19 research outputs found

    The numerical solution of neural field models posed on realistic cortical domains

    Get PDF
    The mathematical modelling of neural activity is a hugely complex and prominent area of exploration that has been the focus of many researchers since the mid 1900s. Although many advancements and scientific breakthroughs have been made, there is still a great deal that is not yet understood about the brain. There have been a considerable amount of studies in mathematical neuroscience that consider the brain as a simple one-dimensional or two-dimensional domain; however, this is not biologically realistic and is primarily selected as the domain of choice to aid analytical progress. The primary aim of this thesis is to develop and provide a novel suite of codes to facilitate the computationally efficient numerical solution of large-scale delay differential equations, and utilise this to explore both neural mass and neural field models with space-dependent delays. Through this, we seek to widen the scope of models of neural activity by posing them on realistic cortical domains and incorporating real brain data to describe non-local cortical connections. The suite is validated using a selection of examples that compare numerical and analytical results, along with recreating existing results from the literature. The relationship between structural connectivity and functional connectivity is then analysed as we use an eigenmode fitting approach to inform the desired stability regimes of a selection of neural mass models with delays. Here, we explore a next-generation neural mass model developed by Coombes and Byrne [36], and compare results to the more traditional Wilson-Cowan formulation [180, 181]. Finally, we examine a variety of solutions to three different neural field models that incorporate real structural connectivity, path length, and geometric surface data, using our NFESOLVE library to efficiently compute the numerical solutions. We demonstrate how the field version of the next-generation model can yield intricate and detailed solutions which push us closer to recreating observed brain dynamics

    The numerical solution of neural field models posed on realistic cortical domains

    Get PDF
    The mathematical modelling of neural activity is a hugely complex and prominent area of exploration that has been the focus of many researchers since the mid 1900s. Although many advancements and scientific breakthroughs have been made, there is still a great deal that is not yet understood about the brain. There have been a considerable amount of studies in mathematical neuroscience that consider the brain as a simple one-dimensional or two-dimensional domain; however, this is not biologically realistic and is primarily selected as the domain of choice to aid analytical progress. The primary aim of this thesis is to develop and provide a novel suite of codes to facilitate the computationally efficient numerical solution of large-scale delay differential equations, and utilise this to explore both neural mass and neural field models with space-dependent delays. Through this, we seek to widen the scope of models of neural activity by posing them on realistic cortical domains and incorporating real brain data to describe non-local cortical connections. The suite is validated using a selection of examples that compare numerical and analytical results, along with recreating existing results from the literature. The relationship between structural connectivity and functional connectivity is then analysed as we use an eigenmode fitting approach to inform the desired stability regimes of a selection of neural mass models with delays. Here, we explore a next-generation neural mass model developed by Coombes and Byrne [36], and compare results to the more traditional Wilson-Cowan formulation [180, 181]. Finally, we examine a variety of solutions to three different neural field models that incorporate real structural connectivity, path length, and geometric surface data, using our NFESOLVE library to efficiently compute the numerical solutions. We demonstrate how the field version of the next-generation model can yield intricate and detailed solutions which push us closer to recreating observed brain dynamics

    The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Get PDF
    Comprised of exo- and trans-atmospheric trajectory segments, atmospheric re-entry represents a complex dynamical event which traditionally signals the mission end-of-life for low-Earth orbit spacecraft. Transcending this paradigm, atmospheric re-entry can be employed as a means of operational maneuver whereby aerodynamic forces can be exploited to create an aeroassisted maneuver. Utilizing a notional trans-atmospheric, lifting re-entry vehicle with L/D =6, the first phase of research demonstrates the terrestrial reachability potential for skip entry aeroassisted maneuvers. By overflying a geographically diverse set of ground targets, comparative analysis indicates a significant savings in delta V expenditure for skip entry compared with exo-atmospheric maneuvers. In the second phase, the Design of Experiments method of orthogonal arrays provides optimal vehicle and skip entry trajectory designs by employing main effects and Pareto front analysis. Depending on re-circularization altitude, the coupled optimal design can achieve an inclination change of 19.91掳 with 50-85% less delta V than a simple plane change. Finally, the third phase introduces the descent-boost aeroassisted maneuver as an alternative to combined Hohmann and bi-elliptic transfers in order to perform LEO injection. Compared with bi-elliptic transfers, simulations demonstrate that a lifting re-entry vehicle performing a descent-boost maneuver requires 6-12% less for injection into orbits lower than 650 km. In addition, the third phase also introduces the Maneuver Performance Number as a dimensionless means of comparative maneuver effectiveness analysis

    ADAPTIVE GRID BASED FINITE DIFFERENCE METHODS FOR SOLUTION OF HYPERBOLIC PDES: APPLICATION TO COMPUTATIONAL MECHANICS AND UNCERTAINTY QUANTIFICATION

    Get PDF
    Novel finite-difference based numerical methods for solution of linear and nonlinear hyperbolic partial differential equations (PDEs) using adaptive grids are proposed in this dissertation. The overall goal of this research is to improve the accuracy and/or computational efficiency of numerical solutions via the use of adaptive grids and suitable modifications of a given low-order order finite-difference scheme. These methods can be grouped in two broad categories. The first category of adaptive FD methods proposed in the dissertation attempt to reduce the truncation error and/or enhance the accuracy of the underlying numerical schemes via grid distribution alone. Some approaches for grid distribution considered include those based on (i) a moving uniform mesh/domain, (ii) adaptive gradient based refinement (AGBR) and (iii) unit local Courant-Freidrich-Lewy (CFL) number. The improvement in the accuracy which is obtained using these adaptive methods is limited by the underlying scheme formal order of accuracy. In the second category, the CFL based approach proposed in the first category was extended further using defect correction in order to improve the formal order of accuracy and computational efficiency significantly (i.e. by at least one order or higher). The proposed methods in this category are constructed based upon the analysis of the leading order error terms in the modified differential equation associated with the underlying partial differential equation and finite difference scheme. The error terms corresponding to regular and irregular perturbations are identified and the leading order error terms associated with regular perturbations are eliminated using a non-iterative defect correction approach while the error terms associated with irregular perturbations are eliminated using grid adaptation. In the second category of methods involving defect correction (or reduction of leading order terms of truncation error), we explored two different approaches for selection of adaptive grids. These are based on (i) optimal grid dis- tribution and (ii) remapping with monotonicity preserving interpolation. While the first category of methods may be preferred in view of ease of implementation and lower computational complexity, the second category of methods may be preferred in view of greater accuracy and computational efficiency. The two broad categories of methods, which have been applied to problems involving both bounded and unbounded domains, were also extended to multidimensional cases using a dimensional splitting approaches. The performance of these methods was demonstrated using several example problems in computational uncertainty quantification (CUQ) and computational mechanics. The results of the application of the proposed approaches all indicate improvement in both the accuracy and computational efficiency (by about three orders of magnitude in some selected cases) of underlying schemes. In the context of CUQ, all three proposed adaptive finite different solvers are combined with the Gauss-quadrature sampling technique in excitation space to obtain statistical quantities of interest for dynamical systems with parametric uncertainties from the solution of Liouville equation, which is a linear hyperbolic PDE. The numerical results for four canonical UQ problems show both enhanced computational efficiency and improved accuracy of the proposed adaptive FD solution of the Liouville equation compared to its standard/fixed domain FD solutions. Moreover, the results for canonical test problems in computational mechanics indicate that the proposed approach for increasing the formal order of the underlying FD scheme can be easily implemented in multidimensional spaces and gives an oscillation-free numerical solution with a desired order of accuracy in a reasonable computational time. This approach is shown to provide a better computational time compared to both the underlying scheme (by about three orders of magnitude) and standard FD methods of the same order of accuracy

    On the use of Neural Networks to solve Differential Equations

    Get PDF
    [EN]Artificial neural networks are parametric models, generally adjusted to solve regression and classification problem. For a long time, a question has laid around regarding the possibility of using these types of models to approximate the solutions of initial and boundary value problems, as a means for numerical integration. Recent improvements in deep-learning have made this approach much attainable, and integration methods based on training (fitting) artificial neural networks have begin to spring, motivated mostly by their mesh-free nature and scalability to high dimensions. In this work, we go all the way from the most basic elements, such as the definition of artificial neural networks and well-posedness of the problems, to solving several linear and quasi-linear PDEs using this approach. Throughout this work we explain general theory concerning artificial neural networks, including topics such as vanishing gradients, non-convex optimization or regularization, and we adapt them to better suite the initial and boundary value problems nature. Some of the original contributions in this work include: an analysis of the vanishing gradient problem with respect to the input derivatives, a custom regularization technique based on the network鈥檚 parameters derivatives, and a method to rescale the subgradients of the multi-objective of the loss function used to optimize the network.[ES]Las redes neuronales son modelos param茅tricos generalmente usados para resolver problemas de regresiones y clasificaci贸n. Durante bastante tiempo ha rondado la pregunta de si es posible usar este tipo de modelos para aproximar soluciones de problemas de valores iniciales y de contorno, como un medio de integraci贸n num茅rica. Los cambios recientes en deep-learning han hecho este enfoque m谩s viable, y m茅todos basados en entrenar (ajustar) redes neuronales han empezado a surgir motivados por su no necesidad de un mallado y su buena escalabilidad a altas dimensiones. En este trabajo, vamos desde los elementos m谩s b谩sicos, como la definici贸n de una red neuronal o la buena definici贸n de los problemas, hasta ser capaces de resolver diversas EDPs lineales y casi-lineales. A lo largo del trabajo explicamos la teor铆a general relacionada con redes neuronales, que incluyen t贸picos como los problemas de desvanecimiento de gradientes (vanishing gradient), optimizaci贸n no-convexa y t茅cnicas de regularizaci贸n, y los adaptamos a la naturaleza de los problemas de valores iniciales y de contorno. Algunas de las contribuciones originales de este trabajo incluyen: un an谩lisis del desvanecimiento de gradientes con respecto a las variables de entrada, una t茅cnica de regularizaci贸n customizada basada en las derivadas de los par谩metros de la red neuronal, y un m茅todo para rescalar los subgradientes de la funci贸n de coste multi-objectivo usada para optimizar la red neuronal

    Mathematical modelling of cancer invasion and metastatic spread

    Get PDF
    Metastatic spread鈥攖he dissemination of cancer cells from a primary tumour with subsequent re-colonisation at secondary sites in the body鈥攃auses around 90% of cancer-related deaths. Mathematical modelling may provide a complementary approach to help understand the complex mechanisms underlying metastasis. In particular, the spatiotemporal evolution of individual cancer cells during the so-called invasion-metastasis cascade鈥攊.e. during cancer cell invasion, intravasation, vascular travel, extravasation and metastatic growth鈥攊s an aspect not yet explored through existing mathematical models. In this thesis, such a spatially explicit hybrid multi-organ metastasis modelling framework is developed. It describes the invasive growth dynamics of individual cancer cells both at a primary site and at potential secondary metastatic sites in the body, as well as their transport from the primary to the secondary sites. Throughout, the interactions between the cancer cells, matrix-degrading enzymes (MDEs) and the extracellular matrix (ECM) are accounted for. Furthermore, the individual-based framework models phenotypic variation by distinguishing between cancer cells of an epithelial-like, a mesenchymal-like and a mixed phenotype. It also describes permanent and transient mutations between these cell phenotypes in the form of epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). Both of these mechanisms are implemented at the biologically appropriate locations of the invasion-metastasis cascade. Finally, cancer cell dormancy and death at the metastatic sites are considered to model the frequently observed maladaptation of metastasised cancer cells to their new microenvironments. To investigate the EMT-process further, an additional three-dimensional discrete-continuum model of EMT- and MET-dependent cancer cell invasion is developed. It consists of a hybrid system of partial and stochastic differential equations that describe the evolution of epithelial-like and mesenchymal-like cancer cells, again under the consideration of MDE concentrations and the ECM density. Using inverse parameter estimation and sensitivity analysis, this model is calibrated to an in vitro organotypic assay experiment that examines the invasion of HSC-3 cancer cells

    Integrated batch process development based on mixed-logic dynamic optimization

    Get PDF
    Specialty chemicals industry relies on batch manufacturing, since it requires the frequent adaptation of production systems to market fluctuations. To be first in the market, batch industry requires decision-support systems for the rapid development and implementation of chemical processes. Moreover, the processes should be competitive to ensure their long-term viability. General-purpose and flexible plants and the consideration of physicochemical insights to define an efficient operation are also cornerstones for the success of specialty chemical industries. Precisely, this thesis tackles the systematic development of batch processes that are efficient, economically competitive, and environmentally friendly, to assist their agile introduction into production systems in grassroots and retrofit scenarios. Synthesis of conceptual processing schemes and plant allocation subproblems are solved simultaneously, taking into account the plant design. With this purpose, an optimization-based approach is proposed, where all structural alternatives are represented in a State-Equipment Network (SEN) superstructure, following formulated into a Mixed-Logic Dynamic Optimization (MLDO) problem which is later solved to minimize an objective function. Essentially, the strength of the proposed methodology lies in the modeling strategy which combines the different kinds of decisions of the integrated problem in a unique optimization model. Accordingly, it considers: (i) synthesis and allocation alternatives combination, (ii) dynamic process performance models and dynamic control variable profiles, (iii) discrete events associated to transitions of batch phases and operations, (iv) quantitative and qualitative information, (v) material transference synchronization to ensure batch integrity between unit procedures, and (vi) batch and semicontinuous processing elements. Different strategies can be used to solve the resulting MLDO problem. A deterministic direct-simultaneous approach is first proposed. The mixed-logic problem is reformulated into a mixed-integer one, which is fully-discretized to provide a Mixed-Integer Non-Linear Programming (MINLP) that is optimized using conventional solvers. Then, a Differential Genetic Algorithm (DGA) and a hybrid approach are presented. The purpose of these evolutionary strategies is to pose solution alternatives that keep solution goodness while seek for the improvement of computational efficiency to handle industrial-size problems. The optimization-based approach is applied in retrofit scenarios to solve the simultaneous process synthesis and plant allocation, taking into account the physical restrictions of existing plant elements. The production of specialty chemicals based on a competitive reactions system in an existing reactor network is first defined through process development and improvement according to different economic scenarios, decision criteria, and plant modifications. Additionally, a photo-Fenton process is optimized to eliminate an emergent wastewater pollutant in a given pilot plant, pursuing the minimization of processing time and cost. Batch process development in grassroots scenarios is also proven to be a problem of utmost importance to deal with uncertainty in future markets. Seeking for plant flexibility in several demand scenarios, the expected profit is maximized through a two-stage stochastic formulation that includes simultaneous plant design, process synthesis, and plant allocation decisions. A heuristic solution algorithm is used to handle the problem complexity. A grassroots plant design is defined to implement the previous competitive reaction system, where decisions like the feed-forward trajectories or operating modes allow the adaptation of master recipes to different demands. Finally, an acrylic fiber production example is presented to illustrate process development decisions like the selection of tasks, technological alternatives, chemicals, and solvent reuse.La ind煤stria de productes qu铆mics especials es basa en la fabricaci贸 discontinua, ja que permet adaptar de forma freq眉ent els sistemes de producci贸 en funci贸 de les fluctuacions de mercat. Per ser l铆der al sector, s贸n necess脿ries eines de suport a la decisi贸 que ajudin a l鈥櫭爂il desenvolupament i implementaci贸 de nous processos. A m茅s, aquests han de ser competitius per garantir la seva viabilitat a llarg termini. Altres peces clau per una operaci贸 eficient s贸n l鈥櫭簊 de plantes flexibles aix铆 com l鈥檈studi dels fen貌mens fisicoqu铆mics. Aquesta tesis aborda justament el desenvolupament sistem脿tic de processos qu铆mics discontinus que siguin eficients, econ貌micament competitius i ecol貌gics, per contribuir a la seva r脿pida introducci贸 en els sistemes de producci贸, tant en escenaris de plantes existents com des de les bases. En concret, es planteja la resoluci贸 simult脿nia de la s铆ntesi conceptual d鈥檈squemes de proc茅s i l鈥檃ssignaci贸 d鈥檈quips, tenint en compte el disseny de la planta. Amb aquest objectiu, es proposa una metodologia de soluci贸 basada en optimitzaci贸, on les alternatives estructurals es representen en una Xarxa d鈥橢stats i Equips (SEN per les sigles en angl猫s) que es formula mitjan莽ant un problema d鈥橭ptimitzaci贸 Din脿mica Mixta-L貌gica (MLDO per les sigles en angl猫s) que es resol minimitzant una funci贸 objectiu. La solidesa de la metodologia proposada rau en la estrat猫gia de modelat del problema MLDO, que integra els diferents tipus de decisions en un sol model d鈥檕ptimitzaci贸. En concret, es consideren: (i) la combinaci贸 d鈥檃lternatives de s铆ntesi i assignaci贸 d鈥檈quips, (ii) models de proc茅s i traject貌ries de control din脿mics, (iii) esdeveniments discrets associats al canvi de fase i operaci贸, (iv) informaci贸 quantitativa i qualitativa, (v) sincronitzaci贸 de transfer猫ncies de material en tasques consecutives, i (vi) elements de processat discontinus i semi-continus. Existeixen diverses estrat猫gies per resoldre el problema MLDO resultant. En aquesta tesi es proposa en primer lloc un m猫tode determin铆stic directe-simultani, on el model mixt-l貌gic es transforma en un mixt-enter. Aquest es discretitza al seu torn de forma completa per obtenir un problema de Programaci贸 No-Lineal Mixta-Entera (MINLP per les sigles en angl猫s) el qual es pot resoldre utilitzant algoritmes d鈥檕ptimitzaci贸 convencionals. A m茅s, es presenten un Algoritme Gen猫tic Diferencial (DGA per les sigles en angl猫s) i un m猫tode h铆brid. Totes dues estrat猫gies esdevenen alternatives de cerca amb l鈥檕bjectiu de mantenir la bondat de la soluci贸 i millorar l鈥檈fic脿cia de computaci贸 per tractar problemes de dimensi贸 industrial. La metodologia de soluci贸 proposada s鈥檃plica al desenvolupament de processos discontinus en escenaris de plantes existents, tenint en compte les restriccions f铆siques dels equips. Un primer exemple aborda la manufactura de productes qu铆mics basada en un sistema de reaccions competitives. Concretament, es desenvolupa i millora el proc茅s de producci贸 implementat en una xarxa de reactors considerant diferents escenaris econ貌mics, criteris de decisi贸, i modificacions de planta. En un segon exemple, s鈥檕ptimitza el proc茅s foto-Fenton per ser executat en una planta pilot per eliminar contaminants emergents. Buscant integrar el desenvolupament de proc茅s i el disseny de plantes flexibles en escenaris de base, es presenta una formulaci贸 estoc脿stica en dues etapes per a optimitzar el benefici esperat d鈥檃cord a diversos escenaris de demanda. Per gestionar la complexitat d鈥檃quest problema es proposa la utilitzaci贸 d鈥檜na heur铆stica. Com a exemple, es planteja el disseny d鈥檜na planta de base on implementar l鈥檃nterior sistema de reaccions competitives. Decisions com les traject貌ries din脿miques de control o la configuraci贸 d鈥檈quips permeten adaptar la recepta m脿ster en funci贸 de la demanda. Un darrer exemple defineix el proc茅s de producci贸 de fibra acr铆lica, il路lustrant decisions com la selecci贸 de tasques, tecnologia, reactius o reutilitzaci贸 de dissolvents.La industria productos qu铆micos especiales se basa en la fabricaci贸n discontinua, la cual permite la adaptaci贸n frecuente de los sistemas de producci贸n en funci贸n de las fluctuaciones de mercado. Para ser l铆der en el sector, son necesarias herramientas de soporte a la decisi贸n que contribuyan al 谩gil desarrollo e implementaci贸n de nuevos procesos. Adem谩s, 茅stos deben ser competitivos para garantizar su viabilidad a largo plazo. Otras piezas clave para una operaci贸n eficiente son la utilizaci贸n de plantas flexibles y el estudio de los fen贸menos fisicoqu铆micos. Esta tesis aborda justamente el desarrollo sistem谩tico de procesos qu铆micos discontinuos que sean eficientes, econ贸micamente competitivos y ecol贸gicos, para contribuir a su r谩pida introducci贸n en los sistemas de producci贸n, ya sea en escenarios de plantas existentes o desde las bases. En particular, se plantea la resoluci贸nsimult谩nea de la s铆ntesis conceptual de esquemas de proceso y la asignaci贸n de equipos, teniendo en cuenta adem谩s el dise帽o de planta.Con este fin, se propone una metodolog铆a de soluci贸n basada en optimizaci贸n, donde todas las alternativas estructurales se representan en una Red de Estados y Equipos (SENpor sus siglas en ingl茅s) que se formula mediante un problema de Optimizaci贸n Din谩mica Mixta-L贸gica (MLDO por sus siglas en ingl茅s) que se resuelve minimizando una funci贸n objetivo. La solidez de la metodolog铆a propuesta reside en la estrategia de modelado delproblema MLDO, que integra los diferentes tipos de decisiones en un solo modelo de optimizaci贸n. En concreto, se consideran: (i) la combinaci贸n de alternativas de s铆ntesis y asignaci贸n de equipos, (ii) modelos de proceso y trayectorias de control din谩micos, (iii)eventos discretos asociados al cambio de fase y operaci贸n, (iv) informaci贸n cuantitativa y cualitativa, (v) sincronizaci贸n de la transferencia de material en tareas consecutivas, y(vi) elementos de procesado discontinuos y semicontinuos.Existen diversas estrategias para resolver el problema MLDO resultante. En esta tesis se propone en primer lugar un m茅todo determin铆stico directo-simult谩neo, donde el problema mixto-l贸gico se reformula en un mixto-entero. A su vez, 茅ste se discretiza de formacompleta para obtener un problema de Programaci贸n No-Lineal Mixta-Entera (MINLP por sus siglas en ingl茅s) el cual se puede resolver mediante algoritmos de optimizaci贸n convencionales. Adem谩s, se presentan un Algoritmo Gen茅tico Diferencial (DGA por sussiglas en ingl茅s) y un m茅todo h铆brido. Ambas estrategias se plantean como alternativas de b煤squeda con objeto de mantener la bondad de la soluci贸n y mejorar la eficacia de computaci贸n para tratar problemas de dimensi贸n industrial.La metodolog铆a de soluci贸n propuesta se aplica al desarrollo de procesos discontinuos en escenarios con plantas existentes, teniendo en cuenta las restricciones f铆sicas de los equipos. Un primer ejemplo aborda la fabricaci贸n de productos qu铆micos basada en un聽sistema de reacciones competitivas. En concreto, se desarrolla y mejora el proceso de producci贸n a implementar en una red de reactores considerando diferentes escenarios econ贸micos, criterios de decisi贸n, y modificaciones de planta. En un segundo ejemplo,se optimiza el proceso foto-Fenton a ser ejecutado en una planta piloto para eliminar contaminantes emergentes.Persiguiendo la integraci贸n del desarrollo de proceso con el dise帽o de plantas flexi-bles en escenarios base, se presenta asimismo una formulaci贸n estoc谩stica en dos etapas para optimizar el beneficio esperado de acuerdo a varios escenarios de demanda. Paramanejar la complejidad de dicho problema se propone la utilizaci贸n de una heur铆stica.Como ejemplo, se plantea el dise帽o de una planta de base para implementar el anterior sistema de reacciones competitivas, donde decisiones como las trayectorias din谩micas de control o la configuraci贸n de equipos permiten adaptar la receta m谩ster en funci贸n de lademandas. Por 煤ltimo, se presenta un ejemplo donde se define el proceso de producci贸n de fibra acr铆lica, ilustrando decisiones como la selecci贸n de tareas, alternativas tecnol贸gicas, reactivos qu铆micos o la reutilizaci贸n de disolventes.Postprint (published version
    corecore