41 research outputs found

    Third-Party Data Providers Ruin Simple Mechanisms

    Get PDF
    Motivated by the growing prominence of third-party data providers in online marketplaces, this paper studies the impact of the presence of third-party data providers on mechanism design. When no data provider is present, it has been shown that simple mechanisms are "good enough" -- they can achieve a constant fraction of the revenue of optimal mechanisms. The results in this paper demonstrate that this is no longer true in the presence of a third-party data provider who can provide the bidder with a signal that is correlated with the item type. Specifically, even with a single seller, a single bidder, and a single item of uncertain type for sale, the strategies of pricing each item-type separately (the analog of item pricing for multi-item auctions) and bundling all item-types under a single price (the analog of grand bundling) can both simultaneously be a logarithmic factor worse than the optimal revenue. Further, in the presence of a data provider, item-type partitioning mechanisms---a more general class of mechanisms which divide item-types into disjoint groups and offer prices for each group---still cannot achieve within a loglog\log \log factor of the optimal revenue. Thus, our results highlight that the presence of a data-provider forces the use of more complicated mechanisms in order to achieve a constant fraction of the optimal revenue

    Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

    Full text link
    We introduce an online learning algorithm in the bandit feedback model that, once adopted by all agents of a congestion game, results in game-dynamics that converge to an ϵ\epsilon-approximate Nash Equilibrium in a polynomial number of rounds with respect to 1/ϵ1/\epsilon, the number of players and the number of available resources. The proposed algorithm also guarantees sublinear regret to any agent adopting it. As a result, our work answers an open question from arXiv:2206.01880 and extends the recent results of arXiv:2306.15543 to the bandit feedback model. We additionally establish that our online learning algorithm can be implemented in polynomial time for the important special case of Network Congestion Games on Directed Acyclic Graphs (DAG) by constructing an exact 11-barycentric spanner for DAGs

    On the Complexity of Local Graph Transformations

    Get PDF
    We consider the problem of transforming a given graph G_s into a desired graph G_t by applying a minimum number of primitives from a particular set of local graph transformation primitives. These primitives are local in the sense that each node can apply them based on local knowledge and by affecting only its 1-neighborhood. Although the specific set of primitives we consider makes it possible to transform any (weakly) connected graph into any other (weakly) connected graph consisting of the same nodes, they cannot disconnect the graph or introduce new nodes into the graph, making them ideal in the context of supervised overlay network transformations. We prove that computing a minimum sequence of primitive applications (even centralized) for arbitrary G_s and G_t is NP-hard, which we conjecture to hold for any set of local graph transformation primitives satisfying the aforementioned properties. On the other hand, we show that this problem admits a polynomial time algorithm with a constant approximation ratio

    SoK: A Stratified Approach to Blockchain Decentralization

    Full text link
    Decentralization has been touted as the principal security advantage which propelled blockchain systems at the forefront of developments in the financial technology space. Its exact semantics nevertheless remain highly contested and ambiguous, with proponents and critics disagreeing widely on the level of decentralization offered. To address this, we put forth a systematization of the current landscape with respect to decentralization and we derive a methodology that can help direct future research towards defining and measuring decentralization. Our approach dissects blockchain systems into multiple layers, or strata, each possibly encapsulating multiple categories, and enables a unified method for measuring decentralization in each one. Our layers are (1) hardware, (2) software, (3) network, (4) consensus, (5) economics ("tokenomics"), (6) API, (7) governance, and (8) geography. Armed with this stratification, we examine for each layer which pertinent properties of distributed ledgers (safety, liveness, privacy, stability) can be at risk due to centralization and in what way. Our work highlights the challenges in measuring and achieving decentralization, points to the degree of (de)centralization of various existing systems, where such assessment can be made from presently available public information, and suggests potential metrics and directions where future research is needed. We also introduce the "Minimum Decentralization Test", as a way to assess the decentralization state of a blockchain system and, as an exemplary case, we showcase how it can be applied to Bitcoin

    Computationally bounded rationality from three perspectives: precomputation, regret tradeoffs, and lifelong learning

    Get PDF
    What does it mean for a computer program to be optimal? Many fields in optimal decision making, from game theory to Bayesian decision theory, define optimal solutions which can be computationally intractable to implement or find. This is problematic, because it means that sometimes these solutions are not physically realizable. To address this problem, bounded rationality studies what it means to behave optimally subject to constraints on processing time, memory and knowledge. This thesis contributes three new models for studying bounded rationality in different contexts. The first model considers games like chess. We suppose each player can spend some time before the game precomputing (memorizing) strong moves from an oracle, but has limited memory to remember these moves. We show how to analytically quantify how randomly optimal strategies play in equilibrium, and give polynomial- time algorithms for computing a best response and an ε-Nash equilibrium. We use the best response algorithm to empirically evaluate the chess playing program Stockfish. The second model takes place in the setting of adversarial online learning. Here, we imagine an algorithm receives new problems online, and is given a computational budget to run B problem solvers for each problem. We show how to trade off the budget B for a strengthening of the algorithm’s regret guarantee in both the full and semi-bandit feedback settings. We then show how this tradeoff implies new results for Online Submodular Function Maximization (OSFM) (Streeter and Golovin, 2008) and Linear Programming. We use these observations to derive and benchmark a new algorithm for OSFM. The third model approaches bounded rationality from the perspective of lifelong learning (Chen and Liu, 2018). Instead of modelling the final solution, lifelong learning models how a computationally bounded agent can accumulate knowledge over time and attempt to solve tractable subproblems it encounters. We develop models for incrementally accumulating and learning knowledge in a domain agnostic setting, and use these models to give an abstract framework for a lifelong reinforcement learner. The framework attempts to make a step towards making the best of analytical performance guarantees, while still being able to make use of black box techniques such as neural networks which may perform well in practice

    Jogos de localização de instalações não cooperativos e percepção de custos

    Get PDF
    Orientadores: Eduardo Candido Xavier, Guido SchäferTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Esta tese de doutorado cobre a interseção entre problemas de localização de instalações e teoria dos jogos algorítmica não cooperativa, com ênfase em alterações da percepção de custos de cada jogador e seu efeito na qualidade de equilíbrios. O problema de localização de instalações é um dos problemas fundamentais em otimização combinatória. Em sua versão clássica, existe um conjunto de terminais e um conjunto de instalações, e cada terminal necessita ser conectado a uma instalação, para que esta providencie bens ou serviços. O objetivo é minimizar o total dos custos associados à abertura das instalações e à conexão dos terminais a essas instalações. Na prática, existem diversos cenários onde é inviável ou não é desejável que uma autoridade central única decida como clientes devem escolher as instalações às quais se conectam. Dessa forma, é importante estudar como a independência desses terminais pode afetar a eficiência social e a complexidade computacional para esses cenários. A teoria dos jogos algorítmica pode ser útil para tais cenários, em particular sua parte não cooperativa. A teoria dos jogos algorítmica preenche uma lacuna entre a ciência da computação teórica e a teoria dos jogos, e está interessada em questões como a complexidade computacional de se encontrar equilíbrios, o quanto o bem-estar social pode ser perdido devido ao egoísmo de jogadores e como desenvolver mecanismos para garantir que o melhor interesse dos jogadores se alinhe com o ótimo social. Nesta tese, estudamos jogos de localização de instalações não cooperativos e algumas de suas variantes. Focamos em responder questões relativas à existência de equilíbrios de Nash puros e sobre as principais medidas de perda de eficiência, o preço da anarquia e preço da estabilidade. Apresentamos uma revisão das descobertas mais importantes para as variantes básicas, com novos resultados nos casos onde nenhum era conhecido. Para a versão capacitada desses jogos, mostramos que, enquanto a simultaneidade pode levar a uma perda de eficiência ilimitada, quando se admite a sequencialidade de jogadores, é possível mostrar que a perda de eficiência tem limites. Também investigamos como mudanças na percepção de custo podem afetar a qualidade de equilíbrios de duas maneiras: através de jogadores altruístas e de esquemas de taxação. No primeiro, adaptamos resultados de jogos de compartilhamento justo de custos e apresentamos novos resultados sobre uma versão sem regras de compartilhamento. No último, propomos um modelo de mudança na percepção de custos, onde os jogadores consideram um pedágio adicional em suas conexões ao calcular seus custos. Apresentamos limitantes para o custo total das taxas no problema de pedágios mínimos, onde o objetivo é encontrar o valor mínimo de pedágio necessário para garantir que um determinado perfil de estratégia socialmente ótimo seja escolhido pelos jogadores. Mostramos algoritmos para encontrar pedágios ótimos para tal problema em casos especiais e relacionamos esse problema a um problema de emparelhamento NP-difícilAbstract: This Ph.D. thesis covers the intersection between facility location problems and non-cooperative algorithmic game theory, with emphasis on possible changes in cost perception and its effects in regards to quality of equilibria. The facility location problem is one of the fundamental problems in the combinatorial optimization field of study. In its classic version, there exists a set of terminals and a set of facilities, and each terminal must be connected to a facility, in order for goods or services to be provided. The objective is to minimize the total costs associated with opening the facilities and connecting all the terminals to these facilities. In practice, there are multiple scenarios where it is either infeasible or not desirable for a single central authority to decide which facilities terminals connect to. Thus, it is important to study how the independence of these terminals may affect social efficiency and computational complexity in these scenarios. For this analysis algorithmic game theory can be of use, in particular its non-cooperative part. Algorithmic game theory bridges a gap between theoretical computer science and game theory, and is interested in questions such as how hard it is computationally to find equilibria, how much social welfare can be lost due to player selfishness and how to develop mechanisms to ensure that players' best interest align with the social optimum. In this thesis we study non-cooperative facility location games and several of its variants. We focus on answering the questions concerning the existence of pure Nash equilibria and the main measures of efficiency loss, the price of anarchy and the price of stability. We present a review of the most important findings for the basic variants and show new results where none were known. For the capacitated version of these games, we show that while simultaneity may lead to unbounded loss of efficiency, when sequentiality is allowed, it is possible to bound the efficiency loss. We also investigate how changes in players' perception of cost can affect the efficiency loss of these games in two ways: through altruistic players and through tolling schemes. In the former we adapt results from fair cost sharing games and present new results concerning a version with no cost sharing rules. In the latter, we propose a model for change in cost perception where players consider an additional toll in their connections when calculating their best responses. We present bounds for total toll cost in the minimum toll problem, where the objective is to find the minimum amount of tolls needed to ensure that a certain socially optimal strategy profile will be chosen by players. We show algorithms for finding optimal tolls for the minimum toll problem in special cases and provide some insight into this problem by connecting it to a matching problem which we prove is NP-hardDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação147141/2016-8CAPESCNP

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore