
ar
X

iv
:1

80
2.

07
40

7v
1 

 [
cs

.G
T

] 
 2

1 
Fe

b 
20

18

Third-Party Data Providers Ruin Simple Mechanisms

Yang Cai∗ Federico Echenique† Hu Fu‡ Katrina Ligett§ Adam Wierman¶

Juba Ziani‖

February 22, 2018

Abstract

This paper studies the revenue of simple mechanisms in settings where a third-party data
provider is present. When no data provider is present, it is known that simple mechanisms
achieve a constant fraction of the revenue of optimal mechanisms. The results in this paper
demonstrate that this is no longer true in the presence of a third party data provider who can
provide the bidder with a signal that is correlated with the item type. Specifically, we show that
even with a single seller, a single bidder, and a single item of uncertain type for sale, pricing
each item-type separately (the analog of item pricing for multi-item auctions) and bundling all
item-types under a single price (the analog of grand bundling) can both simultaneously be a
logarithmic factor worse than the optimal revenue. Further, in the presence of a data provider,
item-type partitioning mechanisms—a more general class of mechanisms which divide item-types
into disjoint groups and offer prices for each group—still cannot achieve within a log log factor
of the optimal revenue.

1 Introduction

This paper investigates the effectiveness of simple mechanisms in settings where a bidder is uncertain
about the type of good he is bidding on, and obtains information about the good from a third-party
data provider. When no data provider is present, it is known that simple mechanisms can be used
to provide a constant fraction of the revenue of optimal mechanisms; however, the results in this
paper demonstrate that this is no longer possible when a data provider is present.

Mechanism design is the theory of informational asymmetries in economic environments. Indeed,
information asymmetries are rampant in markets from ad auctions to art auctions; from acquiring
a summer home to acquiring a startup. Naturally, whenever significant information asymmetries
occur, agents have incentives to acquire information through outside channels. As a result, there
is a proliferation of companies that seek to collect information that can be sold to participants
in auctions with information asymmetries. Online adversing provides an extreme example. By
tracking online behavior, data providers are able to sell valuable information about internet users
(whose attention is the good for sale) to bidders in online advertising auctions. A recent FTC
report 2014 details the scale and prevalence of such data providers – generating $426 million in
annual revenue in 2012 and growing considerably in the years since.
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Some of the most elegant results in mechanism design focus on providing simple characteriza-
tions of (near) optimal auctions. A particularly beautiful example is Myerson’s characterization
of optimal auctions [Myerson, 1981]. In the case of one bidder, Myerson [1981] characterizes the
optimal pricing mechanism for a monopolist facing a bidder who has a one-dimensional private
valuation, where the distribution over the bidder’s valuation for the item is known to the seller,
though the realization of that valuation is known only to the bidder. Our paper is part of an effort
to understand optimal auctions when bidders have access to information from a third-party data
provider, outside of the control of the seller.

Specifically, the goal of this paper is to investigate the impact of third-party data providers
on the revenue of simple mechanisms. To do this, we consider a simple market—a single seller,
a single bidder, and a single good—and a particular form of information asymmetry—the seller
knows the type of the good she is selling, but the bidder has only partial information on the item
type; the bidder knows her valuation for each of the n types, but the seller knows only distributional
information about the valuations. The key to the model is that, in addition to a prior over the
item type, the bidder obtains a signal about the item type from a third party data provider and,
while seller knows the signaling scheme used by the data provider, the seller does not know the
realization of signals.

Our model, though stylized, is already general enough to expose the difficulties created by third-
party data providers. In particular, our results show that, even in this case, simple mechanisms
cannot provide revenue within a constant factor of the revenue provided by an optimal mechanism.
This result is perhaps surprising in the context of an elegant recent paper, where Daskalakis et al.
[2016] study optimal auctions in a related model, in the absence of a data provider. Daskalakis et al.
[2016] study the design of simple mechanisms in a setting where the only uncertainty about the
item type is that it is drawn from a common prior. In this context, the question is whether it is
valuable for the seller to share information with the bidder about the item type, or whether mecha-
nisms that do not reveal information can be approximately optimal. Interestingly, Daskalakis et al.
[2016] are able to characterize optimal auctions for this setting. Their insights—showing a direct
correspondence between mechanisms for selling a single item of uncertain type and multi-item
auctions—when combined with the work of Babaioff et al. [2014], allow them to further observe
that the better mechanism of two simple approaches—setting a fixed price for the item (the parallel
notion of grand bundling, which we term “item-type bundling”), or pricing each item type sepa-
rately (the parallel notion of item pricing, which we term “item-type pricing”)—is guaranteed to
yield a constant factor of the revenue of the optimal mechanism. Thus, in the case where there is
no third-party data provider, there is little need for the seller to reveal information to the bidders;
simple mechanisms are sufficient.

Our results show, in contrast, that the presence of a third-party data provider complicates
the mechanism design task dramatically. We first consider revenue-optimal mechanisms. While
Daskalakis et al. [2016]’s characterization of optimal auctions extends naturally to our setting, these
optimal mechanisms may be quite complex. Concretely, our setting satisfies a type of revelation
principle stating that optimal mechanisms require only a single round of bidding, followed by a single
round of information revelation (full revelation, in fact); however, the resulting menu of options
presented to the bidder includes an option for each possible valuation vector, combined with each
possible posterior of the bidder on the item type after receiving the information provider’s signal,
and requires the seller to condition the price charged on the realization of the item type.

Not only does the presence of a data provider complicate the design of the optimal mechanism,
it also impacts the revenue achievable via simple mechanisms. Specifically, in the presence of a
data provider, the better of item-type bundling and item-type pricing may achieve only a Ω (log n)
factor approximation of the revenue the seller could have achieved had she offered a richer menu to
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the buyer. In particular, a mechanism that divides the item types into disjoint groups and offers a
price on each group can outperform both item-type pricing and item-type bundling by a logarithmic
factor. Such mechanisms are known in the multi-item auction literature as partition mechanisms,
and are seen as relatively simple mechanisms (see, e.g., Rubinstein [2016]). In our setting, we refer
to such mechanisms as item-type partition mechanisms.

This separation between the revenue of item-type partitioning and that of item-type pricing and
item-type bundling raises a natural question: if we expand our view of what constitutes “simple”
mechanisms to include item-type partitioning, which generalizes both item-type pricing and item-
type bundling, can we guarantee that simple mechanisms obtain a constant approximation of the
optimal revenue in the presence of a data provider?

Our next result uses a more intricate argument to show that this is not the case. We demonstrate
that, in the presence of a data provider, optimal mechanisms can outperform the best item-type
partition mechanism by an Ω(log log n) factor. So, in the presence of a data provider, simple
mechanisms truly are no longer optimal.

The results discussed so far focus on the seller, while not taking the data provider’s incentives
into account. They assume a fixed behavior by the data provider, without providing him with an
objective. However, of course, the behavior of the data provider has an impact. To highlight the
complexities of the data provider’s participation in this market, we study the special case where the
data provider is adversarial. This setting is of particular interest because it demonstrates behavior
that is, perhaps, counter-intuitive. Specifically, a data provider that is attempting to negatively
impact the revenue of the seller may not want to fully reveal her information about the item type
to the bidder. Instead, there may be intermediate signals which, upon revelation, minimize the
revenue of the seller. This serves to additionally highlight the complexity of mechanism design in
the context of a third-party data provider.

To summarize, in this paper we make the following contributions. We propose a simple model of
an auction in the presence of a third-party data provider, capturing information asymmetry regard-
ing the type of the item for sale. Within this model, we first (Section 3) provide a characterization
of the optimal auction based on that of Daskalakis et al. [2016], which may require a complex menu
of options. Our main results study the potential for simple mechanisms to approximate the revenue
of optimal mechanisms. In Section 4, we show that the item-type equivalents of item pricing and
grand bundling cannot achieve within a Ω (log n) factor of the revenue achievable by the optimal
mechanism, nor even of the best item-type partition mechanism. Further, in Section 5, we show that
there may be a Ω (log log n) gap between the revenue of the best item-type partitioning and that of
the optimal mechanism. These results highlight that the presence of a data provider significantly
reduces the ability of simple mechanisms to approximate the revenue of optimal mechanisms, even
in the case of a single seller and a simple buyer. Finally, in Section 6, we turn to understanding the
behavior of the data provider and show that partial information revelation may be more damaging
to the seller than full information revelation.

Related work

There is a rich literature on information and signaling in auctions. One line of research focuses on
designing a signaling scheme (on the part of the seller) given a certain auction format such as the
second price auction [see, e.g., Emek et al., 2014, Miltersen and Sheffet, 2012, Cheng et al., 2015,
Dughmi et al., 2015]; another line, closer to our setting, studies the design of both the auction and
the signaling scheme (again, in this line of work, there is no data provider; any signal comes from
the seller). Fu et al. [2012] showed that, if the auctioneer commits to a signaling scheme before
choosing the form of the auction, full revelation followed by Myerson’s auction for the revealed
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item type is the optimal design. Daskalakis et al. [2016] revealed the subtlety of this order of
commitment and showed that, when the design of the auction and that of the signaling scheme
are considered together (without having to commit to one before the other), the optimal strategy
is to reveal no information at all, and the overall problem is in fact equivalent to the design of a
multi-item auction. In particular, they show that, when the bidders have a publicly known common
prior ~π on the type of the item, the optimal revenue for the seller is that of a multi-item auction
with n items.

Furthermore, Theorem 2 of Daskalakis et al. [2016] shows a one-to-one correspondence between
a selling a single item of uncertain type and classical multi-item auctions. In particular, item-
type pricing, i.e., mechanisms in which the seller first reveals the item type and then charges a
take-it-or-leave-it price, is equivalent to selling separately (i.e., item pricing) in the corresponding
multi-item auction, and item-type bundling, i.e., mechanisms in which the seller does not reveal
any information and offers a single take-it-or-leave-it price, is equivalent to grand bundling in the
corresponding multi-item auction. When there is a single bidder, Daskalakis et al. [2016] further
combine this correspondence with results of Babaioff et al. [2014] to show that the better of item-
type pricing and item-type bundling gives at least 1/6 of the optimal revenue.

The results described above highlight the connection between our work and the study of simple
mechanisms for multi-item auctions. Hart and Nisan [2012] pioneered this area. They showed
that a seller, using item pricing, can extract a Ω

(

1/ log2 n
)

fraction of the optimal revenue from
an additive buyer whose values for n items are drawn independently, and selling these items as
a bundle can achieve a Ω (1/ log n)-fraction of the optimal revenue if the buyer’s values are i.i.d.
Li and Yao [2013] improved the approximation ratio for item pricing to O (1/ log n), which is tight.
Babaioff et al. [2014] showed that, surprisingly, the better of selling separately and grand bundling
can achieve at least 1/6 of the optimal revenue. Subsequently there has been a surge of results
generalizing the results of Babaioff et al. to broader settings [Cai and Huang, 2013, Yao, 2015,
Rubinstein and Weinberg, 2015, Cai et al., 2016, Chawla and Miller, 2016, Cai and Zhao, 2017].
At this point, it is known that simple mechanisms such as sequential two-part tariffs can obtain a
constant fraction of the optimal revenue for multiple buyers with combinatorial valuations that are,
e.g., submodular, XOS [Cai and Zhao, 2017]. One might hope to extend these simple deterministic
mechanisms to settings where the buyer has correlated values over the items; however, this is
impossible. Hart and Nisan [2013] showed that even for a single additive buyer, when valuations
are interdependent, the ratio between the revenue obtainable by a randomized mechanism and that
of the best deterministic mechanism can be unbounded.

2 Model & Preliminaries

We consider a setting with a single, revenue-maximizing seller, a single item for sale, and a single
bidder. The item for sale takes one of n possible types, and the bidder’s valuation may depend on
the item type. The bidder does not know the type i of the item, but has a publicly-known prior ~π
over the item types. We let π(i) denote the prior probability that the item is of type i.

The bidder’s private value when the good is of type i is drawn from a publicly known distribution
D(i) over the space of non-negative real numbers R

+. We denote by V (i) the bidder’s valuation
for an item of type i, and denote by ~V = (V (1), . . . , V (n)) the bidder’s valuation vector.

There is a third-party data provider who has (potentially imperfect) information on the type of
the item, in the form of a random variable that can be arbitrarily correlated with the type of the
item. Its distribution is publicly known, but its realization is only observed by the data provider.
The data provider designs a signaling scheme in the form of a random variable S that is measurable
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with respect to the data-provider’s information, and reveals the realization of S solely to the bidder.
The seller does not observe the realization of S, but knows its distribution. After observing the
realization s of S, the bidder updates his prior using Bayes’ rule. We denote the resulting posterior
by ~πs. While the bidder knows his posterior perfectly, the seller only knows the distribution over
posteriors, conditional on the item type.

2.1 Simple mechanisms for a single bidder and no data provider

In the absence of a third-party data provider, in the single seller, single bidder, multi-item setting,
where each item has a single type, Babaioff et al. [2014] show that, although the optimal mecha-
nism may be complex, a simple mechanism achieves a constant factor of the optimal revenue. In
particular, this mechanism is simply the better of either item pricing or grand bundling. This result
was originally stated for multi-item auctions, but the results of Daskalakis et al. [2016] show that
an equivalent result holds for the setting of a single item that can take on multiple possible types.

These simple mechanisms are important throughout our paper, so we formally define them here,
in the context of selling a single item with multiple possible types.

Definition 1. An item-type pricing mechanism first reveals the type i of the item to the bidder,
then offers to sell the item to the bidder at some price Pit(i). We also refer to such mechanisms
as “selling the types separately,” in analogy to the concept of selling separately in the case of
multi-item auctions.

Definition 2. An item-type bundling mechanism offers the item for sale at some price Pgr

without revealing any information about the realized type of the item.

The following result from Babaioff et al. [2014], Daskalakis et al. [2016] summarizes the power
of these simple mechanisms in the single-item, multi-type setting, without a data provider.

Proposition 1 (Babaioff et al. [2014], Daskalakis et al. [2016]). In the absence of a data provider,
the maximum of item-type pricing and item-type bundling yields at least a 1

6 -approximation to the
optimal revenue when there is a single seller, a single bidder, a single item for sale, and the bidder
has a publicly known prior over the type of the item.

A generalization of both item-type bundling and item-type pricing mechanisms, inspired by
Rubinstein [2016], is also important for the results in this paper.

Definition 3. An item-type partition mechanism first partitions the set of item types into non-
empty groups G1 to Gg, priced (resp.) P1 to Pg. The mechanism then observes the type i of the
item, and offers the item at price Pr, where r is uniquely chosen such that i ∈ Gr.

Note that, after observing the offered price Pr, the bidder may infer that the realized item type
must belong to group Gr. Item-type pricing is an instantiation of item-type partitioning where
the partition contains a separate group for each type; item-type bundling corresponds to item-
type partitioning using the trivial partition. Item-type partitioning is, however, significantly more
powerful than these other simple mechanisms, as it allows the seller to partition the item types into
arbitrarily many groups of arbitrarily many sizes.

2.2 The equal revenue distribution

An important example in the derivation of lower bounds for mechanisms is the so-called equal
revenue distribution. This distribution is crucial to a number of our examples in this paper and is
defined as follows.
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Definition 4. A random variable X with support [1,+∞) follows the equal revenue (ER)
distribution if and only if P [X ≤ x] = 1− 1

x
.

The equal revenue distribution gets its name from the fact that it has constant virtual value,
and every price in the distribution’s support offers the same expected revenue. The equal revenue
distribution also has a number of other useful properties, proven in Hart and Nisan [2012], which
we summarize in the following.

Lemma 1 (Hart and Nisan [2012]). Let n ≥ 2 be an integer, and let I1, . . . , In be n i.i.d random
variables that follow the ER distribution. Then:

P

[

1

n

n
∑

i=1

Ii ≥
log n

2

]

≥ 1

2
,

and for any P ≥ 6 log n,

P

[

1

n

n
∑

i=1

Ii ≥ P

]

≤ 9

P
.

Unless otherwise specified, log is taken to be the natural logarithm.

3 Optimal mechanisms in the presence of a data provider

Here and throughout the rest of the paper, we assume the presence of a third-party data provider
who knows (possibly imperfect) information about the item type, and who reveals some of this
information to the bidder. The goal of this section is to characterize optimal mechanisms for a
single bidder and a single item with several possible types, in the presence of such a data provider.

We consider a class of mechanisms that allow the seller to charge the bidder a price that is con-
ditional on the type of the item. We observe that restricting attention to such item-contingent price
mechanisms is without loss of generality. The characterization we present is a type of revelation
principle, similar to that presented in Daskalakis et al. [2016], where the difference is the presence
of a data provider. Note that the data provider is represented via a signaling scheme that, from
the model perspective, is subsumed into a probability distribution over posteriors ~π, representing
beliefs of the bidder regarding the item’s type. Therefore, the bidder has private information in
the form of a valuation ~v and a posterior ~π.

The characterization we present shows that the revenue achievable via any mechanism can be
obtained with a conditional price menu, defined as follows.

Definition 5. A menu with conditional prices is a fixed collection of pairs (~Z, ~P ), where each
~Z ∈ [0, 1]n is called an allocation rule, and each ~P ∈ R

n
+ is called a pricing rule. The bidder selects

at most one pair (~Z, ~P ). After his choice has been made, the type i of the item is revealed. Given
item type i, the bidder pays price P (i), and receives the item with probability Z(i).

A few comments about the mechanism are in order. Note that the allocation probability and
price may both depend on the realized type of the item. So, one can think of the mechanism as
requiring a single round of bidding, followed by a single round of information revelation (in fact, full
information revelation), to determine which price P (i) the bidder should pay. Additionally, note
that the bidder pays regardless of whether he receives the item. Finally, note that conditional price
mechanisms are strictly more general than item-type partition mechanisms. Item-type partitioning
is, in fact, an instantiation of menus with conditional prices in which each ~Z ∈ {0, 1}n (no fractional
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or probabilistic allocations are allowed), each item type is offered in exactly one option, and the
conditional prices within an option are all identical. Each option then corresponds to a single subset
of the partition.

Despite allowing prices and allocations to depend on the realization of the item type, the
conditional price menus guarantee interim individual rationality, defined as follows.

Definition 6. A mechanism is interim individually-rational (interim IR) if and only if the
bidder’s expected utility from participating in the mechanism, conditional on a valuation ~v and
posterior beliefs ~π over item types, is non-negative.

Interim IR can be seen as the bidder committing to an option from the menu offered by the
mechanism. One justification for this notion is that a bidder might, in theory, be engaged in many
auctions simultaneously. Therefore, the bidder might care only about his average payoff across
multiple purchases. While for some type realizations such a bidder may lose, with high probability
his overall utility is non-negative.

The following lemma shows that restricting design to conditional price menu mechanisms is
without loss of generality.

Lemma 2. For any equilibrium of any mechanism M in the presence of a data provider, such that
the bidder, conditioned on the realization of her valuation vector and posterior beliefs over item
types, obtains non-negative payoff in expectation, there is a conditional price menu that is incentive
compatible, interim individually rational, and provides the same revenue.

Lemma 2 implies the optimal revenue is given by the solution of a linear program whose size is
proportional to the number of possible pairs of value vectors and posteriors (this number may be
infinite). We make use of this linear program in Section 6. Additionally, note that Lemma 2 can
easily be extended to the multi-bidder setting.

Proof. We treat the pair (~v, ~π), where v is the valuation of the bidder, and π is his posterior,
as the bidder’s type. We follow the same steps as the proof of Theorem 1 and Appendix A
of Daskalakis et al. [2016]. Consider a mechanism M with voluntary participation. M may use
multiple rounds of communication and information revelation to the bidder. For each valuation
vector ~v and posterior πs, let A (~v, ~πs) be the (possibly randomized) equilibrium strategy of the
bidder when his type is (~v, ~πs).

Let Z(i, A) be an indicator random variable that indicates whether the bidder gets the item
when he choses strategy A and the realized item type is i. Similarly, let C(i, A) denote the price
the bidder is asked to pay. The bidder’s interim expected utility is then given as follows:

Ei∼πs [E [Z(i, A) · V (i)− C(i, A)]]

where the first (outer) expectation is with respect to the randomness of the item type, while the
second (inner) expectation is with respect to the randomness in the choices of the mechanism, the
information revealed and the actions A of the bidder.

For all possible types (~v, ~πs), and for all possible misreports
(

~v′, ~πs′
)

of the bidder, for A to be

an equilibrium strategy it must be the case that

Ei∼πs [E [Z (i, A (~v, ~πs))V (i)− C (i, A (~v, ~πs))]]

≥ Ei∼πs

[

E

[

Z
(

i, A
(

~v′, ~πs′
))

V (i)− C
(

i, A
(

~v′, ~πs′
))]]

.
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Now define the variables zi (~v, ~πs) = E [Z (i, A (~v, ~πs))] and ci (~v, ~πs) = E [C (i, A (~v, ~πs))]. The
equation above can be rewritten as

∑

i

πs(i) (zi (~v, ~πs)V (i)− ci (~v, ~πs)) ≥
∑

i

πs(i)
(

zi

(

~v′, ~πs′
)

V (i)− ci

(

~v′, ~πs′
))

. (IC)

Moreover, since the equilibrium A respects voluntary participation, the bidder’s equilibrium
payoff must be non-negative. As a consequence, we have

∑

i

πs(i) (zi (~v, ~πs)V (i)− ci (~v, ~πs)) ≥ 0. (IR)

Finally, we note that the revenue of the seller is given by

R =
∑

~πs,~v

P [~v, ~πs]
∑

i

πs(i) · ci (~v, ~πs) ,

where P [~v, ~πs] is the probability the realized type of the bidder is (~v, ~πs).
A mechanism that satisfies constraints (IC) and (IR) and yields revenue R can clearly be

implemented as an interim IR menu with conditional prices, in which the options are given by
(~z ( ~πs, ~v) ,~c (~v, ~πs)) for each possible type ( ~πs, ~v). Hence, there exists an incentive compatible,
individually rational, conditional price menu that provides the same revenue as mechanism M.

4 Simple mechanisms achieve a logarithmic fraction of the

optimal revenue: a warm-up example

Our main results focus on bounding the revenue achievable via simple mechanisms, in the presence
of a third party data provider. In this section, we focus on “simple” mechanisms in which the
seller runs the better of item-type pricing and item-type bundling. These are particularly interest-
ing mechanisms to consider given Proposiation 1, where Daskalakis et al. [2016], using results of
Babaioff et al. [2014], show that this style of mechanism obtains a constant fraction of the optimal
revenue when a data provider is not present. To show that this is not the case when a data provider
is present, we consider the following example.

Example 1. Let n = m2 be the number of item types, for some integer m. The types are
partitioned into m groups I1, . . . , Im such that each group contains exactly m types. The bidder’s
prior on the item type is uniform, i.e., the bidder initially believes that each item type is realized
with probability 1/n = 1/m2, and that the probability that the realized type belongs to group Ik
is therefore 1/m. The bidder’s valuation for type i in group Ik is V (i)/k, where V (i) is a random
variable drawn from the equal revenue distribution. The bidder’s valuations for different item types
are drawn independently.

We consider a data provider that releases a signal S revealing to the bidder the group to which
the item belongs. The bidder’s posterior probability on the item being of type i, upon observing
signal sk informing him that the group is Ik, is given by

πsk(i) =

{

0 i /∈ Ik
1
m

i ∈ Ik
.
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Theorem 3. There exists a single seller, single bidder, single item (taking one of n item types)
setting where, in the presence of a data provider who signals information about the item type
realization to the bidder, the expected revenue of the better of item-type pricing and item-type

bundling is a O
(

1
logn

)

fraction of the expected revenue of the optimal mechanism.

The proof of this theorem follows from Claims 1, 2, and 3, which we prove below.

Claim 1. The expected revenue from item-type pricing in Example 1 is O
(

logn√
n

)

.

Claim 2. The expected revenue from item-type bundling in Example 1 is O
(

logn√
n

)

.

Claim 3. There exists an item-type partition mechanism that achieves expected revenue Ω
(

log2 n√
n

)

in Example 1. The optimal revenue in Example 1 is Θ
(

log2 n√
n

)

.

Proof of Claim 1. In item-type pricing, the seller announces the item type and then offers a price
that is a function of the realized item type. The expected revenue of such a mechanism is simply
given by

1

n

m
∑

k=1

m

k
= O

(

log n√
n

)

,

as the expected revenue from selling an item in the kth group is 1
k
.

Proof of Claim 2. Let P ∗ be the optimal bundling price, and suppose the data provider announces
signal sk. There are two cases:

1. For k such that P ∗ ≥ 6
k
logm, by Lemma 1, the expected revenue is

P ∗ · P





1

m

∑

i∈|Ik|

V (i)

k
≥ P ∗



 = P ∗ · P





1

m

∑

i∈|Ik|
V (i) ≥ kP ∗



 ≤ P ∗ · 9

kP ∗ =
9

k
,

as |Ik| = m.

2. Otherwise, we have k such that P ∗ ≤ 6
k
logm.

Letting k∗ = min{k : P ∗ > 6
k
logm}, we see that the expected revenue of charging price P ∗ for the

grand bundle is upper-bounded by

1

m





∑

k≥k∗

9

k
+
∑

k<k∗

P ∗



 ≤ 1√
n

(

9 · (1 + logm) +
∑

k<k∗

6

k∗ − 1
logm

)

=
1√
n
(9 · (1 + logm) + 6 logm)

= O

(

log n√
n

)

.

Proof of Claim 3. Consider the following item-type partition mechanism: the seller first partition
the item types into m groups in the same way as specified in Example 1. When the realized item
type is in group Ik, she offers to sell the item to the bidder at price Pk = logm

2k .
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If the bidder receives signal sk, then the price offered by the seller must be logm
2k , and the bidder

knows the item type is from group Ik. By Lemma 1, as |Ik| = m, we have:

P





1

m

∑

i∈Ik

V (i)

k
≥ logm

2k



 ≥ 1

2
,

and hence with probability at least 1/2, conditional on S = sk, he accepts the price, yielding
expected revenue to the seller of at least logm

4k . The total expected revenue for the seller is then
given by

1

m

m
∑

k=1

logm

4k
=

log n

8
√
n

m
∑

k=1

1

k
= Ω

(

log2 n√
n

)

.

A simple combination of Daskalakis et al. [2016], Li and Yao [2013] show that no truthful mech-
anism can achieve revenue higher than logm times the revenue of item-type pricing conditioned on

receiving signal sk, as selling separately achieves at least a Ω
(

1
logm

)

fraction of the optimal rev-

enue for selling m items. Thus, the optimal revenue is at most O
(

log2 n√
n

)

, and hence the item-type

partition mechanism we just described yields a constant approximation to the optimal revenue.

5 Item-type partitioning achieves a Log-log fraction of the

optimal revenue

The previous section shows that neither item-type pricing nor item-type bundling can achieve a
constant fraction of the optimal revenue in our setting. However, one may wonder if the result
is due to the restrictive nature of the “simple” mechanisms considered. Here, we show that, in
the presence of a data provider, even the more general class of item-type partition mechanisms is
insufficient to guarantee a constant fraction of the optimal revenue. This is particularly tantalizing
due to the fact that Example 1 admits a item-type partition mechanism that yields a constant
approximation to the optimal revenue. However, in this section, we show an example where the

best item-type partition mechanism only achieves a O
(

1
log logn

)

fraction of the optimal revenue

(and hence our “simpler” simple mechanisms, item-type bundling and item-type pricing, also do
not yield a constant fraction of the optimal revenue, since they are special cases of item-type
partitioning).

We consider the following class of examples.

Example 2. Given an integer m, let n = 2m be the number of item types. The bidder’s prior
on the item type is uniform, i.e., the bidder initially believes the item type takes each i ∈ [n]
with probability 1/n. The bidder’s valuation for each type is drawn i.i.d. from an equal revenue
distribution.

We consider m possible partitions of the n items. Given a particular k ∈ [m], we partition the
set of all items into nk = 2m−k subsets of size 2k ≥ 2 each. Specifically, for k ∈ [m] we partition
the set of items into the subsets Ik,1 to Ik,nk

, where Ik,j = {(j− 1) · 2k +1, . . . j · 2k} for all j ∈ [nk].
The signaling scheme used by the data provider is as follows. The data provider picks a value

k ∈ [m] according to the following distribution: for k ≤ m−1, the provider picks k with probability
1

k(k+1) ; the provider picks m with the remaining probability 1
m
. The value k is drawn, importantly,

independently of the type i of the item. The data provider’s signal reveals to the bidder in which
group (among Ik,1 to Ik,nk

) the item lies. We denote by sk,j the realization of the signal that
indicates to the bidder that the item belongs to group Ik,j. We call k the size indicator.
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Theorem 4. There exists a single seller, single bidder, single item (taking one of n item types)
setting where, in the presence of a data provider who signals information about the item type realiza-

tion to the bidder, no item-type partition mechanism can achieve revenue higher than O
(

1
log logn

)

of the optimal revenue.

We prove the result via Claims 4 and 5 below.

Claim 4. The expected revenue from the optimal item-type partition mechanism is O(1) in Ex-
ample 2.

Claim 5. There exists a mechanism that yields revenue Ω (log log n) in Example 2. The optimal
revenue in Example 2 is Θ(log log n).

Proof of Claim 4. Suppose the signal is sk,j for some j ∈ [nk]. Suppose the item-type partition
mechanism splits the item types into non-empty groups G1 to Gg, where g ≤ 2m is the number of
such groups. If the seller offers to sell the item at price at Pr, then the item type is uniform over
Gr ∩ Ik,j in the bidder’s posterior. Note that |Gr ∩ Ik,j| ≤ 2k. By Lemma 1, we have

Pr · P





1

|Gr ∩ Ik,j|
∑

t∈Gr∩Ik,j
V (t) ≥ Pr



 ≤
{

9 if Pr ≥ 6 log
(

2k
)

= 6k log 2

Pr if Pr < 6k log 2,
,

following from 6 log
(

2k
)

≥ 6 log |Gr ∩ Ik,j|.
Let k∗(r) = max{k : Pr ≥ 6k log 2}. Further, let us denote by P[k] the probability that the

data provider selects a partition of size 2k. We have that the expected revenue from posting price
Pr for every r ∈ [g] is upper-bounded by

9
∑

k≤k∗(r)

P[k] + Pr ·





m
∑

k=k∗(r)+1

P[k]



 = 9
∑

k≤k∗(r)

1

k(k + 1)
+ Pr ·





m−1
∑

k=k∗(r)+1

1

k(k + 1)
+

1

m





≤ 9

(

1− 1

k∗(r) + 1

)

+ 6 log 2 · (k∗(r) + 1)

(

1

k∗(r) + 1
− 1

m
+

1

m

)

≤ 9 + 6 log 2,

where the first step follows the fact that the probability of the data provider selecting a k ≤ m− 1
is 1

k(k+1) , and the probability of him drawing k = m is 1
m
. This concludes the proof.

To prove Claim 5, we first construct a mechanism that achieves revenue Ω(log log n) in Exam-
ple 2. In particular, we consider the following design.

Mechanism 1. The seller offers a menu of
∑m

k=1 nk options. For every κ ∈ [m], and every

ι ∈ [nκ], the menu contains the following option Lκ,ι: the bidder first pays Pκ = 1
8 log 2

κ = log 2
8 κ,

then gets the item if and only if it is in group Iκ,ι. Note that the price only depends on κ.

To show that Mechanism 1 yields revenue Ω (log log n) in Example 2, we need the following
claim, which characterizes the bidder’s behavior in the mechanism. More specifically, we show in
the following claim that if the bidder receives signal sk,j, he purchases the corresponding option
Lk,j in Mechanism 1 with probability almost 1.

11



Claim 6. In the the setting of Example 2, suppose the bidder receives signal sk,j (indicating that
the item belongs to group Ik,j of size 2k) for k ≥ 2 · 102 +1. Consider the menu of options proposed
by the seller in Mechanism 1. With probability at least 1− 10−3, no option Lκ,ι with either κ 6= k
or ι 6= j yields a higher utility for the bidder than option Lk,j, and Lk,j yields positive utility to the
bidder.

Proof of Claim 6. The bidder’s expected utility for Lk,j when receiving signal sk,j is given by

Uk,j =
1

2k

∑

i∈Ik,j
V (i) − 1

8
log 2k,

his expected utility for selecting option Lκ,ι for κ > k is only less (his expected value for the item
type is not more, but the price is higher), and his utility for selecting option Lκ,ι for κ < k is

Uκ,ι =
1

2k

∑

i∈Iκ,ι∩Ik,j
V (i)− 1

8
log 2κ,

and his expected utility for selecting any option Lκ,ι such that Iκ,ι ∩ Ik,j = ∅ is negative, since he
will pay but never be allocated the item.

Therefore, the bidder prefers Lκ,ι to Lk,j with κ ≤ k and Iκ,ι ⊂ Ik,j only if

1

2k

∑

i∈Ik,j\Iκ,ι
V (i) ≤ 1

8
log 2k−κ.

We want to upper bound the probability of the above event for all κ < k and Iκ,ι ⊂ Ik,j. Let
us denote V M (i) = min(V (i),M) for any M . We have immediately that E

[

V M (i)
]

= logM + 1
and that its variance is upper-bounded by 2M . Taking M = 2k−1 and X(i) = logM + 1− V M (i)
yields |X(i)| ≤ M , E [X(i)] = 0 and E

[

X(i)2
]

≤ 2 · 2k−1 = 2k. Recall Bernstein’s inequality:

Lemma 5. (Bernstein’s Inequality): Suppose X1, ...,Xn are independent random variables with
zero mean, and |Xi| ≤ B almost surely for all i. Then for any t > 0,

Pr

[

∑

i=1

Xi > t

]

≤ exp

(

−
1
2t

2

∑n
i=1 E[X2

i ] +
1
3Bt

)

We can then apply Bernstein’s inequality to show that

P





1

2k

∑

i∈Ik,j\Iκ,ι
V (i) <

1

2k
·





∑

i∈Ik,j\Iκ,ι
(logM + 1)− t







 = P





∑

i∈Ik,j\Iκ,ι
V (i) <

∑

i∈Ik,j\Iκ,ι
(logM + 1)− t





≤ P





∑

i∈Ik,j\Iκ,ι
V M (i) <

∑

i∈Ik,j\Iκ,ι
(logM + 1)− t





= P





∑

i∈Ik,j\Iκ,ι
X(i) > t





≤ exp

(

−1

2
· t2

2k · |Ik,j \ Iκ,ι|+M · t/3

)

= exp

(

−1

2
· t2

2k (2k − 2κ) +M · t/3

)

,
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where the last inequality is due to Bernstein’s inequality. Taking

t =

(

3

4

)

(

2k − 2κ
)

(logM + 1) ,

we have

1

2k





∑

i∈Ik,j\Iκ,ι
(logM + 1)− t



 =
1

2k
· 1
4

(

2k − 2κ
)

(logM + 1)

≥ 1

2k
· 1
4

(

2k−1
)

(logM + 1)

=
1

8
(logM + 1) ,

and we thus obtain a bound on the probability of the event that a particular menu option Lκ,ι for
κ < k is better for the bidder than option Lk,j, given signal sk,j:

P





1

2k

∑

i∈Ik,j\Iκ,ι
V (i) ≤ 1

8
log 2k−κ



 < P





1

2k

∑

i∈Ik,j\Iκ,ι
V (i) <

1

8

(

log 2k−1 + 1
)





≤ P





1

2k

∑

i∈Ik,j\Iκ,ι
V (i) <

1

2k





∑

i∈Ik,j\Iκ,ι

(

log 2k−1 + 1
)

− t









≤ exp

(

−k2

2
· (3/4)2

(

2k − 2κ
)2

(log 2)2

2k (2k − 2κ) + 1
42

k−1 (2k − 2κ) (log 2k−1 + 1)

)

≤ exp

(

−(k − 1)2

2
· (3/4)2 · 2k−1

(

2k − 2κ
)

(log 2)2

2k (2k − 2κ) + 1
42

k−1 (2k − 2κ) (log 2k−1 + 1)

)

≤ exp



−k − 1

2
· (3/4)2 (log 2)2

2
k−1 +

1
4

(

log 2 + 1
k−1

)



 ,

For k ≥ 2 · 102 + 1, the above yields

P





1

2k

∑

i∈Ik,j\Iκ,ι
V (i) <

1

8

(

log 2k−1 + 1
)



 ≤ exp

(

−(k − 1) · (3/4)2 (log 2)2

4
2·102 + 1

2

(

log 2 + 1
2·102

)

)

.

We now let

K = exp

(

(3/4)2 (log 2)2

4
2·102 + 1

2

(

log 2 + 1
2·102

)

)

,

and note that we then have that for k ≥ 2 · 102 + 1,

P





1

2k

∑

i∈Ik,j\Iκ,ι
V (i) <

1

8

(

log 2k−1 + 1
)



 ≤
(

1

K

)k−1

.

Since there are less than 2k groups Iκ,ι such that Iκ,ι ⊂ Ik,j, a union bound gives us that the

probability that the bidder prefers a different option other than Lk,j is upper bounded by 2·
(

2
K

)k−1
.

A direct calculation shows that 2 ·
(

2
K

)k−1 ≤ 10−3.

13



We are now ready to prove Claim 5.

Proof of Claim 5. The proof of Claim 6 directly implies that the revenue of the considered mecha-
nism is lower-bounded by

(1− 10−3) log 2

8





m−1
∑

k≥2·102+1

k

k(k + 1)
+

m

m



 = Ω(logm) = Ω (log log n) ,

as a bidder who receives signal sk,j picks option Lk,j with price log 2
8 k with probability at least

1− 10−3.
The revenue of the best mechanism is upper-bounded by the optimal revenue the seller could

obtain if she knew the realization of the signal. When facing signal sk,j, the bidder’s posterior
is that the item type is taken uniformly at random from group Ik,j. By Babaioff et al. [2014],
Daskalakis et al. [2016], the better of item-type pricing and item-type bundling (conditioning now
on the realization of the signal) yields a constant approximation to the optimal revenue. The
revenue from item-type pricing is clearly 1, and the revenue from item-type bundling is O

(

log 2k
)

by
Lemma 1 as setting P > 6 log 2k yields constant revenue while setting P ≤ 6 log 2k yields O

(

log 2k
)

.
Therefore, the optimal revenue conditional on the signal being sk,j must be O

(

log 2k
)

= O (k), and
the optimal (unconditional) revenue is therefore

O

(

m−1
∑

k=1

k

k(k + 1)
+

m

m

)

= O (logm) = O (log log n) .

We remark that Mechanism 1, although it has a concise description, is not “simple” in any of
the usual senses, and is in fact carefully tailored to the incentives of the buyer. We do not know of
“simpler” mechanisms that are approximately optimal in this setting.

6 The Behavior of an Adversarial Data Provider

Thus far, our focus has been on the impact of third-party information on the mechanism design
problem of the seller, absent consideration or modeling of the incentives or behavior of the data
provider. Here, we shift gears and consider the perspective of the data provider. Specifically, we
consider the strategic design of the signaling scheme of the data provider.

To accomplish this, we need to consider the motivations of the data provider. One may con-
sider the data provider to be profit maximizing, of course, but a particularly relevant behavior in
the context of the results of the previous sections is to consider that the data provider may be
adversarial, that is, he wishes to minimize the expected revenue of the seller. Understanding the
behavior of an adversarial data provider is important for understanding how to design mechanisms
in the presence of a data provider that are guaranteed, in the worst-case, to provide near-optimal
revenue.

The question we seek to answer in this section is: what signaling structure would an adversarial
data provider adopt?

To study this question, we consider a third-party data provider that has (potentially imperfect)
information on the type of the item, in the form of some X ∈ X . X is a random variable that
can be arbitrarily correlated with the type of the item; its distribution is publicly known, but its
realization is only observed by the data provider. The data provider publicly announces a signaling
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scheme, a random function S : X → S, and reveals the realization of S(X) solely to the bidder; the
seller does not observe this realization, but knows the distribution of S(.). The seller then sells the
item so as to maximize her revenue, under the knowledge of the distribution of the signal X. The
data provider’s goal is to design the signaling scheme S(.) so as to minimize the seller’s revenue.

A first observation about this situation is that, when the data provider has perfect information
about the item type, she minimizes the expected revenue of the seller by revealing the type.

Lemma 6. If the data provider is adversarial and has full information about the type of the item
(that is, if X is perfectly correlated with the item type), the optimal strategy for the data provider
is to reveal X.

Proof. Let SREV be the optimal revenue that the seller can achieve when the type of the item
is revealed, and REV (S(X)) be the optimal revenue achievable when the data provider’s signal is
the random variable S(X). The seller can always guarantee a revenue of SREV by revealing the
type of the item then selling this type optimally, no matter what the distribution of S(X) is, thus
REV (S(X)) ≥ SREV . The data provider can always set S(.) to be the identity function Id, which
is equivalent to revealing X and hence the item type. Because SREV is the optimal revenue when
the item type is revealed, REV (X) = SREV , which concludes the proof.

More interestingly, and perhaps counter-intuitively, if the data provider does not have full
information, then only partially revealing information may minimize the revenue of the seller.

Lemma 7. Let the number of item types be n = 2, and let REV (S(X)) be the optimal revenue for
the seller when the data provider receives signal X and designs signaling scheme S(.). There exists
a distribution of valuations ~V and a prior ~π for the bidder, and a signaling scheme S(.) such that
REV (S(X)) < REV (Id(X)) where Id is the identity function, that is, fully revealing X is not the
strategy for the provider that minimizes the expected revenue of the seller.

The proof of this result uses the following example.

Example 3. Let the bidder’s valuation for each item type be drawn i.i.d., taking value 1 with
probability 1/2 and value 2.1 with probability 1/2. The bidder and the data provider share a
common prior ~π = (3/4, 1/4). That is, they both initially believe the item is of type 1 with
probability 3/4 and of type 2 with probability 1/4. The data provider receives a signal X on
some support {x1, x2}. If the item is 1, the provider receives x1 with probability 2/3 and x2 with
probability 1/3, and if the item is x2, the provider receives x2 with probability 1. Therefore, with
probability 1/2, the data provider receives x1 and has posterior ~π1 = (1, 0) (when receiving x1, the
provider knows the item must be 1); with probability 1/2, he receives x2 and thus has posterior
~π2 = (1/2, 1/2).

Proof. We show that in Example 3, the data provider has a signaling scheme that is worse for the
seller than fully revealing his information to the bidder.

If the data provider fully reveals his information X to the bidder, he induces the same posteriors
~π1 w.p. 1/2 and ~π2 w.p. 1/2 for the bidder. Computing the optimal revenue of the seller via linear
programming, using the characterization of Section 3, yields revenue R = 1.1062.

Suppose the data provider instead reveals partial information to the bidder, in the following
manner: when the provider receives a realization x of X that belongs to {x1, x2}, the provider
outputs S(X) = x w.p. 1 − ǫ = 0.86 and, for some distinct x3 ∈ S, S(X) = x3 w.p. ǫ = 0.14.
Given this signaling scheme, when the bidder receives S(X) = x1 (which occurs with probability
1
2(1 − ǫ) = 0.43), he infers that necessarily X = x1, and so his posterior is ~π1. Similarly, when
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S(X) = x2 (which also occurs with probability 0.43), the bidder infers that it must be the case that
X = x2, hence he has posterior ~π2. Finally, when the bidder receives S(X) = x3 (which occurs
with probability ǫ = 0.14), he infers that X = x1 or X = x2 with equal probability by symmetry,
hence his posterior is 1

2 ( ~π1 + ~π2) = (3/4, 1/4) = ~π. Computing the optimal revenue of the seller
via linear programming, using the the results of Section 3, yields revenue R = 1.0991 < 1.1062,
proving the result.

It may seem counterintuitive that the information provider can harm the seller more by provid-
ing less information to the bidder. After all, one consequence of the characterization of Section 3
is that the seller can only lower her revenue by revealing more information to the bidder. How-
ever, information from the provider and information from the seller are not equivalent from the
perspective of the seller, because the seller does not get to see the realization of the signal that
the provider sends to the bidder. When the seller reveals information, she knows exactly what the
bidder’s posterior is, and can act as a function of the realized posterior; she is then faced with
exactly the problem solved by Daskalakis et al. [2016] for that realized posterior. When the data
provider reveals information, the seller, who only knows the signaling scheme but not the signal,
faces a distribution of posteriors and doesn’t know which of them is correct.

In particular, in Example 3, in the fully-revealing signaling scheme there are two posteriors ~π1
and ~π2. Each occurs with probability 1/2. The seller, intuitively, wishes to design a menu with
one option for each of these two posteriors. In the partially revealing signaling scheme there is
a third posterior, ~π, which is an average of ~π1 and ~π2. In fact, the first signaling scheme is a
mean-preserving spread of the second one. The seller, intuitively, wishes to design a menu with
three options, one for each posterior.

This third posterior induces a trade-off in the linear program the seller solves to find the optimal
mechanism. The second linear program has more IC constraints for the two posteriors than the
linear program given the fully revealing signaling scheme. This makes the revenue the seller gets
from buyers with posteriors ~π1 and ~π2 lower than before. The trade-off is that there is now a new
posterior ~π3, from which the seller can make additional revenue. Example 3 is constructed so that
the harm from the additional posterior exceeds the benefit.
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