49 research outputs found

    Weighted Finite Automata over Strong Bimonoids

    Get PDF
    We investigate weighted finite automata over strings and strong bimonoids. Such algebraic structures satisfy the same laws as semirings except that no distributivity laws need to hold. We define two different behaviors and prove precise characterizations for them if the underlying strong bimonoid satisfies local finiteness conditions. Moreover, we show that in this case the given weighted automata can be determinized

    Fuzzy Description Logics with General Concept Inclusions

    Get PDF
    Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived

    Approximate State Reduction of Fuzzy Finite Automata

    Full text link
    In this paper we introduce a new type of approximate state reductions where the behaviors of the reduced and the original automaton do not have to be identical, but they must match on all words of length less than or equal to some given natural number. We provide four methods for performing such reductions.Comment: In Proceedings AFL 2023, arXiv:2309.0112

    Being correct is not enough: efficient verification using robust linear temporal logic

    Full text link
    While most approaches in formal methods address system correctness, ensuring robustness has remained a challenge. In this paper we present and study the logic rLTL which provides a means to formally reason about both correctness and robustness in system design. Furthermore, we identify a large fragment of rLTL for which the verification problem can be efficiently solved, i.e., verification can be done by using an automaton, recognizing the behaviors described by the rLTL formula φ\varphi, of size at most O(3∣φ∣)\mathcal{O} \left( 3^{ |\varphi|} \right), where ∣φ∣|\varphi| is the length of φ\varphi. This result improves upon the previously known bound of O(5∣φ∣)\mathcal{O}\left(5^{|\varphi|} \right) for rLTL verification and is closer to the LTL bound of O(2∣φ∣)\mathcal{O}\left( 2^{|\varphi|} \right). The usefulness of this fragment is demonstrated by a number of case studies showing its practical significance in terms of expressiveness, the ability to describe robustness, and the fine-grained information that rLTL brings to the process of system verification. Moreover, these advantages come at a low computational overhead with respect to LTL verification.Comment: arXiv admin note: text overlap with arXiv:1510.08970. v2 notes: Proof on the complexity of translating rLTL formulae to LTL formulae via the rewriting approach. New case study on the scalability of rLTL formulae in the proposed fragment. Accepted to appear in ACM Transactions on Computational Logi

    Decidability of Order-Based Modal Logics

    Get PDF

    Non-clausal multi-ary alpha-generalized resolution calculus for a finite lattice-valued logic

    Get PDF
    Due to the need of the logical foundation for uncertain information processing, development of efficient automated reasoning system based on non-classical logics is always an active research area. The present paper focuses on the resolution-based automated reasoning theory in a many-valued logic with truth-values defined in a lattice-ordered many-valued algebraic structure - lattice implication algebras (LIA). Specifically, as a continuation and extension of the established work on binary resolution at a certain truth-value level α (called α-resolution), a non-clausal multi-ary α-generalized resolution calculus is introduced for a lattice-valued propositional logic LP(X) based on LIA, which is essentially a non-clausal generalized resolution avoiding reduction to normal clausal form. The new resolution calculus in LP(X) is then proved to be sound and complete. The concepts and theoretical results are further extended and established in the corresponding lattice-valued first-order logic LF(X) based on LIA
    corecore