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Abstract
In 2015, Guth proved that if S is a collection of n g-dimensional semi-algebraic sets in Rd and
if D ≥ 1 is an integer, then there is a d-variate polynomial P of degree at most D so that each
connected component of Rd \ Z(P ) intersects O(n/Dd−g) sets from S. Such a polynomial is called
a generalized partitioning polynomial. We present a randomized algorithm that computes such
polynomials efficiently – the expected running time of our algorithm is linear in |S|. Our approach
exploits the technique of quantifier elimination combined with that of ε-samples.

We present four applications of our result. The first is a data structure for answering point-
enclosure queries among a family of semi-algebraic sets in Rd in O(log n) time, with storage complexity
and expected preprocessing time of O(nd+ε). The second is a data structure for answering range
search queries with semi-algebraic ranges in O(log n) time, with O(nt+ε) storage and expected
preprocessing time, where t > 0 is an integer that depends on d and the description complexity
of the ranges. The third is a data structure for answering vertical ray-shooting queries among
semi-algebraic sets in Rd in O(log2 n) time, with O(nd+ε) storage and expected preprocessing time.
The fourth is an efficient algorithm for cutting algebraic planar curves into pseudo-segments.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Randomness, geometry and discrete structures

Keywords and phrases Polynomial partitioning, quantifier elimination, semi-algebraic range spaces,
ε-samples

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.5

Related Version https://arxiv.org/abs/1812.10269

Funding Pankaj K. Agarwal: P. Agarwal was supported by NSF under grants CCF-15-13816, CCF-
15-46392, and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229
from the U.S.-Israel Binational Science Foundation.
Boris Aronov: B. Aronov was supported by NSF grants CCF-12-18791 and CCF-15-40656, and by
grant 2014/170 from the US-Israel Binational Science Foundation.
Esther Ezra: E. Ezra was supported by NSF CAREER under grant CCF:AF 1553354 and by Grant
824/17 from the Israel Science Foundation.
Joshua Zahl: J. Zahl was supported by an NSERC Discovery grant.

© Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211061886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pankaj@cs.duke.edu
mailto:boris.aronov@nyu.edu
mailto:eezra3@math.gatech.edu
https://orcid.org/0000-0001-5129-8300
mailto:jzahl@math.ubc.ca
https://doi.org/10.4230/LIPIcs.SoCG.2019.5
https://arxiv.org/abs/1812.10269
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 An Efficient Algorithm for Generalized Polynomial Partitioning

1 Introduction

In 2015, Guth [11] proved that if S is a collection of n g-dimensional semi-algebraic sets1 in
Rd and if D ≥ 1 is an integer, then there is a d-variate polynomial P of degree at most D
so that each connected component of Rd \ Z(P ) intersects O(n/Dd−g) sets from S 2, where
the implicit constant in the O(·) notation depends on d and on the degree and number
of polynomials required to define each semi-algebraic set. We refer to such a polynomial
P as a generalized partitioning polynomial. Guth’s proof established the existence of a
generalized partitioning polynomial, but it did not offer an efficient algorithm to compute
such a polynomial for a given collection of semi-algebraic sets. In this paper we study the
problem of computing a generalized partitioning polynomial efficiently and present a few
applications of such an algorithm.

Related work. In 2010, Guth and Katz [12] resolved the Erdős distinct distances problem
in the plane. A major ingredient in their proof was a partitioning theorem for points in Rd.
Specifically, they proved that given a set of n points in Rd and an integer D ≥ 1, there is a
d-variate partitioning polynomial P of degree at most D so that each connected component
of Rd \ Z(P ) contains O(n/Dd) points from the set. Their polynomial partitioning theorem
led to a flurry of new results in combinatorial and incidence geometry, harmonic analysis,
and theoretical computer science.

The Guth-Katz result established the existence of a partitioning polynomial, but it did
not provide an effecient algorithm to compute such a polynomial. In [2], Agarwal, Matoušek,
and Sharir developed an efficient algorithm to compute partitioning polynomials, matching
the degree bound obtained in [12] up to a constant factor. They used this algorithm to
construct a linear-size data structure that can answer semialgebraic range queries amid a set
of n points in Rd in time O(n1−1/d polylog(n)), which is near optimal.

A major open question in geometric searching is whether a semialgebraic range query
can be answered in O(logn) time using a data structure of size roughly nd; such a data
structure is known only in very special cases, e.g., when query ranges are simplices [3]. If t
is the number of (real valued) parameters needed to represent query ranges, then the best
known data structure for semialgebraic range searching uses O(nt+ε) space for t ≤ 4 and
O(n2t−4+ε) space for t > 4 [3]. As we show below, an efficient algorithm for computing a
generalized partitioning polynomial leads to a semialgebraic range searching data structure
with O(logn) query time and O(nt+ε) space.

In [4], the last three authors developed an efficient algorithm for constructing a partition of
R3 adapted to a set of space curves. This partition is not given by a partitioning polynomial,
but it shares many of the same properties. For other settings, however, no effective method
is known for computing a partitioning polynomial.

Our results. Our main result is an efficient algorithm for computing a generalized par-
titioning polynomial for a family of semi-algebraic sets (Theorem 11): Given a set S of
n semi-algebraic sets in Rd, each of complexity at most b for some constant b > 0 (see
Section 2 for the definition of the complexity of a semi-algebraic set), our algorithm computes
a generalized partitioning polynomial of given degree D in expected time O(nePoly(D)).

1 Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd that satisfy a Boolean formula
over a set of polynomial inequalities. See [8, Chapter 2] for formal definitions of a semialgebraic set and
its dimension.

2 Guth stated his result for the special case where the semi-algebraic sets are real algebraic varieties, but
his proof in fact holds in the more general setting of semi-algebraic sets.
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In Section 4 we present four applications of our algorithm:

(i) Let S be a family of n semi-algebraic sets in Rd, each of complexity at most b for some
constant b > 0. Each set in S is assigned a weight that belongs to a semigroup. We
present a data structure of size O(nd+ε), for any constant ε > 0, that can compute,
in O(logn) time, the cumulative weight of the sets in S containing a query point. We
refer to the latter as a point-enclosure query. The data structure can be constructed in
O(nd+ε) randomized expected time. This is a significant improvement over the best
known data structure by Koltun [14], for d > 4, that uses O(n2d−4+ε) space.

(ii) Let P be a set of n points in Rd, each of which is assigned a weight in a semigroup,
and let R be a (possibly infinite) family of semi-algebraic sets in Rd. Suppose that
there exists a positive integer t and an injection f : R→ Rt so that for each p ∈ P , the
set f({R ∈ R | p ∈ R}) is a semi-algebraic set in Rt of complexity at most b. We can
construct in O(nt+ε) randomized expected time a data structure of size O(nt+ε), for
any constant ε > 0, that can compute in O(logn) time the cumulative weight of P ∩ γ
for a query range γ ∈ R.

(iii) Given a family S of n semi-algebraic sets in Rd, we present a data structure of size
O(nd+ε), for any constant ε > 0, that can answer vertical ray shooting queries in
O(log2 n) time. The data structure can be constructed in O(nd+ε) randomized expected
time.

(iv) Finally, we follow the technique of Sharir and Zahl [15] to cut n algebraic planar curves
into a collection of O(n3/2+ε) pseudo-segments (that is, a collection of Jordan arcs, each
pair of which intersects at most once), where the constant of proportionality depends
on the degree of the curves. By exploiting Theorem 11, we show that this collection can
be constructed in comparable time bound. We comment that applying the algorithm
in the previous work of Aronov et al. [4] results in the same asymptotic bound on the
number of pseudo-segments, however, its running time is quadratic in the number of
curves. Thus our algorithm yields a considerable improvement in the running time.

Throughout this paper we assume that d, b, and ε are constants. Whenever big-O notation
is used, the implicit constant may depend on d, b, and ε.

2 Preliminaries

In what follows, the complexity of a semi-algebraic set S in Rd is the minimum value b so
that S can be represented as the set of points x ∈ Rd satisfying a Boolean formula with at
most b atoms of the form P (x) < 0 or P (x) = 0, with each P being a d-variate polynomial
of degree at most b.

Our analysis makes extensive use of concepts and results from real algebraic geometry
and random sampling. We review them below.

2.1 Polynomials, partitioning, and quantifier elimination
Sign conditions. Let R[x1, . . . , xd] denote the set of all d-variate polynomials with real
coefficients. For P1, . . . , P` ∈ R[x1, . . . , xd], a sign condition on (P1, . . . , P`) is an element of
{−1, 0, 1}`. A strict sign condition on (P1, . . . , P`) is an element of {−1, 1}`. A sign condition
(ν1, . . . , ν`) ∈ {−1, 0, 1}` is realizable if the set

{x ∈ Rd | sign(Pj(x)) = νj for each j = 1, . . . , `} (1)

SoCG 2019



5:4 An Efficient Algorithm for Generalized Polynomial Partitioning

is non-empty. A realizable strict sign condition is defined analogously. The set (1) is
called the realization of the sign condition. The set of realizations of sign conditions (resp.,
realizations of strict sign conditions) corresponding to the tuple (P1, . . . , P`) is the collection
of all non-empty sets of the above form. These sets are pairwise disjoint and partition Rd,
by definition.

While a tuple of ` polynomials has 3` sign conditions and 2` strict sign conditions, Milnor
and Thom (see, e.g., [6, 10]) showed that any ` polynomials in R[x1, . . . , xd] of degree at
most s (with 2 ≤ d ≤ `) have at most (50s`/d)d realizable sign conditions.

Polynomials and partitioning. The set of polynomials in R[x1, . . . , xd] of degree at most b
is a real vector space of dimension

(
b+d
d

)
; we identify this vector space with R(b+d

d ). For a
point q ∈ R(b+d

d ), let Pq ∈ R[x1, . . . , xd] be the corresponding polynomial of degree at most b.

I Remark 1. Consider the polynomial Q(q, x) ∈ R[q1, . . . , q(b+d
d ), x1, . . . , xd] given by

Q(q, x) := Pq(x). Since we can write Q(q, x) =
∑(b+d

d )
i=1 qiHi(x), where Hi is a monomial of

degree at most b, Q has degree b+ 1.

For each positive integer j, let Dj be the smallest positive integer so that
(
Dj+d
d

)
> 2j−1;

we have Dj = O(2j/d). Let k be a positive integer. For each j = 1, . . . , k, pick a 2j−1-
dimensional subspace Vj of R(Dj +d

d ). These subspaces Vj will be fixed hereafter. Define the
product space

Yk :=
k×
j=1

Vj . (2)

We identify each point y = (y1, . . . , yk) ∈ Yk, where yj ∈ Vj , with a k-tuple of polynomials
Py = (Py1 , . . . , Pyk

). For each j = 1, . . . , k, deg(Pj) = O(2j/d) and thus deg
(∏k

j=1 Pj
)

=
O(2k/d).

Let Py ∈ Yk, let S be a collection of semi-algebraic sets in Rd, and let α ≥ 1. We say that
Py is a (k, α)-partitioning tuple for S if Py has exactly 2k realizable strict sign conditions
and the realization of each of them intersects at most |S|/α sets from S.3 Guth [11] proved
that, for an appropriate choice of α, a (k, α)-partitioning tuple is guaranteed to exist:

I Proposition 2 (Generalized Polynomial Partitioning [11]). Let S be a family of semi-algebraic
sets in Rd, each of dimension at most g and complexity at most b. For each k ≥ 1, there
exists a (k, α)-partitioning tuple for S, with α = Ωb,d(2k(1−g/d)).

We also recall Theorem 2.16 from [7]:

I Proposition 3. Let P be a set of s polynomials in R[x1, . . . , xd] of degree at most t. Then
there is an algorithm that computes a set of points meeting every connected component of
every realizable sign condition on P in time O(sdtO(d)). There is also an algorithm providing
the list of signs of all the polynomials of P at each of these points in time O(sd+1tO(d)).

3 As in [11], we work with a k-tuple of polynomials instead of a single polynomial so that we can bound the
number of sets intersected by the realization of a sign condition rather than by a connected component
of a realization.
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Singly exponential quantifier elimination. Let h and ` be non-negative integers and let
P = {P1, . . . , Ps} ⊂ R[x1, . . . , xh, y1, . . . , y`]. Let Φ(y) be a first-order formula given by

(∃x1, . . . , xh)F (P1(x, y), . . . , Ps(x, y)), (3)

where y = (y1, . . . , y`) is a block of ` free variables; x is a block of h variables, and
F (P1, . . . , Ps) is a quantifier-free Boolean formula with atomic predicates of the form
sign(Pi(x1, . . . , xh, y)) = σ, with σ ∈ {−1, 0, 1}.

The Tarski-Seidenberg theorem states that the set of points y ∈ R` satisfying the
formula Φ(y) is semi-algebraic. The next proposition is a quantitative version of this result
that bounds the number and degree of the polynomial equalities and inequalities needed to
describe the set of points satisfying Φ(y). This proposition is known as a “singly exponential
quantifier elimination,” and its more general form (where Φ(y) may contain a mix of ∀ and ∃
quantifiers) can be found in [7, Theorem 2.27].

I Proposition 4. Let P be a set of at most s polynomials, each of degree at most t in h+ `

real variables. Given a formula Φ(y) of the form (3), there exists an equivalent quantifier-free
formula

Ψ(y) =
I∨
i=1

Ji∧
j=1

(Ni,j∨
n=1

sign(Pijn(y)) = σijn

)
, (4)

where Pijn are polynomials in the variables y, σijn ∈ {−1, 0, 1},

I ≤ s(h+1)(`+1)tO(h·`),

Ji ≤ s(h+1)tO(h),

Nij ≤ tO(h),

(5)

and the degrees of the polynomials Pijn(y) are bounded by tO(h). Moreover, there is an
algorithm to compute Ψ(Y ) in time s(h+1)(`+1)tO(h·`).

2.2 Range spaces, VC dimension, and ε-samples
We first recall several standard definitions and results from [13, Chapter 5]. A range space is
a pair Σ = (X,R), where X is a set and R is a collection of subsets of X. Let (X,R) be a
range space and let A ⊂ X be a set. We define the restriction of Σ to A, denoted by ΣA to
be (A,RA), where RA := {R ∩A | R ∈ R}. If A is finite, then |RA| ≤ 2|A|. If equality holds,
then we say A is shattered. We define the shatter function by πR(z) := max|A|=z |RA|. The
VC dimension of Σ is the largest cardinality of a set shattered by R. If arbitrarily large finite
subsets can be shattered, we say that the VC dimension of Σ is infinite.

Let Σ be a range space, A a finite subset of X, and 0 ≤ ε ≤ 1. A set B ⊂ A is an
ε-sample (also known as ε-approximation) of ΣA if∣∣∣ |A ∩R||A|

− |B ∩R|
|B|

∣∣∣ ≤ ε ∀R ∈ R.

The following classical theorem of Vapnik and Chervonenkis [16] guarantees that, if the
VC-dimension of Σ is finite, then for each positive ε > 0, a sufficiently large random sample
of A is likely to be an ε-sample.4

4 The stated bound is not the strongest possible (see, e.g., [13, Chapter 7] for an improved bound), but is
sufficient for our purposes.

SoCG 2019



5:6 An Efficient Algorithm for Generalized Polynomial Partitioning

I Proposition 5 (ε-Sample Theorem). Let Σ = (X,R) be a range space of VC dimension at
most d and let A ⊂ X be finite. Let 0 < ε, δ < 1. Then a random subset B ⊂ A of cardinality
8d
ε2 log 1

εδ is an ε-sample for ΣA with probability at least 1− δ.

I Proposition 6 ([10, 13]). Let Σ = (X,R) be a range space whose shatter function πR(z)
satisfies the bound πR(z) ≤ Czρ, for all positive integers z, where ρ > 0 is a real parameter.
Then Σ has VC dimension at most 4ρ log(Cρ).

The following theorem can be proven by an argument closely following that in the proof
of Corollary 2.3 from [10]; see [1] for details.

I Theorem 7. Let Z ⊂ Rd × R` be a semi-algebraic set of complexity b. For each y ∈ R`,
define Ry = {x ∈ Rd | (x, y) ∈ Z}. Then the range space (Rd, {Ry | y ∈ R`}) has VC
dimension at most 200`2 log b.

3 Computing Generalized Polynomial Partition

In this section we obtain the main result of the paper: given a collection S of semi-algebraic sets
in Rd, each of dimension at most g and complexity at most b, a (k,Ωb,d(Dd−g))-partitioning
tuple for S can be computed efficiently. We obtain this result in several steps. Given a
semialgebraic set S, a sign condition σ ∈ {−1,+1}k and a real value b > 0, we first show
that the set of k-tuples of degree-b polynomials whose realization of σ intersects S is a
semialgebraic set. This in turn implies that, if S1, . . . , Sn are semi-algebraic sets and if
m ≤ n, then the set of k-tuples of degree-b polynomials whose realization intersects at most
m of the sets S1, . . . , Sn is semi-algebraic. We use a quantifier-elimination algorithm to find
a desired k-tuple. Unfortunately, the running time of the algorithm is exponential in n. We
reduce the running time of the algorithm by using a random sampling technique – we show
that it suffices to compute a partitioning tuple with respect to a small-size random subset
of S.

3.1 The parameter space of semi-algebraic sets
Fix positive integers b, d, g, and k, and let D = 2k/d. Hereafter we assume that D = Ω(2b),
which can be enforced by choosing k sufficiently large.

As above, let S be a family of semi-algebraic sets in Rd, each of dimension at most g and
complexity at most b. Let G : {0, 1}b → {0, 1} be a Boolean function. Let X =

(
R(b+d

d ))b.
We identify a point x = (q1, . . . , qb) ∈ X with the semi-algebraic set

Zx,G = {v ∈ Rd | G(Pq1(v) ≥ 0, . . . , Pqb
(v) ≥ 0) = 1} ⊂ Rd.

Observe that each semi-algebraic set in S is of the form Zx,G for some choice of x ∈ X
and a Boolean function G. Let Y = Yk. For each y ∈ Y, define Sy := {u ∈ Rd | P1(u) >
0, . . . , Pk(u) > 0}, where (P1, . . . , Pk) is the tuple associated with y. Define

WG := {(x, y) ∈ X× Y | Zx,G ∩ Sy 6= ∅}.

I Theorem 8. The set WG is semi-algebraic; it is defined by O(ePoly(D)) polynomials, each
of degree DO(d).

Proof. Define V = {(x, y, v) ∈ X × Y × Rd | v ∈ Zx,G ∩ Sy}. The condition v ∈ Zx,G is a
Boolean condition on b polynomial inequalities. By Remark 1, each of these polynomials has
degree at most b+1. Similarly, the condition v ∈ Sy consists of k polynomial inequalities, each
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of degree at most D+1. This means that there exists a set of polynomials Q = {Q1, . . . , Qb+k}
of degree b+D + 1 in the variables x, y, v, and a Boolean function F (z1, . . . , zb+k) so that

V = {(x, y, v) ∈ X× Y× Rd | F (Q1(x, y, v) ≥ 0, . . . , Qb+k(z, y, v) ≥ 0) = 1}.

With the above definitions

WG = {(x, y) | ∃(v1, . . . , vd) : F (Q1(x, y, v), . . . , Qb+k(x, y, v)) = 1}.

We now apply Proposition 4. We have a set Q of s = b+ k polynomials, each of degree at
most t = b+D + 1. The variables h and ` from the hypothesis of Proposition 4 are set to
h = d and ` = O

((
b+d
d

)b +Dd
)

= Poly(D); recall that D is sufficiently larger than b, and
thus ` is a suitably chosen polynomial function of D. With these assignments, Proposition 4
says that WG can be expressed as a quantifier-free formula of the form

I∨
i=1

Ji∧
j=1

(Ni,j∨
n=1

sign(Pijn(x, y)) = σijn

)
, (6)

where Pijn are polynomials in the variables (x, y), σijn ∈ {−1, 0, 1},

I ≤ (b+ k)Poly(D)(b+D)Poly(D) = O(ePoly(D)),

Ji ≤ (b+ k)d+1(b+D)O(d) = O(DO(d)),

Nij ≤ (b+D)O(d) = O(DO(d)),

(7)

where the degrees of the polynomials Pijn(y) are bounded by (b+D)O(d) = DO(d).
Summarizing, the quantifier-free formula (6) for WG is a Boolean combination of

O(ePoly(D)) polynomial inequalities, each of degree DO(d), as claimed. J

3.2 A singly-exponential algorithm
In this section, we discuss how to compute a (k, α)-partitioning tuple (for an appropriate
value of α) for a small number m of semi-algebraic sets.

I Theorem 9. Let S be a family of m semi-algebraic sets in Rd, each of dimension at most
g and complexity at most b. Let 1 ≤ k ≤ logm and let D = 2k/d. Then a (k,Ωb,d(Dd−g))-
partitioning tuple for S can be computed in O(ePoly(m)) time.

Proof. Set Y = Yk. As above, we identify points in Y with k tuples (P1, . . . , Pk) of
polynomials. The argument in Theorem 8, as well as the fact that the class of semi-algebraic
sets is closed under the operation of taking a projection, show that for each S ∈ S and each
σ ∈ {−1, 1}k,

IS,σ := {y ∈ Y | S ∩ {σ1P1 > 0, σ2P2 > 0, . . . , σkPk > 0} 6= ∅}

is a semi-algebraic set in Y that can be expressed as a Boolean combination of O(ePoly(D))
polynomials, each of degree DO(d). Moreover, it can be computed in time O(ePoly(D)) (see
once again Proposition 4).

Let Cb,d be a constant to be specified later (the constant will depend only on b and d) and
let N = Cb,d|S|Dg−d + 1; observe that N = O(m). For each σ ∈ {−1, 1}k and for each set
S′ ⊂ S of cardinality |S′| ≥ N , the set {y ∈ Y | y ∈ IS,σ for every S ∈ S′} is a semi-algebraic

SoCG 2019



5:8 An Efficient Algorithm for Generalized Polynomial Partitioning

set in Y that can be expressed as a Boolean combination of O(N ′ePoly(D)) = O(mePoly(D))
polynomials, each of degree DO(d), where N ′ = |S′|. Therefore

K :=
⋃
S′⊂S
|S′|≥N

{y ∈ Y | y ∈ IS,σ for every S ∈ S′} (8)

is a semi-algebraic set in Y that can be expressed as a Boolean combination of

∑
S′⊂S
|S′|≥N

O

((
m

|S′|

)
mePoly(D)

)
= O(em+Poly(D)) = O(ePoly(m))

polynomials, each of degree DO(d). This and the fact that the class of semi-algebraic sets is
closed under the operation of taking complement imply that

Good(σ) := Y \K = {y ∈ Y | y ∈ IS,σ for at most Cb,d|S|Dg−d sets S ∈ S}

is a semi-algebraic set in Y that can be expressed as a Boolean combination of O(ePoly(m))
polynomials, each of degree DO(d). This means that the set⋂

σ∈{−1,1}k

Good(σ) (9)

is a semi-algebraic set in Y that can be expressed as a Boolean combination of O(ePoly(m))
polynomials, each of degree DO(d). Recall that by assumption 1 ≤ k ≤ logm and D = 2k/d.
It thus follows that the degree is bounded by Poly(m). Similarly, the dimension of the space
Y is bounded by Poly(m) as well.

Proposition 2 guarantees that if Cb,d is selected sufficiently large, then the set (9) is
non-empty. By Proposition 3, it is possible to locate a point in this set in O(ePoly(m)) time,
concluding the proof of the theorem. J

3.3 Speeding up the algorithm using ε-sampling
In this section we first state the following lemma, whose proof is omitted (see the full version
of this paper [1] for the details):

I Lemma 10. For every choice of positive integers b and d, there is a constant C = C(b, d)
so that the following holds. Let C0 be a positive integer. Let S be a finite collection of
semi-algebraic sets in Rd, each of dimension at most g and complexity at most b. Let k
be a positive integer and let D = 2k/d. Let B ⊂ S be a randomly chosen subset of S of
cardinality at least CDC and let (P1, . . . , Pk) be a (k, D

d−g

C0
)-partitioning tuple for B. Then

with probability at least 1/2, each of the Dd realizable sign conditions of (P1, . . . , Pk) intersects
O(|S|C0D

g−d) elements from S.

Note that Lemma 10 states that it is sufficient to consider a random subset B of size
polynomial in D in order to obtain an appropriate partitioning tuple for the entire collection S,
with reasonable probability.

We next proceed as follows. We select a random sample of S of cardinality CDC and
use Theorem 9 to compute the corresponding partitioning tuple (P1, . . . , Pk). This takes
O(ePoly(D)) time. By Lemma 10, this tuple will be a (k,Ωb,d(Dd−g))-partitioning tuple for
S with probability at least 1/2. We can verify whether the partitioning tuple works in
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O(|S|Poly(D)) time. If the tuple does not produce the appropriate partition, we discard
it and try again; the expected number of trials is at most 2. The verification step is done
as follows. For each semi-algebraic set S ∈ S we compute the subset of sign conditions of
(P1, . . . , Pk), with which it has a non-empty intersection. To this end, we restrict each of the
polynomials P1, . . . , Pk to S and apply Proposition 3 on this restricted collection, thereby
obtaining a set of points meeting each connected component of each of the realizable sign
conditions, as well as the corresponding list of signs of the restricted polynomials for each of
these points. This is done in O(DO(d)) time for a single semi-algebraic set S ∈ S, and overall
O(|S|DO(d)) time, over all sets. We refer the reader to [5] for further details concerning the
complexity of the restriction of P1, . . . , Pk to S. We have thus shown:

I Theorem 11. Let S be a finite collection of semi-algebraic sets in Rd, each of which
has dimension at most g and complexity at most b. Let k ≥ 1 and let D = 2k/d. Then a
(k,Ωb,d(Dd−g))-partitioning tuple for S can be computed in O(|S|Poly(D)+ePoly(D)) expected
time by a randomized algorithm.

4 Applications

In this section we describe a few applications of Theorem 11, namely, point-enclosure queries
amid semi-algebraic sets, semi-algebraic range searching with logarithmic query time, vertical
ray shooting amid semi-algebraic sets, and cutting algebraic curves into pseudo-segments.

4.1 Point-enclosure queries
Let S be a set of n semi-algebraic sets in Rd, each of complexity at most b. Each set S is
assigned a weight w(S). We assume that the weights belong to a semigroup, i.e., subtractions
are not allowed, and that the semigroup operation can be performed in constant time. We
wish to preprocess S into a data structure so that the cumulative weight of the sets in S

that contain a query point can be computed in O(logn) time; we refer to this query as
point-enclosure query. Note that if the weight of each set is 1 and the semi-group operation
is Boolean ∨, then the point-enclosure query becomes a union-membership query: determine
whether the query point lies in

⋃
S.

We follow a standard hierarchical partitioning scheme of space, e.g., as in [9, 3], but
use Theorem 11 at each stage. Using this hierarchical partition, we construct a tree data
structure T of depth O(logn), and a query is answered by following a path in T. More
precisely, we fix sufficiently large positive constants D = D(b, d) and n0 = n0(D). If n ≤ n0,
T consists of a single node that stores S itself. So assume that n > n0. Using Theorem 11,
we construct a tuple P = (P1, . . . , Pk) of d-variate polynomials of degree at most D, which
have 2k = O(Dd) realizable sign conditions, each of which with a realization that meets the
boundaries of at most O(|S|/D) sets of S. For each realizable sign condition σ, let Sσ ⊆ S be
the family of sets whose boundaries meet the realization of σ, and let S∗σ ⊆ S be the family
of sets that contain the realization of σ.

We compute Sσ, S∗σ, and Wσ = w(S∗σ), as follows: We first apply Proposition 3 to P to
compute, in O(DO(d)) time, a representative point ξσ in the realization of every realizable
sign condition σ. We fix a set S ∈ S, mark every realizable sign condition σ that meets ∂S,
and add S to the set Sσ. This step is similar to the one described in the proof of Theorem 11,
that is, we restrict each of the polynomials P1, . . . , Pk to the algebraic varieties representing
the boundary of S and apply Proposition 3 to this restricted collection. Each remaining sign
condition σ is either contained in S or disjoint from it, which can be determined by testing
whether its representing point ξσ is contained in S. If the answer is yes, we add the weight
w(S) to Wσ. This task can be completed in overall O(nDO(d)) time over all sets of S.
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We create the root v of T and store the tuple P at v. We then create a child zσ for each
realizable sign condition σ and store σ and Wσ at zσ. We recursively construct the data
structure for each Sσ and attach it to zσ as its subtree. Since each node of T has degree at
most O(Dd) and the size of the subproblem reduces by a factor of D at each level of the
recursion, a standard analysis shows that the total size of the data structure is O(nd+ε),
where ε > 0 is a constant that can be made arbitrarily small by choosing D and n0 to be
sufficiently large. Similarly, the expected preprocessing time is also O(nd+ε).

Given a query point q ∈ Rd, we compute the cumulative weight of the sets containing q
by traversing a path in the tree in a top-down manner: We start from the root and maintain
a partial weight W , which is initially set to 0. At each node v, we find the sign condition σ of
the polynomial tuple at v whose realization contains q, add Wσ to W , and recursively query
the child zσ of v. The total query time is O(logn), where the constant of proportionality
depends on D (and thus on ε). Putting everything together, we obtain the following:

I Theorem 12. Let S be a set of n semi-algebraic sets in Rd, each of complexity at most b
for some constant b > 0, and let w(S) be the weight of each set S ∈ S that belongs to a
semigroup. Assuming that the semigroup operation can be performed in constant time, S can
be preprocessed in O(nd+ε) randomized expected time into a data structure of size O(nd+ε),
for any constant ε > 0, so that the cumulative weight of the sets that contain a query point
can be computed in O(logn) time.

4.2 Range searching
Next, we consider range searching with semi-algebraic sets: Let P be a set of n points in Rd.
Each point p ∈ P is assigned a weight w(p) that belongs to a semigroup. Again we assume
that the semigroup operation takes constant time. We wish to preprocess P so that, for a
query range γ, represented as a semi-algebraic set in Rd, the cumulative weight of γ ∩ P can
be computed in O(logn) time. Here we assume that the query ranges (semi-algebraic sets)
are parameterized as described in Section 3.1. That is, we have a fixed b-variate Boolean
function G. A query range is represented as a point x ∈ X = Rt, for some t ≤

(
b+d
d

)b,
and the underlying semi-algebraic set is Zx,G. We refer to t as the dimension of the query
space, and to the range searching problem in which all query ranges are of the form Zx,G as
(G, t)-semi-algebraic range searching.

For a point p ∈ Rd, let Sp ⊆ X denote the set of semi-algebraic sets Zx,G that contain p,
i.e., Sp = {x ∈ X | p ∈ Zx,G}. It can be checked that Sp is a semi-algebraic set whose
complexity depends only on b, d, and G. Let S = {Sp | p ∈ P}. For a query range Zx,G, we
now wish to compute the cumulative weight of the sets in S that contain x. This can be
done using Theorem 12. Putting everything together, we obtain the following:

I Theorem 13. Let P be a set of n points in Rd, let w(p) be the weight of p ∈ P that belongs
to a semigroup, and let G be a fixed b-variate Boolean function for some constant b > 0. Let
t ≤

(
b+d
d

)b be the dimension of the query space. Assuming that the semigroup operation can
be performed in constant time, P can be preprocessed in O(nt+ε) randomized expected time
into a data structure of size O(nt+ε), for any constant ε > 0, so that a (G, t)-semi-algebraic
range query can be answered in O(logn) time.

I Remark. If G is the conjunction of a set of b polynomial inequalities, then the size of the
data structure can be significantly improved by using a multi-level data structure, with a
slight increase in the query time to O(logb n); see, e.g., [3]. Roughly speaking, the value
of t will now be the dimension of the parametric space of each polynomial defining the
query semi-algebraic set, rather than the dimension of the parametric space of the entire
semi-algebraic set (which is the conjunction of b such polynomials).
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4.3 Vertical ray shooting
We next present an efficient data structure for answering vertical ray-shooting queries:
Preprocess a collection S of n semi-algebraic sets in Rd, each of complexity at most b, into a
data structure so that the first set of S hit by ρq, the ray emanating in the (+xd)-direction
from a query point q, can be reported quickly. If there is more than one such set, the query
procedure returns one of them, arbitrarily.

The overall data structure. Our data structure for vertical ray shooting is similar to the
one described in Section 4.1, except that we store an auxiliary data structure at each node
of the tree to determine which of its children the query procedure should visit recursively.

Again we fix two constants D and n0. If n ≤ n0, the tree data structure T consists of a
single node that stores S. So assume that n > n0. We compute a partitioning polynomial
tuple P = (P1, . . . , Pk) for S of degree D. For each realizable sign condition σ, we compute
the set Sσ ⊆ S whose boundaries meet the realization of σ. We create the root node v
of T and create a child zσ for each realizable sign condition σ. We store two auxiliary
data structures DS1(v) and DS2(v) at v, described below, each of which can be constructed
in O(nd+ε) randomized expected time and requires O(nd+ε) space. Given a query point
q ∈ Rd, DS1(v),DS2(v) together determine, in O(logn) time, the sign condition σ whose
realization contains the first intersection point of ρq with a set of S. We recursively construct
the data structure for each subset Sσ and attach it to zσ as its subtree.

A standard analysis of multi-level data structures (see e.g. [3]) shows that the total
size of T is O(nd+ε), for any constant ε > 0, and that it can be constructed in O(nd+ε)
randomized expected time.

For a query point q ∈ Rd, the first set hit by ρq can be computed by traversing a
root-to-leaf path in T. Suppose we are at a node v. If v is a leaf, then we naively check
all sets in Sv to find the first among them hit by ρq. Otherwise, we use the auxiliary data
structures DS1(v) and DS2(v) to determine in O(logn) time the sign condition σ whose
realization contains the first intersection point of ρq and a set of S. We recursively visit the
child zσ of v. Since the depth of T is O(logn), the total query time is O(log2 n).

This completes the description of the overall algorithm. What remains is to describe the
auxiliary data structures DS1,DS2.

Auxiliary data structures. Recall that the auxiliary data structures are used to determine
the sign condition of P whose realization contains the first intersection point of a vertical
ray with a set of S. We first refine the realizations of sign conditions of P into “cylindrical”
cells, as follows. Let f =

∏k
i=1 Pi; by construction, the degree of f is O(D). By Warren [17,

Theorem 2], the number of connected components of Rd \ Z(f) is at most O(D)d; from now
on we refer to these components as cells.5 We refine the cells of Rd \Z(f) using the so-called
first-stage CAD (cylindrical algebraic decomposition); see, e.g., [6, Chapter 5] for a detailed
overview of standard CAD. That is, this is a simplified version of CAD, presented in [2].

Roughly speaking, the first-stage CAD for f is obtained by constructing a collection G of
polynomials in the variables x1, . . . , xd−1, whose zero sets contain the projection onto Rd−1

of the set of points in Z(f) of vertical tangency, self-intersection of zeros sets (roots with
multiplicity), or a singularity of some other kind. Having constructed G, the first-stage CAD

5 This notion is somewhat different than the notion of realizable sign conditions, where one can have
several connected components representing the same sign condition.
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is obtained as the arrangement A({f}∪G) in Rd, where the polynomials in G are now regarded
as d-variate polynomials, that is, we lift them in the xd-direction; the geometric interpretation
of the lifting operation is to erect a “vertical wall” in Rd over each zero set within Rd−1 of
a (d− 1)-variate polynomial from G, and the first-stage CAD is the arrangement of these
vertical walls plus Z(f). It follows by construction that the cells of A({f} ∪ G) are vertical
stacks of “cylindrical” cells. In more detail, for each cell τ of A({f} ∪ G), there is unique
cell ϕ of the (d− 1)-dimensional arrangement A(G) in Rd−1 such that one of the following
two cases occur: (i) τ = {(x, ξ(x)} | x ∈ ϕ}, where ξ : ϕ→ R is a continuous semi-algebraic
function (i.e., τ is the graph of ξ over ϕ); or (ii) τ = {(x, t) | x ∈ ϕ, t ∈ (ξ1(x), ξ2(x))}, where
ξi, i = 1, 2 is a continuous semi-algebraic function on ϕ, the constant function ϕ→ {−∞}, or
the constant function ϕ→ {+∞}, and ξ1(x) < ξ2(x) for all x ∈ ϕ (i.e., τ is a cylindrical cell
over ϕ bounded from below (resp. above) by the graph of ξ1 (resp. ξ2)). As stated in [2], the
total number of cells in A({f} ∪ G) is DO(d), and each of them is a semi-algebraic set defined
by DO(d4) polynomials of degree DO(d3) (this is, in fact, an application of Proposition 3).

For a cell ϕ of the (d− 1)-dimensional arrangement A(G), let V (ϕ) be the stack of cells
of A({f} ∪ G) over ϕ, i.e., the set of cells that project to ϕ.

We note that the sign condition of P is the same for all points in a cell of A({f} ∪ G),
i.e., each cell lies in the realization of a single sign condition of P. It thus suffices to find the
cell of A({f} ∪ G) that contains the first intersection point of a vertical ray with a set of S in
order to find the sign condition of P whose realization contains such a point. We construct
DS1,DS2 on the cells of A({f} ∪ G) to quickly determine the desired cell.

The structure DS1. Fix a cell τ of A({f} ∪ G). DS1 is used to determine whether a query
ray ρq whose source point lies in τ intersects any set of S inside τ .

For each input set S ∈ S that intersects τ , let ↑S be the set of points x in Rd such that
the vertical ray ρx intersects S ∩ τ , i.e., ↑(S) is the union of the rays in the (−xd)-direction
emanating from the points of S ∩ τ . ↑S is a semi-algebraic set whose complexity depends
only on b, d, and D. Let ↑Sτ = {↑S | S ∈ S, S ∩ τ 6= ∅}. ↑Sτ can be computed in O(n) time.
Using Theorem 12, we process ↑S into a data structure DS1(τ) of size O(nd+ε) so that for a
query point q ∈ Rd, we can determine in O(logn) time whether q ∈

⋃
↑S, i.e., whether ρq

intersects any set of S within τ . We construct DS1(τ) for all cells τ of A({f} ∪ G). The total
size of the data structure, summed over all cells of A({f} ∪ G), is O(nd+ε), and it can be
constructed in O(nd+ε) randomized expected time.

The structure DS2. Fix a cell τ of A({f} ∪ G). DS2 is used to determine whether a line
parallel to the xd-axis intersects any set of S inside τ .

For each input set S ∈ S that intersects τ , let ↓Sτ be the projection of S ∩ τ onto the
hyperplane xd = 0. For a point q ∈ Rd, the vertical line (parallel to the xd-axis) through q
intersects S inside τ if and only if ↓q ∈ ↓Sτ (where ↓q is the projection of q onto the
hyperplane xd = 0). ↓Sτ is a (d − 1)-dimensional semi-algebraic set whose complexity
depends only on b and D. Let ↓Sτ = {↓Sτ | S ∈ S, S ∩ τ 6= ∅}. ↓Sτ can be constructed in
O(n) time. Using Theorem 12, we process ↓Sτ into a data structure DS2(τ) of size O(nd−1+ε)
so that, for a query point q ∈ Rd, we can determine in O(logn) time whether ↓q ∈

⋃
↓Sτ ,

i.e., whether the vertical line through q intersects any set of S inside τ . We construct DS2(τ)
for all cells of A({f} ∪ G). The total size of the data structure, summed over all cells of
A({f}∪G), is O(nd−1+ε), and it can be constructed in O(nd−1+ε) randomized expected time.

Answering a query. Given a query point q ∈ Rd, we determine the cell of A({f} ∪ G) that
contains the first intersection point of ρq with a set of S as follows. First, we determine the
cell τ of A({f} ∪ G) that contains the query point q. Using DS1(τ), we determine in O(logn)
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time whether ρq intersects S inside τ . If the answer is yes, then τ is the desired cell. So
assume that the answer is no. Let ϕ be the cell of the (d− 1)-dimensional arrangement A(G)
such that ↓q ∈ ϕ. Let V (ϕ) = 〈τ1, . . . , τr〉 be the stack of cells over ϕ, and let τ = τi for
some i ≤ k. We visit the cells of V (τ) one by one in order, starting from τi+1 until we find a
cell τj such that ↓q ∈

⋃
↓Sτj

. Since q lies below τj , ρq intersects S inside τj if and only if
↓q ∈

⋃
↓(Sτj ). If there is no such cell, we conclude that ρq does not intersect S. Otherwise

τj is the cell of A({f} ∪ G) that contains the first intersection point of ρq with a set of S.
Putting everything together we obtain the following.

I Theorem 14. Let S be a collection of n semi-algebraic sets in Rd, each of complexity at
most b for some constant b > 1. S can be preprocessed, in O(nd+ε) randomized expected time,
into a data structure of size O(nd+ε), for any constant ε > 0, so that a vertical ray-shooting
query can be answered in O(log2 n) time.

4.4 Cutting algebraic curves into pseudo-segments
Sharir and Zahl [15] presented a technique for cutting algebraic plane curves into pseudo-
segments, by lifting curves into three dimensions. More precisely, they prove that n non-
overlapping algebraic curves of bounded degree d can be cut into O(n3/2 logO(1) n) Jordan
arcs so that each pair of arcs intersect in at most one point. Their procedure exploits
Proposition 2 for algebraic curves in three dimensions; see [15, Theorem 1.1]. Theorem 11
can be used to prove a slightly weaker constructive and efficient variant of the above result,
for a sketch of the proof see the full version of this paper [1].

I Theorem 15. Let C be a set of n algebraic plane curves, each of degree at most d, with no
two sharing a common component. Then C can be cut into O(n3/2+Cd/ log logn) Jordan arcs,
where Cd is a constant that depends on d, so that each pair of arcs intersect in at most one
point. This cutting can be computed in randomized expected time O(n3/2+Cd/ log logn).

By replacing Theorem 1.1 in [15] with our Theorem 15, we obtain effective and efficient
version of all of the subsequent results in [15].
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