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Abstract
Given a finite point set P ⊂ Rd, a k-ary semi-algebraic relation E on P is the set of k-tuples
of points in P , which is determined by a finite number of polynomial equations and inequalities
in kd real variables. The description complexity of such a relation is at most t if the number
of polynomials and their degrees are all bounded by t. The Ramsey number Rd,tk (s, n) is the
minimum N such that any N -element point set P in Rd equipped with a k-ary semi-algebraic
relation E such that E has complexity at most t, contains s members such that every k-tuple
induced by them is in E or n members such that every k-tuple induced by them is not in E.

We give a new upper bound for Rd,tk (s, n) for k ≥ 3 and s fixed. In particular, we show that
for fixed integers d, t, s

Rd,t3 (s, n) ≤ 2n
o(1)

,

establishing a subexponential upper bound on Rd,t3 (s, n). This improves the previous bound of
2nC1 due to Conlon, Fox, Pach, Sudakov, and Suk where C1 depends on d and t, and improves
upon the trivial bound of 2nC2 which can be obtained by applying classical Ramsey numbers
where C2 depends on s. As an application, we give new estimates for a recently studied Ramsey-
type problem on hyperplane arrangements in Rd. We also study multi-color Ramsey numbers
for triangles in our semi-algebraic setting, achieving some partial results.
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1 Introduction

Classical Ramsey numbers. A k-uniform hypergraph H = (P,E) consists of a vertex set
P and an edge set E ⊂

(
P
k

)
, which is a collection of subsets of P of size k. The Ramsey

number Rk(s, n) is the minimum integer N such that every k-uniform hypergraph on N

vertices contains either s vertices such that every k-tuple induced by them is an edge, or
contains n vertices such that every k-tuple induced by them is not an edge.

Due to its wide range of applications in logic, number theory, analysis, and geometry,
estimating Ramsey numbers has become one of the most central problems in combinatorics.
For diagonal Ramsey numbers, i.e. when s = n, the best known lower and upper bounds for
Rk(n, n) are of the form1 R2(n, n) = 2Θ(n), and for k ≥ 3,

twrk−1(Ω(n2)) ≤ Rk(n, n) ≤ twrk(O(n)),

1 We write f(n) = O(g(n)) if |f(n)| ≤ c|g(n)| for some fixed constant c and for all n ≥ 1; f(n) = Ω(g(n))
if g(n) = O(f(n)); and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. We write
f(n) = o(g(n)) if for every positive ε > 0 there exists a constant n0 such that f(n) ≤ ε|g(n)| for all
n ≥ n0.
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where the tower function twrk(x) is defined by twr1(x) = x and twri+1 = 2twri(x) (see
[21, 18, 19, 20]). Erdős, Hajnal, and Rado [19] conjectured that Rk(n, n) = twrk(Θ(n)), and
Erdős offered a $500 reward for a proof. Despite much attention over the last 50 years, the
exponential gap between the lower and upper bounds for Rk(n, n), when k ≥ 3, remains
unchanged.

The off-diagonal Ramsey numbers, i.e. Rk(s, n) with s fixed and n tending to infinity,
has also been extensively studied. Unlike Rk(n, n), the lower and upper bounds for Rk(s, n)
are much more comparable. It is known [5, 25, 8, 9] that R2(3, n) = Θ(n2/ logn) and, for
fixed s > 3

Ω
(
n

s+1
2 −ε

)
≤ R2(s, n) ≤ O

(
ns−1) , (1)

where ε > 0 is an arbitrarily small constant. Combining the upper bound in (1) with the
results of Erdős, Hajnal, and Rado [20, 19] demonstrates that

twrk−1(Ω(n)) ≤ Rk(s, n) ≤ twrk−1(O(n2s−4)), (2)

for k ≥ 3 and s ≥ 2k. See Conlon, Fox, and Sudakov [14] for a recent improvement.

Semi-algebraic setting. In this paper, we continue a sequence of recent works on Ramsey
numbers for k-ary semi-algebraic relations E on Rd (see [10, 17, 13, 33]). Before we give its
precise definition, let us recall two classic Ramsey-type theorems of Erdős and Szekeres.

I Theorem 1 ([21]). For N = (s− 1)(n− 1) + 1, let P = (p1, . . . , pN ) ⊂ R be a sequence of
N distinct real numbers. Then P contains either an increasing subsequence of length s, or a
decreasing subsequence on length n.

In fact, there are now at least 6 different proofs of Theorem 1 (see [32]). The other well-known
result from [21] is the following theorem, which is often referred to as the Erdős-Szekeres
cups-caps Theorem. Let X be a finite point set in the plane in general position.2 We say
that X = (pi1 , . . . , pis) forms an s-cup (s-cap) if X is in convex position and its convex hull
is bounded above (below) by a single edge.

I Theorem 2 ([21]). For N =
(
n+s−4
s−2

)
+ 1, let P = (p1, . . . , pN ) be a sequence of N points

in the plane in general position. Then P contains either an s-cup or an n-cap.

Theorems 1 and 2 can be generalized using the following semi-algebraic framework.
Let P = {p1, . . . , pN} be a sequence of N points in Rd. Then we say that E ⊂

(
P
k

)
is a semi-algebraic relation on P with complexity at most t, if there are t polynomials
f1, . . . , ft ∈ R[x1, . . . , xkd] of degree at most t, and a Boolean function Φ such that for
1 ≤ i1 < · · · < ik ≤ N ,

(pi1 , . . . , pik ) ∈ E ⇔ Φ(f1(pi1 , . . . , pik ) ≥ 0, . . . , ft(pi1 , . . . , pik ) ≥ 0) = 1.

We say that the relation E ⊂
(
P
k

)
is symmetric if (pi1 , . . . , pik ) ∈ E iff for all permutation π,

Φ(f1(pπ(i1), . . . , pπ(ik)) ≥ 0, . . . , ft(pπ(i1), . . . , pπ(ik)) ≥ 0) = 1.

Point sets P ⊂ Rd equipped with a k-ary semi-algebraic relation E ⊂
(
P
k

)
are often used

to model problems in discrete geometry, where the dimension d, uniformity k, and complexity

2 No two members share the same x-coordinate, and no three members are collinear.
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t are considered fixed but arbitrarily large constants. Since we can always make any relation
E symmetric by increasing its complexity to t′ = t′(k, d, t), we can therefore simplify our
presentation by only considering symmetric relations.

Let Rd,tk (s, n) be the minimum integer N such that every N -element point set P in Rd
equipped with a k-ary (symmetric) semi-algebraic relation E ⊂

(
P
k

)
, which has complexity

at most t, contains s points such that every k-tuple induced by them is in E, or contains n
points such that no k-tuple induced by them is in E. Alon, Pach, Pinchasi, Radoičić, and
Sharir [6] showed that for k = 2, we have

Rd,t2 (n, n) ≤ nC , (3)

where C = C(d, t). Roughly speaking, C ≈ t
(
d+t
t

)
. Conlon, Fox, Pach, Sudakov, and Suk

showed that one can adapt the Erdős-Rado argument in [20] and establish the following
recursive formula for Rd,tk (s, n).

I Theorem 3 ([13]). Set M = Rd,tk−1(s− 1, n− 1). Then for every k ≥ 3,

Rd,tk (s, n) ≤ 2C1M logM ,

where C1 = C1(k, d, t).

Together with (3) we have Rd,tk (n, n) ≤ twrk−1(nC), giving an exponential improvement
over the Ramsey numbers for general k-uniform hypergraphs. Conlon et al. [13] also gave a
construction of a geometric example that provides a twrk−1(Ω(n)) lower bound, demonstrating
that Rd,tk (n, n) does indeed grow as a (k − 1)-fold exponential tower in n.

However, off-diagonal Ramsey numbers for semi-algebraic relations are much less under-
stood. The best known upper bound for Rd,tk (s, n) is essentially the trivial bound

Rd,tk (s, n) ≤ min
{
Rd,tk (n, n), Rk(s, n)

}
.

The crucial case is when k = 3, since any significant improvement on estimating Rd,t3 (s, n)
could be used in combination with Theorem 3 to obtain a better bound for Rd,tk (s, n), for
k ≥ 4. The trivial bound implies that

Rd,t3 (s, n) ≤ 2n
C

, (4)

where C is a large constant depending on d, t, and s.
The main difficulty in improving (4) is that the Erdős-Rado upper bound argument [20]

will not be effective. Roughly speaking, the Erdős-Rado argument reduces the problem
from 3-uniform hypergraphs to graphs, producing a recursive formula similar to Theorem 3.
This approach has been used repeatedly by many researchers to give upper bounds on
Ramsey-type problems arising in triple systems [14, 13, 33, 30]. However, it is very unlikely
that any variant of the Erdős-Rados upper bound argument will establish a subexponential
upper bound for Rd,t3 (s, n).

With a more novel approach, our main result establishes the following improved upper
bound for Rd,t3 (s, n), showing that the function Rd,t3 (s, n) is indeed subexponential in n.

I Theorem 4. For fixed integers d, t ≥ 1 and s ≥ 4, we have Rd,t3 (s, n) ≤ 2no(1)
. More

precisely,
Rd,t3 (s, n) ≤ 22c

√
(log n)(log log n)

,

where c = c(d, t, s).

SoCG’15



62 Semi-algebraic Ramsey Numbers

Combining Theorems 4 and 3 we have the following.

I Corollary 5. For fixed integers d, t ≥ 1, k ≥ 3, and s ≥ k + 1, we have

Rd,tk (s, n) ≤ twrk−1(no(1)).

For d ≥ 2 and t ≥ 1, the classic cups-caps construction of Erdős and Szekeres [21] shows that
Rd,t3 (s, n) ≥ Ω(ns−2), and together with the semi-algebraic stepping-up lemma proven in [13]
(see also [16]) we have Rd,tk (s, n) ≥ twrk−2(Ω(ns−2)) for s, d ≥ 2k.

In Section 5, we give an application of Theorem 4 to a recently studied problem on
hyperplane arrangements in Rd.

Monochromatic triangles. Let R2(s;m) = R2(s, . . . , s︸ ︷︷ ︸
m

) denote the smallest integer N such

that any m-coloring on the edges of the complete N -vertex graph contains a monochromatic
clique of size s, that is, a set of s vertices such that every pair from this set has the same
color. For the case s = 3, the Ramsey number R2(3;m) has received a lot of attention over
the last 100 years due to its application in additive number theory [31] (more details are
given in Section 6.1). It is known (see [24, 31]) that

Ω(3.19m) ≤ R2(3;m) ≤ O(m!).

Our next result states that we can improve the upper bound on R2(3;m) in our semi-
algebraic setting. More precisely, let Rd,t2 (3;m) be the minimum integer N such that every N -
element point set P in Rd equipped with symmetric semi-algebraic relations E1, . . . , Em ⊂

(
P
2
)
,

such that each Ei has complexity at most t and
(
P
2
)

= E1 ∪ · · · ∪ Em, contains three points
such that every pair induced by them belongs to Ei for some fixed i.

I Theorem 6. For fixed d, t ≥ 1 we have

Rd,t2 (3;m) < 2O(m log logm).

We also show that for fixed d ≥ 1 and t ≥ 5000, the function Rd,t2 (3;m) does indeed grow
exponentially in m.

I Theorem 7. For d ≥ 1 and t ≥ 5000 we have

Rd,t2 (3;m) ≥ c(1681)m/7 ≥ c(2.889)m,

where c is an absolute constant.

Organization. In the next two sections, we recall several old theorems on the arrangement of
surfaces in Rd and establish a result on point sets equipped with multiple binary relations. In
Section 4, we combine the results from Sections 2 and 3 to prove our main result, Theorem 4.
We discuss a short proof of our application in Section 5, and our results on monochromatic
triangles in Section 6.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake of
clarity of our presentation. All logarithms are assumed to be base 2.
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2 Arrangement of surfaces in Rd

In this section, we recall several old results on the arrangement of surfaces in Rd. Let
f1, . . . , fm be d-variate real polynomials of degree at most t, with zero sets Z1, . . . , Zm, that
is, Zi = {x ∈ Rd : fi(x) = 0}. Set Σ = {Z1, . . . , Zm}. We will assume that d and t are fixed,
and m is some number tending to infinity. A cell in the arrangement A(Σ) =

⋃
i Zi is a

relatively open connected set defined as follows. Let ≈ be an equivalence relation on Rd,
where x ≈ y if {i : x ∈ Zi} = {i : y ∈ Zi}. Then the cells of the arrangement A(Σ) are the
connected components of the equivalence classes. A vector σ ∈ {−1, 0,+1}m is a sign pattern
of f1, . . . , fm if there exists an x ∈ Rd such that the sign of fj(x) is σj for all j = 1, . . . ,m.
The Milnor-Thom theorem (see [7, 29, 34]) bounds the number of cells in the arrangement
of the zero sets Z1, . . . , Zm and, consequently, the number of possible sign patterns (see all
[35]).

I Theorem 8 (Milnor-Thom). Let f1, . . . , fm be d-variate real polynomials of degree at most t.
The number of cells in the arrangement of their zero sets Z1, . . . , Zm ⊂ Rd and, consequently,
the number of sign patterns of f1, . . . , fm is at most(

50mt
d

)d
,

for m ≥ d ≥ 1.

While the Milnor-Thom Theorem bounds the number of cells in the arrangement A(Σ),
the complexity of these cells may be very large (depending on m). A long standing open
problem is whether each cell can be further decomposed into semi-algebraic sets3 with
bounded description complexity (which depends only on d and t), such that the total number
of cells for the whole arrangement is still O(md). This can be done easily in dimension 2
by a result of Chazelle et al. [11]. Unfortunately in higher dimensions, the current bounds
for this problem are not tight. In dimension 3, Chazelle et al. [11] established a near tight
bound of O(m3β(m)), where β(m) is an extremal slowly growing function of m related to
the inverse Ackermann function. For dimensions d ≥ 4, Koltun [26] established a general
bound of O(m2d−4+ε) for arbitrarily small constant ε, which is nearly tight in dimension 4.
By combining these bounds with the standard theory of random sampling [4, 12, 6], one can
obtain the following result which is often referred to as the Cutting Lemma. We say that the
surface Zi = {x ∈ Rd : fi(x) = 0} crosses the cell ∆ ⊂ Rd if Zi ∩∆ 6= ∅ and Zi does not
fully contain ∆.

I Lemma 9 (Cutting Lemma). For d, t ≥ 1, let Σ be a family of m algebraic surfaces (zero
sets) in Rd of degree at most t. Then for any integer r ≥ 1, there exists a decomposition of
Rd into at most c1r2d relatively open connected sets (cells), where c1 = c1(d, t), such that
each cell is crossed by at most m/r surfaces from Σ.

As an application, we prove the following lemma (see [27, 3] for a similar result when Σ
is a collection of hyperplanes).

I Lemma 10. For d, t ≥ 1, let P be an N -element point set in Rd and let Σ be a family of
m surfaces of degree at most t. Then for any integer ` > logm, we can find ` disjoint subsets

3 A real semi-algebraic set in Rd is the locus of all points that satisfy a given finite Boolean combination
of polynomial equations and inequalities in the d coordinates.

SoCG’15



64 Semi-algebraic Ramsey Numbers

Pi and ` cells ∆i, with ∆i ⊃ Pi, such that each subset Pi contains at least N/(4`) points
from P , and every surface in Σ crosses at most c2`1−1/(2d) cells ∆i, where c2 = c2(d, t).

Proof. We first find ∆1 and P1 as follows. Let ` > logm and let c1 be as defined in Lemma 9.
Given a family Σ of m surfaces in Rd, we apply Lemma 9 with parameter r = (`/c1)1/(2d),
and decompose Rd into at most ` cells, such that each cell is crossed by at most m

(`/c1)1/(2d)

surfaces from Σ. By the pigeonhole principle, there is a cell ∆1 that contains least N/` points
from P . Let P1 be a subset of exactly bN/`c points in ∆1 ∩ P . Now for each surface from
Σ that crosses ∆1, we “double it" by adding another copy of that surface to our collection.
This gives us a new family of surfaces Σ1 such that

|Σ1| ≤ m+ m

(`/c1)1/(2d) = m

(
1 + 1

(`/c1)1/(2d)

)
.

After obtaining subsets P1, . . . , Pi such that |Pj | = bN` (1 − 1
` )j−1c for 1 ≤ j ≤ i, cells

∆1, . . . ,∆i, and the family of surfaces Σi such that

|Σi| ≤ m
(

1 + 1
(`/c1)1/(2d)

)i
,

we obtain Pi+1, ∆i+1, Σi+1 as follows. Given Σi, we apply Lemma 9 with the same parameter
r = (`/c1)1/(2d), and decompose Rd into at most ` cells, such that each cell is crossed by at
most |Σi|

(`/c1)1/(2d) surfaces from Σi. Let P ′ = P \ (P1 ∪ · · · ∪ Pi). By the pigeonhole principle,
there is a cell ∆i+1 that contains at least

|P ′|
` ≥

(
N −

i∑
j=1

N
` (1− 1

` )j−1

)
/`

= N
`

(
1− 1

`

i∑
j=1

(1− 1
` )j−1

)

= N
`

(
1− 1

`

)(
1− 1

` −
1
`

i−1∑
j=1

(1− 1
` )j−1

)

= N
`

(
1− 1

`

)i
points from P ′. Let Pi+1 be a subset of exactly bN` (1− 1/`)ic points in ∆i+1 ∩ P ′. Finally,
for each surface from Σi that crosses ∆i+1, we “double it" by adding another copy of that
surface to our collection, giving us a new family of surfaces Σi+1 such that

|Σi+1| ≤ |Σi|+ |Σi|
(`/c1)1/(2d)

= |Σi|
(

1 + 1
(`/c1)1/(2d)

)
≤ m

(
1 + 1

(`/c1)1/(2d)

)i+1
.

Notice that |Pi| ≥ N/(4`) for i ≤ `. Once we have obtained subsets P1, . . . , P` and cell
∆1, . . . ,∆`, it is easy to see that each surface in Σ crosses at most O(r1−1/(2d)) cells ∆i.
Indeed suppose Z ∈ Σ crosses κ cells. Then by the arguments above, there must be 2κ copies
of Z in Σ`. Hence we have
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2κ ≤ m
(

1 + 1
(`/c1)1/(2d)

)`
≤ mec1`

1−1/(2d)
.

Since ` ≥ logm, we have
κ ≤ c2`1−1/(2d),

for sufficiently large c2 = c2(d, t). J

3 Multiple binary relations

Let P be a set of N points in Rd, and let E1, . . . , Em ⊂
(
P
2
)
be binary (symmetric) semi-

algebraic relations on P such that Ei has complexity at most t. The goal of this section is to
find a large subset P ′ ⊂ P such that

(
P ′

2
)
∩ Ei = ∅ for all i, given that the clique number in

the graphs Gi = (P,Ei) are small.
First we recall a classic theorem of Dilworth (see also [23]). Let G = (V,E) be a graph

whose vertices are ordered V = {v1, . . . , vN}. We say that E is transitive on V if for
1 ≤ i1 < i2 < i3 ≤ N , (vi1 , vi2), (vi2 , vi3) ∈ E implies that (vi1 , vi3) ∈ E.

I Theorem 11 (Dilworth). Let G = (V,E) be an N -vertex graph whose vertices are ordered
V = {v1, . . . , vN}, such that E is transitive on V . If G has clique number ω, then G contains
an independent set of size N/ω.

I Lemma 12. For integers m ≥ 2 and d, t ≥ 1, let P be a set of N points in Rd equipped
with (symmetric) semi-algebraic relations E1, . . . , Em ⊂

(
P
2
)
, where each Ei has complexity

at most t. Then there is a subset P ′ ⊂ P of size N1/(c3 logm), where c3 = c3(d, t), and a fixed
ordering on P ′ such that each relation Ei is transitive on P ′.

Proof. We proceed by induction on N . Let c3 be a sufficiently large number depending only
on d and t that will be determined later. For each relation Ei ⊂

(
P
2
)
, let fi,1, . . . , fi,t be

polynomials of degree at most t and let Φi be a boolean function such that

(p, q) ∈ Ei ⇔ Φi(fi,1(p, q) ≥ 0, . . . , fi,t(p, q) ≥ 0) = 1.

For each p ∈ P , i ∈ {1, . . . ,m}, and j ∈ {1, . . . , t}, we define the surface Zp,i,j = {x ∈
Rd : fi,j(p, x) = 0}. Then let Σ be the family of Nmt surfaces in Rd defined by

Σ = {Zp,i,j : p ∈ P, 1 ≤ i ≤ m, 1 ≤ j ≤ t}.

By applying Lemma 9 to Σ with parameter r = (mt)2, there is a decomposition of Rd
into at most c1(mt)4d cells such that each cell has the property that at most N/(mt) surfaces
from Σ crosses it. We note that c1 = c1(d, t) is defined in Lemma 9. By the pigeonhole
principle, there is a cell ∆ in the decomposition such that |∆ ∩ P | ≥ N/(c1(mt)4d). Set
P1 = ∆ ∩ P .

Let P2 ⊂ P \ P1 such that each point in P2 gives rise to mt surfaces that do not cross ∆.
More precisely,

P2 = {p ∈ P \ P1 : Zp,i,j does not cross ∆,∀i, j}.

Notice that
|P2| ≥ N −

N

mt
− N

c1(mt)4d ≥
N

4 .

We fix a point p0 ∈ P1. Then for each q ∈ P2, let σ(q) ∈ {−1, 0,+1}mt be the sign pattern
of the (mt)-tuple (f1,1(p0, q), f1,2(p0, q), . . . , fm,t(p0, q)). By Theorem 8, there are at most

SoCG’15
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(
50mt2
d

)d
distinct sign vectors σ. By the pigeonhole principle, there is a subset P3 ⊂ P2 such

that
|P3| ≥

|P2|
(50/d)dmdt2d

,

and for any two points q, q′ ∈ P3, we have σ(q) = σ(q′). That is, q and q′ give rise to vectors
with the same sign pattern. Therefore, for any p, p′ ∈ P1 and q, q′ ∈ P3, we have (p, q) ∈ Ei
if and only if (p′, q′) ∈ Ei, for all i ∈ {1, . . . ,m}.

Let c4 = c4(d, t) be sufficiently large such that |P1|, |P3| ≥ N
c4m4d . By the induction

hypothesis, we can find subsets P4 ⊂ P1, P5 ⊂ P3, such that

|P4|, |P5| ≥
(

N

c4m4d

) 1
c3 log m

≥ N
1

c3 log m

2 ,

where c3 = c3(d, t) is sufficiently large, and there is an ordering on P4 (and on P5) such that
each Ei is transitive on P4 (and on P5). Set P ′ = P4 ∪ P5, which implies |P ′| ≥ N

1
c3 log m .

We will show that P ′ has the desired properties. Let π and π′ be the orderings on P4 and P5
respectively, such that Ei is transitive on P4 and on P5, for every i ∈ {1, . . . ,m}. We order
the elements in P ′ = {p1, . . . , p|P ′|} by using π and π′, such that all elements in P5 comes
after all elements in P4.

In order to show that Ei is transitive on P ′, it suffices to examine triples going across P4
and P5. Let pj1 , pj2 ∈ P4 and pj3 ∈ P5 such that j1 < j2 < j3. By construction of P4 and
P5, if (pj1 , pj2), (pj2 , pj3) ∈ Ei, then we have (pi1 , pi3) ∈ Ei. Likewise, suppose pj1 ∈ P4 and
pj2 , pj3 ∈ P5. Then again by construction of P4 and P5, if (pj1 , pj2), (pj2 , pj3) ∈ Ei, then we
have (pi1 , pi3) ∈ Ei. Hence Ei is transitive on P ′, for all i ∈ {1, . . . ,m}, and this completes
the proof. J

By combining the two previous results, we have the following.

I Lemma 13. For m ≥ 2 and d, t ≥ 1, let P be a set of N points in Rd equipped with
(symmetric) semi-algebraic relations E1, . . . , Em ⊂

(
P
2
)
, where each Ei has complexity at

most t. If graph Gi = (P,Ei) has clique number ωi, then there is a subset P ′ ⊂ P of size
N1/(c3 log m)

ω1···ωm
, where c3 = c3(d, t) is defined above, such that

(
P ′

2
)
∩ Ei = ∅ for all i.

Proof. By applying Lemma 12, we obtain a subset P1 ⊂ P of size N
1

c3 log m , and an ordering
on P1 such that Ei is transitive on P1 for all i. Then by an m-fold application of Theorem 11,
the statement follows. J

4 Proof of Theorem 4

Let P be a point set in Rd and let E ⊂
(
P
3
)
be a semi-algebraic relation on P . We say that

(P,E) is K(3)
s -free if every collection of s points in P contains a triple not in E. Suppose

we have ` disjoint subsets P1, . . . , P` ⊂ P . For 1 ≤ i1 < i2 < i3 ≤ `, we say that the
triple (Pi1 , Pi2 , Pi3) is homogeneous if (p1, p2, p3) ∈ E for all p1 ∈ Pi1 , p2 ∈ Pi2 , p3 ∈ Pi3 , or
(p1, p2, p3) 6∈ E for all p1 ∈ Pi1 , p2 ∈ Pi2 , p3 ∈ Pi3 . For p1, p2 ∈ P1∪· · ·∪P` and i ∈ {1, . . . , `},
we say that the triple (p1, p2, i) is good, if (p1, p2, p3) ∈ E for all p3 ∈ Pi, or (p1, p2, p3) 6∈ E
for all p3 ∈ Pi. We say that the triple (p1, p2, i) is bad if (p1, p2, i) is not good and p1, p2 6∈ Pi.

I Lemma 14. Let P be a set of N points in Rd and let E ⊂
(
P
3
)
be a (symmetric) semi-

algebraic relation on P such that E has complexity at most t. Then for r = N1/(30d)

tc2
, where

c2 is defined in Lemma 10, there are disjoint subsets P1, . . . , Pr ⊂ P such that
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1. |Pi| ≥ N1/(30d)

tc2
,

2. all triples (Pi1 , Pi2 , Pi3), 1 ≤ i1 < i2 < i3 ≤ r, are homogeneous, and
3. all triples (p, q, i), where i ∈ {1, . . . , r} and p, q ∈ (P1 ∪ · · · ∪ Pr) \ Pi, are good.

Proof. We can assume that N > (tc2)30d, since otherwise the statement is trivial. Since E
is semi-algebraic with complexity t, there are polynomials f1, . . . , ft of degree at most t, and
a Boolean function Φ such that

(p1, p2, p3) ∈ E ⇔ Φ(f1(p1, p2, p3) ≥ 0, . . . , ft(p1, p2, p3) ≥ 0) = 1.

For each p, q ∈ P and i ∈ {1, . . . , t}, we define the surface Zp,q,i = {x ∈ Rd : fi(p, q, x) = 0}.
Then we set

Σ = {Zp,q,i : p, q ∈ P, 1 ≤ i ≤ t}.

Thus we have |Σ| = N2t. Next we apply Lemma 10 to P and Σ with parameter ` =
√
N ,

and obtain subsets Q1, . . . , Q` and cells ∆1, . . . ,∆`, such that Qi ⊂ ∆i, |Qi| = b
√
N/4c, and

each surface in Σ crosses at most c2N1/2−1/(4d) cells ∆i. We note that c2 = c2(d, t) is defined
in Lemma 10 and

√
N ≥ log(tN2). Set Q = Q1 ∪ · · · ∪Q`. Each pair (p, q) ∈

(
Q
2
)
gives rise

to 2t surfaces in Σ. By Lemma 10, these 2t surfaces cross in total at most 2tc2N1/2−1/(4d)

cells ∆i. Hence there are at most 2tc2N5/2−1/(4d) bad triples of the form (p, q, i), where
i ∈ {1, . . . ,

√
N} and p, q ∈ Q \Qi. Moreover, there are at most 2tc2N2−1/(4d) bad triples

(p, q, i), where both p and q lie in the same part Qj and j 6= i.
We uniformly at random pick r = N1/(30d)

tc2
subsets (parts) from the collection {Q1, . . . , Q`},

and r vertices from each of the subsets that were picked. For a bad triple (p, q, i) with p and
q in distinct subsets, the probability that (p, q, i) survives is at most(

r√
N

)3(
r√
N/4

)2
= 16

(tc2)5N
1/(6d)−5/2.

For a bad triple (p, q, i) with p, q in the same subset Qj , where j 6= i, the probability that
the triple (p, q, i) survives is at most(

r√
N

)2(
r√
N/4

)2
= 16

(tc2)4N
2/(15d)−2.

Therefore, the expected number of bad triples in our random subset is at most(
16

(tc2)5N
1/(6d)−5/2

)(
tc2N

5/2−1/(4d)
)

+
(

16
(tc2)4N

2/(15d)−2
)(

tc2N
2−1/(4d)

)
< 1.

Hence we can find disjoint subsets P1, . . . , Pr, such that |Pi| ≥ r = N1/(30d)

tc2
, and there are no

bad triples (p, q, i), where i ∈ {1, . . . , r} and p, q ∈ (P1 ∪ · · · ∪ Pr) \ Pi.
It remains to show that every triple (Pi1 , Pi2 , Pi3) is homogeneous for 1 ≤ i1 < i2 <

i3 ≤ r. Let p1,∈ Pi1 , p2 ∈ Pi2 , p3 ∈ Pi3 and suppose (p1, p2, p3) ∈ E. Then for any choice
q1,∈ Pi1 , q2 ∈ Pi2 , q3 ∈ Pi3 , we also have (q1, q2, q3) ∈ E. Indeed, since the triple (p1, p2, i3)
is good, this implies that (p1, p2, q3) ∈ E. Since the triple (p1, q3, i2) is also good, we have
(p1, q2, q3) ∈ E. Finally since (q2, q3, i1) is good, we have (q1, q2, q3) ∈ E. Likewise, if
(p1, p2, p3) 6∈ E, then (q1, q2, q3) 6∈ E for any q1,∈ Pi1 , q2 ∈ Pi2 , q3 ∈ Pi3 . J

We are finally ready to prove Theorem 4, which follows immediately from the following
theorem.

SoCG’15



68 Semi-algebraic Ramsey Numbers

I Theorem 15. Let P be a set of N points in Rd and let E ⊂
(
P
3
)
be a (symmetric) semi-

algebraic relation on P such that E has complexity at most t. If (P,E) is K(3)
s -free, then

there exists a subset P ′ ⊂ P such that
(
P ′

3
)
∩ E = ∅ and

|P ′| ≥ 2
(log log N)2

cs log log log N ,

where c = c(d, t).

Proof. The proof is by induction on N and s. The base cases are s = 3 or N ≤ (tc2)30d,
where c2 is defined in Lemma 10. When N ≤ (tc2)30d, the statement holds trivially for
sufficiently large c = c(d, t). If s = 3, then again the statement follows immediately by taking
P ′ = P .

Now assume that the statement holds if s′ ≤ s,N ′ ≤ N and not both inequalities are
equalities. We apply Lemma 14 to (P,E) and obtain disjoint subsets P1, . . . , Pr, where
r = N1/(30d)

tc2
, such that |Pi| ≥ N1/(30d)

tc2
, every triple of parts (Pi1 , Pi2 , Pi3) is homogeneous,

and every triple (p, q, i) is good where i ∈ {1, . . . , r} and p, q ∈ (P1 ∪ · · · ∪ Pr) \ Pi.
Let P0 be the set of N

1/(30d)

tc2
points obtained by selecting one point from each Pi. Since

(P0, E) is K(3)
s -free, we can apply the induction hypothesis on P0, and find a set of indices

I = {i1, . . . , im} such that

log |I| ≥

(
log log N1/(30d)

tc2

)2

cs log log log N1/(30d)

tc2

≥ (1/2) log logN,

and for every triple i1 < i2 < i3 in I all triples with one point in each Pij does not satisfy E.
Hence we have m =

√
logN , and let Qj = Pij for 1 ≤ j ≤ m.

For each subset Qi, we define binary semi-algebraic relations Ei,j ⊂
(
Qi

2
)
, where j 6= i, as

follows. Since E ⊂
(
P
3
)
is semi-algebraic with complexity t, there are t polynomials f1, . . . , ft

of degree at most t, and a Boolean function Φ such that (p1, p2, p3) ∈ E if and only if

Φ(f1(p1, p2, p3) ≥ 0, . . . , ft(p1, p2, p3) ≥ 0) = 1.

Fix a point q0 ∈ Qj , where j 6= i. Then for p1, p2 ∈ Qi, we have (p1, p2) ∈ Ei,j if and only if

Φ(f1(p1, p2, q0) ≥ 0, . . . , ft(p1, p2, q0) ≥ 0) = 1.

Suppose there are 2(logN)1/4 vertices in Qi that induces a clique in the graph Gi,j =
(Qi, Ei,j). Then these vertices would induce a K(3)

s−1-free subset in the original (hypergraph)
(P,E). By the induction hypothesis, we can find a subset Q′i ⊂ Qi such that

|Q′i| ≥ 2
((1/4) log log N)2

cs−1 log log log N ≥ 2
(log log N)2

cs log log log N ,

for sufficiently large c, such that
(
Q′i
3
)
∩E = ∅ and we are done. Hence we can assume that

each graph Gi,j = (Qi, Ei,j) has clique number at most 2(logn)1/4 . By applying Lemma 13 to
each Qi, where Qi is equipped with m− 1 semi-algebraic relations Ei,j , j 6= i, we can find
subsets Ti ⊂ Qi such that

|Ti| ≥
|Qi|1/(c3 logm)

2(logN)1/4
√

logN
= 2

log N

30dc3 log(
√

log N)

2(logN)3/4 ≥ 2
log N

c5 log log N ,

where c5 = c5(d, t), and
(
Ti

2
)
∩Ej = ∅ for all j 6= i. Therefore, we now have subsets T1, . . . , Tm,

such that
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1. m =
√

logN ,
2. for any triple (Ti1 , Ti2 , Ti3), 1 ≤ i1 < i2 < i3 ≤ m, every triple with one vertex in each

Tij is not in E,
3. for any pair (Ti1 , Ti2), 1 ≤ i1 < i2 ≤ m, every triple with two vertices Ti1 and one vertex

in Ti2 is not in E, and every triple with two vertices Ti2 and one vertex in Ti1 is also not
in E.

By applying the induction hypothesis to each (Ti, E), we obtain a collection of subsets
Ui ⊂ Ti such that

log |Ui| ≥

(
log
(

logN
c5 log logN

))2

cs log log
(

logN
c5 log logN

) ≥ (log logN − log(c5 log logN))2

cs log log logN ,

and
(
Ui

3
)
∩ E = ∅. Let P ′ =

m⋃
i=1

Ui. Then by above we have
(
P ′

3
)
∩ E = ∅ and

log |P ′| ≥ (log logN − log(c5 log logN))2

cs log log logN + 1
2 log logN

≥ (log logN)2 − 2(log logN) log(c5 log logN) + (log(c5 log logN))2

cs log log logN + 1
2 log logN

≥ (log logN)2

cs log log logN ,

for sufficiently large c = c(d, t). J

5 Application: One-sided hyperplanes

Let us consider a finite set H of hyperplanes in Rd in general position, that is, every d

members in H intersect at a distinct point. Let OSHd(s, n) denote the smallest integer
N such that every set H of N hyperplanes in Rd in general position contains s members
H1 such that the vertex set of the arrangement of H1 lies above the xd = 0 hyperplane, or
contains n members H2 such that the vertex set of the arrangement of H2 lies below the
xd = 0 hyperplane.

In 1992, Matoušek and Welzl [28] observed that OSH2(s, n) = (s−1)(n−1)+1. Dujmović
and Langerman [15] used the existence of OSHd(n, n) to prove a ham-sandwich cut theorem
for hyperplanes. Again by adapting the Erdős-Rado argument, Conlon et al. [13] showed
that for d ≥ 3,

OSHd(s, n) ≤ twrd−1(c6sn logn), (5)

where c6 is a constant that depends only on d. See Eliáš and Matoušek [17] for more related
results, including lower bound constructions.

Since each hyperplane hi ∈ H is specified by the linear equation

ai,1x1 + · · ·+ ai,dxd = bi,

we can represent hi ∈ H by the point h∗i ∈ Rd+1 where h∗i = (ai,1, . . . , ai,d, bi) and let
P = {h∗i : hi ∈ H}. Then we define a relation E ⊂

(
P
d

)
such that (h∗i1 , . . . , h

∗
id

) ∈ E if
and only if hi1 ∩ · · · ∩ hid lies above the hyperplane xd = 0 (i.e. the d-th coordinate of the
intersection point is positive). Clearly, E is a semi-algebraic relation with complexity at most
t = t(d). Therefore, as an application of Theorem 4 and Corollary 5, we make the following
improvement on (5).
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I Theorem 16. For fixed s ≥ 4, we have OSH3(s, n) ≤ 2no(1) . For fixed d ≥ 4 and s ≥ d+1,
we have

OSHd(s, n) ≤ twrd−1(no(1)).

6 Monochromatic triangles

In this section, we will prove Theorem 6.

Proof of Theorem 6. We proceed by induction on m. The base case when m = 1 is trivial.
Now assume that the statement holds for m′ < m. Set N = 2cm log logm, where c = c(d, t)
will be determined later, and let E1, . . . , Em ⊂

(
P
2
)
be (symmetric) semi-algebraic relations

on P such that
(
P
2
)

= E1 ∪ · · · ∪ Em, and each Ei has complexity at most t. For sake of
contradiction, suppose P does not contain three points such that every pair of them is in Ei
for some fixed i.

For each relation Ei, there are t polynomials fi,1, . . . , fi,t of degree at most t, and a
Boolean function Φi such that

(p, q) ∈ Ei ⇔ Φi(fi,1(p, q) ≥ 0, . . . , fi,t(p, q) ≥ 0) = 1.

For 1 ≤ i ≤ m, 1 ≤ j ≤ t, p ∈ P , we define the surface Zi,j,p = {x ∈ Rd : fi,j(p, x) = 0},
and let

Σ = {Zi,j,p : 1 ≤ i ≤ m, 1 ≤ j ≤ t, p ∈ P}.

Hence |Σ| = mtN . We apply Lemma 9 to Σ with parameter r = 2tm, and decompose Rd
into c1(2tm)2d regions ∆i, where c1 = c1(t, d) is defined in Lemma 9, such that each region
∆i is crossed by at most tmN/r = N/2 members in Σ. By the pigeonhole principle, there
is a region ∆ ⊂ Rd, such that |∆ ∩ P | ≥ N

c1(2tm)2d , and at most N/2 members in Σ crosses

∆. Let P1 be a set of exactly
⌊

N
c1(2tm)2d

⌋
points in P ∩∆, and let P2 be the set of points in

P \ P1 that does not give rise to a surface that crosses ∆. Hence

|P2| ≥ N −
N

c1(2tm)2d −
N

2 ≥
N

4 .

Therefore, each point p ∈ P2 has the property that p × P1 ⊂ Ei for some fixed i. We
define the function χ : P2 → {1, . . . ,m}, such that χ(p) = i if and only if p× P1 ⊂ Ei. Set
I = {χ(p) : p ∈ P2} and m0 = |I|, that is, m0 is the number of distinct relations (colors)
between the sets P1 and P2. Now the proof falls into 2 cases.

Case 1. Suppose m0 > logm. By the assumption, every pair of points in P1 is in Ei for some
i ∈ {1, . . . ,m} \ I. By the induction hypothesis, we have

2cm log logm

c1(2tm)2d ≤ |P1| ≤ 2c(m−m0) log logm.

Hence
cm0 log logm ≤ log(c1(2tm)2d) ≤ 2d log(c12tm),

which implies

m0 ≤
2d log(c12tm)
c log logm ,

and we have a contradiction for sufficiently large c = c(d, t).
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Case 2. Suppose m0 ≤ logm. By the pigeonhole principle, there is a subset P3 ⊂ P2, such
that |P3| ≥ N

4m0
and P1 × P3 ⊂ Ei for some fixed i. Hence every pair of points p, q ∈ P3

satisfies (p, q) 6∈ Ei, for some fixed i. By the induction hypothesis, we have

2cm log logm

4m0
≤ |P3| ≤ 2c(m−1) log logm.

Therefore
c log logm ≤ log(4m0) ≤ log(4 log(m)),

which is a contradiction since c is sufficiently large. This completes the proof of Theorem 6. J

6.1 Lower bound construction and Schur numbers
Before we prove Theorem 7, let us recall a classic Theorem of Schur [31] which is considered
to be one of the earliest applications of Ramsey Theory. A subset of numbers P ⊂ R is said
to be sum-free if for any two (not necessarily distinct) elements x, y ∈ P , their sum x+ y is
not in P . The Schur number S(m) is defined to be the maximum integer N for which the
integers {1, . . . , N} can be partitioned into m sum-free sets.

Given a partition {1, . . . , N} = P1 ∪ · · · ∪ Pm into m parts such that Pi is sum-free, we
can define an m-coloring on the edges on a complete (N + 1)-vertex graph which does not
contain a monochromatic triangle as follows. Let V = {1, . . . , N + 1} be the vertex set, and
we define the coloring χ :

(
V
2
)
→ m by χ(x, y) = i iff |x− y| ∈ Pi. Now suppose for sake of

contradiction there are vertices x, y, z that induces a monochromatic triangle, say with color
i, such that x < y < z. Then we have y− x, z− y, z− x ∈ Pi and (y− x) + (z− y) = (z− x),
which is a contradiction since Pi is sum free. Therefore S(m) < R2(3;m).

Since Schur’s original 1916 paper, the lower bound on S(m) has been improved by several
authors [2, 1, 22], and the current record of S(m) ≥ Ω(3.19m) is due to Fredricksen and
Sweet [24]. Their lower bound follows by computing S(6) ≥ 538, and using the recursive
formula

S(m) ≥ c`(2S(`) + 1)m/`,

which was established by Abbott and Hanson [1]. Fredricksen and Sweet also computed
S(7) ≥ 1680, which we will use to prove Theorem 7.

I Lemma 17. For each integer ` ≥ 1, there is a set P` of (1681)` points in R equipped with
semi-algebraic relations E1, . . . , E7` ⊂

(
P`

2
)
, such that

1. E1 ∪ · · · ∪ E7` =
(
P`

2
)
,

2. Ei has complexity at most 5000,
3. Ei is translation invariant, that is, (x, y) ∈ Ei iff (x+ C, y + C) ∈ Ei, and
4. the graph G`,i = (P`, Ei) is triangle free for all i.

Proof. We start be setting P1 = {1, 2, . . . , 1681}. By [24], there is a partition on {1, . . . , 1680} =
A1 ∪ · · · ∪A7 into seven parts, such that each Ai is sum-free. For i ∈ {1, . . . , 7}, we define
the binary relation Ei on P1 by

(x, y) ∈ Ei ⇔ (1 ≤ |x− y| ≤ 1680) ∧ (|x− y| ∈ Ai).

Since |Ai| ≤ 1680, Ei has complexity at most 5000. By the arguments above, the graph
G1,i = (P1, Ei) is triangle free for all i ∈ {1, . . . , 7}. In what follows, we blow-up this
construction so that the statement holds.

Having defined P`−1 and E1, ...., E7`−7, we define P` and E`−6, . . . , E` as follows. Let
C = C(`) be a very large constant, say C > (5000 ·max{P`−1})2. We construct 1681

SoCG’15
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translated copies of P`−1, Qi = P`−1 + iC for 1 ≤ i ≤ 1681, and set P` = Q1 ∪ · · · ∪Q1681.
For 1 ≤ j ≤ 7, we define the relation E`−7+j by

(x, y) ∈ E`−7+j ⇔ (C/2 ≤ |x− y| ≤ 1682C) ∧ (∃z ∈ Aj : ||x− y|/C − z| < 1/1000).

Clearly E1, . . . , E7` satisfy properties (1), (2), and (3). The fact that G`,i = (P`, Ei) is
triangle follows from the same argument as above. J

Theorem 7 immediately follows from Lemma 17.
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