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Discovering distorted repeating patterns in polyphonic music
through longest increasing subsequences

Antti Laaksonen∗ and Kjell Lemström
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We study the problem of identifying repetitions under transposition and time-warp invariances in poly-
phonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern
discovery problem to instances of the classical problem of finding the longest increasing subsequences.
The resulting algorithm works in O(n2 log n) time where n is the number of notes in a musical work. We
also study windowed variants of the problem where onset-time differences between notes are restricted,
and show that they can also be solved in O(n2 log n) time using the algorithm.

Keywords: repeating pattern discovery; longest increasing subsequences; symbolic music processing

2012 Computing Classification Scheme: music retrieval; pattern matching

1. Introduction

Being able to identify repetitions in music is important for gathering a rich understanding of
music (see e.g. Schenker 1954; Lerdahl and Jackendoff 1983; Bent and Drabkin 1987; Temperley
2001) and, also, an elementary task in solving many music-related computational problems. The
problem has been widely studied for decades in text and other linear structures. As real music
is almost inevitably polyphonic, meaning that a multitude of parallel tones may sound at any
time, the corresponding musical task is much more complex. An exhaustive search through all
possible sequences of tones would shortly lead to a combinatorial explosion.

In this paper, we consider the problem of finding repeating patterns in Western equal tempered
polyphonic music. Our algorithms work on the symbolic music domain using a geometric point
set representation of musical notes. By using a symbolic representation we avoid the very chal-
lenging problem of the fundamental frequency estimation of a general polyphonic audio music
case. However, with imaginative modifications, algorithms developed to one musical domain
may become applicable to the other (see e.g. Laaksonen and Lemström 2013).

It is not only polyphony that makes the music pattern discovery task a hard one. There are
many possible sources for distortions that should be taken into account. Distortions may be
systematic, for instance, identical patterns may appear in different musical key and/or in dif-
ferent written tempo. Such distortions are easy to handle by looking at relative values instead of
absolute values: in pitch at the pitch difference, in duration at the quotient between correspond-
ing durations. Such algorithms are called transposition and time-scale invariant, respectively,
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and there are various systematic distortions that may be overcome by applying an appropriate
invariance. Unfortunately, this comes with a price: the more the algorithms allow distortions, the
more they also generate false-positive repetitions. Therefore, a post-processing phase is often
needed to discard extraneous ones.

Lemström and Wiggings (2009) formalized and gave a sparse invariance taxonomy for music
information retrieval (MIR) tasks. The taxonomy considers the most common and relevant MIR
features: pitch and onset time. Invariances for a feature can be ordered based on their strength.
For instance, invariances for onset information in an increasing order are time-position (allows
linear shifts in time), time-scale (allows constant scaling in time) and time-warp (allows order
preserving local scaling in time).

It would be useful to be able to pick up a suitable method for the task just by analyzing
the nature of the underlying dataset (what kind of systematic distortions there are) for under-
standing the required invariance combination. For instance, assuming that the transposition
invariance is indispensable for a musical pattern matching task, depending on how strong invari-
ance is required, there are already efficient algorithms for the transposition and time-shifting
invariance-combination (Ukkonen, Lemström, and Mäkinen 2003; Romming and Selfridge–
field 2007), transposition and time-scaling combination (Romming and Selfridge-field 2007;
Lemström 2010) and transposition and time-warp combination (Lemström and Laitinen 2011).
For the repeating pattern discovery problem, there is a method for the transposition and time-
shifting invariance-combination (Meredith, Lemström, and Wiggins 2002) but no methods for
the transposition and time-scaling or for the transposition and time-warp combination. In this
paper, we present an efficient algorithm for the combination of transposition and time-warp
invariance for the repeating pattern discovery problem.

In a typical repeating pattern discovery case, the data set is generated by a conversion from
either sheet music or a live performance played by some instruments. The latter setting generates
much more distortions, thus a stronger invariance combination is needed to deal with the inher-
ent, systematic distortions. For the pitch feature the transposition invariance is strong enough
assuming that the pitches are mostly perfectly played. However, in live performances, the tempo
varies and onset times are rarely accurate making the time-warp invariance desirable for the onset
times. Moreover, the data sets are expected to be dense, that is, there are many musical events
irrelevant to the repetition that occur within the time frame of a repetition. Therefore, we should
be able to allow gaps in repetitions.

Traditional methods for symbolic music information retrieval (MIR) problems have been
based on an approximate string matching framework using edit distance (see e.g. Mongeau and
Sankoff 1990; Ghias et al. 1995; Uitdenbogerd and Zobel 2002; Clifford et al. 2006; Typke
2007). As the framework has originally been developed for linear strings, it is straightforwardly
applicable to handle monophonic music. In order to be able to cope with polyphonic music with a
multitude of simultaneous notes and parallelly developing musical themes, Meredith, Lemström,
and Wiggins (2002) suggested a piano-roll-like geometric representation of music where each
note is represented by a point in the plane. In this representation, the horizontal location (x-axis)
gives the onset time for a musical event and the vertical location (y-axis) its pitch level.

In Figure 1, we both illustrate the geometric representation and give an example of a repeating
pattern in polyphonic music. In this example, there is a musical motif played in two different
keys and tempos. Note that in this example, the recurrent motif is a time-scaled repetition of
the original motif, which also means that it is a time-warped repetition. Interestingly, it seems
that finding only time-scaled repetitions is much harder than finding time-warped repetitions, as
discussed in Section 4.

Given a set of n notes (a musical work), Meredith et al. considered the problems of discovering
all maximal repeating patterns and all their occurrences under transposition and time-shifting
invariances (here maximal means that we cannot add any notes to the repeating pattern). They
presented the algorithms SIA and SIATEC for computing the solutions in O(n2 log n) and O(n3)
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Figure 1. Two excerpts from the piano reduction of Peter Warlock’s The Curlew (measures 1 and 45–46) in common
music notation (above) and the corresponding geometric representation (below) where each note is represented as a
point whose x coordinate is the onset time and y coordinate is the pitch. The two representations are synchronized, i.e.
the points below are matched with the corresponding notes above, leading to a time-warped point set-representation (note
the uneven division in the x axis.) There are several maximal repeating patterns in the example, the most notable being
the pattern of six notes represented with dashed lines.

time, respectively. More precisely, the algorithms can be used to process k-dimensional data
sets in O(kn2 log n) and O(kn3) time, respectively. In this paper, we only focus on the usual
two-dimensional case and ignore the additional k parameter.

The SIA and SIATEC algorithms are tolerant to distortion in the time dimension only to a some
extent: if a note is out of time, it is simply discarded. This works rather nicely when only some
sporadic notes are distorted. However, when the input is a transcription of a live performance,
for instance, the method omits totally the vast majority of the musically meaningful repetitions
because a sufficient count of matching individual notes to form a repetition will not be found.

Meredith et al.’s representation gives us a good starting point: it inherently supports point
translations (giving us invariances under transposition and pattern location) and sporadic noise
omitting. We have to, however, somehow modify it to support arbitrary, local stretching in
the time dimension. We will do this by using an onset-time-pair representation where we can
solve the original problem of identifying musical repetitions under transposition and time-warp
invariances by reducing the problem to instances of the longest increasing subsequence problem.

The rest of the paper is organized as follows: Section 2 discusses the longest increasing subse-
quence problem with two-dimensional point sets. In Section 3, we describe our repeating pattern
discovery algorithm and show variants of the algorithm that can be used to exact and win-
dowed pattern search. All variants of the algorithm work in O(n2 log n) time. Finally, Section 4
concludes the paper.

2. Longest increasing subsequences

In this section, we discuss the longest increasing subsequence problem in the context of two-
dimensional point sets. It turns out that we can reduce the repeating pattern discovery problem
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to instances of the longest increasing subsequence problem, and we use the techniques presented
in this section in our pattern discovery algorithm.

Consider a set S of n points in the two-dimensional plane. Each point p is represented as a
pair (x[p], y[p]) where x[p] and y[p] are real numbers. A subsequence of length k is a sequence
of k points p1, p2, . . . , pk where x[pi] < x[pi+1] for i = 1, 2, . . . , k − 1. A subsequence is increas-
ing if y[pi] < y[pi+1] for i = 1, 2, . . . , k − 1. In the longest increasing subsequence problem, we
want to calculate for each point p ∈ S a value lis(p): the maximum length of an increasing
subsequence whose last point is p.

For example, let us consider the set

S = {(1, 2), (3, 5), (4, 8), (6, 7), (7, 2)}.
In this case, lis((1, 2)) = 1, lis((3, 5)) = 2, lis((4, 8)) = 3, lis((6, 7)) = 3, and
lis((7, 2)) = 1. For example, lis((6, 7)) = 3, because there is an increasing subsequence
(1, 2), (3, 5), (6, 7) whose length is 3.

The longest increasing subsequence problem is a classical algorithm design problem (see e.g.
Knuth 1973, 5.1.4; Fredman 1975), and there are several ways to solve it efficiently. Next, we
discuss a well-known dynamic programming algorithm for the problem, which can be imple-
mented in O(n log n) time using a range query data structure. This algorithm will be used as a
building block in our pattern discovery algorithm.

2.1. Dynamic programming algorithm

We can efficiently solve the longest increasing subsequence problem using a dynamic program-
ming algorithm. To simplify the presentation of the algorithm, we assume that each point in S
has a distinct x coordinate and each y coordinate is an integer between 1 and m where m = O(n).
However, we will later describe how the algorithm can be modified so that there are no such
restrictions.

The idea of the algorithm is to go through the points from left to right (in increasing x coor-
dinate order) and calculate the lis value for each point using the previously calculated values.
More precisely, the algorithm can be implemented as follows, assuming that the points are sorted
by x coordinate:

for i← 1 to n do
lis[pi]← 1
for j← 1 to i− 1 do

if y[pj] < y[pi] then
lis[pi]← max(lis[pi],lis[pj]+ 1)

end if
end for

end for
When processing a point pi, the algorithm initially assumes that lis[pi] = 1. After that, the

algorithm goes through all previously processed points p1, p2, . . . , pi−1 whose lis values are
already known. For each such point, the algorithm checks if the corresponding subsequence
can be extended by adding the current point pi to the subsequence. The final lis value is the
maximum length of a subsequence that ends at pi.

For example, when calculating the value lis((6, 7)) for the input set {(1, 2), (3, 5), (4, 8),
(6, 7), (7, 2)}, we have already calculated the values lis((1, 2)) = 1, lis((3, 5)) = 2 and
lis((4, 8)) = 3. In this case, we can extend the previous subsequences that end at (1, 2) and
(3, 5) because their y values are below 7. The best solution is to extend the subsequence that
ends at (3, 5), which yields the value lis((6, 7)) = lis((3, 5))+ 1 = 3.
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The running time of the above algorithm is O(n2) because it consists of two loops that go
through the input points. Next, we improve the running time of the algorithm by removing the
inner loop using a range query data structure.

2.2. Improving the algorithm using range queries

To improve the running time of the dynamic programming algorithm, we use a range query data
structure that maintains an array of m numbers (where m is the maximum y coordinate) and can
efficiently process the following operations:

• setVal(k, x): the array value at position k becomes x
• getMax(a, b): find the maximum value between array positions a and b

We assume that the array elements are indexed 1, 2, . . . , m and every array value is initially 0.
Each array position corresponds to a y value in the point set. Using such a data structure, we can
implement the algorithm as follows:

for i← 1 to n do
lis[pi]← getMax(1, y[pi]− 1)+ 1
setVal(y[pi],lis[pi])

end for
The range query structure contains for each possible y value the maximum length of an increas-

ing subsequence whose last point has that y value. To calculate a value lis[pi], the algorithm
efficiently finds the length of a previous subsequence whose last point has a y value between 1
and y[pi]− 1, and adds one to that value (if y[pi] = 1, we assume that getMax(1, 0) = 0). After
that, the algorithm updates the range query structure so that it can be used in future searches.

Let us consider again our previous example where the input set consists of points
{(1, 2), (3, 5), (4, 8), (6, 7), (7, 2)}. In this case m = 8 and the initial range query array is
[0, 0, 0, 0, 0, 0, 0, 0]. When the algorithm reaches the point (6, 7), it has already calculated the
values lis((1, 2)) = 1, lis((3, 5)) = 2 and lis((4, 8)) = 3 and the range query array is
[0, 1, 0, 0, 2, 0, 0, 3]. Then, to calculate the value of lis((6, 7)), the algorithm performs a range
query getMax(1, 6) = 2 and correctly detects an increasing subsequence of length 3. After that,
the range query array becomes [0, 1, 0, 0, 2, 0, 3, 3].

The efficiency of the algorithm depends on the operations of the range query structure. It turns
out that we can implement both setVal and getMax in O(log m) time. Since we have assumed
that m = O(n), this yields an O(n log n) time algorithm. More precisely, we can use a segment
tree data structure where each leaf has an array value and each internal node has the maximum
value in its subtree (de Berg et al. 2010, Chapter 10; Laaksonen 2017, Chapter 9). For example,
Figure 2 shows the segment tree that corresponds to the array [0, 1, 0, 0, 2, 0, 3, 3]. Since each
array value belongs to O(log n) subtrees and any range can be divided into O(log n) distinct
subranges that correspond to segment tree nodes, both the operations can be implemented in
O(log n) time.

2.3. Generalizing the algorithm

So far we have assumed that every point has a distinct x coordinate and every y coordinate is an
integer between 1 and m where m = O(n). However, it is possible to implement the algorithm
without such restrictions.

First, to support multiple points with the same x coordinate, we can defer the setVal opera-
tions using a buffer of updates. After calculating a lis value, we add the point pi to the buffer
instead of directly performing a setVal operation. Then, always when the x coordinate of a
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Figure 2. A segment tree that corresponds to the array [0, 1, 0, 0, 2, 0, 3, 3]. Using this data structure, we can efficiently
calculate the maximum value in an array range and update an array value. Both the operations can be implemented in
O(log n) time.

point is greater than the x coordinate of the previous point, we perform setVal operations for
all points in the buffer and then clear the buffer. This ensures that there will be no subsequences
where two points have the same x coordinate. We can implement the buffer using a stack, and
each point will be added to the buffer and removed from the buffer at most once during the
algorithm.

Then, to allow arbitrary y coordinates, we can first compress the y coordinates so that they
become consecutive integers. This can be done by creating a list that contains all y coordinates
of the input points and then sorting the list. After that, we can modify the y coordinates so
that the smallest coordinate becomes 1, the second smallest coordinate becomes 2, and so on.
For example, if the input point set is {(1, 500), (4,−5), (5, 8)}, it becomes {(1, 3), (4, 1), (5, 2)}.
Since there are at most n distinct coordinates, each coordinate will be an integer between 1 and
n after the compression. This works because the algorithm only uses the order of the coordinates
and not their exact values.

We can efficiently implement both the generalizations so that the resulting algorithm still
works in O(n log n) time.

3. Finding repeating patterns

In this section, we present our algorithm for finding repeating patterns in polyphonic music.
The algorithm solves the pattern discovery problem by reducing it to instances of the longest
increasing subsequence problem. Given a musical work represented as a set S of two-dimensional
points, the algorithm calculates for each note pair the maximum length of a repetition that ends
at those notes.

Each point p ∈ S corresponds to a musical note. The x coordinate x[p] denotes the onset time of
the note, and the y coordinate y[p] denotes the pitch of the note. A repetition of length k consists
of two patterns a1, a2, . . . , ak ∈ S and b1, b2, . . . , bk ∈ S where x[ai] < x[ai+1], x[bi] < x[bi+1]
and y[ai+1]− y[ai] = y[bi+1]− y[bi] for i = 1, 2, . . . , k − 1, i.e. the onset times in both patterns
are increasing and each corresponding note pair in the patterns has the same interval.
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We first describe the idea of the algorithm in a general setting where the onset-time differences
in the patterns are not restricted. After that, we show how the algorithm can be used to find exact
repetitions where x[ai+1]− x[ai] = x[bi+1]− x[bi] for i = 1, 2, . . . , k − 1, creating an alternative
to the traditional SIA algorithm. Finally, we present more advanced windowed variants of the
algorithm.

3.1. Reduction to increasing subsequences

The algorithm is based on two main ideas. First, the algorithm divides the repeating pattern
discovery problem into subproblems, each of which has a fixed interval between the two patterns.
Second, the algorithm uses an onset-time-pair representation to solve each subproblem using the
longest increasing subsequence algorithm.

First the algorithm creates a collection of sets P0, P1, P2, . . . where Pi = {(a, b) | a ∈ S, b ∈
S, y[b]− y[a] = i}, i.e. Pi contains all note pairs (a, b) whose interval y[b]− y[a] is constant i.
The algorithm processes each set Pi separately and finds all repetitions among each set. When
processing a set Pi, the algorithm creates an onset-time-pair representation Ci = {(x[a], x[b]) |
(a, b) ∈ Pi}. Each point in Ci consists of x coordinates of a note pair in Pi. The idea of this rep-
resentation is that each increasing subsequence in Ci corresponds to a repetition (with interval i)
in Pi. The algorithm determines for each point (x[a], x[b]) the length of the longest increasing
subsequence that ends at that point. This increasing subsequence corresponds to a maximum
length repetition in S whose last note pair is (a, b).

As an example, consider a point set

S = {(2, 2), (2, 4), (2, 5), (3, 6), (4, 4), (5, 3), (5, 6), (6, 1), (6, 5)}.

Figure 3(a) shows a repetition of length 3 that consists of patterns [(2, 2), (4, 4), (5, 3)] and
[(2, 4), (3, 6), (6, 5)]. In this repetition the interval between the patterns is 2. The algorithm
detects this repetition when it first creates the set

P2 = {((2, 2), (2, 4)), ((2, 2), (4, 4)), ((2, 4), (3, 6)), ((2, 4), (5, 6)), ((4, 4), (3, 6)),

((4, 4), (5, 6)), ((5, 3), (2, 5)), ((5, 3), (6, 5)), ((6, 1), (5, 3))},

which consists of all note pairs whose interval is 2, and then the set

C2 = {(2, 2), (2, 3), (2, 4), (2, 5), (4, 3), (4, 5), (5, 2), (5, 6), (6, 5)},

which contains the onset-time-pair representation of the notes. Figure 3(b) shows the increasing
subsequence [(2, 2), (4, 3), (5, 6)] in C2, which corresponds to the repetition in Figure 3(a). This
is a longest increasing subsequence that ends at point (5, 6) in C2, which means that the corre-
sponding repetition is a maximum length repetition with interval 2 that ends at notes (5, 3) and
(6, 5) in S. Note that there are also other longest increasing subsequences that end at point (5, 6)

in C2; Table 1 shows all such subsequences and the corresponding repeating patterns.
The total running time of the algorithm is O(n2 log n). First, the algorithm can generate the Pi

sets in O(n2 log n) time, because the total number of note pairs in S is O(n2) and it is possible to
sort the pairs and create the sets in O(n2 log n) time. After that, using the longest increasing sub-
sequence techniques discussed in Section 2, the algorithm can process each set Pi in O(k log k)

time, where k denotes the number of note pairs in Pi. Since the sum of all k values is O(n2), the
total time required to process all sets is O(n2 log n), regardless of the number of note pairs in
each set.
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Figure 3. Reduction to the longest increasing subsequence problem for intervals of size two. (a) A repeating pattern
that consists of note sequences [(2, 2), (4, 4), (5, 3)] and [(2, 4), (3, 6), (6, 5)]. (b) The corresponding longest increasing
subsequence [(2, 2), (4, 3), (5, 6)] in the onset-time-pair space.

Table 1. In the example of Figure 3, there are a total of four longest increasing
subsequences of length 3 whose last point is (5, 6) in the onset-time-pair representation C2.

Longest increasing subsequence Repeating pattern occurrence

[(2, 2), (4, 3), (5, 6)] [(2, 2), (4, 4), (5, 3)] and [(2, 4), (3, 6), (6, 5)]
[(2, 2), (4, 5), (5, 6)] [(2, 2), (4, 4), (5, 3)] and [(2, 4), (5, 6), (6, 5)]
[(2, 3), (4, 5), (5, 6)] [(2, 4), (4, 4), (5, 3)] and [(3, 6), (5, 6), (6, 5)]
[(2, 4), (4, 5), (5, 6)] [(2, 2), (4, 4), (5, 3)] and [(4, 4), (5, 6), (6, 5)]

Note: This table shows all such subsequences and for each subsequence the corresponding repeating
patterns. The first entry in the table corresponds to the repeating pattern shown in Figure 3.

3.2. Finding exact repetitions

In the exact version of the problem it is required that x[ai+1]− x[ai] = x[bi+1]− x[bi] for
i = 1, 2, . . . , k − 1. The traditional way to solve the problem is to use the SIA algorithm
(Meredith, Lemström, and Wiggins 2002) which first generates and sorts a list of translation vec-
tors between all note pairs in S and then detects repeating patterns as blocks of equivalent vectors
in the list. In other words, each block of equivalent vectors corresponds to a maximal translatable
pattern of notes. The SIA algorithms works in O(n2 log n) time because the list consists of O(n2)

vectors.
We can also approach the exact problem using the longest increasing subsequence technique.

In this case, we want to find subsequences whose slope is 1, i.e. the points are located on
the same diagonal. For example, Figure 4(a) shows an exact repetition that consists of pat-
terns [(2, 4), (4, 4), (5, 3)] and [(3, 6), (5, 6), (6, 5)], and Figure 4(b) shows the corresponding
increasing subsequence [(2, 3), (4, 5), (5, 6)] in C2. All the points in C2 are located on the same
diagonal.

This variant of the longest increasing subsequence problem is easier to solve than the general
problem: we can divide the points in Ci into diagonals where each diagonal has all points (a, b)

that have a constant x[a]− x[b] value. For example, in Figure 4(b), all points in the increasing
subsequence are located on a diagonal where x[a]− x[b] = −1. To find a maximum length rep-
etition, we can simply generate for each diagonal an increasing subsequence that consists of all
points on the diagonal.

We can go through the diagonals by sorting the pairs by the value of x[a]− x[b], so the
algorithm works in O(n2 log n) time. In fact, the algorithm works almost like the SIA algorithm:
each diagonal in the onset-time-pair representation consists of points where both x[a]− x[b]
and y[a]− y[b] are equivalent, which holds exactly when the translation vectors are equivalent.
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Figure 4. Finding exact repetitions through longest increasing subsequences. (a) A repeating pattern that consists of
note sequences [(2, 4), (4, 4), (5, 3)] and [(3, 6), (5, 6), (6, 5)]. (b) The corresponding longest increasing subsequence
[(2, 3), (4, 5), (5, 6)] in C2. The repetition is exact, so the slope of the subsequence is 1.

Thus, each diagonal in our algorithm corresponds to a maximal translatable pattern in the SIA
algorithm, and the main difference between the algorithms is that our algorithm separately solves
a subproblem for each vertical translation (constant interval) while SIA simply processes a sorted
list of all vectors.

Note that this exact version of our algorithm finds all maximal translatable patterns, like the
SIA algorithm. In other versions of the algorithm, repeating patterns cannot be described using
translation vectors because onset-time differences are allowed.

3.3. Windowed algorithms

In practice, we often want to discover repeating patterns that have some restrictions in the onset
time differences. For example, a pattern where the onset-time difference between two consecu-
tive notes is one minute is probably not musically interesting. One approach for that is to define a
window length w and only consider patterns where x[ai+1]− x[ai] ≤ w and x[bi+1]− x[bi] ≤ w
for i = 1, 2, . . . , k − 1, i.e. the onset-time difference between any two consecutive notes in both
patterns is at most w.

It turns out that we can extend our general pattern discovery algorithm so that it supports a win-
dow length and still works in O(n2 log n) time. To do that, we need a restricted longest increasing
subsequence algorithm which ensures that the x and y difference between two consecutive points
is at most w. Figure 5 shows the difference between the general and windowed algorithm in the
onset-time-pair representation. When we process the point (6, 5) and a window length w = 2 is
used, we can only extend subsequences where x is between 4 and 6 and y is between 3 and 5.

To support the window length in the y dimension, a small modification to the general algorithm
is needed. The general algorithm uses the formula getMax(1, y[pi]− 1)+ 1 to calculate the
length of an increasing subsequence that ends at point pi. Since the first parameter in the range
query is 1, any y value below y[pi] is allowed. Thus, to restrict the y difference, we can modify
the query so that the first parameter is max(1, y[pi]− w) instead of 1. After this change, the
algorithm only considers subsequences where the y difference between two consecutive points
is at most w.

The remaining task is to also support the window length in the x dimension. This can be done
by removing values from the range query structure after the x coordinate of the corresponding
point is no longer inside the window. We can create for each y value an additional data structure
that contains all lis values of points that are inside the current window and have that y coordi-
nate. The data structure must allow efficient insertion and removal of elements and finding the
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Figure 5. The gray area shows the possible locations of the previous point in a longest increasing subsequence. (a) In
the general algorithm, we can choose any point whose x and y coordinates are smaller. (b) In the windowed algorithm,
we can only choose points where the x and y difference is at most w. In this example, w = 2.

maximum element; we can use a balanced binary search tree that supports all those operations
in O(log n) time. When a point moves outside the window, we first remove the point from the
data structure and then update the corresponding value in the range query structure by finding
the maximum value for the y coordinate. Since each point is added and removed at most once,
the resulting algorithm works in O(n2 log n) time like the original algorithm.

Another way to restrict the patterns is to require that the onset-time differences in correspond-
ing pattern positions do not differ too much. This can be done using an additional parameter d
and require that |(x[ai+1]− x[ai])− (x[bi+1]− x[bi])| ≤ d for i = 1, 2, . . . , k − 1, i.e. the onset-
time difference is always at most d. For example, if d = 1 and the onset-time difference between
two notes in the first pattern is 5, then the onset-time difference between the corresponding notes
in the second pattern must be between 4 and 6. If d = 0, only exact repetitions are allowed.

We can support the d parameter by using two range queries: one in the usual onset-time-pair
point set and the other in a rotated point set. Figure 6(a) shows the possible point locations using
the d parameter, and Figure 6(b,c) represents this area as two rectangles. In both cases, we can
use the windowed longest increasing subsequence algorithm to find the repetitions (in the second
case we rotate the point set by 45 degrees). Both queries can be processed in O(log n) time using
two range query structures, so the resulting algorithm works in O(n2 log n) time.

Figure 6. (a) The gray area corresponds to repetitions where the onset-time difference in corresponding pattern posi-
tions is at most d (here d = 1). (b,c) We can find the repetitions using two windowed queries, one in the original point
set and one in a rotated point set.
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3.4. Algorithm implementation

We have implemented our algorithm in C++, and the source code is available in our GitHub
repository (https://github.com/c-brahms/lis-algorithms). The implemented algorithm supports
general search without restrictions, exact search and windowed search. The implementation
shows that the algorithm works in practice, and it can efficiently process data sets of thousands
of notes.

4. Conclusions

In this paper, we have described a new repeating pattern discovery algorithm that can be used to
find both exact and time-warped repetitions in O(n2 log n) time where n is the number of notes
in a musical work. The algorithm is based on an onset-time-pair representation which can be
used to reduce the pattern discovery problem to instances of the longest increasing subsequence
problem.

In the exact pattern discovery problem, our algorithm can be seen as an alternative (in the
two-dimensional case) to the traditional SIA algorithm that also works in O(n2 log n) time. The
main contribution of our algorithm is that it also solves the more difficult time-warped variant
of the problem in O(n2 log n) time and supports windows that make the algorithm useful when
analyzing real musical inputs.

A general problem in repeating pattern discovery is that many of the detected patterns are
usually not musically interesting. This problem can be even more serious in time-warped search
because the number of patterns can be large even when the window parameters are well cho-
sen. Thus, in practice, after finding potential repeating patterns, the next step would be to filter
musically interesting patterns. In addition, there could be a need for an algorithm like SIATEC
that finds all translated occurrences of each maximal translatable pattern. In time-warped search,
there are no translation vectors so there cannot be a direct equivalent for SIATEC, but it would
still be possible to use a time-warped pattern matching algorithm (Lemström and Laitinen 2011)
to find occurrences of each pattern found by the main algorithm.

A future challenge would be to extend the algorithm so that it also supports time-scaled
repeating pattern discovery. In this variant of the problem, we require that x[ai+1]− x[ai] =
α|x[bi+1]− x[bi]| for i = 1, 2, . . . , k − 1 where α is some constant (each repetition can have
an arbitrary α value) which equals the slope of an increasing subsequence (Figure 7 shows

Figure 7. Time-scaled repeating pattern discovery problem. (a) A repeating pattern that consists of note sequences
[(3, 5), (4, 5), (5, 6)] and [(2, 2), (4, 2), (6, 3)]. (b) The corresponding longest increasing subsequence [(2, 3), (4, 5), (5, 6)]
in C3. The slope of the subsequence equals the scaling parameter α = 1/2.
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an example where α = 1/2). Note that time-scaled and time-warped problems are very dif-
ferent problems from the viewpoint of algorithm design. Time-warped algorithms are usually
based on dynamic programming, but this approach is not possible in time-scaled problems and
they seem to be more difficult: the best known algorithms for the easier time-scaled pattern
matching problem (Lemström 2010) already require quadratic time. Using the longest increas-
ing subsequence technique, we can solve the time-scaled repeating pattern discovery problem
in O(n4 log n) time by going through all O(n2) possible α values and performing an individ-
ual O(n2 log n) search for each of them. However, such an algorithm would not be efficient
enough to be used with real musical inputs, so a better approach would be needed to support this
invariance.
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