alon et al. [2] proved that f (d, ε) is finite for every d ≥ 1 and ε > 0. They established
the bounds f (2, ε) = O(ε−2) and f (d, ε) ≤ Cdε

−(d+1−δd ), where Cd depends only on
d and δd is a positive number that tends to zero (exponentially fast) as d →∞. Chazelle
et al. [8] improved the bound for all fixed dimensions d ≥ 3 to O(ε−d ln(1/ε)b(d)), with
a suitable constant b(d).
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Our main result is an alternative, and arguably simpler, proof of the upper bound
f (d, ε) = O(ε−dpolylog(1/ε)) for fixed dimension d (with constants and the exponent
of the logarithm depending on d). Our proof is based on the following partition theorem
[12]: for a finite point set X ⊂ Rd and an integer parameter r , 2 ≤ r < |X |, there is a
partition of X into 
(r) parts of roughly equal size such that no hyperplane crosses the
convex hull of more than O(r1−1/d) parts.

Besides proving the upper bound mentioned above for general point sets in arbitrary
dimension, Chazelle et al. [8] also construct weak ε-nets of size O(ε−1polylog(1/ε))
for planar point sets in convex position. Our approach can be seen as a generalization of
that construction.

For special classes of point sets, such as point sets on the moment curve, or, more
generally, point sets on a k-dimensional algebraic variety of bounded degree, partitions
with smaller hyperplane crossing number are available, and in such cases we get corre-
spondingly smaller weak ε-nets.

Partitions with small hyperplane crossing number can also be constructed efficiently,
so our construction can be turned into an algorithm for computing weak ε-nets. This is
discussed in Section 5. The time required for computing a weak ε-net of size
O(ε−dpolylog(1/ε)) for an n-point set X in Rd is O(n ln(1/ε)) (with constants de-
pending on d). We note that Chazelle et al. [7] gave an algorithm with running time
n(1/ε)O(1).

An earlier version of this paper [15] also included a proof of the fact that for points
uniformly distributed on the (d − 1)-dimensional sphere, there are weak ε-nets of size
O(ε−1 ln(1/ε)2) (with a constant of proportionality depending on d). We are grateful
to János Pach for pointing out to us that this had already been proved by Bradford and
Capoyleas [6]. (For the case d = 2, Chazelle et al. [8] showed an O(ε−1) bound.)

2. Toolbox

Here we list several results from discrete geometry that we use. Proofs and references
can be found, for instance, in [13].

Centerpoints. Let X be a finite set of points in Rd . A point q ∈ Rd (not necessarily
in X ) is called a centerpoint for X if every halfspace containing q contains at least
|X |/(d + 1) points of X .

Center Point Theorem. For every finite point set X ∈ Rd , there exists a centerpoint.

The Löwner–John Ellipsoid. We make use of the fact that every d-dimensional convex
body K contains an ellipsoid of volume�(volK ); this is a consequence of the following:

John’s Lemma. Let K ⊂ Rd be a compact convex body with nonempty interior. Then
there exists an ellipsoid E such that

E ⊆ K ⊆ d E,

where d E is the ellipsoid that arises from E by expanding it from its center by a factor
of d .
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VC-Dimension and (“Strong”) ε-Nets. Let X be an arbitrary set and let F be a family
of subsets of X . A set A ⊆ X is shattered by F if every subset of A can be obtained as
the intersection of A with some set S ∈ F . The VC-dimension of F is defined as

VC-dim(F) = sup{|A| : A ⊆ X is shattered by F}.

Now suppose that X is equipped with a probability measure µ and that F is a system
of µ-measurable sets, and let ε > 0. A subset N ⊆ X is called an ε-net for F with
respect to µ if N ∩ S �= ∅ for every S ∈ F with µ(S) ≥ ε.

ε-Net Theorem. There is a constant C such that for all X , µ, and F as above and all
ε, 0 < ε ≤ 1

2 , there exists an ε-net forF with respect toµ of size at most C Dε−1 ln(1/ε),
where D := VC-dim(F).

We briefly compare this with the definition of weak ε-nets for convex sets. The
measure considered in that definition is the normalized counting measure on a finite
set in Rd (but the definition could equally well be phrased with an arbitrary probability
measure). The main difference is that the VC-dimension of the system of all convex sets
in Rd has infinite VC-dimension, and so the ε-net theorem does not give anything.

3. A General Construction via Partitions

We begin with an auxiliary statement concerning centerpoints.

Lemma 1. Let X ⊂ Rd be a finite point set. Then there are subsets T1, T2, . . . , Td ⊆ X,
|Tj | ≤ d , such that K := ⋂d

j=1 conv(Tj ) �= ∅ and the lexicographic minimum of K is a
centerpoint of X .

Proof. Let Y be the system of all Y ⊆ X such |Y | > (d/(d + 1))|X | and there is
an open halfspace γ with Y = X ∩ γ . Then the intersection C := ⋂

Y∈Y conv(Y ) is
nonempty, and its points are centerpoints of X ; see, e.g., the proof of the centerpoint
theorem in [13]. Let q be the lexicographic minimum of C . By a standard argument using
Helly’s theorem (see, e.g., Lemma 8.1.2 of [13]), there are sets Y1, Y2, . . . , Yt ∈ Y , t ≤ d,
such that q is also the lexicographic minimum of

⋂t
j=1 conv(Yj ). Assuming that no Yj

can be omitted without violating this property, q has to lie on the boundary of conv(Yj )

for each j . Then by Carathéodory’s theorem, for each j we can choose an at most d-point
Tj ⊆ Yj with q ∈ conv(Tj ). Then T1, . . . , Tt have the property required in the lemma.

In order to simplify notation in what follows, the lemma speaks about exactly d sets
Tj . If the above proof yields fewer sets, we thus repeat some of them the appropriate
number of times.

The crucial ingredient of our construction is partitions with small hyperplane crossing
numbers. In the following, R+ denotes the set of positive real numbers, and we use the
notation “∪̇” for the union of pairwise disjoint sets.
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Definition 2. Let κ: R+ → R+ be a nondecreasing sublinear function. We say that
a finite point set Y ⊂ Rd is κ-partitionable if, for every r , 2 ≤ r < |Y |, there exists a
partition Y = Y1 ∪̇ · · · ∪̇ Yt , t ≤ r , such that |Y |/r ≤ |Yi | ≤ 2|Y |/r for all i and the
hyperplane crossing number of the partition is at most κ(r), i.e., no hyperplane h crosses
more than κ(r) of the sets Yi .

Here, a hyperplane h is said to cross a point set Z if it intersects conv(Z) but does
not contain it. Furthermore, a point set X ⊂ Rd is hereditarily κ-partitionable if every
subset Y ⊆ X is κ-partitionable.

Here is our main theorem.

Theorem 3. Suppose a finite point set X ⊂ Rd is hereditarily O(r1−1/c)-partitionable
for some constant c, 1 ≤ c ≤ d. That is, X is hereditarily κ-partitionable with κ(r) ≤
br1−1/c for some constant b (for convenience in later calculations, we assume b ≥ 1).
Then, for every ε > 0, there is a weak ε-net of size

O(ε−c ln(1/ε)a)

for X , where a depends only on d , c, and b; it can be shown that a = max{cd2(ln 2 +
ln(d + 1)+ ln b), 2} suffices.

Proof. We first briefly outline the main idea for the proof of Theorem 3: Let r and
k be two parameters, to be specified later, which satisfy 1 ≤ k < r/2 ≤ |X |/4. Let
X = X1 ∪̇ · · · ∪̇ Xt , t ≤ r , be a partition for X as introduced in Definition 2 above, i.e.,
such that |X |/r ≤ |Xi | ≤ 2|X |/r for all i and that no hyperplane crosses more than κ(r)
of the parts Xi . For a subset A ⊆ X with |A| ≥ ε|X |, we distinguish the following two
cases: If A intersects “few” of the Xi ’s, then there must be some i such that the density
of A ∩ Xi in Xi is at least some suitable ε′ which is significantly larger than ε. We take
care of this case by inductively constructing weak ε′-nets for all the Xi ’s (this is where
we use the fact that suitable partitions exist for all subsets of X ). On the other hand, in
the case that A intersects “many” of the parts Xi , we use the fact that the partition has
low hyperplane crossing number to show that conv(A) contains a point q from a certain
set N ′ of points defined by suitable constant-size subsets of X .

We now present the proof proper, which is subdivided into three parts:

1. (Recursive construction of the set N )
We may assume that ε ≤ ε0 for some suitable constant ε0 depending on b, c, d
(otherwise, we construct a weak ε0-net of size C/ε0, C = C(ε0, d), by the method
in [2], say). We may also assume that |X | ≥ 2/ε0, else we may take N := X as a
weak ε-net.

Next, we construct the set N ′ mentioned above: We pick a transversal for the
Xi ’s, i.e., a subset T ⊆ X that contains exactly one point pi from each Xi . Let
T1, T2, . . . , Td be subsets of T consisting of at most d points each. Whenever⋂d

j=1 conv(Tj ) �= ∅, we define q = q(T1, . . . , Td) as the lexicographic minimum
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of
⋂d

j=1 conv(Tj ). We take N ′ to consist of all such points:

N ′ :=
{

q(T1, . . . , Td) : Tj ⊆ T, |Tj | ≤ d for 1 ≤ j ≤ d,

and
d⋂

j=1

conv(Tj ) �= ∅
}
. (1)

We observe that since |T | ≤ r , we have |N ′| ≤ rd2
. Furthermore, for 1 ≤ i ≤ t ,

let Ni be an inductively constructed weak (rε/2k)-net for the set Xi . We define

N := N ′ ∪
t⋃

i=1

Ni . (2)

2. (Proof of the weak ε-net property for N )
Suppose that A ⊆ X , |A| ≥ ε|X |. We distinguish two cases:
(i) If A intersects at most k of the sets Xi , then for some i , |A ∩ Xi | ≥ (ε/k)|X | ≥

(rε/(2k))|Xi |. Thus, conv(A) intersects Ni .
(ii) Let A intersect more than k of the sets Xi ; say A ∩ Xi �= ∅ for 1 ≤ i ≤ k+ 1

(see Fig. 1). Let p1, . . . , pk+1 be the corresponding points from the transversal
T chosen above, i.e., Xi ∩ T = {pi }. By Lemma 1, N ′ contains a point q that
is a centerpoint of {p1, . . . , pk+1}.

We claim that q ∈ conv(A). Otherwise, q can be strictly separated from
A by a hyperplane h, say q ∈ h− and A ⊂ h+, where h+ and h− denote
the open halfspaces bounded by h. Then, by the centerpoint property, at
least (k + 1)/(d + 1) of the points pi lie in h−, say pi ∈ h− for 1 ≤ i ≤
�(k + 1)/(d + 1)�. It follows that for these indices i , Xi contains a point from
h− as well as a point from h+ (since ∅ �= A ∩ Xi ⊂ h+). Therefore, h crosses
at least �(k + 1)/(d + 1)� of the sets Xi . This leads to a contradiction if we
set

k := �(d + 1)κ(r)�, (3)

which of course we do.

h

conv(A)

A q

Fig. 1. Checking the weak ε-net property.
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3. (Estimating the size of N )
We have to prove that for the exponent a as in the statement of Theorem 3,

|N | ≤ Cε−c ln(1/ε)a (4)

for some suitable constant C . We proceed by induction on |X |. We first choose a
sufficiently small constant ε0; the subsequent calculations will show that a suitable
value is

ln ln(1/ε0) = 2cd2(ln 2+ ln(d + 1)+ ln(b)). (5)

As remarked in Step 1 above, there is a constant C , depending on ε0 and d, such
that for |X | < 2/ε0 or ε > ε0, we even have |N | < C/ε.

Thus, we may assume ε ≤ ε0 and |X | ≥ 2/ε. It remains to handle the
inductive step and to specify the partition parameter r . Note that by (3),

k

r
≤ (d + 1)br1−1/c

r
= (d + 1)b

r1/c
. (6)

We set

r := ε−c/d2
ln(1/ε)1/d

2
. (7)

(Observe that by our assumptions on |X | and ε and because of b ≥ 1, (3) and (7)
produce admissible values of k and r , i.e., 1 ≤ k < r/2 ≤ |X |/4.)

Now, inductively, we have

|N | = |N ′| +
t∑

i=1

|Ni |

≤ rd2 + rC(2k/r)cε−c[ln(1/ε)+ ln(2k/r)]a

≤ ε−c ln(1/ε)+ Cε−c ln(1/ε)a2c(d + 1)cbc(1+ w(ε)− 1/d2)a,

where

w(ε) := ln 2+ ln(d + 1)+ ln b − (1/cd2) ln ln(1/ε)

ln(1/ε)
.

It follows that |N | ≤ Cε−c ln(1/ε)a , as desired, provided that

2c(d + 1)cbc

(
1+ w(ε)− 1

d2

)a

+ 1

C ln(1/ε)a−1
≤ 1.

By choice of ε0, we have for all ε ≤ ε0 that w(ε) ≤ −x(ε), where x(ε) :=
ln ln(1/ε)/(2cd2 ln(1/ε)). Moreover, we may assume that C ≥ 1, say, and we
have a ≥ 2, hence 1/(C ln(1/ε)a−1) ≤ 1/ln(1/ε) =: y(ε). So it suffices to show
that

2c(d + 1)cbc

(
1− 1

d2
− x(ε)

)a

≤ 1− y(ε).
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We take logarithms and use the facts that 1+ t ≤ et for all real t (for the left-hand
side), and that 1 − y > e−2y for small y > 0 (for the right-hand side). Thus, we
see that it is enough to show

c(ln 2+ ln(d + 1)+ ln b)− a

d2
− a · x(ε)+ 2y(ε) ≤ 0.

However, the last two terms together are at most zero, because a ≥ 2 and
ln ln(1/ε) ≥ 2cd2 for ε ≤ ε0, and the first two terms together are at most zero by
choice of a. This completes the proof of Theorem 3.

For later use we remark that setting r := ε−β works equally well for any sufficiently
small constant β > 0; we always get a bound O(ε−c(ln(1/ε))a) with a suitable a
depending on d, c, b, β.

4. Applications of the General Construction

We now derive some consequences of Theorem 3. Since any point set in Rd is (heredi-
tarily) O(r1−1/d)-partitionable [12], we have re-proved:

Theorem 4 [8]. For every finite point set X ⊂ Rd and every ε ∈ (0, 1), there exists a
weak ε-net of size O(ε−d ln(1/ε)a), for a suitable constant a = a(d).

Points on the Moment Curve. Let X be a subset of the moment curve γ := {(t, t2, . . . ,

td) : t ∈ R}. Such point sets X are κ-partitionable with κ(r) = d: Given X =
{p1, . . . , pn}, where the points are numbered according to their order along the curve γ ,
we partition the points into “intervals” of the appropriate length. That is, let s = �n/r�
and q := �n/s�, and define Xi := {p(i−1)s+1, p(i−1)s+2, . . . , pis} for 1 ≤ i ≤ q − 1,
and Xq := {p(q−1)s+1, . . . , pn}. If a hyperplane h crosses an interval Xi , it intersects
the moment curve γ within that interval. Therefore, at most d intervals can be crossed,
since no hyperplane has more than d points of intersection with γ . Thus, in the notation
of Theorem 3, we have c = 1 and b = d, and we obtain:

Proposition 5. Every finite subset of the moment curve in Rd admits a weak ε-net of
size O(ε−1 ln(1/ε)a(d)), with a(d) ≤ d2(ln 2+ ln(d + 1)+ ln d).

Points on an Algebraic Variety or on the Boundary of a Convex Set. The following
lemma summarizes some improved partitioning results for special point sets:

Lemma 6.

(i) Let V be a k-dimensional algebraic variety in Rd , 1 ≤ k ≤ d−1, of degree
bounded by a constant D. Then any finite X ⊂ V is O(r1−1/c(ln r)1+1/c)-
partitionable for c = �(d + k)/2� (with the constant depending on k, d,
and D).
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(ii) Let V be the relative boundary of a (k + 1)-dimensional convex set in Rd . Then
any finite X ⊂ V is O(r1−1/c(ln r)1+1/c)-partitionable for c = �(d + k)/2�
(with the constant depending on k and d).

(iii) Let V be a k-dimensional algebraic variety in Rd , 1 ≤ k ≤ d−1, of degree
bounded by a constant D. Then any finite X ⊂ V is O(r1−1/c(ln r)1+1/c)-
partitionable for c = max(k, 2k − 4 + η), where η > 0 is an arbitrarily small
constant and the implicit constant depends on k, d, D, η.

Part (i) is based on a zone theorem by Aronov et al. [4], and it is explicitly mentioned
in [1] (in the proof of Theorem 6.3, as a consequence of a partition theorem formulated
in an abstract setting). Part (ii) follows by exactly the same argument from another zone
theorem of Aronov et al. [4], where one has the relative boundary of (k+1)-dimensional
convex set instead of the variety V , with the same bound on the complexity of the zone.
Finally, part (iii) follows from known results on decompositions of arrangements of
semialgebraic sets [9], [11] by the technique described in [1], but it includes a simple
observation which may be new in this context and of independent interest, and so we
outline the proof in Section 6.

We thus obtain:

Theorem 7.

(i) Let V be a k-dimensional algebraic variety in Rd of degree bounded by a constant
D. Then for every finite X ⊂ V and every ε ∈ (0, 1), there exists a weak ε-net of
cardinality O(ε−c ln(1/ε)a) for

c = min(�(d + k)/2�,max(k, 2k − 4+ η)),

with an arbitrarily small η > 0 and with a and the implicit constant depending
on d, k, η, D.

(ii) Let V be the relative boundary of a (k + 1)-dimensional convex set in Rd .
Then for every finite X ⊂ V and every ε ∈ (0, 1), a weak ε-net of cardinal-
ity O(ε−c ln(1/ε)a) exists for c = �(d + k)/2�, with a and the implicit constant
depending on d and k.

It is fair to remark that Theorem 3 does not apply directly in this case, since we have
some extra logarithmic factors in the bounds on the crossing numbers of the partitions.
However, the calculations in the proof of Theorem 3 go through almost unchanged, with
a suitable larger exponent a.

5. The Algorithmic Side

Whenever partitions with a small hyperplane crossing number can be computed effi-
ciently, our proof of Theorem 3 immediately yields an algorithm for computing weak
ε-nets.
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Theorem 8. Suppose that X is a finite point set in Rd such that, for every subset
Y ⊆ X and for every r , 2 ≤ r < |Y |α with some constant α > 0, we can compute in
time O(|Y | ln r) a partition Y = Y1 · ∪ · · · · ∪ Yt with t ≤ r , |Y |/r ≤ |Yi | ≤ 2|Y |/r
for all i , and hyperplane crossing number O(r1−1/c). Then, for every ε ∈ (0, 1), we can
find a weak ε-net of size O(ε−c ln(1/ε)O(1)) for X in time O(|X | ln(1/ε)).

For every set X of n points in Rd , the assumptions of Theorem 8 are satisfied with
c = d , see [12]. So we obtain:

Corollary 9. For every n-point set X ⊂ Rd and every ε ∈ (0, 1), a weak ε-net of size
O(ε−d(ln(1/ε))O(1)) can be computed in time O(n ln(1/ε)).

Proof of Theorem 8. We construct a weak ε-net as in the proof of Theorem 3, setting
r := ε−β with β := min(c/d2, α). According to the proof of Theorem 3, we obtain a
weak ε-net of size O(ε−c(ln(1/ε))a) with a suitable constant a.

It remains to estimate the running time. We first note that the computation of q(T1, T2,

. . . , Td) as in our proof of Theorem 3, although not simple, is a constant-time operation
for d fixed.

Let g(n, ε) be the maximal time required to compute a weak ε-net for a subset Y ⊂ X
of cardinality n, ε ≥ (1/n)1/c (for smaller ε, we can simply take the set Y as a weak
ε-net). We have the recurrence

g(n, ε) = O(n ln r)+ rd2 +
∑

i

g(ni , rε/k), (8)

where k = O(r1−1/c) and
∑

i ni = n.
With our choice of r = ε−β , and since (1/ε)c ≤ n, the first two terms in the recur-

rence for g together are at most An ln(1/ε) for some constant A. We also have k/r =
O(r−1/c) ≤ Bεβ/c for a constant B. Assuming inductively that g(n′, ε′) ≤ Cn′ ln(1/ε′)
for all n′ < n and ε′ > ε, with a suitable constant C , we have

g(n, ε) ≤ An ln(1/ε)+
∑

i

Cni ln(k/r · 1/ε)

= An ln(1/ε)+ Cn[ln(1/ε)+ ln(k/r)]

≤ n[A ln(1/ε)+ C ln(1/ε)+ C ln B − (Cβ/c) ln(1/ε)]

≤ Cn ln(1/ε),

assuming that C is chosen so large that Cβ/c ≥ 2A, say, and that ε is so small that
(β/c) ln(1/ε) ≥ 2 ln B. This finishes the proof of Theorem 8.

6. Partitions for Points on a Variety

Here we outline the proof of Lemma 6(iii). In order to use a general partition theorem
from [1], we first recall the abstract framework defined there.

A range space with elementary cells is a triple (X, �, E), where X is a ground set
and � and E are set systems on X . The sets in � are called ranges, while those in E are
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called elementary cells. A range γ ∈ � crosses a set S ⊆ X if γ ∩ S �= ∅ and S �⊆ γ .
A collection � ⊆ E of elementary cells is called an elementary cell decomposition for
a set Q ⊆ � of ranges if

⋃
� = X and no γ ∈ Q crosses any e ∈ � (both Q and � are

usually finite).
For example, one can take X = Rd , let � be the set of all (closed) halfspaces in Rd ,

and let E consist of all relatively open simplices in Rd (of all dimensions from 0 to d,
and also including unbounded simplices, i.e., intersections of d+1 halfspaces). We note
that a simplex e ∈ E is crossed by a hyperplane h, according to the definition used in the
previous sections, iff it is crossed by at least one of the two closed halfspaces bounded
by h. If Q is a finite set of halfspaces, then a triangulation of the arrangement of the
bounding hyperplanes of Q is an elementary cell decomposition.

A faithful linearization of dimension d for a set system (X, �) is an injective mapping
ϕ: X → Rd such that � = {ϕ−1(H) : H a closed halfspace in Rd}. Thus, (X, �)
possessing a faithful linearization means that X can be identified with a subset of some
Rd , and � then consists of all intersections of that subset with halfspaces.

For our purposes, the results in [1] can be summarized as follows (a combination of
Theorem 5.1 and Lemma 3.1 from [1]):

Theorem 10 [1]. Let (X, �, E) be a range space with elementary cells, such that (X, �)
has a faithful linearization of some constant dimension d , and such that the VC-dimension
of the set system {�e : e ∈ E} is bounded by a constant d1, where �e denotes the set
of all ranges γ ∈ � crossing the elementary cell e. We assume that every finite Q ⊆ �
admits an elementary cell decomposition consisting of at most Cmc(log m)c1 elementary
cells, where m = |Q| and C , c > 1, and c1 ≥ 0 are constants. Then for every n-point
set P ⊆ X and every r , 1 < r < n, there exists a partition P = P1∪̇P2∪̇ · · · ∪̇Pt ,
such that �n/r� ≤ |Pi | < 2�n/r� (thus t = 
(r)), and no γ ∈ � crosses more than
O(r1−1/c(log r)1+c1/c) of the Pi .

We recall that a semialgebraic set is a subset of Rd definable by a formula that is a
Boolean combination of finitely many polynomial inequalities in the variables x1, . . . , xd

with real coefficients (the book by Bochnak et al. [5] provides an extensive reference).
The description complexity of a semialgebraic set can be defined, for our purposes, as

max(d, D,m), where D is the maximum of the degrees of the polynomials in the defining
inequalities and m is the number of inequalities. Tarski’s well known result on quantifier
elimination implies that subsets of Rd definable by a first-order formula over the reals
involving quantifiers, and in particular, images and inverse images of semialgebraic
sets under polynomial maps, are semialgebraic. A Tarski cell is a semialgebraic set of
description complexity bounded by a constant (possibly depending on other parameters
declared as constants).

We also need to recall results of Chazelle et al. [9], with an improvement in dimension
4 by Koltun [11].

Theorem 11. Let f1, . . . , fm ∈ R[x1, . . . , xd ] be polynomials of degree at most D,
where D is a constant. Then Rd can be partitioned into at most Td(m) Tarski cells so
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that the sign of each fj is constant on each of these cells1 and with the following bounds
on Td(m):

• T2(m) = O(m2),
• T3(m) = O(m3β(m)), where β is an extremely slow-growing function, with
β(m) = o(log log log m), for instance, and
• Td(m) = O(m2d−4+η) for every fixed d ≥ 4 and every fixed η > 0 (this includes

the improvement from [11]).

In the situation of Lemma 6(iii), we have an algebraic variety V of dimension k in
Rd of degree bounded by D. So V can be written as the set of common zeros of (finitely
many) d-variate polynomials with real coefficients, each of degree at most D.

The following fact is well known (see, e.g., the discussion of stratification of semi-
algebraic sets in Section 9.1 of [5]) and has been used in many computational-geometric
papers, especially in the case k = d − 1:

Lemma 12. For any V as above, there is a partition V = V1 ∪ V2 ∪ · · · ∪ VM , with M
a constant depending on k, d, D, and k-dimensional linear subspaces L1, L2, . . . , L M ,
such that each Vi is a semialgebraic set of description complexity bounded by a constant
(depending on k, d, D) and the orthogonal projection πi : Vi → Li is injective.

Proof of Lemma 6(iii). It suffices to prove partitionability for each Vi as in Lemma 12
separately. Indeed, we can first divide the given finite set X ⊂ V into at most M parts,
each of them contained in some Vi , and then we apply a partition theorem for each Vi

separately, with r = r(i) adjusted so that the parts have the size required for the partition
of the original X . The hyperplane crossing number of the resulting partition of X is at
most M-times worse than the worst of the crossing numbers for the individual Vi .

So we consider an n-point P ⊆ Vi and a given parameter r . In order to apply
Theorem 10, we let Vi be the ground set (playing the role of X in that theorem), and
let � be the set of all intersections of Vi with (closed) halfspaces. The inclusion map
Vi → Rd is thus a faithful linearization. We let E consist of all semialgebraic subsets
of Vi of description complexity at most C1, for a sufficiently large constant C1. As can
be shown, for example, by a linearization argument (see, e.g., Section 10.3 of [13]),
the VC-dimension assumption in Theorem 10 is satisfied. It remains to exhibit suitable
elementary cell decompositions.

Let Q ⊆ � be a set of m ranges (intersections of Vi with halfspaces). For γ ∈ Q,
πi (γ ) ⊆ Li is a Tarski cell. Let f1, f2, . . . , fm1 ∈ R[x1, . . . , xd ] be all polynomials
involved in the formulas defining the sets πi (γ ) for γ ∈ Q; we have m1 = O(m).

We let Rk ≡ Li = e1∪e2∪· · ·∪et be a decomposition of Li into at most Tk(m1)Tarski
cells as in Theorem 11, and let ẽj = π−1

i (ej ) ⊆ Vi be the inverse image of ej . Each ẽj is a
Tarski cell, and thus it belongs to E (for C1 large enough). If some γ ∈ Q crosses some ẽj ,
then πi (γ ) crosses ej (as πi is injective). It follows that there is a polynomial f j involved
in the formula defining πi (γ ) whose sign on ej is not constant, and this contradicts the

1 Chazelle et al. formulated their results for polynomials with rational coefficients, but the construction
and proof work with arbitrary real coefficients as well; this has been used many times in the literature.
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construction of the ej . Therefore, we have elementary cell decompositions in (Vi , �, E)
of size at most Tk(O(m)). The proof of Lemma 6(iii) is concluded by an application of
Theorem 10.

7. Concluding Remarks

For ε fixed and sufficiently small and d → ∞, the function f (d, ε) is bounded from
below by e�(

√
d) [14]. However, for fixed dimension d, while there are now several

constructions that yield upper bounds of O(ε−dpolylog(1/ε)) or slightly worse, no better
lower bound than the obvious f (d, ε) = �(1/ε) seems to be known. There seems to be
no convincing reason why f (d, ε) should be substantially superlinear in 1/ε.

Our construction rules out the popular points on the moment curve as a candidate for
a class of points sets that require weak ε-nets of substantially superlinear size.
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