1,604 research outputs found

    Generation of folk song melodies using Bayes transforms

    Get PDF
    The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models

    Query-based Deep Improvisation

    Get PDF
    In this paper we explore techniques for generating new music using a Variational Autoencoder (VAE) neural network that was trained on a corpus of specific style. Instead of randomly sampling the latent states of the network to produce free improvisation, we generate new music by querying the network with musical input in a style different from the training corpus. This allows us to produce new musical output with longer-term structure that blends aspects of the query to the style of the network. In order to control the level of this blending we add a noisy channel between the VAE encoder and decoder using bit-allocation algorithm from communication rate-distortion theory. Our experiments provide new insight into relations between the representational and structural information of latent states and the query signal, suggesting their possible use for composition purposes

    Point-set algorithms for pattern discovery and pattern matching in music

    Get PDF
    An algorithm that discovers the themes, motives and other perceptually significant repeated patterns in a musical work can be used, for example, in a music information retrieval system for indexing a collection of music documents so that it can be searched more rapidly. It can also be used in software tools for music analysis and composition and in a music transcription system or model of music cognition for discovering grouping structure, metrical structure and voice-leading structure. In most approaches to pattern discovery in music, the data is assumed to be in the form of strings. However, string-based methods become inefficient when one is interested in finding highly embellished occurrences of a query pattern or searching for polyphonic patterns in polyphonic music. These limitations can be avoided by representing the music as a set of points in a multidimensional Euclidean space. This point-set pattern matching approach allows the maximal repeated patterns in a passage of polyphonic music to be discovered in quadratic time and all occurrences of these patterns to be found in cubic time. More recently, Clifford et al. (2006) have shown that the best match for a query point set within a text point set of size n can be found in O(n log n) time by incorporating randomised projection, uniform hashing and FFT into the point-set pattern matching approach. Also, by using appropriate heuristics for selecting compact maximal repeated patterns with many non-overlapping occurrences, the point-set pattern discovery algorithms described here can be adapted for data compression. Moreover, the efficient encodings generated when this compression algorithm is run on music data seem to resemble the motivic-thematic analyses produced by human experts

    Computing regularities in strings

    Get PDF
    Regularities in strings model many phenomena and thus form the subject of extensive mathematical studies . Perhaps the most conspicuous regularities in strings are those that manifest themselves in the form of repeated subpatterns. In this paper, we study several forms of regularities of strings, that is, repeats, multirepeats, repetitions and runs. We present their similarities and differences by discussing their forms and properties and we explore the existing computation algorithms. We also discuss several data structures useful for computing regularities

    Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences

    Get PDF
    We study the problem of identifying repetitions under transposition and time-warp invariances in polyphonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern discovery problem to instances of the classical problem of finding the longest increasing subsequences. The resulting algorithm works in O(n(2) log n) time where n is the number of notes in a musical work. We also study windowed variants of the problem where onset-time differences between notes are restricted, and show that they can also be solved in O(n(2) log n) time using the algorithm.Peer reviewe
    corecore