77 research outputs found

    A temporal logic approach to information-flow control

    Get PDF
    Information leaks and other violations of information security pose a severe threat to individuals, companies, and even countries. The mechanisms by which attackers threaten information security are diverse and to show their absence thus proved to be a challenging problem. Information-flow control is a principled approach to prevent security incidents in programs and other technical systems. In information-flow control we define information-flow properties, which are sufficient conditions for when the system is secure in a particular attack scenario. By defining the information-flow property only based on what parts of the executions of the system a potential attacker can observe or control, we obtain security guarantees that are independent of implementation details and thus easy to understand. There are several methods available to enforce (or verify) information-flow properties once defined. We focus on static enforcement methods, which automatically determine whether a given system satisfies a given information-flow property for all possible inputs to the system. Most enforcement approaches that are available today have one problem in common: they each only work for one particular programming language or information-flow property. In this thesis, we propose a temporal logic approach to information-flow control to provide a simple formal basis for the specification and enforcement of information-flow properties. We show that the approach can be used to enforce a wide range of information-flow properties with a single algorithm. The main challenge is that the standard temporal logics are unable to express information-flow properties. They lack the ability to relate multiple executions of a system, which is essential for information-flow properties. We thus extend the temporal logics LTL and CTL* by the ability to quantify over multiple executions and to relate them using boolean and temporal operators. The resulting temporal logics HyperLTL and HyperCTL* can express many information-flow properties of interest. The extension of temporal logics com- pels us to revisit the algorithmic problem to check whether a given system (model) satisfies a given specification in HyperLTL or HyperCTL*; also called the model checking problem. On the technical side, the main contribution is a model checking algorithm for HyperLTL and HyperCTL* and the detailed complexity analysis of the model checking problem: We give nonelementary lower and upper bounds for its computational complexity, both in the size of the system and the size of the specification. The complexity analysis also reveals a class of specification, which includes many of the commonly consid- ered information-flow properties and for which the algorithm is efficient (in NLOGSPACE in the size of the system). For this class of efficiently checkable properties, we provide an approach to reuse existing technology in hardware model checking for information-flow control. We demonstrate along a case study that the temporal logic approach to information-flow control is flexible and effective. We further provide two case studies that demonstrate the use of HyperLTL and HyperCTL* for proving properties of error resistant codes and distributed protocols that have so far only been considered in manual proofs.Informationssicherheit stellt eine immer größere Bedrohung für einzelne Personen, Firmen und selbst ganze Länder dar. Ein grundlegender Ansatz zur Vorbeugung von Sicherheitsproblemen in technischen Systemen, wie zum Beispiel Programmen, ist Informationsflusskontrolle. In der Informationsflusskontrolle definieren wir zunächst sogenannte Informationsflusseigenschaften, welche hinreichende Bedingungen für die Sicherheit des gegebenen Systems in einem Sicherheitsszenario darstellen. Indem wir Informationsflusseigenschaften nur auf Basis der möglichen Beobachtungen eines Angreifers über das System definieren, erhalten wir einfach zu verstehende Sicherheitsgarantien, die unabhängig von Implementierungsdetails sind. Nach der Definition von Eigenschaften muss sichergestellt werden, dass ein gegebenes System seine Informationsflusseigenschaft erfüllt, wofür es bereits verschiedene Methoden gibt. Wir fokussieren uns in dieser Arbeit auf statische Methoden, welche für ein gegebenes System und eine gegebene Informationsflusseigenschaft automatisch entscheiden, ob das System die Eigenschaft für alle möglichen Eingaben erfüllt, was wir auch das Modellprüfungsproblem nennen. Die meisten verfügbaren Methoden zum Sicherstellen der Einhaltung von Informationsflusseigenschaften teilen jedoch eine Schwäche: sie funktionieren nur für eine einzelne Programmiersprache oder eine einzelne Informationsflusseigenschaft. In dieser Arbeit verfolgen wir einen Ansatz basierend auf Temporallogiken, um eine einfache theoretische Basis für die Spezifikation von Informationsflusseigenschaften und deren Umsetzung zu erhalten. Wir analysieren den Zusammenhang von der Ausdrucksmächtigkeit von Spezifikationssprachen und dem algorithmischen Problem Spezifikationen für ein System zu überprüfen. Anhand einer Fallstudie im Bereich der Hardwaresicherheit zeigen wir, dass der Ansatz dazu geeignet ist eine breite Palette von bekannten und neuen Informationsflusseigenschaften mittels eines einzelnen Modellprüfungsalgorithmus zu beweisen. Das Kernproblem hierbei ist, dass wir in den üblichen Temporallogiken Informationsflusseigenschaften nicht ausdrücken können, es fehlt die Fähigkeit mehrere Ausführungen eines Systems miteinander zu vergleichen, was der gemeinsame Nenner von Informationsflusseigenschaften ist. Wir erweitern Temporallogiken daher um die Fähigkeit über mehrere Ausführungen zu quantifizieren und diese miteinander zu vergleichen. Der Hauptbeitrag auf der technischen Ebene ist ein Modellprüfungsalgorithmus und eine detaillierte Analyse der Komplexität des Modellprüfungsproblems. Wir geben einen Modellprüfungsalgorithmus an und beweisen, dass der Algorithmus asymptotisch optimal ist. Die Komplexitätsanalyse zeigt auch eine Klasse von Eigenschaften auf, welche viele der üblichen Informationsflusseigenschaften beinhaltet, und für welche der gegebene Algorithmus effizient ist (in NLOGSPACE in der Größe des Systems). Für diese Klasse von effizient überprüfbaren Eigenschaften diskutieren wir einen Ansatz bestehende Technologie zur Modellprüfung von Hardware für Informationsflusskontrolle wiederzuverwenden. Anhand einer Fallstudie zeigen wir, dass der Ansatz flexibel und effektiv eingesetzt werden kann. Desweiteren diskutieren wir zwei weitere Fallstudien, welche demonstrieren, dass die vorgeschlagene Erweiterung von Temporallogiken auch eingesetzt werden kann, um Eigenschaften für fehlerresistente Kodierungen und verteilte Protokolle zu beweisen, welche bisher nur Abstrakt betrachtet werden konnten

    Logics and Algorithms for Hyperproperties

    Get PDF
    System requirements related to concepts like information flow, knowledge, and robustness cannot be judged in terms of individual system executions, but rather require an analysis of the relationship between multiple executions. Such requirements belong to the class of hyperproperties, which generalize classic trace properties to properties of sets of traces. During the past decade, a range of new specification logics has been introduced with the goal of providing a unified theory for reasoning about hyperproperties. This paper gives an overview on the current landscape of logics for the specification of hyperproperties and on algorithms for satisfiability checking, model checking, monitoring, and synthesis

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann

    Second-Order Hyperproperties

    Full text link
    We introduce Hyper2^2LTL, a temporal logic for the specification of hyperproperties that allows for second-order quantification over sets of traces. Unlike first-order temporal logics for hyperproperties, such as HyperLTL, Hyper2^2LTL can express complex epistemic properties like common knowledge, Mazurkiewicz trace theory, and asynchronous hyperproperties. The model checking problem of Hyper2^2LTL is, in general, undecidable. For the expressive fragment where second-order quantification is restricted to smallest and largest sets, we present an approximate model-checking algorithm that computes increasingly precise under- and overapproximations of the quantified sets, based on fixpoint iteration and automata learning. We report on encouraging experimental results with our model-checking algorithm, which we implemented in the tool~\texttt{HySO}

    A temporal logic approach to information-flow control

    Get PDF
    Information leaks and other violations of information security pose a severe threat to individuals, companies, and even countries. The mechanisms by which attackers threaten information security are diverse and to show their absence thus proved to be a challenging problem. Information-flow control is a principled approach to prevent security incidents in programs and other technical systems. In information-flow control we define information-flow properties, which are sufficient conditions for when the system is secure in a particular attack scenario. By defining the information-flow property only based on what parts of the executions of the system a potential attacker can observe or control, we obtain security guarantees that are independent of implementation details and thus easy to understand. There are several methods available to enforce (or verify) information-flow properties once defined. We focus on static enforcement methods, which automatically determine whether a given system satisfies a given information-flow property for all possible inputs to the system. Most enforcement approaches that are available today have one problem in common: they each only work for one particular programming language or information-flow property. In this thesis, we propose a temporal logic approach to information-flow control to provide a simple formal basis for the specification and enforcement of information-flow properties. We show that the approach can be used to enforce a wide range of information-flow properties with a single algorithm. The main challenge is that the standard temporal logics are unable to express information-flow properties. They lack the ability to relate multiple executions of a system, which is essential for information-flow properties. We thus extend the temporal logics LTL and CTL* by the ability to quantify over multiple executions and to relate them using boolean and temporal operators. The resulting temporal logics HyperLTL and HyperCTL* can express many information-flow properties of interest. The extension of temporal logics com- pels us to revisit the algorithmic problem to check whether a given system (model) satisfies a given specification in HyperLTL or HyperCTL*; also called the model checking problem. On the technical side, the main contribution is a model checking algorithm for HyperLTL and HyperCTL* and the detailed complexity analysis of the model checking problem: We give nonelementary lower and upper bounds for its computational complexity, both in the size of the system and the size of the specification. The complexity analysis also reveals a class of specification, which includes many of the commonly consid- ered information-flow properties and for which the algorithm is efficient (in NLOGSPACE in the size of the system). For this class of efficiently checkable properties, we provide an approach to reuse existing technology in hardware model checking for information-flow control. We demonstrate along a case study that the temporal logic approach to information-flow control is flexible and effective. We further provide two case studies that demonstrate the use of HyperLTL and HyperCTL* for proving properties of error resistant codes and distributed protocols that have so far only been considered in manual proofs.Informationssicherheit stellt eine immer größere Bedrohung für einzelne Personen, Firmen und selbst ganze Länder dar. Ein grundlegender Ansatz zur Vorbeugung von Sicherheitsproblemen in technischen Systemen, wie zum Beispiel Programmen, ist Informationsflusskontrolle. In der Informationsflusskontrolle definieren wir zunächst sogenannte Informationsflusseigenschaften, welche hinreichende Bedingungen für die Sicherheit des gegebenen Systems in einem Sicherheitsszenario darstellen. Indem wir Informationsflusseigenschaften nur auf Basis der möglichen Beobachtungen eines Angreifers über das System definieren, erhalten wir einfach zu verstehende Sicherheitsgarantien, die unabhängig von Implementierungsdetails sind. Nach der Definition von Eigenschaften muss sichergestellt werden, dass ein gegebenes System seine Informationsflusseigenschaft erfüllt, wofür es bereits verschiedene Methoden gibt. Wir fokussieren uns in dieser Arbeit auf statische Methoden, welche für ein gegebenes System und eine gegebene Informationsflusseigenschaft automatisch entscheiden, ob das System die Eigenschaft für alle möglichen Eingaben erfüllt, was wir auch das Modellprüfungsproblem nennen. Die meisten verfügbaren Methoden zum Sicherstellen der Einhaltung von Informationsflusseigenschaften teilen jedoch eine Schwäche: sie funktionieren nur für eine einzelne Programmiersprache oder eine einzelne Informationsflusseigenschaft. In dieser Arbeit verfolgen wir einen Ansatz basierend auf Temporallogiken, um eine einfache theoretische Basis für die Spezifikation von Informationsflusseigenschaften und deren Umsetzung zu erhalten. Wir analysieren den Zusammenhang von der Ausdrucksmächtigkeit von Spezifikationssprachen und dem algorithmischen Problem Spezifikationen für ein System zu überprüfen. Anhand einer Fallstudie im Bereich der Hardwaresicherheit zeigen wir, dass der Ansatz dazu geeignet ist eine breite Palette von bekannten und neuen Informationsflusseigenschaften mittels eines einzelnen Modellprüfungsalgorithmus zu beweisen. Das Kernproblem hierbei ist, dass wir in den üblichen Temporallogiken Informationsflusseigenschaften nicht ausdrücken können, es fehlt die Fähigkeit mehrere Ausführungen eines Systems miteinander zu vergleichen, was der gemeinsame Nenner von Informationsflusseigenschaften ist. Wir erweitern Temporallogiken daher um die Fähigkeit über mehrere Ausführungen zu quantifizieren und diese miteinander zu vergleichen. Der Hauptbeitrag auf der technischen Ebene ist ein Modellprüfungsalgorithmus und eine detaillierte Analyse der Komplexität des Modellprüfungsproblems. Wir geben einen Modellprüfungsalgorithmus an und beweisen, dass der Algorithmus asymptotisch optimal ist. Die Komplexitätsanalyse zeigt auch eine Klasse von Eigenschaften auf, welche viele der üblichen Informationsflusseigenschaften beinhaltet, und für welche der gegebene Algorithmus effizient ist (in NLOGSPACE in der Größe des Systems). Für diese Klasse von effizient überprüfbaren Eigenschaften diskutieren wir einen Ansatz bestehende Technologie zur Modellprüfung von Hardware für Informationsflusskontrolle wiederzuverwenden. Anhand einer Fallstudie zeigen wir, dass der Ansatz flexibel und effektiv eingesetzt werden kann. Desweiteren diskutieren wir zwei weitere Fallstudien, welche demonstrieren, dass die vorgeschlagene Erweiterung von Temporallogiken auch eingesetzt werden kann, um Eigenschaften für fehlerresistente Kodierungen und verteilte Protokolle zu beweisen, welche bisher nur Abstrakt betrachtet werden konnten

    Propositional Dynamic Logic for Hyperproperties

    Get PDF
    Information security properties of reactive systems like non-interference often require relating different executions of the system to each other and following them simultaneously. Such hyperproperties can also be useful in other contexts, e.g., when analysing properties of distributed systems like linearizability. Since common logics like LTL, CTL, or the modal ?-calculus cannot express hyperproperties, the hyperlogics HyperLTL and HyperCTL^* were developed to cure this defect. However, these logics are not able to express arbitrary ?-regular properties. In this paper, we introduce HyperPDL-?, an adaptation of the Propositional Dynamic Logic of Fischer and Ladner for hyperproperties, in order to remove this limitation. Using an elegant automata-theoretic framework, we show that HyperPDL-? model checking is asymptotically not more expensive than HyperCTL^* model checking, despite its vastly increased expressive power. We further investigate fragments of HyperPDL-? with regard to satisfiability checking

    Logical methods for the hierarchy of hyperlogics

    Get PDF
    In this thesis, we develop logical methods for reasoning about hyperproperties. Hyperproperties describe relations between multiple executions of a system. Unlike trace properties, hyperproperties comprise relational properties like noninterference, symmetry, and robustness. While trace properties have been studied extensively, hyperproperties form a relatively new concept that is far from fully understood. We study the expressiveness of various hyperlogics and develop algorithms for their satisfiability and synthesis problems. In the first part, we explore the landscape of hyperlogics based on temporal logics, first-order and second-order logics, and logics with team semantics. We establish that first-order/second-order and temporal hyperlogics span a hierarchy of expressiveness, whereas team logics constitute a radically different way of specifying hyperproperties. Furthermore, we introduce the notion of temporal safety and liveness, from which we obtain fragments of HyperLTL (the most prominent hyperlogic) with a simpler satisfiability problem. In the second part, we develop logics and algorithms for the synthesis of smart contracts. We introduce two extensions of temporal stream logic to express (hyper)properties of infinite-state systems. We study the realizability problem of these logics and define approximations of the problem in LTL and HyperLTL. Based on these approximations, we develop algorithms to construct smart contracts directly from their specifications.In dieser Arbeit beschreiben wir logische Methoden, um über Hypereigenschaften zu argumentieren. Hypereigenschaften beschreiben Relationen zwischen mehreren Ausführungen eines Systems. Anders als pfadbasierte Eigenschaften können Hypereigenschaften relationale Eigenschaften wie Symmetrie, Robustheit und die Abwesenheit von Informationsfluss ausdrücken. Während pfadbasierte Eigenschaften in den letzten Jahrzehnten ausführlich erforscht wurden, sind Hypereigenschaften ein relativ neues Konzept, das wir noch nicht vollständig verstehen. Wir untersuchen die Ausdrucksmächtigkeit verschiedener Hyperlogiken und entwickeln ausführbare Algorithmen, um deren Erfüllbarkeits- und Syntheseproblem zu lösen. Im ersten Teil erforschen wir die Landschaft der Hyperlogiken basierend auf temporalen Logiken, Logiken erster und zweiter Ordnung und Logiken mit Teamsemantik. Wir stellen fest, dass temporale Logiken und Logiken erster und zweiter Ordnung eine Hierarchie an Ausdrucksmächtigkeit aufspannen. Teamlogiken hingegen spezifieren Hypereigenschaften auf eine radikal andere Art. Wir führen außerdem das Konzept von temporalen Sicherheits- und Lebendigkeitseigenschaften ein, durch die Fragmente der bedeutensten Logik HyperLTL entstehen, für die das Erfüllbarkeitsproblem einfacher ist. Im zweiten Teil entwickeln wir Logiken und Algorithmen für die Synthese digitaler Verträge. Wir führen zwei Erweiterungen temporaler Stromlogik ein, um (Hyper)eigenschaften in unendlichen Systemen auszudrücken. Wir untersuchen das Realisierungsproblem dieser Logiken und definieren Approximationen des Problems in LTL und HyperLTL. Basierend auf diesen Approximationen entwickeln wir Algorithmen, die digitale Verträge direkt aus einer Spezifikation erstellen
    corecore