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Abstract

Regularities in strings model many phenomena and thus
form the subject of extensive mathematical studies [23].
Perhaps the most conspicuous regularities in strings are
those that manifest themselves in the form of repeated
subpatterns. In this paper, we study several forms of reg-
ularities of strings, that is, repeats, multirepeats, repetitions
and runs. We present their similarities and differences by
discussing their forms and properties and we explore the
existing computation algorithms. We also discuss several
data structures useful for computing regularities.

1. Introduction

Various forms of regularity are central to the recognition
of important patterns in performing retrieval from massive
data sets. In this paper, we investigate mathematical and
algorithmical aspects of regularities in strings.

The study of strings began a little over 100 years ago with
a mathematical study of periodicity [37], the simplest form
of regularity. Today algorithms for computing regularities
have myriad applications:

Data Compression: Regularities in the form of repeating
substrings were the basis of gzip, one of the earliest and
still widely-used compression algorithms [41], and remain
central in more recent approaches [7].

Computational Biology: Repeats and repetitions of
lengthy substrings in DNA and protein sequences are im-
portant markers in biological research [5].

Information Security: Spam, the electronic equivalent of
junk mail, affects over 600 million users worldwide. Some
methods for detecting spam are mainly based on similarity
calculations on strings [39].

Data Mining: Various forms of regularity are central
to the recognition of important patterns in retrieval from
massive data sets [17].

Analysis of Musical Texts: The identification of melodies
and rhythms in huge musical databases depends heavily on
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algorithms for computing string regularities, approximate
and exact [12].

Software Engineering: Identifying approximate clones of
methods or classes in large software systems is important to
software maintenance [4].

Apart from expected benefits in application areas dis-
cussed above, there should also be spin-off benefits of this
research within the general scientific/technological area of
combinatorial algorithms.

2. Forms of Various Regularities

In this section we discuss the various regularities in
strings, giving definitions, properties and relationship be-
tween them, while citing the existing computation algo-
rithms.

2.1. Repeats

Intuitively, a repeat is a collection of repeating substrings,
not necessarily adjacent. More formally, a repeat in x is a
tuple

Ma:,u = 7ie)s

where e > 2,1 < iy < iy < ... < i, < n, and

(p3in, iz, ...

u = :13[7,111 +p— 1] = :B[ZQZQ +p— 1] =..=
Tlic..ie +p—1].

Note that it may happen, for some j € 1..e — 1, that
1j41 —1i; = p or that ¢;, 1 —1; < p — that is, the substrings
of a repeat may be adjacent or even overlap. We call w the
generator, p the period, and e the exponent of M, ,,; also,
M, o, is called a square if e = 2. We say that M ,, is
complete if for every i € 1.n and @ ¢ {i1,io,...,i.}, We
are assured that x[i..i + p — 1] # u. We say that M ,, is
left-extendible (LE) if

(pyin — Lyig — 1, .0 — 1)
is a repeat; similarly, My, ,, is right-extendible (RE) if
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(piin + iz 41, .4 + 1)

is a repeat. If M ,, is neither LE nor RE, we say that it is
nonextendible (NE). In = abaababa, the NE repeats are

My =(1;1,3,4,6,8) and My gbe = (3;1,4,6).

Of particular interest are repeating substrings u such
that My 4, uv, 1S a repeat if and only if v1 = v2 = €,
the empty string — in other words, v is not a proper
substring of any other repeating substring. We call such
repeats supernonextendible (SNE). In the above example,
(3; 1, 4, 6) is the unique SNE repeat.

In [16, p. 147] an algorithm is described that, given
the suffix tree ST of @, computes all the NE (called
“maximal”) pairs of repeats in x in time O(an+q), where
q is the number of pairs output. [6] uses similar methods
to compute all NE pairs (p;i1,42) such that io —iy > gpmin
(or < gmaz) for user-defined gaps gpmin, Gmaz- [1] shows
how to use the suffix array SAg of & to compute the NE
pairs in time O(an+g¢). Since it may be that & € O(n), all
of these algorithms require O(n?) time in the worst case.
[14] uses the suffix arrays of both  and its reversed string
T = x[n|x[n—1]---x[1] to compute all the complete NE
repeats in x in ©(n) time. More recently, [31] describes
suffix array-based ©(n)-time algorithms to compute all
substring equivalence classes — essentially the complete
NE repeats — in x.

In [34], we first describe a new algorithm PSY1 that,
based on suffix array construction, computes all the complete
NE repeats in « of length p > p.,in. PSY1 executes in
O(n) time independent of alphabet size and is an order of
magnitude faster than the two other algorithms previously
proposed for this problem. Second, we describe a new fast
algorithm PSY2 for computing all complete SNE repeats in
x that also executes in ©(n) time independent of alphabet
size, thus asymptotically faster than methods previously
proposed. Both algorithms require 6n bytes of storage,
including preprocessing.

2.2. Multirepeats

In this section we consider the multirepeats problem with
various constraints.

A repeat M, , of multiplicity m is the occurrence of
generator v in string * m times. We define the quorum
q to be the minimum number of strings in a set of string
such that a maximal multirepeat must occur, in order to be
considered valid.

A multirepeat is a repeat of minimum length p,,;, that
occurs at least My, times (Mg, > 2) in each of at least
q > 1 strings in a given set of strings. Consider, for example,
the three strings given in Figure 1.

Given ppin = 3, Mymin = 2 and ¢ = 2, we see that
ACG satisfies all the constraints including minimum period,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
s= AACGTACGACGT G OCAECGACT A
s== ACTACGTGACGT CTCTCAMBKLCECGT
s= GACCGRACGgGc T CGTBACGGCoccr

Figure 1. Three Strings s1, s and s3

minimum multiplicity, and quorum. Therefore ACG is a
multirepeat in s1, so and s3.

Assuming that u occurs twice in a string x at positions 41
and io, then the number of symbols between them is called
a gap and it is equal to g; = |ia —i1| — p. In the case that g;
= 0, then M, , is called a tandem repeat; if g; < 0, then
it is called overlapping.

If restrictions are posed on the gaps between occurrences
of u, then the gap g; between the ith and (i+1)th occurrence
of u is bounded as follows: dmin, < ¢i < dmaaz;, Where
drmin; and dy,q., are lower and upper bounds on the gap size,
respectively. Thus, in this case a repeat M, ,, is represented
by the pair (u,d), where d is a tuple ((dmin, dmaz)>
(dming ad’n’L(LiL’Q )’---5(dminm_ 1 admaxm_ 1 ))

If we add the gap restriction to the above example,
choosing dpin, = 1 and dpmes, = 4 for all 4, so that
1 < g; < 4, then ACG is a multirepeat only in s; and
so (shaded occurrences).

There exists only one algorithm [3] to compute multire-
peats. This algorithm is not space-efficient since it uses suffix
trees, one for each string in the set plus a “generalized”
suffix tree for all of them. Thus it is not easy to implement.
In addition, it has high time complexity.

In [18], we describe a family of efficient algorithms based
on suffix arrays to compute maximal multirepeats under
various constraints. Our algorithms are faster, more flexible
and much more space-efficient than the algorithms in [3].

2.3. Repetitions

A repetition is a sequence of adjacent repeating sub-
strings. More precisely, a repetition in a string = x[1..n]
is a substring @[i..i + pe — 1] = u®, where |u| = p and
e > 2. If moreover w itself is not a repetition, then u® is
said to be irreducible; and if neither x[i — p..i — 1] nor
x[i + pe..i + p(e + 1) — 1] equals u, then u® is said to be
maximal.

Analogous to a repeat, we call u the generator, p the
period, and e the exponent of the repetition u®. Note that
a repetition is completely specified by the triple (i, p, ). In
the string

1 2 3 4 5 6 7 8

r=a b a a b a b a
the repetitions are (1,3,2) = (aba)? (3,1,2) =
a?,(4,2,2) = (ab)?, and (5,2,2) = (ba)?. Since in each
case e = 2, all of these are squares.

299

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 30,2010 at 08:32:33 EDT from IEEE Xplore. Restrictions apply.



About a quarter-century ago, three algorithms were dis-
covered [8], [2], [26] that employed widely different ap-
proaches to computing all the repetitions in a given string
z[l..n] in O(nlogn) time; of these algorithms, two were
based on a form of suffix tree calculation ([2] explicitly,
[8] implicitly), while the third used a divide-and-conquer
technique.

A lot of work has been done for identifying the repetitions
in a string in recent years. In the area of computational
biology, algorithms for finding repetitions are presented
in [5]. [24] considers the problem of finding occurrences
of contiguous repeats of substrings that are within some
Hamming- or edit-distance of each other.

2.4. Runs

Intuitively, a run is a maximal sequence of overlapping
repetitions of the same period.

The maximum number of repetitions in a string x =
z[l..n] is ©(nlogn). But this is a count of repetitions that
are both maximal and irreducible. If instead we were asked
to output the distinct squares u? without these restrictions,
we would find that * = ", for example, would require
|n?/4] — that is, ©(n?) — outputs to specify squares

xz[l..2],z[2..3], ..., z[n—1..n], x[1..4], 2[2..5], ..., x[n—3..n],

and so on. Thus in restricting the output to maximal irre-
ducible repetitions, we encode the output, by tacit agree-
ment with the user, so as to reduce its quantity, hence
the asymptotic complexity of the algorithm. For = a”,
this encoding dramatically reduces the output to a single
repetition (1,1,n).

We now describe another encoding of repetitions that
further reduces the quantity of output required to ©(n). We
say that a repetition (i,p,e) = u® is left-extendible (LE)
if there exists a repetition at position ¢ — 1 of x that is
also of period p. If no such repetition exists, we say that
(i,p,e) is NLE. Given an NLE repetition (7, p,e), denote
by ¢ the greatest integer such that, for every j € 0..t,
(i+7, p, e) is a repetition. Note that since (i, p, €) is maximal,
therefore ¢ € 0..p — 1. We call ¢ the tail of (i,p,e). Then
a run (maximal periodicity) is a 4-tuple (i,p,e,t), where
(i,p,e) is an NLE repetition of tail ¢.

The maximum number p(n) of runs in a string of length
n has been known to be 0(n) [22], and the exact bound
is a subject of intense current research. It is known that
p(n) > 0.944565n [27] and p(n) < 1.029n [11].

Optimal ©(n)-time algorithms for computing all runs ex-
ist based on suffix trees [13], [22] or suffix arrays [21], [19],
[1] together with Lempel-Ziv factorization [41]. Faster and
more space-efficient algorithms have recently been proposed

(]
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3. Data Structures used for computing regular-
ities

In this section, we discuss several data structures which
have been widely used to compute regularities in strings,
including their basic forms, properties, and construction time
and space complexities.

3.1. Suffix Tree (ST)

The suffix tree is one of the most important data structures
in string processing. The suffix tree for « of length n is
defined as a rooted tree. Figure 2 shows the suffix tree of
x = abcaabcabaccabaach$. For ¢ € 1..18, the leaf nodes

abcaabcabaccabaachb$

ach$  ccabaach$

Figure 2. The Suffix Tree for

abcaabcabaccabaach$

String =z =

labeled 4, denoting suffixes @[i..18], occur in lexicographical
order from left to right. The internal nodes are labeled
with the longest common prefix of the leaf nodes below.
ST can be computed in O(nlog«) time [40], [25], where
a € O(n), and online [38] with the same time complexity;
on an integer alphabet, ©(n)-time efficiency is possible [13],
but the algorithm is not practical for long strings.

3.2. Suffix Array (SA)

Consider a string @ = «[l..n] defined on an ordered
alphabet A of size « (where if there is no explicit bound
on alphabet size, we suppose o < n). We refer to the suffix
x[i..n], i € 1..n, simply as suffix i. Then the suffix array
SA is an array [1..n] in which SA[j] = ¢ iff suffix ¢ is the

]t in lexicographical order among all the suffixes of .
The SA array of the string

1 2 3 4 5 6 7 8 9 10 11
x=a b a b a b b b a a a

is shown in the third column of Figure 3.
SA can be computed in ©(n) worst-case time [19], [21],
though various supralinear methods [30], [28] are certainly
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i x[SA[i]..n] SA[] LCP[] LPF[i] BWT[
1 a 11 0 0 a

2 aa 10 1 0 a

3 aaa 9 2 4 b

4 abababbbaaa. 1 1 3 $

5 ababbbaaa 3 4 2 b

6 abbbaaa 5 2 1 b

7 baaa 8 0 2 b

8 hababbhaaa 2 2 2 a

9 babhbaaa. 4 3 1 a

10 bhaaa 7 1 2 b

11 bhbaaa G 2 1 a
Figure 3. SA, LCP, LPF and BWT arrays of ¢ =
abababbbaaa

much faster, as well as more space-efficient, in practice
[33], in some cases requiring space only for & and SA
itself, which requires only 4n bytes (4 bytes per input
character) in its basic form, compared to 20-40n bytes for
the corresponding suffix tree. In [1] an enhanced suffix array
(ESA) is introduced, consisting of the suffix array together
with an “Icp-interval tree”.

3.3. Longest Common Prefix (LCP) Array

Another important data structure that is often used with
the suffix array is the Longest Common Prefix (LCP) array.
Let us denote the length of the longest common prefix of
suffixes ¢ and j by lep(2,7). Then, the LCP array contains the
lengths of the longest common prefixes between successive
suffixes of SA. That is, for 1 < i < n,

LCP[i] = lep(SA[i], SAJi — 1]).

Given x and SA, LCP can also be computed in ©(n)
time [20], [29], [35]: the first algorithm described in [29]
requires 9n bytes of storage and is almost as fast in practice
as that of [20], which requires 13n bytes. However the
algorithm recently proposed in [35] is generally faster and
requires about 6n bytes of storage for its execution, since it
overwrites the suffix array. The fourth column of Figure 3
gives the LCP array of the string abababbbaaa.

3.4. Longest Previous Factor (LPF) Array

The Longest Previous Factor (LPF) array was introduced
in [10], but also appears as the prefix array = in [15].
For any position ¢ in a string , LPF[z] is defined to be
the length of the longest factor of = starting at position ¢
that occurs previously in . Formally, [10] defines LPF[i]
as follows:

LPF[i] =
max ({/ | z[i..i+¢—1] is a factor of z[0..i+¢—2]}U{0})
LPF array can be conveniently used for computing LZ
factorizations, and also runs. For an example of LPF, see

column 5 of Figure 3. It is shown in [10] that LPF is a
permutation of LCP.

3.5. Burrows-Wheeler Transform (BWT) Array

We define the Burrows-Wheeler Transform BWT of x [7]:
for SA[j] > 1, BWT[j] = «[SA[j]—1], while for j such
that SA[j] = 1, BWT[j] = §, a sentinel letter not equal to
any other in . BWT can clearly be computed in linear time
from SA; some of our algorithms [34] and LZ algorithms
[32] use the BWT array since it occupies only n rather than
4n bytes. BWT is illustrated in column 6 of Figure 3.

4. Conclusion

As recently as 10 years ago, it was not possible to claim,
even difficult to imagine, that regularities in strings could be
computed in time linear in string length. Today all the reg-
ularities mentioned here (repeats, multirepeats, repetitions
and runs) and their data structures (suffix/LCP/LPF/BWT
arrays) can be computed in linear time and space. These are
impressive advances in an area of combinatorial algorithms
that has numerous applications. We expect that the future
will be as exciting as the recent past.
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