research

Semi-algebraic Ramsey numbers

Abstract

Given a finite point set PRdP \subset \mathbb{R}^d, a kk-ary semi-algebraic relation EE on PP is the set of kk-tuples of points in PP, which is determined by a finite number of polynomial equations and inequalities in kdkd real variables. The description complexity of such a relation is at most tt if the number of polynomials and their degrees are all bounded by tt. The Ramsey number Rkd,t(s,n)R^{d,t}_k(s,n) is the minimum NN such that any NN-element point set PP in Rd\mathbb{R}^d equipped with a kk-ary semi-algebraic relation EE, such that EE has complexity at most tt, contains ss members such that every kk-tuple induced by them is in EE, or nn members such that every kk-tuple induced by them is not in EE. We give a new upper bound for Rkd,t(s,n)R^{d,t}_k(s,n) for k3k\geq 3 and ss fixed. In particular, we show that for fixed integers d,t,sd,t,s, R3d,t(s,n)2no(1),R^{d,t}_3(s,n) \leq 2^{n^{o(1)}}, establishing a subexponential upper bound on R3d,t(s,n)R^{d,t}_3(s,n). This improves the previous bound of 2nC2^{n^C} due to Conlon, Fox, Pach, Sudakov, and Suk, where CC is a very large constant depending on d,t,d,t, and ss. As an application, we give new estimates for a recently studied Ramsey-type problem on hyperplane arrangements in Rd\mathbb{R}^d. We also study multi-color Ramsey numbers for triangles in our semi-algebraic setting, achieving some partial results

    Similar works