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Abstract 

Due to the need of the logical foundation for uncertain information processing, development of efficient automated 

reasoning system based on non-classical logics is always an active research area. The present paper focuses on the 

resolution-based automated reasoning theory in a many-valued logic with truth-values defined in a lattice-ordered 

many-valued algebraic structure - lattice implication algebras (LIA). Specifically, as a continuation and extension of 

the established work on binary resolution at a certain truth-value level  (called -resolution), a non-clausal multi-ary 

-generalized resolution calculus is introduced for a lattice-valued propositional logic LP(X) based on LIA, which is 

essentially a non-clausal generalized resolution avoiding reduction to normal clausal form. The new resolution 

calculus in LP(X) is then proved to be sound and complete. The concepts and theoretical results are further extended 

and established in the corresponding lattice-valued first-order logic LF(X) based on LIA. 
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1. Introduction 

Automatic theorem proving is mechanization of 

mathematical inference by means of a logic system and 

inference rules, rather than computation over numbers. 

The resolution principle is one simple but efficient 

inference principle, and the resolution calculus is sound 

and complete in the Boolean logic system. Since its 

introduction by Robinson in 1965 [1], resolution-based 

automated reasoning has been extensively studied with 

the attempt to find natural and efficient proof systems to 

supporting a wide spectrum of computational tasks [2-5]. 

A number of important applications of resolution-based 

automated reasoning systems have been found in many 

areas such as artificial intelligence [6], logic 

programming [7, 8], problem solving [9], software model 

checking and testing [10], data structure verification [11], 

security protocols automated verification [12], question 

answering systems [13, 14], inconsistency checking for 

knowledge based system [15], and so on. 

Many-valued logics become increasingly important 

in computer science and artificial intelligence aiming at 

establishing the logical foundation of uncertain 

information processing. Up to now, many researchers 

have made investigation on resolution-based automated 

reasoning in the framework of fuzzy logic and 

many-valued logics, and obtained some important 

results, refer to Section 4 – Related Work for some 

details.  

To deal with sets of general formulas which can 

describe complex problems naturally, generalized 

resolution principle has been put forward for Boolean 

logic and many-valued logic as well, see [16-21], 

among others. In generalized resolution, the concept of 

literal is extended to generalized literal (which is 

composed by atomic formulas, 0, 1 and logical 

connectives), the resolvents can be obtained not only by 

the complementary literals from two conventional 

clauses, but also atomic formulas from any generalized 

clauses. It is more natural to retain the original forms in 

the statement of a theorem rather than transform them 

into several conjunctive normal forms (CNF). These 

transformations may produce high amount of new 

transformed formulas which may increase the 

complexity of automated reasoning process. In 

generalized resolution, there is no need to convert the 

formulas to the corresponding conjunctive normal forms. 

Meanwhile, the determination of whether two atoms are 

resolvable can be based on their syntactical form. 

Therefore, generalized resolution has been recognized 

as a more efficient proof method in implementation. 

The present work focused specially on 

resolution-based automated reasoning in a many-valued 

logic L(X) with truth-values defined in a lattice-ordered 

many-valued algebraic structure - lattice implication 

algebras (LIA) [22, 23]. In order to handle more than two 

generalized clauses simultaneously, Xu et al. (2013) [24] 

extended the -resolution principle in [25, 26] to 

multi-ary -resolution principle in L(X), which can 

enhance resolution automated reasoning compared with 

the ones in classical logic and those proposed in some 

many-valued logics in terms of soundness and 

completeness, applicability, reasoning capability and 

reasoning efficiency. It has specially demonstrated 

clearly in [24] that binary resolution has limited 

reasoning capability and also reasoning efficiency 

especially in many-valued logic.  

The above mentioned methods, however, can only 

deal with the generalized conjunctive normal form 

(GCNF) in L(X), but cannot handle other general forms 

of logical formulas. It means that any formula should be 

transformed into a GCNF in order to conduct the 

resolution deduction, but such transformation is also a 

complex process for pretreatment. Inspired from all the 

above ideas and motivation of generalized resolution in 

Boolean logic and multi-ary -resolution in 

lattice-valued logic, the present paper aims to propose 

the general generalized -resolution principle (the 

reason why it is called “general” and “generalized” will 

be clarified further in Section 3) in order to deal with 

complex formulas in finitely lattice-valued logic L(X). 

This paper is a continuation and extension of the work 

in [25-33], the binary -resolution principle introduced in 

[25, 26] for L(X) is extended to multi-ary -generalized 

resolution principle in different ways as follows: (1) the 

resolution is based on general generalized clauses which 

is constructed by the generalized literals and logical 

connectives , , , , , instead of the generalized 

clause containing only  ,  in [25, 26]. This, in 

essential, is a non-clausal resolution; (2) the set of the 
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generalized clauses, which is a complex logical formula, 

are not necessary to be transformed into the GCNF; (3) 

the above extended binary -generalized resolution is 

further extended into multi-ary -generalized resolution, 

i.e., extends the -generalized resolution pair composed 

of two generalized literals to the - generalized 

resolution group composed of multiple generalized 

literals based on the work in [24]. 

The remaining part of this paper is organized as 

follows. After a brief overview about lattice-valued 

logic based on LIA in Section 2, the definitions of the 

general form of -generalized resolvent and 

-generalized resolution deduction in LP(X), along with 

the discussion of the soundness and completeness of this 

ground case, are presented in Section 3. In Section 4, 

the soundness of the general form of -generalized 

resolution deduction in LF(X) is given. In order to get 

the completeness of this general form of -generalized 

resolution principle in LF(X), the -unsatisfiability of 

the general form of logical formula is discussed. Finally, 

by Lifting Lemma and the completeness of the ground 

case, the completeness of the general case is obtained. 

Section 5 provides a review of some related work. The 

paper is concluded in Section 6. 

2. Preliminaries 

In this section, we only recall some elementary 

definitions, notations and properties needed in the 

subsequent discussions, more details about LIA, 

lattice-valued logic systems based on LIA and 

-resolution principle introduced in those lattice-valued 

logic systems can be found in [22-26, 28]. 

2.1 Lattice implication algebra (LIA) 

Definition 2.1 [22, 23] Let (L, , , O, I ) be a bounded 

lattice with an order-reversing involution , I and O the 

greatest and the smallest element of L respectively, and 

: L  L ---- L be a mapping. (L, , , , ,O, I ) is 

called a lattice implication algebra (LIA) if the 

following conditions hold for any x, y, z  L: 

(I1) x  (y  z)  y  (x  z);  

(I2) x  x  I;  

(I3) x  y  y x; 

(I4) x  y  y  x  I implies x  y;  

(I5) (x  y)  y  (y  x)  x; 

(l1) (x  y)  z  (x  z)  (y  z);  

(l2) (x  y)  z  (x  z)  (y  z). 

Note that Boolean algebra and Łukasiewicz algebra, 

as two of the most popular logical algebras, are special 

cases of LIAs. In addition, LIAs form a proper class, 

and include no-chain algebra and no-Boolean algebra as 

well. The relationship between LIA with other logical 

algebraic structure is discussed in [24]. It shows that all 

the results obtained based on LIA or related logic can be 

applied into Boolean logic or Łukasiewicz logic at least, 

as well as other logical algebras. This reflects the fact 

that the investigation of resolution-based automated 

reasoning for lattice-valued logic in LIA is worthwhile 

in terms of generality and applicability. 

2.2 Lattice-valued propositional logic LP(X) 

Definition 2.2 [23] Let X be the set of propositional 

variables, (L, , , , , O, I ) be an LIA, T  L  {,} 

be a type with ar()  1, ar()  2 and ar(a)  0 for any 

a  L. The proposition logic algebra of the 

lattice-valued proposition calculus on the set X of 

propositional variables (in short lattice-valued 

proposition logic system) is the free T algebra on X and 

denoted by LP(X). 

Remark 2.1: Note that LP(X) includes the constant 

formulae (a L), which has been one of the key 

differences from the most existing many-valued logic 

systems, because, with the constant formulae included 

and the implication connective defined differently from 

the Kleene implication, the syntax in LP(X) is 

essentially not equivalent to the one in the classical 

logic any more. 

Definition 2.3 [23] The set  of formula of LP(X) is 

the least set Y satisfying the following conditions: 

(1) X  Y;  

(2) L  Y;  

(3) if p, q  Y, then p, p  q  Y. 

Note that the set of all the L-type fuzzy sets on  is 

denoted by F L(). If AFL(), for any G, A(G)L 

represents the membership degree of G in A.  

Definition 2.4 [23] A mapping : (LP(X), , , O)  
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(L, , , O) is called a valuation of LP(X), if it is a 

T-homomorphism.  

If  is a valuation of LP(X), we have  () = for 

any L. The special element O denotes false in (LP(X), 

, , O).  

Definition 2.5 [25] Let G   and  L. For any 

valuation  of LP(X), if  (G)  , we say G is always 

less than or equal to  (or G is -false), denoted by G  

 

2.3 Lattice-valued first-order logic LF(X) 

Definition 2.6 [26] Suppose V and F are the set of 

variable symbols and that of functional symbols in 

LF(X), respectively, the set of terms of LF(X) is defined 

as the smallest set J  satisfying the following 

conditions: 

(1) V  J ;  

(2) For any n  N, if f (n)  F, then for any t1,…, tn  

J , f (n)(t1,…, tn)  J . 

Remark 2.2: f (0) is specified as a constant symbol. 

Definition 2.7 [26] Suppose P is a predicate symbol set 

in LF(X). The set of atoms of LF(X) is defined as the 

smallest set A t  satisfying the following condition: 

For any n  N, if P (n)  P, then P (n)(t0, t1,…, tn)  A t  

for any t0, t1,…, tn  J. 

Remark 2.3: P (0) is specified as a certain element in 

L. 

Definition 2.8 [26] The set of formulas of LF(X) is 

defined as the smallest set F  satisfying the following 

conditions: 

(1) A t F ; (2) If p, q  F,  then p → q F ; 

(3) If p  F  and x is a free variable in p, then (x) 

p, (x) p F . 

Remark 2.4: Note that p  p → O, p  q  ( p → q) 

→ q, p  q  (p  q), p  q  ( p → q)  (q → p). 

Therefore, if p, q F, then p, p  q, p  q, p  q F . 

Definition 2.9 [26] Suppose G F , FG is the set of all 

functional symbols occurring in G, PG is the set of all 

predicate symbols occurring in G, and D () is the 

domain of interpretations. An interpretation of G over D 

is a triple ID   D, D, D , where, 

D : FG → UD  
( )n

Df
: D n → D | n  N  

   f (0) 
(0)

Df
, 

(0) 0( )Df D
 {

(0)

Df
}  D, D (0) is a 

non-empty set 

   f (n) 
( )n

Df
(n  N +), 

D : PG → VD   : D n → L | n  N  

   p (0) 
(0)

Dp
, 

(0) 0( )Dp D
 {

(0)

Dp
}  L 

   p (n) 
( )n

Dp
(n  N +). 

3. Non-Clausal Multi-ary -Generalized Resolution 

Principle for LP(X) 

In this section, the outlined work in [29] will be 

extended and systematized, and further extended into 

the one for first-order logic LF(X) in Section 4.  

In the following, the definition of literal is the same 

as that in Boolean logic, that is, a literal is either a 

propositional logic variable l or its negation ~l. 

Definition 3.1 [25] Let G  . G is called an 

extremely simple form, in short ESF, if G () 

obtained by deleting any constant or literal or 

implication term occurring in G is not equivalent to G.  

Definition 3.2 [25] Let G  . G is called an 

indecomposable extremely simple form, in short IESF, if 

the following two conditions hold: 

(1) G is an ESF containing connectives  and  at 

most; 

(2) For any H  , if H G in LP(X) , then H is an 

ESF containing connectives  and  at most,  

( )LP X =( 
)( XLP ,, , , , o , I ) is the LIA, 


)( XLP

={ p | pLP(X)}, p ={q| qLP(X), q=p}, 

for any p , q  
)( XLP

, p  q = p q , 

p  q = p q , ( p )= 'p , p  q = p q . 
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Definition 3.3 [25] All the constants, literals and 

IESFs in LP(X) are called generalized literals 

(g-literals). The constants, literals and IESFs in LP(X) 

are regarded as atomic formulas in LP(X). 

Remark 3.1 In LP(X), a g-literal concept is 

normally with respect to a specific generalized clause. 

For example, let C = (x  y)  z)  (z  x), although x 

 y is a g-literal itself individually, but is not regarded 

as a g-literal in C, actually (x  y)  z as an IESF is a 

g-literal in C. 

Definition 3.4 [25] Let G  . G is called a 

generalized clause (g-clause), if G is a formula of the 

form below:  

G = g1    gi    gn 

where gi (i = 1, ..., n) are g-literals in G. A conjunction 

of finite g-clauses is called a generalized conjunctive 

normal form (GCNF). In this paper, the empty clause is 

denoted as . 

For example, suppose x, y, z, s, t are propositional 

variables in LP(X), L. Then g1  x  y, g2  y  , 

g3  (x  z), g4  s, and g5  (x  t)  z are five 

g-literals; C1  (x  y)  (y  ), C2  (x  z)  s, C3 

 (y  )  (x  z)  ((x  t)  z) are three 

g-clauses; and S= C1  C2  C3 is a GCNF. 

Definition 3.5 [25] (-Resolution). Let L, and G1 

and G2 be two g-clauses in LP(X) of the forms below 

respectively: 

G1 = g1    gi    gm, G2 = h1    hj    hn. 

If gi  hj  , then 

G = g1    gi-1  gi+1    gm  h1    hj -1  hj+1 

   hn 

is called an -resolvent of G1 and G2, denoted by G = 

R(G1, G2), and gi and hj form an -resolution pair, 

denoted by (gi, hj)-. The generation of an -resolvent 

from two clauses, called as -resolution, is the sole rule 

of inference of the -resolution principle, which is a 

generalization of O-resolution in the classical logic. 

Definition 3.6 [25] In LP(X), suppose a GCNF S = C1 

 C2    Cn,   L. w = {D1, D2, ..., Dm} is an 

-resolution deduction from S to a g-clause Dm, if for 

any i  {1, 2, …, m} 

(1) Di  {C1, C2, ..., Cn}; or  

(2) there exist j, k < i, such that Di = R(Dj, Dk). 

Remark 3.2 Specially, if there exists an -resolution 

deduction from S to a clause which is -false (also 

called an -false clause, denoted by - to differentiate 

it from that in Boolean logic), then this -resolution 

deduction w is called an -refutation. 

Different from some concepts in Boolean logic and 

also the g-clause in Definition 3.4 in LP(X), in the 

following, the key concept of this paper is introduced, 

that is, -generalized resolution. 

A concept of g-clause is recalled in Definition 3.4. 

It is called “generalized” due to the fact that it is based 

on the disjunction of g-literals (Definition 3.3), where 

g-literals could be constants, literals or IESFs in LP(X), 

and are regarded as atomic formulae. Here we consider 

more general cases, i.e., general generalized clause, 

which are actually a composite formula from the 

g-literals connected by logical connectives , or , or , 

or  or , that is, they are not limited to atomic formula, 

could be any single or composite formula, so it is call 

“general”. 

Definition 3.7 Let g1,..., gn be g-literals in LP(X). 

A lattice-valued propositional logical formula in LP(X) 

is called a general generalized ground clause (general 

g2-clause), denoted by (g1, ..., gn), if it is a composite 

formula from the g-literals g1 ..., gn connected by logical 

connectives , or , or , or  or .. 

We use some examples to clarify the meaning of 

“general g2-clause”. For example, 1 = (y  z)  (w  

s), 2 = (x  y)  z, 3=x ((y  a)  t), 4 =xa, 

5 =(y  z)  (x  t), and 6 =((y  z)  (w  s)) 

((y  z)  (x  t)), are all the general g2-clauses, 

where x, y, z, w, s, t are propositional variables in LP(X), 

aL. Obviously, 4 is a g-clause itself. 6 is also a 

general g2-clause although it is a combination of general 

g2-clauses 1 and 5, which reflects the meaning of the 

term “general” here, i.e., any general composite formula 

by logical connectives , or , or , or  or  can be 

regarded as a general g2-clause. From this point of view, 

2 and 3 are also g-clauses as in Definition 3.4, but 

not for 1, 5 and 6. 
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Based on Definition 3.7, it is easy to say that a 

composite formula from the g-literals connected by 

logical connectives , or , or , or  or  can be 

always transferred into a disjunctive form, and any 

lattice-valued propositional logical formula in LP(X) 

can be transferred into a conjunction of finite general 

g2-clauses. These transformations are based on rules 

about logical equivalences [23]: the double negative law, 

the De Morgan’s law and the distributive law between  

and . 

Here we still use the term “clause” to reflect the 

similar idea as the one using CNF in Boolean logic. As 

recalled in Definition 3.4, a conjunction of finite 

g-clauses is called a generalized conjunctive normal 

form (GCNF). Accordingly, a conjunction of finite 

general g2-clauses is called a general generalized 

ground conjunctive normal form (G3CNF). For example, 

 = ((x  y)  z)  ((y  z)  (w  s))  (x ((y  

z)  t))  ((y  z)  (x  t)) is a G3CNF, i.e., a 

conjunction of 4 general g2-clauses, where x, y, z, w, s, t 

are propositional variables in LP(X). 

In essential, although we still use the term “clause” 

as the part of new concept, which actually is a kind of 

non-clausal formula compared with the one in Boolean 

logic. 

Definition 3.8 A general g2-clause G in LP(X) is 

called a constant g2-clause if all the g-literals in G are 

all constants. Particularly, if (G) =  for any valuation  

of LP(X), then G is called an -constant g2-clause. 

Definition 3.9 Let  be a general g2-clause in 

LP(X). A g-literal g of  is called a local extremely 

complex form, if 

(1) g can’t be expanded to a more complex g-literal 

in  by adding  and ; or 

(2) If g = g1  g2, g1 and g2 are g-literals in LP(X), 

then g is a local extremely complex form as a whole. 

Example 3.1 Let  be a general g2-clause in 

LP(X),  = ((x  y)  z)  ((y  z)  (w  s))  (x 

((y  z)  t))  ((y  z)  (x  t)), where x, y, z, 

w, s, t are propositional variables in LP(X). For (x  y) 

 z, the local extremely complex form should not be 

generalized literals x, y, z, x  y, but (x  y)  z itself. 

Hence the local extremely complex forms in  are (x  

y)  z, (y  z), w  s, x ((y  z)  t), and (y  z) 

 (x  t). 

Remark 3.3 In the following, all the g-literals 

discussed are local extremely complex forms. 

In the following discussion, we extend 

-resolution for LP(X) introduced in [25] to non-clausal 

multi-ary -generalized resolution in LP(X), i.e., (1) 

extend from -resolution to -generalized resolution; (2) 

extend from binary resolution to multi-ary resolution, 

i.e., the resolved generalized literals extended from two 

g-literals to the finite g-literals for batch processing 

clauses, so it can be regarded as a kind of group 

resolution; and also (3) extend from multi-ary resolution 

to non-clausal multi-ary resolution. These extensions 

can improve the efficiency and applicability of 

-resolution, and feasible implementation algorithms 

can be much easier to be established based on it.  

Accordingly, the concept of non-clausal multi-ary 

-generalized resolution principle is firstly introduced 

in LP(X), along with the corresponding non-clausal 

multi-ary -generalized resolution deduction; its 

soundness and completeness are also proved afterwards. 

Definition 3.10 (Non-clausal n-ary -generalized 

resolution) Let 1, 2,, n be general g2-clauses in 

LP(X), Hi be the set of g-literals in i, L. If there 

exist general literals gi  Hi (i=1, 2,, n), such 

that
1

n

i gi ≤  (i.e.,  false), then G =
1

n

i i (gi = ) is 

called a non-clausal n-ary -generalized resolvent of 

1, 2, , n, denoted by G = Rp(N-n-)-g (1 (g1), 2 

(g2), , n (gn)), here “p” means “propositional logic” 

and “(N-n-)-g” means “non-clausal n-ary 

-generalized” in “Rp(N-n-)-g”. 

Theorem 3.1 Let 1, 2,, n be general 

g2-clauses in LP(X), Hi is the set of g-literals in i (i = 1, 

2, , n), L. If there exist g-literals gi  Hi (i = 1, 2, 

, n), such that 
1

n

i gi ≤ , then 

1

n

i i ≤ Rp(N-n-)-g (1 (g1), 2 (g2), , n (gn)). 

Proof. It follows from the definition of the general 

g2-clauses and the logical equivalences in LP(X) that i 

(i = 1, 2, , n) could be converted to the corresponding 

generalized conjunction normal forms (GCNF), i.e., i 

= 1
in

j Gij, where Gij is a g-clause. Hence, i can be 

http://en.wikipedia.org/wiki/Logical_equivalence
http://en.wikipedia.org/wiki/Double_negative_elimination
http://en.wikipedia.org/wiki/Distributivity
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rewritten as 

 i = 1
in

j Gij = 1
im

j (gi 
{ }ij ig H g

g
 
 )  G0

i, i = 1, 2, , n, 

where 
im  is the g-clause number which the g-clause 

Gij in { Gij|j=1,…,
in } includes gi, Hij is the g-literals set 

of Gij including gi, and G0
i is the conjunction of all Gij 

( j = 1, 2,..., ni ) which doesn’t include gi. Note that 

1

n

i [
1

im

j (gi 
{ }ij ig H g

g
 
 )]=

1

n

i gi  

1 {g 1 21 i}
1, {g ,( g)} {(g ,g ,...,g )}

( )mn i li i g H nj
ij

n

l z y ly
z

  
    

   

 1

n

i gi  
i1 1 {g }( g)i

ij

mn

i j g H         

i1 1 {g }( g)i

ij

mn

i j g H      , and 

1

n

i i = 1

n

i [
1

im

j (gi 
{ }ij ig H g

g
 
 )  

G0
i]= 1

n

i [
1

im

j (gi 
{ }ij ig H g

g
 
 )]  1

n

i G0
i, 

 [  
i1 1 {g }( g)i

ij

mn

i j g H      ] 

1

n

i G0
i=

i1 1 {g }( g)i

ij

mn

i j g H       1

n

i G0
i 


i

0

1 1 {g }[ ( g) ]i

ij

mn

i j g H iG        

=
1 i(g )n

i i     

= Rp(N-n-)-g (1 (g1), 2 (g2), , n (gn)). 

Therefore, 1

n

i i ≤Rp(N-n-)-g (1 (g1), , n (gn)). 

Remark 3.4 (1) In the proof of Theorem 3.1, the 

general g2-clauses should be converted to the 

corresponding generalized conjunctive normal forms. 

However, in the course of -generalized resolution, the 

general g2-clauses need not to be converted. 

(2) If a g-literal which includes many implication 

connectives is not considered as a local extremely 

complex form, then Theorem 3.1 may not hold. An 

example is shown as follows. 

Example 3.2 [23] Let L6  {O, a, b, c, d, I }, O  I, 

a  c, b  d, c  a, d   b, I   O, the Hasse diagram 

of L6 be defined as Figure 3.1 and its implication 

operator be defined as Table 3.1. Then (L6, , , , , O, 

I ) is an LIA. 

 

       Table 3.1 Implication Operator of L6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Hasse Diagram of L6 

Example 3.3 Let 1 and 2 be two general 

g2-clauses in L6P(X), 1 = (b  x)  d, 2 = (d  x) 

 b, where x is a propositional variable, b, d  L6, and 

let the resolution level  = a  L6 (see Example 3.2). So 

1  2 = ((b  x)  d)  ((d  x)  b)  (b  d)  

(d  b) = a. On the other hand, since (b  x)  (d  

x)  b  d = d < a, if g1 = (b  x), g2 = (d  x), then 

Rp(N-2-)-g (1 (g1), 2 (g2)) = (a  d)  (a  b) = b  b 

= b. However, 1  2   Rp(N-2-)-g (1 (g1), 2 (g2)) 

for a   b. 

Definition 3.11 A lattice-valued propositional 

logical formula S in LP(X) is called a general g2-clause 

set or general generalized ground conjunctive normal 

form (G3CNF) if S is a formula of the form S = 1  2 

   n, where i (i = 1, 2, ..., n) are general 

g2-clauses. 

Remark 3.5 The formula S can also be denoted as 

 O a b c d I 

O I I I I I I 

a c I b c b I 

b d a I b a I 

c a a I I a I 

d b I I b I I 

I O a b c d I 

O 

b 

  a 

d 

I 

c 
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S ={1, 2, , n} for short. 

Definition 3.12 Suppose S is a G3CNFin LP(X),  

 L. Then the sequence D1, D2,..., Dm is called a 

non-clausal multi-ary -generalized resolution 

deduction from S to a general g2-clause Dm, if 

(1) Di S (i = 1, 2,..., m); or 

(2) There exist r1, r2,, 
ikr < i, such that 

Rp(N- ik -)-g (Dr1, Dr2, , D
ikr ) = Di. 

If there exists a non-clausal multi-ary 

-generalized resolution deduction w from S to the 

-false clause (denoted by - similar to the one in 

Remark 3.2), then w is called a non-clausal multi-ary 

-refutation. 

Theorem 3.2 (Soundness) Let S be a set of 

general g2-clauses in LP(X),  L. the sequence D1, 

D2, ..., Dm be a non-clausal multi-ary -generalized 

resolution deduction from S to a general g2-clause Dm. If 

Dm = -, then S ≤ . 

Proof. From Definition 3.10 and Theorem 3.1, it is 

easy to obtain that S = S  D1  D2  ...  Dm ≤ Dm = 

-. 

Theorem 3.3 (Completeness) Suppose S is the set 

of general g2-clauses 1, 2, …, n in LP(X). If S ≤ , 

then there exists a non-clausal multi-ary -generalized 

resolution deduction from S to -. 

Proof. Suppose Hi is the set of g-literals in i (i1, 

2, …, n). Let H = 1

n

iU Hi and |H| be the number of 

elements in H. We will prove Theorem 3.3 by induction 

on |H|. 

If |H|  1, then there exists a g-literal g, such that S 

 g  . Hence g(g  )  , i.e., S can be 

-generalized resolved into -. 

If |H|  2, then H  {g1, g2}. Hence if S  g1  g2, 

we can obtain g1(g1  )  g2(g2  )  , i.e., S can be 

-generalized resolved into -. If S  g1  g2, we can 

obtain the same conclusion. 

Suppose that Theorem 3.3 is true for |H|  n (n  3), 

we prove it also holds for |H| = n.  

Let S = 1  2  …n. We consider two cases 

as follows. 

Case 1. If i is the conjunction of the g-literals for i 

=1, 2,…, n, i.e., i = 1
in

j ijg  for i =1, 2,…, n, then S 

= 1 1
inn

i j ijg   . If S  , then Rp(N-n-)-g (1, 2, , n) 

= Rp(N-
1

n

i in -)-g (g11, g12, ..., 
11ng , g21, g22,..., 

22ng , ..., gn1, gn2,..., 
nnng ) 

= 1 1 ( )inn

i j ij ijg g     =. In this case, the 

conclusion holds. 

Case 2. If there exists a general g2-clause 
0i

 , 

such that 
00 0

*
ii ig    , where 

0i
g  is a g-literal in 

0i
 , 

0

*
i includes g-literal. Without loss of generality, 

suppose i0 = 1, then S = (
*

1 g1)  2  … n = (
*

1  

 2  … n)  (g1  2  … n). Let S1 =
*

1   

2  … n, S2 = g1  2  … n. Then S1  , S2  

, |
1SH |  n, and |

2SH |  n, where 
kSH  is the set of 

g-literals in Sk, k=1,2. By induction hypothesis, S1 and 

S2 respectively have non-clausal multi-ary 

-generalized resolution deduction sequences as 

follows: 

D11, D12, …, 
1

'

1mD , where 
1

'

1mD is an -constant 

g2-clause; 

D21, D22, …, 
2

'

2mD , where 
2

'

2mD  is an 

-constant g2-clause. 

Now we renew 
*

1  to 1 in D11, D12, …, 
1

'

1mD , 

and obtain the -generalized resolution deduction 
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sequence from S to 
11mD as follows. 

D11, D12, …, 
11mD , where (1) 

11mD  is an 

-constant g2-clause; or (2) 
11mD  is   g1. 

If 
11mD is   g1, for the first g-literal g1 in S2, we 

renew it to   g1 in D21, D22, …, 
2

'

2mD , and obtain 

the -generalized resolution deduction sequence from 

(  g1)  2  … n to 
22mD as follows: D21, 

D22, …, 
22mD , where 

22mD is also an -constant 

g2-clause. 

If it is Case (1), the conclusion holds. 

If it is Case (2), then the -generalized resolution 

deduction sequence 

D11, D12, …, 
22mD  (=  g1), D21, D22, …, 

22mD  

is the -generalized resolution deduction from S to 

-constant g2-clause. 

This completes the proof.  

The following two examples provide some 

illustration of completeness of non-clausal multi-ary 

-generalized resolution deduction in LP(X). 

Example 3.4 Let L9 = {ai
 | 1  i  9} be a 

Łukasiewicz implication algebra (refer to Example 2.3, 

here n=9), x, y, z, u, v, w propositional variables in 

L9P(X), S = {x, (x  a2)  (z  v)  (u  w), (y  x) 

 (u  w), z  a3, a5  v}. We take the resolution 

level  = a5, then S  a5. By the completeness of 

non-clausal multi-ary -generalized resolution in LP(X) 

(i.e., Theorem 3.3), there exists a non-clausal multi-ary 

a5-generalized resolution refutation of S, for example, 

the one as follows: 

(1) x 

(2) (x  a2)  (z  v)  (u  w) 

(3) (y  x)  (u  w) 

(4) z  a3 

(5) a5  v 

------------------------------- 

(6) a5  (z  v)  (u  w)      by (1), (2) 

(7) a5  (u  w)              by (1), (3) 

------------------------------- 

(8) a5  (u  w)              by (4), (5), (6) 

------------------------------- 

(9) a5-                       by (7), (8) 

Moreover, if we judge the -unsatisfiability of S 

by -resolution, we firstly transform S to its generalized 

conjunctive normal form S1 = {x, (x  a2)  (z  v)  

(u  w), (x  a2)  (z  v)  (w  u), (y  x)  (u 

 w)  (w  u), z  a3, a5  v}. We cannot get a 

binary -resolution refutation of S1, but can get an 

alternative multi-ary -resolution refutation of S1 using 

the multi-ary -resolution principle introduced in [Xu et 

al. 2013], however which apparently needs more steps 

or is relatively more complex, i.e., 

(1) x  

(2) (x  a2)  (z  v)  (u  w)  

(3) (x  a2)  (z  v)  (w  u)  

(4) (y  x)  (u  w)  (w  u)  

(5) z  a3  

(6) a5  v  

------------------------------- 

(7) a5  (z  v)  (u  w)       by (1), (2) 

(8) a5  (z  v)  (w  u)       by (1), (3) 

(9) a5  (u  w)  (w  u)      by (1), (4) 

------------------------------- 

(10) a5  (u  w)               by (5), (6), (7) 

(11) a5  (w  u)               by (5), (6), (8) 

------------------------------- 

(12) a5  (w  u)              by (9), (10) 

(13) a5-                     by (11), (12) 

Example 3.5 Let (L6, , , , , O, I ) be an LIA 

as defined in Example 3.2, x, z, s, t propositional 

variables in L6P(X), S = {x, (x  a), (x  b) (t  d), 

(s  t) (z  t), (s  t), (z  c)}. We take the 

resolution level  = d, then S  d. By the completeness 

of non-clausal multi-ary -generalized resolution in 

LP(X), there exists a non-clausal multi-ary 

d-generalized resolution refutation of S, for example, 

the one as follows:  



10 

 

 

(1) x 

(2) x  a 

(3) (x  b) (t  d) 

(4) (s  t)  (z  t) 

(5) (s  t) 

(6) (z  c) 

------------------------------- 

(7) d  (t  d)                by (1), (2), (3) 

(8) d  (z  t)                by (4), (5) 

------------------------------- 

(9) d-                     by (6), (7), (8) 

Similarly, if we judge the -unsatisfiability of S by 

-resolution principle, we firstly transform S to its 

generalized conjunctive normal form S1 = {x, (x  a), 

(x  b) (t  d), (s  t)  (z  t), (t  s)  (z  t), (s 

 t)  (t  s), (z  c)}. We cannot get a binary 

-resolution refutation of S1, but can get a relatively 

complex multi-ary -resolution refutation of S1 [Xu et al. 

2013], i.e., 

(1) x 

(2) (x  a) 

(3) (x  b) (t  d) 

(4) (s  t)  (z  t) 

(5) (t  s)  (z  t) 

(6) (s  t)  (t  s) 

(7) (z  c) 

-------------------------------  

(8) d  (t  d)            by (1), (2), (3) 

-------------------------------  

(9) d  (s  t)            by (4), (7), (8) 

(10) d  (t  s)           by (5), (7), (8) 

-------------------------------  

(11) d  (t  s)          by (6), (9) 

-------------------------------  

(12) d-                 by (10), (11) 

From the above two examples show that there is no 

need to transform those complex formula into the 

generalized conjunctive normal form (actually it is not 

straightforward for the transformation), so that means 

“non-clausal” resolution. Theorem 3.2 and Theorem 3.3 

show that the non-clausal multi-ary -generalized 

resolution deduction in LP(X) is sound and complete, 

along with Examples 3.4 and 3.5 to illustrate the distinct 

advantages of non-clausal multi-ary -generalized 

resolution in terms of reasoning capability and 

efficiency. Furthermore, for an -unsatisfiable set of 

general g2-clauses in LP(X), if we convert it into the 

corresponding generalized conjunctive normal form, 

and judge it by the -resolution principle, then it may 

not lead to a binary -resolution refutation partially 

because its restriction of the number of -resloved 

literals is 2. Although sometimes it may lead to a 

multi-ary -resolution refutation using the method in 

[24], it is more complex than the non-clausal multi-ary 

-resolution refutation introduced in this paper. 

4. Non-Clausal Multi-ary -Generalized Resolution 

Principle for LF(X) 

In this section, non-clausal multi-ary -generalized 

resolution principle is extended from LP(X) to LF(X), 

as extended and systematized version of [30]. The 

-unsatisfiability for a general form of the logical 

formula, i.e., general g-clause in LF(X) is discussed 

firstly. Then, Lifting Lemma of the non-clausal 

multi-ary -generalized resolution principle for LF(X) 

is established, and the soundness of this general case is 

shown. Finally, by the completeness of the ground case, 

we lift it to the general case in LF(X), i.e., the 

completeness for this general form of non-clausal 

multi-ary -generalized resolution deduction for LF(X). 

4.1 - unsatisfiability for a general form of the logical 

formula in LF(X) 

Definition 4.1 [26] A formula G in lattice-valued 

first-order logic LF(X) is a generalized-literal, if it 

satisfies the following conditions: 

(1) G is a literal; or 

(2) G is constructed only by some literals and some 

implication connectives with the condition that G 

cannot be represented by connectives “” or “” and G 

cannot be decomposed into a simpler form (G is called 

an indecomposable implication form). 

The disjunction of a finite number of 

generalized-literals is a generalized-clause. The 

conjunction of a finite number of generalized-clauses is 

a generalized-conjunctive normal form. 

Definition 4.2 [26] Let G F,  L. G is said to be 
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-false, if D(G)   for any interpretation ID   D, D, 

D  of G. 

Definition 4.3 [26] Suppose G is a formula of the 

form Q1x1…QnxnG*, where Q1,…, Qn are the quantifiers, 

i.e.,  or , and G* is a formula without any quantifier. 

Then G is said to be a generalized-prenex conjunctive 

normal form, if G* is a generalized-conjunctive normal 

form. 

Definition 4.4 [26] Suppose a formula G  

Q1x1…QnxnM is a generalized-prenex conjunctive 

normal form. The formula G* obtained by the following 

steps is called a generalized-Skolem normal form of G: 

(1) If Qr is an existential quantifier and without any 

universal quantifier occurring ahead it in the prefix 

Q1,…, Qn (from left to right), we choose a new constant 

c different from other constants occurring in M, replace 

all xr occurring in M by c, and then delete Qr from the 

prefix Q1,…, Qn. 

(2) If Qr is an existential quantifier and 
1kQ ,…, 

mkQ  are all the universal quantifiers occurring ahead 

Qr (m  1, 1  k1 < …< km < r), we choose a new m-ary 

function symbol 
G

mf
 different from all other function 

symbols occurring in M, replace all xr in M by 
G

mf (
1kx ,…,

mkx ) and then delete Qr from the prefix 

Q1,…, Qn. 

(3) Repeating (1) and (2) until there is no existential 

quantifier occurring in the prefix. 

Definition 4.5 Let g1, g2, ..., gn be g-literals in 

LF(X). A logical formula F in LF(X) is called a general 

g-clause if these g-literals are connected by logical 

connectives , , ,  and , denoted by (g1, g2,..., 

gn). 

Definition 4.6 A general g-clause in LF(X) is 

called a constant g-clause if it contains only constants. 

Particularly, for a constant g-clause G, if D (G) =  for 

any interpretation D = <D, D, D>, it follows that then 

this constant g-clause G is called an -constant 

g-clause. 

The conjunction of finite general g-clauses is a 

general g-conjunctive normal form. Similar to 

-resolution principle in LF(X) [26], we can formally 

give definitions of general g-prenex normal form, 

general g-prenex conjunction normal form, general 

g-Skolem normal form, etc. Also, the definitions such as 

substitution, the most general unifier, ground 

substitution, instance, ground instance occurring in the 

following are the same as those in Boolean logic. 

Definition 4.7 Let  be a general g-clause in 

LF(X). A g-literal g of  is called a local extremely 

complex form, if 

(1) g can’t be expanded to a more complex g-literal 

in  by adding  and ; or 

(2) If g = g1  g2, g1 and g2 are g-literals in LF(X), 

then g is a local extremely complex form as a whole. 

Remark 4.1 In the following, all the g-literals 

discussed are local extremely complex forms. 

Here, the g-clause is extended to the general 

g-clause, i.e., the general g-clause may not be the 

disjunction of the g-literals; it seems that it’s too 

complex to explore the -unsatisfiability of the logical 

formula in LF(X). Fortunately, note that every variable 

in the general g-Skolem normal form is universally 

quantified, and many properties of formulas in LF(X) 

do not rely on the structure of the g-clauses, many 

conclusions in the g-Skolem normal form still hold for 

general form as far as -unsatisfiability is concerned. 

We only state main results as follows. 

Theorem 4.1 Let G and G* be two logical 

formulas in LF(X), and G* a general g-Skolem normal 

form of G,   L. Then G is -false if and only if G* is 

-false. 

Proof. It is obvious from Theorem 2.1 in [26]. 

Theorem 4.2 Suppose G* is a general g-Skolem 

normal form of a formula G in LF(X). If an 

interpretation D = <D, D, D> -satisfies G*, then the 

H-interpretation H = <H, H, H> of G* corresponding 

to ID also -satisfies G*. 

Proof. It is obvious from Theorem 3.1 in [26]. 

Theorem 4.3 Suppose G* is a general g-Skolem 

normal form of a formula G in LF(X). Then G* is 

-false if and only if H (G*)    holds for all H- 

interpretations H = <H, H, H> of G*. 

Proof. It is obvious from Theorem 3.2 in [26]. 

Theorem 4.4 Suppose G* is a general g-Skolem 
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normal form of a formula G in LF(X), |L|<+. Then G* 

is -false if and only if there exists K such that H 

(G*)    holds for every adjoint H of every element 

in LK. 

Proof. It is obvious from Theorem 3.3 in [26]. 

Theorem 4.5 Suppose G* is a general g-Skolem 

normal form of a formula G in LF(X), |L|<+. Then G* 

is -false if and only if there exists a finite ground 

instance set G*0 of G* such that Gc
*0 is -false, where 

Gc
*0 is the conjunction of all ground instances of G*0. 

Proof. It is obvious from Theorem 3.4 in [26]. 

From Theorem 4.5, in order to judge the 

-unsatisfiability of a formula in LF(X), when |L|<+, 

we only need to find a finite and ground instance set of 

this formula, and validate its -unsatisfiability. Hence it 

is relatively achievable. 

4.2 Soundness and completeness for the general form 

of non-clausal multi-ary -generalized resolution 

deduction in LF(X) 

This section provides the soundness and completeness 

for the general form of the non-clausal multi-ary 

-generalized resolution deduction in LF(X). 

Definition 4.8 Let  be a general g-clause in 

LF(X). If there exists a most general unifier  of 

g-literals g1, g2, ..., gm in , then  is called a factor of 

. 

Definition 4.9 (A general form of non-clausal 

multi-ary -generalized resolution) Let 1, 2, , n 

be general g-clauses in LF(X), 1
1 be a factor of 1 for 

g-literals g11, g12, ...,
11rg , 2

2 be a factor of 2 for 

g-literals g21, g22, ...,
22rg , ..., and n

n be a factor of n 

for g-literals gn1, gn2, ...,
nnrg , L. If 1

n

i
1

i

ig


≤  (i.e., 

 false), then G = 1

n

i i

i


 (

1
i

ig


 = ) is called a 

non-clausal n-ary -generalized resolvent of 1, 2, , 

n, denoted by G = Rf(N-n-)-g (1, 2, , n), here “f” 

means “first-order logic”. 

Definition 4.10 Suppose S is a general g-clause set 

in LF(X),   L, the sequence D1, D2, ..., Dm is called a 

non-clausal multi-ary -generalized resolution 

deduction from S to general g-clause Dm, if 

(1) Di  S (i = 1, 2, ..., m); or  

(2) There exist r1, r2, , 
ikr < i, such that 

Rf(N-
ik -)-g (Dr1, Dr2, , D

ikr ) = Di. 

The usual method for proving the completeness of 

a version of resolution has two steps. Firstly, one proves 

the ground case in propositional logic, in which no 

variables occur. Then one lifts it to the general case in 

first-order logic. 

In the Proof of Theorem 5.3 (Lifting Lemma) for 

generalized clause in LF(X) [24], the disjunction of 

g-literals was not used, so Theorem 4.6 also holds. 

Theorem 4.6 (Lifting Lemma) If 0
1, 0

2,, 0
n 

are instances of general g-clauses 1, 2,, n in 

LF(X), respectively, P0 is a non-clausal multi-ary  

-generalized resolvent of 0
1, 0

2,, 0
n, then there 

exists a non-clausal multi-ary -generalized resolvent P 

of 1, 2,, n such that P0 is an instance of P. 

Theorem 4.7 Let 1, 2,, n be general 

g-clauses in LF(X), 1

1

  be a factor of 1 for g-literals 

g11, g12, ...,
11rg , 2

2

  be a factor of 2 for g-literals g21, 

g22, ...,
22rg , ..., and n

n


  be a factor of n for g-literals 

gn1, gn2, ...,
nnrg , L. If 1

n

i
1

i

ig


≤  (i.e.,  false), 

then  

1

n

i i ≤ 1

n

i i

i


 (

1
i

ig


 = ). 

Proof. Similar to the proof of Theorem 3.1, for 

most general unifiers i (i = 1, 2, …, n), if 1

n

i
1

i

ig


 ≤ , 

then 1

n

i i

i


  ≤ 1

n

i i
i

 (gi
i1 = ). Hence, it follows 

from 1

n

i i ≤ 1

n

i i

i


  that 1

n

i i ≤ 1

n

i i

i


 (

1
i

ig


 

= ). 

Theorem 4.8 (Soundness) Let S be a general 

g-clause set in LF(X),  L. The sequence 1, 2, ..., 

m be a non-clausal multi-ary -generalized resolution 

deduction from S to general g-clause m. If m = -, 

then S ≤ , i.e., S is  false. 

Proof. According to Theorem 4.7, similar to the 

proof of Theorem 3.2, we can easily get the conclusion.  

Theorem 4.9 (Completeness) Suppose S is the set 

of general g-clauses 1, 2, …, n in LF(X), |L|<+. If 

S ≤  (i.e., S is  false), then there exists a non-clausal 

multi-ary -generalized resolution deduction from S to 

-. 

Proof. By Theorem 4.5 and S ≤ , there exists a 
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finite ground instances set S0 of S such that S0  . By 

Theorem 3.3, there exists a ground non-clausal 

multi-ary -generalized resolution deduction from S0 to 

-. By Lifting Lemma (Theorem 4.6), there exists a 

non-clausal multi-ary -generalized resolution 

deduction from S to -. 

The following two examples provide some 

illustration of completeness of non-clausal multi-ary 

-generalized resolution deduction in LF(X). 

Example 4.1 Let 9 = (L9, , , , , a1, a9) be a 

Łukasiewicz implication algebra, b, c, d constants, x, y, 

w, r, s, t variables in L9F(X), S = {(P(s)  Z1(y)), (P(s) 

 Z1(y))  (T(t)  W(w)), ((T(t)  W(w)) a2)  

(Z2(s)  R(r)), (Q(y)  Z1(b))  (R(r)  Z1(c)), R(r) 

 Z1(d), (a3  Q(y))}. If we take the resolution level  

= a6, then S  . By the completeness of non-clausal 

multi-ary a6-generalized resolution (Theorem 4.9), there 

exists a non-clausal multi-ary a6-generalized resolution 

refutation from S. 

In fact, we take a ground substitution  ={a / x, b / 

t, c / w, a / s, c / y, b / r} of S, then S = {(P(a)  Z1(c)), 

(P(a)  Z1(c))  (T(b)  W(c)), ((T(b)  W(c)) a2) 

 (Z2(a)  R(b)), (Q(c)  Z1(b))  (R(b)  Z1(c)), R(b) 

 Z1(d), (a3  Q(c))}, and S  a6, then there exists a 

non-clausal multi-ary -generalized resolution 

refutation 0 from S in L9P(X) as follows: 

(1) P(a)  Z1(c) 

(2) (P(a)  Z1(c))  (T(b)  W(c)) 

(3) ((T(b)  W(c)) a2)  (Z2(a)  R(b)) 

(4) (Q(c)  Z1(b))  (R(b)  Z1(c)) 

(5) R(b)  Z1(d) 

(6) (a3  Q(c)) 

------------------------------- 

(7) a6(P(a) Z1(c))(Z2(a)R(b)) by (2), (3) 

(8) a6  (R(b)  Z1(c))           by (4), (6) 

------------------------------- 

(9) a6  (Z2(a)  R(b))            by (1), (7) 

------------------------------- 

(10) a6-                     by (5), (8), (9) 

By Lifting Lemma of non-clausal multi-ary 

-generalized resolution, there exists a non-clausal 

multi-ary -generalized resolution refutation  from S 

in L9F(X), that is, we resume the variable symbols in S 

which are substituted by  in S. Therefore, the 

non-clausal multi-ary -generalized resolution 

refutation  of S is:  

(P(s)  Z1(y)), 

(P(s)  Z1(y))  (T(b)  W(c)), 

((T(b)  W(c)) a2)  (Z2(a)  R(b)), 

(Q(c)  Z1(b))  (R(b)  Z1(c)), 

R(b)  Z1(d), 

(a3  Q(y)), 

a6  (P(x)  (P(x)  Z1(c)))  (Z2(s)  R(r)), 

a6  (R(r)  Z1(d)), 

a6  (Z2(s)  R(r)), 

a6-. 

Furthermore, if we judge the -unsatisfiability of S 

by -resolution principle, we firstly transform S to its 

generalized conjunctive normal form S1 = {P(s)  Z1(y), 

Z1(y)  P(s), (P(s)  Z1(y))  (Z1(y)  P(s))  (T(t) 

 W(w)), ((T(t)  W(w)) a2)  (Z2(s)  R(r)), (Q(y) 

 Z1(b))  (R(r)  Z1(c)), R(r)  Z1(d), (a3  

Q(y))}. 

Then we take a ground substitution  ={a / x, b / t, 

c / w, a / s, c / y, b / r} of S1, then S1
 = {P(a)  Z1(c), 

Z1(c)  P(a), (P(a)  Z1(c))  (Z1(c)  P(a))  (T(b) 

 W(c)), ((T(b)  W(c)) a2)  (Z2(a)  R(b)), (Q(c) 

 Z1(b))  (R(b)  Z1(c)), R(b)  Z1(d), (a3  

Q(c))}, and S1
  a6. We cannot get a binary 

-resolution refutation of S1
, but can get a relatively 

complex multi-ary -resolution refutation [Xu et al. 

2013] of S1
, i.e., there exists a multi-ary -resolution 

refutation 0 from S1
 in L9P(X) as follows: 

(1) P(a)  Z1(c) 

(2) Z1(c)  P(a)  

(3) (P(a)Z1(c))(Z1(c)P(a))(T(b) W(c)) 

(4) ((T(b)  W(c)) a2)  (Z2(a)  R(b)) 

(5) (Q(c)  Z1(b))  (R(b)  Z1(c)) 

(6) R(b)  Z1(d) 

(7) (a3  Q(c)) 

------------------------------- 

(8) a6(Z1(c)P(a))(T(b)W(c))  by (1), (3) 

------------------------------- 

(9) a6  (T(b)  W(c))             by (2), (8) 

------------------------------- 

(10) a6  (Z2(a)  R(b))            by (4), (9) 

------------------------------- 
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(11) a6  (R(b)  Z1(c))           by (5), (10) 

------------------------------- 

(12) a6-                    by (6), (7), (11) 

Similarly, by Lifting Lemma of multi-ary 

-resolution, there exists a multi-ary -resolution 

refutation  from S1
 in L9F(X), that is, we resume the 

variable symbols in S1 which are substituted by  in S1
. 

Therefore, the multi-ary -resolution refutation  of S1 

is: 

P(s)  Z1(y), 

Z1(y)  P(s), 

(P(s)  Z1(y))  (Z1(y)  P(s))  (T(t)  W(w)), 

((T(t)  W(w)) a2)  (Z2(s)  R(r)), 

(Q(y)  Z1(b))  (R(r)  Z1(c)), 

R(r)  Z1(d), 

(a3  Q(y)), 

a6  (Z1(y)  P(s))  (T(t)  W(w)), 

a6  (T(t)  W(w)), 

a6  (Z2(s)  R(r)), 

a6  (R(r)  Z1(c)), 

a6-. 

Example 4.2 Let (L6, , , , , O, I ) be an LIA 

defined as Example 2.4, a, c, d  L6, x, y, z, t, w, u 

variable symbols in L6F(X), S = {P(x), (P(x) d) 

(Z1(w)  Q(y)), (Z1(w)  Q(y))  (T(z)  d), Z(t)  

T(z), (Z(t)  Z1(u))}. If we take the resolution level  = 

d, then S  d. By the completeness of non-clausal 

multi-ary d-generalized resolution (Theorem 4.9), there 

exists a non-clausal multi-ary d-generalized resolution 

refutation from S. 

In fact, we take a ground substitution  ={a1 / x, a2 

/ y, a3 / z, a4 / t, a5 / u, a1 / w} of S, where a1, a2, a3, a4, 

and a5 are constant symbols in L6F(X), then S = {P(a1), 

(P(a1) d)  (Z1(a1)  Q(a2)), (Z1(a1)  Q(a2))  

(T(a3)  d), Z(a4)  T(a3), (Z(a4)  Z1(a5))}, and S  

d, then there exists a non-clausal multi-ary 

-generalized resolution refutation 0 from S in L6P(X) 

as follows: 

(1) P(a1) 

(2) (P(a1) d)  (Z1(a1)  Q(a2)) 

(3) (Z1(a1)  Q(a2))  (T(a3)  d) 

(4) Z(a4)  T(a3) 

(5) (Z(a4)  Z1(a5)) 

------------------------------- 

(6) d  (Z1(a1)  Q(a2))           by (1), (2) 

------------------------------- 

(7) d  (T(a3)  d)               by (3), (6) 

------------------------------- 

(8) d-                      by (4), (5), (7) 

By Lifting Lemma of non-clausal multi-ary 

-generalized resolution, there exists a non-clausal 

multi-ary -generalized resolution refutation  from S in 

L6F(X) similar to Example 4.1. Therefore, the 

non-clausal multi-ary -generalized resolution 

refutation  of S is:  

P(a1), 

(P(a1) d)  (Z1(w)  Q(y)), 

(Z1(w)  Q(y))  (T(a3)  d), 

Z(a4)  T(a3), 

(Z(a4)  Z1(a5)), 

d  Q(y), 

d  (T(z)  d), 

d-. 

Furthermore, if we judge the -unsatisfiability of S 

by -resolution principle, we firstly transform S to its 

generalized conjunctive normal form S1 = {P(x), (P(x) 

d) (Z1(w)  Q(y)), (P(x) d) (Q(y)  Z1(w)), (Z1(w) 

 Q(y))  (Q(y)  Z1(w))  (T(z)  d), Z(t)  T(z), 

(Z(t)  Z1(u))}. 

Then we take a ground substitution  ={a1 / x, a2 / 

y, a3 / z, a4 / t, a5 / u, a1 / w} of S, then S1
 = {P(a1), 

(P(a1) d)(Z1(a1)  Q(a2)), (P(a1) d)  (Q(a2)  

Z1(a1)), (Z1(a1)  Q(a2))  (Q(a2)  Z1(a1))  (T(a3) 

 d), Z(a4)  T(a3), (Z(a4)  Z1(a5))}, and S1
  d, 

then we cannot get a binary -resolution refutation of 

S1
, but can get a relatively complex multi-ary 

-resolution refutation of S1
 [24], i.e., there exists a 

multi-ary -resolution refutation 0 from S1
 in L6F(X) 

as follows: 

(1) P(a1) 

(2) (P(a1) d)(Z1(a1)  Q(a2)) 

(3) (P(a1) d)  (Q(a2)  Z1(a1)) 

(4) (Z1(a1)Q(a2))(Q(a2)Z1(a1))(T(a3)d) 

(5) Z(a4)  T(a3) 

(6) (Z(a4)  Z1(a5)) 

------------------------------- 
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(7) d  (Z1(a1)  Q(a2))            by (1), (2) 

(8) d  (Q(a2)  Z1(a1))            by (1), (3) 

------------------------------- 

(9) d(Q(a2) Z1(a1))(T(a3)d)   by (4), (7) 

------------------------------- 

(10) d  (T(a3)  d)               by (8), (9) 

------------------------------- 

(11) d-                     by (5), (6), (10) 

Similarly, by Lifting Lemma of multi-ary 

-resolution, there exists a multi-ary -resolution 

refutation  from S1
 in L6F(X), that is, we resume the 

variable symbols in S1 which are substituted by  in S1
. 

Therefore, the multi-ary -resolution refutation  of S1 

is: 

P(x),  

(P(x) d) (Z1(w)  Q(y)),  

(P(x) d) (Q(y)  Z1(w)),  

(Z1(w)  Q(y))  (Q(y)  Z1(w))  (T(z)  d),  

Z(t)  T(z),  

(Z(t)  Z1(u)) 

d  (Z1(w)  Q(y)), 

d  (Q(y)  Z1(w)), 

d  (Q(y)  Z1(w))  (T(z)  d), 

d  (T(z)  d), 

d-. 

Theorem 4.8 and Theorem 4.9 show that the 

non-clausal multi-ary -generalized resolution 

deduction in LF(X) is sound and complete, along with 

Examples 4.1 and 4.2 to illustrate its advantages in 

terms of reasoning capability and efficiency. Similarly 

in LP(X), Examples 4.1 and 4.2 show that for an 

-unsatisfiable set of general g-clause in LF(X), if we 

convert it into respectively generalized conjunctive 

normal form, and judge it by -resolution principle, 

then it may not lead to a binary -resolution refutation 

partially because its restriction of the number of 

-resloved literals is 2. Although sometimes it may lead 

to a multi-ary -resolution refutation, but it is more 

complex than the non-clausal multi-ary -resolution 

refutation. 

Consequently, the proposed work is a great 

extension of the results in [24-26] in terms of soundness 

and completeness, applicability, reasoning capability 

and reasoning efficiency. 

Remark 4.2: In fact, it follows from Theorem 4.5 

that the determination of -generalized resolution in 

LF(X) can be equivalently transformed into that of 

-generalized resolution in LP(X) to some extents, 

which reduces the difficulty of -generalized resolution 

in LF(X) to some extents. Hence, the determination of 

-generalized resolution in LP(X) would be the next 

key step for developing efficient -resolution reasoning 

algorithm for LP(X) as well as LF(X). However, similar 

to the one indicated in [24], the practical 

implementations of a resolution deduction algorithm are 

much more complex, especially in the case of first-order 

logic. It can be tracked back to 1931 when Godel 

proposed the famous undecidability theory, that is, it is 

impossible to construct a single algorithm that can 

always lead to a correct true-or-false answer for all 

logical formulae in a specified deductive system.  

The focus of this paper is on the resolution 

principle and the theoretical soundness and 

completeness of this resolution-based automated 

deduction, not on the concrete algorithms or search 

strategies for implementation. For resolution-based 

automated reasoning in lattice-valued logic based on 

LIA, 1) it is more complex than that in classical logic 

from the logical point of view; 2) it will be not that 

straightforward either in determining or search which 

group of generalized literals could be -resoluble, that 

is, resoluble at a truth-value level , or determining at 

least how many generalized literals can be chosen in the 

-resolution group once given a truth-value level ; 3) 

although the resolution process can borrow the similar 

ideas from classical logic, it becomes more complex due 

to the more complex generalized literals involved in the 

resolution and also the fact that it allows the choice of 

various truth-value level resolution (different from the 

only case of =O in classical logic).  

Consequently, it is much harder or more 

computationally complex to achieve the 

-resolution-based automated reasoning algorithm in 

lattice-valued logic based on LIA than to achieve it in 

the classical logic. This kind of concrete algorithms or 

search strategies for implementation will be still one of 

challenge problems in -resolution-based automated 

reasoning in lattice-valued logic based on LIA, will 

need more efforts to investigate in the future, this topic, 
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however, is beyond the scope of the present work. 

5. Related works 

Lattice-valued logics as ones of the most important 

many-valued logics, extend the chain-type truth-valued 

field to a general lattice structure in which the 

truth-values are incompletely comparable with each 

other [23, 34-43]. Lattice-valued logics are thus an 

important and promising research direction that 

provides an alternative logical approach to dealing with 

imprecision and incomparability as well [23].  

Up to now, many researchers have made 

investigation on resolution-based automated reasoning 

in the framework of fuzzy logic and many-valued logics, 

and obtained some important results [38, 42, 44-80].  

Aiming at establishing automated deduction for 

many-valued logic, Xu et al. introduced a binary 

resolution at a certain truth-value level  (called 

-resolution principle) and developed the -resolution 

deduction in a lattice-valued logic L(X) based on a 

lattice-valued logic algebra – lattice implication algebra 

(LIA) and proved its soundness and completeness [25, 26]. 

Compared with the resolution principle in Boolean logic, 

the -resolution principle in lattice-valued logic L(X) 

has new features such as: (a) -resolution is proceeded 

at different truth-value level  (with the possible 

incomparability) chosen from the truth-valued field — 

LIA; (b) -resolution is based on generalized literals, 

which contain constant formula and more general 

implication connective than the one in the classical logic. 

Hence the expressive power is enhanced. Actually, 

implication connectives in L(X) are not reducible to 

other classical logical connectives, which is different 

from the Kleene implication (i.e., p  q = p  q). This 

irreducibility is semantically meaningful, complicates 

the calculus; (c) judging whether two generalized 

literals are -resolvable should consider both semantic 

and syntax consistently [25, 26].  

Although LIAs have been investigated 

independently, it has been proved [23] that LIAs are 

categorically equivalent to (i.e., coincide with) the class 

of MV algebra, which are the algebraic semantics of 

Łukasiewicz logic. LIAs form a variety of algebras and 

the variety of LIA-algebras contains all Boolean 

algebras and Łukasiewicz algebra (i.e., the variety of 

algebras of Lukasiewicz logic), two of the most 

commonly investigated logic algebra in classical logic 

and many-valued logic. The focus of the present paper 

is establishing a sound and complete resolution-based 

reasoning system based on LIAs, which means 

establishing a sound and complete resolution-based 

reasoning system based on Boolean algebra and also 

Łukasiewicz algebra at least. The results obtained in 

lattice-valued logics L(X) based on LIA in several ways 

have extended and expanded Pavelka fuzzy logic [23, 36]. 

This shows that the investigation of resolution-based 

automated reasoning for L(X) is worthwhile and is an 

important extension of classical logic and also some 

many-valued logics, and is of importance to the research 

and practitioner community in automated reasoning 

(where these ideas can be applied in some other relevant 

logic systems based on different logic semantic 

algebras). This reflects the key motivation for the 

proposed work.  

Although there has been some research work on 

resolution-based automated reasoning methods based on 

non-classical logic (e.g., for fuzzy logic and 

many-valued logic) as cited earlier, the essential idea in 

many of those methods is to transform the resolution 

algorithm in fuzzy logic and many-valued logic to that 

of classical logic, because there is no constant formula 

involved in the syntax of the logic system so they have 

the syntactical equivalence, this is one of the key 

differences form the automated deduction in signed 

logic or annotated logic [20, 44, 56, 57, 81, 82], Bilattice-based 

logics [83], probabilistic logic [84], similarity-based logic 
[85]. The works related to Lukasiewicz logic have been 

mainly focused on generalized CNF based on bold 

product and bold sum operators or logic programming 
[59, 76, 77]. As far as we know, proof theory for 

lattice-valued logic has so far not been extensively 

developed.  

6. Conclusions 

In this paper, a non-clausal multi-ary -generalized 

resolution principle and its resolution deduction for 

lattice-valued logic based on a lattice-valued logical 

algebra - LIA were proposed. The definitions of the 



17 

 

 

general form of non-clausal multi-ary -generalized 

resolution and non-clausal multi-ary -generalized 

resolution deduction in LP(X) were given, along with its 

soundness and completeness. In order to obtain the 

completeness of this general form of non-clausal 

multi-ary -generalized resolution principle in LF(X), 

the -unsatisfiability of the general form of logical 

formula was discussed. Finally, by Lifting Lemma and 

the completeness of the ground case, the completeness 

of the general case was obtained. This contribution is 

expected to provide a theoretical foundation for more 

efficient and effective resolution based automated 

reasoning algorithms and tools in lattice-valued logic 

with the goal of applying them to some practical fields 

such as expert system design, intelligent robot design, 

and machine learning system design under uncertain 

environment. The further research will be concentrated 

on contriving an algorithm to achieve the efficiency of 

the non-clausal multi-ary -generalized resolution, and 

investigating the non-clausal multi-ary -generalized 

resolution in linguistic truth-valued lattice-valued 

logic[86] for some applications. 
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