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Abstract. An algorithm that discovers the themes, motives and other
perceptually significant repeated patterns in a musical work can be used,
for example, in a music information retrieval system for indexing a col-
lection of music documents so that it can be searched more rapidly. It
can also be used in software tools for music analysis and composition and
in a music transcription system or model of music cognition for discov-
ering grouping structure, metrical structure and voice-leading structure.
In most approaches to pattern discovery in music, the data is assumed to
be in the form of strings. However, string-based methods become ineffi-
cient when one is interested in finding highly embellished occurrences of
a query pattern or searching for polyphonic patterns in polyphonic mu-
sic. These limitations can be avoided by representing the music as a set
of points in a multidimensional Euclidean space. This point-set pattern
matching approach allows the maximal repeated patterns in a passage of
polyphonic music to be discovered in quadratic time and all occurrences
of these patterns to be found in cubic time. More recently, Clifford et
al. [1] have shown that the best match for a query point set within a
text point set of size n can be found in O(n log n) time by incorporat-
ing randomised projection, uniform hashing and FFT into the point-set
pattern matching approach. Also, by using appropriate heuristics for se-
lecting compact maximal repeated patterns with many non-overlapping
occurrences, the point-set pattern discovery algorithms described here
can be adapted for data compression. Moreover, the efficient encodings
generated when this compression algorithm is run on music data seem
to resemble the motivic-thematic analyses produced by human experts.

Keywords. Content-based music information retrieval, point-set pat-
tern matching

1 Introduction

An algorithm that discovers the themes, motives and other perceptually sig-
nificant and memorable repeated patterns in a musical work can be used, for
example, in a music information retrieval system for indexing a collection of
music documents so that it can be searched more rapidly. Perhaps less obvi-
ously, such an algorithm can also be used to aid with metrical structure and

Dagstuhl Seminar Proceedings 06171
Content-Based Retrieval
http://drops.dagstuhl.de/opus/volltexte/2006/652

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 D. Meredith

grouping structure analysis, since the different occurrences of a significant re-
peated pattern usually occur at corresponding positions within a bar or group
[2, pp. 51, 75]. A pattern discovery algorithm could also be used in a tool for
assisting composition to suggest ways in which the patterns in the music already
composed may be developed further.

A number of influential music analysts and music psychologists have stressed
that discovering the important repetitions in a passage of music is an essential
step towards achieving a rich understanding of it. For example, Heinrich Schenker
claimed that repetition “is the basis of music as an art” [3, p. 5], Ian Bent
proposed that “the central act” in all forms of music analysis is “the test for
identity” [4, p. 5] and Lerdahl and Jackendoff [2, p. 52] state that

the importance of parallelism [i.e., repetition] in musical structure can-
not be overestimated. The more parallelism one can detect, the more
internally coherent an analysis becomes, and the less independent in-
formation must be processed and retained in hearing or remembering a
piece.

However, although detecting the significant repetitions in a passage of music
is essential if one wishes to understand it, the vast majority of the repeated
patterns that occur in a typical musical passage are neither intended by the
composer nor perceived by the listener. Consider, for example, Figure 1 which
shows the first six bars of Rachmaninoff’s Prelude in C] minor, Op. 3, No. 2. In
this passage, the listener is obviously intended to hear that bar 4 is a repetition of
bar 3, that bars 5 and 6 are modified repetitions of bar 3 and that the descending
bass figure in bars 1-2 is repeated in bars 3-4, 4-5 and 5-6. However, it seems
very unlikely that Rachmaninoff intended us to hear that the pattern consisting
of the notes in circles is repeated 7 crotchets later and transposed up a minor
9th to give the pattern consisting of the notes in squares.

Fig. 1. Example of a repeated pattern that is neither intended by the composer
nor heard by the listener. (From the beginning of Rachmaninoff’s Prelude in C]
minor, Op. 3, No. 2.)
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To be a useful tool and a plausible model of music cognition, a computer
program for discovering the significant repetitions in a passage of music should be
able to find all and only those repetitions that an expert listener or music analyst
would consider to be important and interesting. Unfortunately, there are at least
two reasons why this class of “interesting” repetitions is very diverse. First, the
patterns that are involved in such “interesting” repetitions vary widely in their
structural characteristics; and, second, there are many ways of transforming a
musical pattern to give another pattern that is perceived to be a version of it
(for example, it can be truncated, augmented, diminished, inverted, embellished
or even reversed).

I shall now present a couple of examples that illustrate the diversity of the
class of interesting musical repetitions. An interesting repeated pattern may be
a small motive, consisting of just a few notes, or a whole section of a symphonic
movement containing hundreds or even thousands of notes. Figure 2 shows an
example of a small (but important) motive occurring five times (A1–5) in the
first few bars of Barber’s Sonata for Piano, Op. 26. There are a number of points
to note about this motive. First, it only contains notes in the left hand part and,
as it is being played, the right hand part plays a different repeated pattern
whose period is different from that of the bass motive. Second, the different
occurrences of the bass motive are not all at the same transposition (patterns
A4–5 are a perfect fourth higher than A1–3). Third, the duration of the final
octave dyad in each occurrence of the pattern is not always the same. Finally,
the five occurrences are consecutive—that is, nothing happens in the bass part
in between the occurrences of this motive.

Fig. 2. Five consecutive occurrences of a small bass motive in the first few bars
of Barber’s Sonata for Piano, Op. 26.

Now consider Figure 3, which shows the first few bars of Contrapunctus VI
from J. S. Bach’s Die Kunst der Fuge (BWV 1080). This example shows a theme
being transformed by the musical transformations of diminution, transposition



4 D. Meredith

and inversion. The alto part is derived from the bass part by transposing it
up an octave, delaying its start for two and a half bars and halving all the
note durations. If we represented the notes in the music as points in a graph
of pitch against time, then the bass part would be mapped onto the alto part
by translation and then scaling. The soprano part is an inversion of the alto
part. So, in geometric terms, to obtain the soprano part from the bass part,
one would have to reflect the bass part in a horizontal axis and then scale by a
factor of 1/2 parallel to this axis. Note that the three occurrences of the subject
overlap in both time and pitch. Therefore, whereas the patterns in Figure 2 were
“bounding-box” compact, the patterns in Figure 3 are compact only in the sense
that each occurrence contains all the notes that occur between two time points
within a particular voice.

Fig. 3. The opening bars of J. S. Bach’s Contrapunctus VI from Die Kunst der
Fuge (BWV 1080).

2 Problems with the string-based approach to discovering
and matching patterns in music

In many previous approaches to discovering and matching patterns in musical
data, it has been assumed that the music is represented as a set of strings,
with each string representing a voice or part and each symbol within each string
representing a note or an interval between two consecutive notes [5,6,7,8,9]. Also,
the similarity between two musical patterns, represented as strings, has usually
been measured in terms of the edit distance between them, calculated using
dynamic programming [5,8].

A problem arises, however, when one attempts to use this string-based ap-
proach for finding highly embellished variations on a query pattern. Consider,
for example, the two patterns, A and B, shown in Figure 4. B is clearly an embel-
lished variation on the rising arpeggio, A. One might therefore want a pattern
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discovery or pattern matching algorithm to identify A and B as being occur-
rences of the same pattern. However, if A and B are represented as strings in
which each symbol represents the pitch of a note, then the edit distance between
A and B is 9 which is rather large, relative to the sizes of the patterns involved.
In order to recognize B as a match for A, an edit-distance-based algorithm would
therefore have to allow patterns differing by up to 9 edit operations to count as
matches. However, this would probably result in many spurious matches since
there could be many patterns differing by 9 edit operations from A that are not
perceived to be similar to A.

Fig. 4. Pattern B is an embellished variation on pattern A but the edit distance
between A and B is 9 which is large relative to the sizes of the patterns involved.

Another problem with the string-based approach to musical pattern matching
arises when we want to search for patterns in polyphonic music. Specifically, if we
do not know the voice to which each note belongs (e.g., in much piano music) or
if we are interested in patterns containing notes from two or more voices, then
the number of passage-length strings required to represent the passage fully
is exponential in the number of distinct onsets. Moreover, if we don’t search
through all of these strings, then we run the risk of missing certain occurrences
of a query. This is illustrated in Figure 5 which shows a graph of pitch against
time representing the beginning of the folk-song Frère Jacques. Each point in
this figure represents a note and each pair of notes that could be consecutive
within a single string are joined by an arrow. Note that the number of strings
required is multiplied by k each time a note is encountered which is followed by
k notes that start simultaneously.

Fig. 5. Representing fully a passage of unvoiced polyphonic music produces a
combinatorial explosion in the number of strings required. (Figure provided by
Geraint Wiggins.)
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3 Using multidimensional point sets to represent music

The problems described in the previous section can be avoided by using multi-
dimensional point sets instead of strings to represent music and then developing
algorithms to work on these point sets. Figure 7 shows one useful way in which
the two-bar passage in Figure 6 could be represented as a multidimensional point
set. Each 5-tuple in Figure 7 represents a single note. The first element in each
5-tuple gives the onset time of the note. The second element gives the chromatic
pitch which is just 21 less than the MIDI note number of the note. The third
element in each 5-tuple gives the diatonic pitch which is an integer that indi-
cates the position of the note-head of the note on the staff. The fourth element
indicates the duration of the note and the fifth indicates the voice to which the
note belongs.

Fig. 6. The first two bars of J. S. Bach’s Prelude in C minor (BWV 871).

Fig. 7. A five-dimensional point set representation of the music in Figure 6. See
text for explanation.

When searching for patterns or attempting to discover repetitions, however,
it is usually more useful to use a 2- or 3-dimensional projection of such a multi-
dimensional point set, such as the ones shown in Figures 8 and 9. In Figure 8,
each point gives the onset time and chromatic pitch of a note and the patterns A,
B and C in Figure 6 are indicated by rectangles. Note that the three patterns, A,
B and C, clearly sound like versions of the same motive, even though, as shown
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in Figure 8, their chromatic interval structures are different from each other.
One would therefore have to use an approximate matching algorithm to match
these three patterns in the projection shown in Figure 8.

Fig. 8. A 2-dimensional projection of the point set in Figure 7 showing the onset
time and chromatic pitch of each note.

However, in the musical notation in Figure 6, the pitch names of the notes
are carefully chosen so that the similarity between patterns A, B and C is nicely
represented by the fact that they all have the same scale-step structure (i.e.,
a descending step followed by two ascending steps). This can be exploited by
using a 2-dimensional projection of the point set in Figure 7 in which each point
gives the onset time and diatonic pitch of the note (see Figure 9). When this
is done, the three patterns have translation-invariant representations and can
thus be found using a fast, exact-matching algorithm. When analysing tonal
music, a projection like the one in Figure 9 is usually more useful than one like
Figure 8. The process of computing a diatonic pitch representation like the one in
Figure 9 from a chromatic pitch representation like the one in Figure 8 is called
pitch spelling. A number of highly effective algorithms have been developed for
carrying out this process (see [10,11]).

I shall now present a number of algorithms for pattern discovery and pattern
matching in multidimensional point sets that can fruitfully be applied to music
data.

4 SIA: Discovering all the maximal translatable patterns
(MTPs) in a multidimensional point set

The first point-set algorithm to be discussed here is SIA (which stands for Struc-
ture Induction Algorithm) [12]. This algorithm takes as input a multidimensional
point set and discovers, for every vector, the points in this point set that are
mapped onto other points in the point set by that vector. For convenience, let
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Fig. 9. A 2-dimensional projection of the point set in Figure 7 showing the onset
time and diatonic pitch of each note.

us call the complete set of points being analysed the dataset and let a pattern be
any subset of this dataset. We say that a pattern is translatable by a particular
vector within a dataset if it can be translated by that vector to give another
pattern in the dataset. For example, the pattern {a, d} in the dataset in Fig-
ure 10 is translatable within this dataset by the vector 〈1, 0〉. The pattern that
contains all the points in a dataset that are mapped by a particular vector onto
other points in the dataset is called the maximal translatable pattern (MTP) for
that vector in that dataset. For example, the MTP for the vector 〈1, 0〉 in the
dataset in Figure 10 is {a, b, d} and the MTP for the vector 〈1, 1〉 in this dataset
is {a, c}.

Fig. 10. A 2-dimensional dataset containing 6 points.
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SIA discovers all the non-empty MTPs in a dataset. It does this by first
sorting the points in the dataset into lexicographical order and then computing
the vector from each point to each lexicographically greater point. These vectors
are then stored in a table like the one shown in Figure 11. Each vector is stored
with a pointer to the origin point for which it was computed, as indicated by
the arrows in Figure 11.

Fig. 11. A vector table storing the vector from each point to each lexicograph-
ically greater point in the dataset in Figure 10. Note that each vector is stored
with a pointer to the origin point for which it was computed.

The vectors in this table are then sorted into lexicographical order to give
a list like the one shown in Figure 12. The MTP for any vector can be found
simply by reading off the origin points attached to the adjacent occurrences of
that vector in this list. All the non-empty MTPs can therefore be generated by
scanning this list once, printing out the origin datapoint attached to each vector
and starting a new MTP each time the vector changes. The most expensive
step in this algorithm is sorting the vectors which can be done in O(kn2 log n)
time in the worst case for a k-dimensional dataset containing n points. However,
by storing the origin points in a hash table and hashing the vectors to get the
slot indices, this time complexity can be improved to O(kn2) on average. The
algorithm uses O(kn2) space.

5 SIATEC: Discovering all the translationally invariant
occurrences of all the MTPs in a point set

Let’s define the translational equivalence class (TEC) of a pattern in a dataset
to be the set of all the translationally invariant occurrences of that pattern in the
dataset. For example, the TEC that contains the pattern {a, b, d} in Figure 10
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Fig. 12. The list that results when the vectors in the table in Figure 11 are
sorted into lexicographical order. Note that the MTP for any given vector can
be found by reading off the origin points attached to the adjacent occurrences
of that vector in this list.

is {{a, b, d}, {c, e, f}}. A TEC can be specified in a compact form as an ordered
pair, 〈P, V 〉, in which P is one pattern occurrence in the TEC and V is the set of
non-zero vectors that map that occurrence onto other occurrences in the TEC.
For example, the TEC {{a, b, d}, {c, e, f}} in the dataset in Figure 10 could be
represented as the ordered pair 〈{a, b, d}, {〈1, 0〉}〉.

The algorithm SIATEC (which stands for “Structure Induction Algorithm
that finds TECs”) finds all the non-empty TECs in a multidimensional point
set [12]. It does this by first computing a vector table like the one shown in
Figure 13. It then uses the elements below the leading diagonal in this table
to compute all the MTPs in the same way as SIA. The TEC for each MTP
can then be computed by finding the intersection of the columns in this table
that are headed by points in the MTP. For example, the MTP in the dataset
in Figure 10 for the vector 〈1, 1〉 is {a, c}, and this point set is translatable
by the vectors {〈0, 0〉, 〈0, 2〉, 〈1, 1〉}, which is the set intersection of the columns
headed by points a and c in Figure 13. The TEC for this MTP can therefore be
represented by the ordered pair 〈{a, c}, {〈0, 2〉, 〈1, 1〉}〉.

Fig. 13. The table of vectors computed by SIATEC for the dataset in Figure 10.
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Finding all the vectors by which a pattern of size m in a k-dimensional
dataset of size n is translatable takes O(kmn) time if we do this by computing
the intersection of the columns in the vector table headed by the points in the
pattern. Let’s suppose that the number of MTPs computed using SIA for a
dataset of size n is ` and that the size of each of these MTPs is mi, 1 ≤ i ≤ `.
From Figures 11 and 12, it is obvious that

∑̀
i=1

mi ≤
n(n − 1)

2
.

Therefore, the time taken by SIATEC to compute all the occurrences of all the
MTPs (after the MTPs have been found using SIA) is

O

(∑̀
i=1

kmin

)
≤ O

(
kn2(n − 1)

2

)
.

Therefore, the worst-case running time of SIATEC is O(kn3) and its worst-case
space complexity is O(kn2).

6 Experimental running times of SIA and SIATEC

SIA and SIATEC were implemented in C and run on a 500MHz Sparc on 52
datasets ranging in size from 6 to 3456 points. The dimensionality of the datasets
ranged from 2 to 5. Figures 14 and 15 show the results of this experiment for
SIA and SIATEC, respectively. As can be seen in these graphs, the observed
running times were in close agreement with the calculated time complexities. It
took less than 2 minutes for SIA to process a piece containing 3500 notes and
around 13 minutes for SIATEC to process a piece with 2000 notes.

7 Using heuristics to isolate the interesting MTPs

A dataset of size n contains 2n distinct subsets whereas SIA generates fewer than
n2/2 patterns. This implies that, for a passage of music containing at least a few
hundred notes, SIA selects and generates only a very small fraction of all the
patterns in the piece. It has also been found that many interesting patterns are
either found by SIA or straightforwardly derivable from patterns found by SIA.
However, many of the patterns found by SIA are not interesting. For example,
SIA found around 70000 MTPs in Rachmaninoff’s Prelude in C] minor but a
music analyst would probably be interested in only about 100 or so of these. This
implies that we need to design heuristics for selecting the interesting patterns in
the output of SIA and SIATEC.

It is possible to go some way towards isolating the themes and motives in a
piece of music by using just three simple heuristics: coverage, compactness and
compression ratio.
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Fig. 14. Experimental running times of SIA on a collection of 2-dimensional
datasets. The solid line has the equation t = Cn2 log n where C is a suitably
chosen constant.

Fig. 15. Experimental running times of SIATEC on a collection of 2-dimensional
datasets. The solid line has the equation t = Cn3 where C is a suitably chosen
constant.
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The coverage of a pattern is the number of distinct points in the dataset in
occurrences of the pattern. For example, the coverage of the triangular pattern
in Figure 16a is 6 whereas the coverage of the same pattern in Figure 16b is 9. In
general, the coverage of a pattern is greater for larger, non-overlapping patterns
that occur frequently. If we represent a passage of music as a 2-dimensional
dataset like the ones in Figures 8 and 9, then musical themes generally seem to
have relatively high coverage.

The compactness of a pattern is the ratio of the number of points in the pat-
tern to the number of points in the region spanned by the pattern. Obviously,
the value of compactness depends on how we define “the region spanned by a
pattern”. For example, we can define it to be the bounding box of the pattern in
a pitch-vs.-onset-time representation of the music. If we do this, then the kite-
shaped pattern consisting of the round dots in Figure 16d has a compactness of
2/5. However, we could also define the region spanned by a pattern to be the
segment of the music containing all the notes whose onset times are greater than
or equal to that of the first note in the pattern and less than or equal to that
of the last note in the pattern. If we do this, then the compactness of the same
kite-shaped pattern in Figure 16 becomes 1/3 (see Figure 16c). Alternatively,
we could define the region spanned by a pattern to be the convex hull of the
pattern in a pitch-vs.-onset-time representation, in which case, the compactness
of the same pattern becomes 2/3 (see Figure 16e). It seems that musical themes
generally have at least one occurrence with relatively high compactness. How-
ever, other occurrences of the theme may be highly embellished and thus have
lower compactness.

Fig. 16. Examples illustrating coverage, compactness and compression ratio.

Another interesting heuristic, that seems to be useful for isolating themes, is
the compression ratio that can be achieved by representing the set of points cov-
ered by all the occurrences of a pattern by specifying just one occurrence of the
pattern together with all the non-zero vectors by which the pattern is translat-
able within the dataset. For example, by doing this with the triangular pattern
in Figure 16a, we achieve a compression ratio of 6/5. However, in Figure 16b,
the same pattern can be used to achieve a compression ratio of 9/5.
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8 COSIATEC: Data compression using SIATEC

The heuristics described in the previous section can be used in conjunction with
SIATEC to generate a compressed or efficient representation of a dataset. The
flow-chart in Figure 17 describes the working of the COSIATEC algorithm. This
algorithm takes a multidimensional dataset as input and generates a list of TECs
that, taken together, cover the input dataset without any overlapping. Each TEC
in the output of COSIATEC is represented as an ordered pair, 〈P, V 〉, where P
is a pattern in the TEC and V is the set of non-zero vectors by which P is
translatable within the dataset. As shown in Figure 17, COSIATEC first runs
SIATEC on the complete dataset, generating a list of TECs in 〈P, V 〉 format. The
heuristics described in the previous section are then used to select the “best” of
these TECs and this best TEC is printed out in the compact 〈P, V 〉 format. All
the points covered by this best TEC are then removed from the dataset. If the
dataset is now empty, then the algorithm terminates. If there are still points left
in the dataset, the process is repeated with SIATEC being run on the remaining
points. Obviously, the degree of compression achieved depends on the amount
of repetition in the dataset.

Fig. 17. The COSIATEC data compression algorithm.

9 Using COSIATEC for finding themes and motives in
music

The COSIATEC algorithm just described was run on diatonic pitch representa-
tions (like the one in Figure 9) of the 15 Two-Part Inventions (BWV 772–786)
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by J. S. Bach. The efficient representations generated by COSIATEC for these
pieces resembled to an encouraging degree thematic/motivic analyses of the type
that one might expect from an expert music analyst. For example, Figure 18
shows the patterns that were generated by COSIATEC on its first iteration for
three of the inventions. In each case, the pattern found is a prominent repeated
motive in the piece. In particular, the musicologists, Malcolm Boyd [13, p. 96]
and Laurence Dreyfus [14, pp. 14–17], both identify the pattern in Figure 18a as
being an important motive in this piece. Figure 19 shows the patterns generated
by COSIATEC on the second iteration for the same three inventions. Again,
the patterns generated are all prominent motives in their respective pieces. For
example, Figure 19a is the subject of BWV 772.

Fig. 18. The patterns generated on the first iteration of COSIATEC for three
of J. S. Bach’s Two-Part Inventions (a: BWV 772; b: BWV 774; c: BWV 775).

Fig. 19. The patterns generated on the second iteration of COSIATEC for three
of J. S. Bach’s Two-Part Inventions (a: BWV 772; b: BWV 774; c: BWV 775).

10 SIAM: Finding the maximal matches of a query
pattern in a dataset

SIA can easily be adapted for point set pattern matching—or, more specifically,
for finding all the maximal matches under translation of a query point set of size
m within some dataset of size n. The SIAM algorithm finds, for each possible
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vector, the best match for a k-dimensional query pattern in a k-dimensional
dataset [15,16,17]. Let’s suppose, for example, that we want to find the best
match, for each possible vector, of the query pattern in Figure 20 in the dataset
in Figure 21. SIAM first sorts the points in the query pattern and the points in
the dataset into lexicographical order. Then it computes the vector from each
query pattern point to each dataset point, storing these vectors in a vector table
as shown in Figure 22. Note that each vector is stored with a pointer to the
query point for which it was computed. Then SIAM sorts the vectors in this
table to get a list as shown in Figure 23. The maximal match for a given vector
is then given by the query points attached to the consecutive occurrences within
this list of that vector.

Fig. 20. An example query point set for input to SIAM.

Fig. 21. An example dataset for input to SIAM.

This algorithm runs in O(knm log(nm)) time and O(knm) space in the worst
case. However, by storing the origin points in a hash table and hashing the vectors
to get the slot indices, the average time complexity can be reduced to O(knm).
Note that the näıve method for accomplishing SIAM’s task, involving trying all
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possible alignments between the query and the dataset and then seeing which
query points match up for each alignment, requires O(knm2) time.

Fig. 22. The vector table generated by SIAM for the query point set in Figure 20
and the dataset in Figure 21.

11 Further developments of SIAM

Ukkonen, Lemström and Mäkinen developed some new algorithms based on
SIAM [18]. They present music retrieval algorithms that work not only on point
sets but also sets of horizontal line segments in a pitch-time graph (i.e., “piano-
roll” representations). Given two point (or line-segment) sets, P and T , of sizes
m and n, respectively, they consider the following three problems:

P1. Find all translations of P such that all the onsets in P match with onsets
in T .

P2. Find all translations of P such that some of the onsets in P match with
onsets in T .

P3. Find translations of P that maximise the overlap between the line segments
in P and the line segments in T .

Ukkonen et al. [18] provide

1. an algorithm that solves P1 in O(n) average time (O(mn) in the worst case)
and O(m) working space;

2. an algorithm that solves P2 in O(mn log m) time and O(m) space; and
3. an algorithm that solves P3 in O(n log n + mn log m) time and O(n + m)

space.

All three algorithms are based on a sweepline-like scanning of T [19] and as-
sume that the points (or line segments) in P and T have been sorted into
lexicographic order by onset time. P2 is very similar to the problem solved
by SIAM but it is not precisely the same, as SIAM finds all the non-empty
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Fig. 23. The list which results when the vectors in Figure 22 are sorted into
lexicographical order. The maximal match for any given vector can be found by
reading off the query points attached to consecutive occurrences of that vector
in this list.

maximal matches of a query point set P in a text point set T . Neverthe-
less, the technique used in their solution to P2 for reducing the space com-
plexity from O(knm) to O(m) could also be employed in SIAM. Implementa-
tions of the algorithms described by Ukkonen et al. [18] are available online at
http://www.cs.helsinki.fi/group/cbrahms/demoengine/.

12 Using a fast, randomised version of SIAM for
document-level retrieval

Clifford et al. [1] have shown that finding the size of the largest maximal match
for a query point set in a dataset is 3SUM-hard and therefore unlikely to be
solvable in better than quadratic time. However, they have also shown that
the problem of multidimensional point-set matching can be reduced to that of
1-dimensional binary wildcard matching. Specifically, they present a new, SIAM-
based algorithm, called MSM, in which the data is first randomly projected onto
a line in 1 dimension. The length of the data is then reduced using universal
hashing. Then the Fast Fourier Transform is used to do binary wildcard matching
on the hashed data. Finally, the size of the best match can be checked in O(m)
time to find exactly how many points match at the location that can be inferred
from that match. The worst-case time complexity of this algorithm is O(n log n)
(i.e., independent of the size of the query point set).

The size of the largest maximal match generated by MSM can be used as a
measure of the similarity between any two point sets. It was used in this way
on a document-level music information retrieval task in which each of 480 query

http://www.cs.helsinki.fi/group/cbrahms/demoengine/
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documents were searched for in a database containing 2338 documents. Each
query document in this test was a representation of a Bach Chorale in which
certain notes had been deleted or transposed. All the documents were represen-
tations of musical scores, so the onset times and durations in the documents were
strictly proportional to their notated values. The performance of the algorithm
was compared with that of the OMRAS algorithm [20] and the precision-recall
curves for the two algorithms are shown in Figure 24. Note that, on this partic-
ular database which consisted only of encodings with no temporal perturbation,
the new MSM algorithm proposed by Clifford et al. [1] achieved almost perfect
precision-recall results.

Fig. 24. 11-pt precision-recall curves for OMRAS and MSM when the two algo-
rithms were used to carry out a document-level retrieval task in which each of
480 queries was searched for in a database of 2338 musical score encodings. Each
query represented a Bach Chorale in which some of the notes had been deleted
or transposed. See [1] for details.

The running time of MSM was then compared with that of the largest com-
mon subset algorithm described by Ukkonen et al. [18] by running both algo-
rithms on prefixes of various sizes of the first movement of Beethoven’s Third
Symphony (‘Eroica’). The time taken to match each prefix against itself was
measured and the results are shown in Figure 25. As can be seen in this figure,
MSM was nearly two orders of magnitude faster than Ukkonen et al.’s largest
common subset algorithm on this task. (Note that the vertical axis has a log
scale in this graph.)
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Fig. 25. Results of timing experiment comparing MSM with Ukkonen et al.’s
[18] largest common subset algorithm. Note that vertical axis has a log scale.
See [1] for details.

13 Summary

An algorithm that discovers the significant themes and motives in a musical work
could be used in a music information retrieval system for indexing a collection of
documents so that it can be searched more rapidly. Moreover, music analysts and
psychologists agree that identifying the significant repeated themes and motives
in a musical work is an essential step in achieving a rich understanding of it. A
musical pattern discovery algorithm can therefore form an essential component
in a computational model of music cognition.

Unfortunately, the vast majority of repeated patterns in music are neither
intended by the composer nor heard by the listener. An algorithm for discovering
the significant repetitions in a musical work must therefore be able to select only
those repetitions that would be interesting to an expert listener or music analyst.
This problem of selecting only the interesting repeated patterns is made more
difficult by the fact that the class of interesting musical repetitions is a very
diverse set. There are at least two reasons for this. The first is that the patterns
involved in such repetitions vary widely in their structural characteristics. The
second is that there are many ways of transforming a musical pattern to obtain
a different pattern that is perceived to be a version of the first.

Most previous approaches to pattern matching and pattern discovery in mu-
sic have been based on the assumption that the musical data will be in the
form of strings. However, problems arise when one attempts to use string-based
algorithms for finding highly embellished variations on a query pattern or for
discovering patterns in polyphonic music in which the voice of each note is un-
known.

These problems can be avoided by using multidimensional point sets in-
stead of strings to represent music. In this paper, a number of algorithms have
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been described for processing music represented as point sets. Specifically, an
O(kn2 log n)-time algorithm called SIA was described for discovering all the
maximal translatable patterns in a k-dimensional point set of size n. Also,
an O(kn3)-time algorithm called SIATEC was presented for discovering all the
translationally invariant occurrences of all the maximal translatable patterns in
a k-dimensional point set of size n.

Unfortunately, many of the patterns found when SIA and SIATEC are run
on music data are not interesting. Three heuristics (coverage, compactness and
compression ratio) were therefore proposed for identifying those patterns in the
output of SIA and SIATEC that correspond to themes, motives and other mem-
orable musical patterns.

These heuristics were used in conjunction with SIATEC to construct a data
compression algorithm called COSIATEC. This algorithm generates an efficient
representation of a point set in the form of a list of TECs, each TEC being
represented as an ordered pair, 〈P, V 〉, in which P is one pattern in the TEC
and V is the set of vectors by which P is translatable in the dataset. When
COSIATEC was run on the 15 Two-Part Inventions by J. S. Bach, it was found
that it often generated prominent motives and themes on its first and second
iterations.

I then briefly described a pattern matching algorithm based on SIA called
SIAM. SIAM is an O(kmn log(mn))-time algorithm for finding, for every vec-
tor, the maximal match for a k-dimensional query point set in a k-dimensional
dataset.

I then reviewed some recent work by Ukkonen et al. [18] which showed how
SIAM can be generalised to work not only on point sets but also “piano-roll”
music representations. Ukkonen et al. also showed how the space complexity of
SIAM can be reduced to O(km). Finally, I reviewed some recent work by Clifford
et al. [1] which proves that the problem solved by SIAM is not solvable in sub-
quadratic time. However, Clifford et al. also show how, by using randomisation,
the problem of multidimensional point-set matching can be reduced to that of
1-dimensional binary wildcard matching. Clifford et al. use this to develop an
O(n log n) algorithm, called MSM, for finding the size of the largest maximal
subset match under translation between two point sets. This algorithm was used
in a document-level music retrieval task to measure the similarity between a
query document and each document in a database. When the documents were
score encodings without temporal perturbation, MSM produced almost perfect
precision-recall results and was nearly two orders of magnitude faster than Ukko-
nen et al.’s [18] largest common subset algorithm.

14 Future work

The SIA-based algorithms described in this paper should be compared rigorously
with methods that have been developed in more mature fields such as computer
vision, computational geometry and graph matching.
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Given the success of the MSM algorithm, an obvious next step would be to
attempt to improve the time complexity of SIA and SIATEC by using similar
randomisation techniques.

All the algorithms described in this paper work well on musical score rep-
resentations in which the onset times and durations are strictly proportional to
their notated values. However, they tend to fail when there are tempo changes
or local temporal perturbations in the data such as one will tend to find in data
derived from human performances. Versions of the algorithms described in this
paper therefore need to be developed that can handle such tempo fluctuations
and perturbations.
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