
1

Non-Clausal Multi-ary -Generalized Resolution Calculus

 for a Finite Lattice-Valued Logic

Yang Xu1, Jun Liu2, Xingxing He1, Xiaomei Zhong1, and Shuwei Chen1

1School of Mathematics, Southwest Jiaotong University

Chengdu 610031, P.R. China

{xuyang, x.he, zhongxm2013, swchen}@home.swjtu.edu.cn

2 School of Computing, Ulster University

Northern Ireland, UK

j.liu@ulster.ac.uk

Abstract

Due to the need of the logical foundation for uncertain information processing, development of efficient automated

reasoning system based on non-classical logics is always an active research area. The present paper focuses on the

resolution-based automated reasoning theory in a many-valued logic with truth-values defined in a lattice-ordered

many-valued algebraic structure - lattice implication algebras (LIA). Specifically, as a continuation and extension of

the established work on binary resolution at a certain truth-value level  (called -resolution), a non-clausal multi-ary

-generalized resolution calculus is introduced for a lattice-valued propositional logic LP(X) based on LIA, which is

essentially a non-clausal generalized resolution avoiding reduction to normal clausal form. The new resolution

calculus in LP(X) is then proved to be sound and complete. The concepts and theoretical results are further extended

and established in the corresponding lattice-valued first-order logic LF(X) based on LIA.

Keywords: Automated reasoning; Resolution principle; Lattice-valued logic; Lattice implication algebra;

Non-clausal multi-ary -generalized resolution.

 The corresponding authors: x.he@home.swjtu.edu.cn; swchen@swjtu.edu.cn

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.liu@ulster.ac.uk
mailto:x.he@home.swjtu.edu.cn
mailto:swchen@swjtu.edu.cn

2

1. Introduction

Automatic theorem proving is mechanization of

mathematical inference by means of a logic system and

inference rules, rather than computation over numbers.

The resolution principle is one simple but efficient

inference principle, and the resolution calculus is sound

and complete in the Boolean logic system. Since its

introduction by Robinson in 1965 [1], resolution-based

automated reasoning has been extensively studied with

the attempt to find natural and efficient proof systems to

supporting a wide spectrum of computational tasks [2-5].

A number of important applications of resolution-based

automated reasoning systems have been found in many

areas such as artificial intelligence [6], logic

programming [7, 8], problem solving [9], software model

checking and testing [10], data structure verification [11],

security protocols automated verification [12], question

answering systems [13, 14], inconsistency checking for

knowledge based system [15], and so on.

Many-valued logics become increasingly important

in computer science and artificial intelligence aiming at

establishing the logical foundation of uncertain

information processing. Up to now, many researchers

have made investigation on resolution-based automated

reasoning in the framework of fuzzy logic and

many-valued logics, and obtained some important

results, refer to Section 4 – Related Work for some

details.

To deal with sets of general formulas which can

describe complex problems naturally, generalized

resolution principle has been put forward for Boolean

logic and many-valued logic as well, see [16-21],

among others. In generalized resolution, the concept of

literal is extended to generalized literal (which is

composed by atomic formulas, 0, 1 and logical

connectives), the resolvents can be obtained not only by

the complementary literals from two conventional

clauses, but also atomic formulas from any generalized

clauses. It is more natural to retain the original forms in

the statement of a theorem rather than transform them

into several conjunctive normal forms (CNF). These

transformations may produce high amount of new

transformed formulas which may increase the

complexity of automated reasoning process. In

generalized resolution, there is no need to convert the

formulas to the corresponding conjunctive normal forms.

Meanwhile, the determination of whether two atoms are

resolvable can be based on their syntactical form.

Therefore, generalized resolution has been recognized

as a more efficient proof method in implementation.

The present work focused specially on

resolution-based automated reasoning in a many-valued

logic L(X) with truth-values defined in a lattice-ordered

many-valued algebraic structure - lattice implication

algebras (LIA) [22, 23]. In order to handle more than two

generalized clauses simultaneously, Xu et al. (2013) [24]

extended the -resolution principle in [25, 26] to

multi-ary -resolution principle in L(X), which can

enhance resolution automated reasoning compared with

the ones in classical logic and those proposed in some

many-valued logics in terms of soundness and

completeness, applicability, reasoning capability and

reasoning efficiency. It has specially demonstrated

clearly in [24] that binary resolution has limited

reasoning capability and also reasoning efficiency

especially in many-valued logic.

The above mentioned methods, however, can only

deal with the generalized conjunctive normal form

(GCNF) in L(X), but cannot handle other general forms

of logical formulas. It means that any formula should be

transformed into a GCNF in order to conduct the

resolution deduction, but such transformation is also a

complex process for pretreatment. Inspired from all the

above ideas and motivation of generalized resolution in

Boolean logic and multi-ary -resolution in

lattice-valued logic, the present paper aims to propose

the general generalized -resolution principle (the

reason why it is called “general” and “generalized” will

be clarified further in Section 3) in order to deal with

complex formulas in finitely lattice-valued logic L(X).

This paper is a continuation and extension of the work

in [25-33], the binary -resolution principle introduced in

[25, 26] for L(X) is extended to multi-ary -generalized

resolution principle in different ways as follows: (1) the

resolution is based on general generalized clauses which

is constructed by the generalized literals and logical

connectives , , , , , instead of the generalized

clause containing only  ,  in [25, 26]. This, in

essential, is a non-clausal resolution; (2) the set of the

3

generalized clauses, which is a complex logical formula,

are not necessary to be transformed into the GCNF; (3)

the above extended binary -generalized resolution is

further extended into multi-ary -generalized resolution,

i.e., extends the -generalized resolution pair composed

of two generalized literals to the - generalized

resolution group composed of multiple generalized

literals based on the work in [24].

The remaining part of this paper is organized as

follows. After a brief overview about lattice-valued

logic based on LIA in Section 2, the definitions of the

general form of -generalized resolvent and

-generalized resolution deduction in LP(X), along with

the discussion of the soundness and completeness of this

ground case, are presented in Section 3. In Section 4,

the soundness of the general form of -generalized

resolution deduction in LF(X) is given. In order to get

the completeness of this general form of -generalized

resolution principle in LF(X), the -unsatisfiability of

the general form of logical formula is discussed. Finally,

by Lifting Lemma and the completeness of the ground

case, the completeness of the general case is obtained.

Section 5 provides a review of some related work. The

paper is concluded in Section 6.

2. Preliminaries

In this section, we only recall some elementary

definitions, notations and properties needed in the

subsequent discussions, more details about LIA,

lattice-valued logic systems based on LIA and

-resolution principle introduced in those lattice-valued

logic systems can be found in [22-26, 28].

2.1 Lattice implication algebra (LIA)

Definition 2.1 [22, 23] Let (L, , , O, I) be a bounded

lattice with an order-reversing involution , I and O the

greatest and the smallest element of L respectively, and

: L  L ---- L be a mapping. (L, , , , ,O, I) is

called a lattice implication algebra (LIA) if the

following conditions hold for any x, y, z  L:

(I1) x  (y  z)  y  (x  z);

(I2) x  x  I;

(I3) x  y  y x;

(I4) x  y  y  x  I implies x  y;

(I5) (x  y)  y  (y  x)  x;

(l1) (x  y)  z  (x  z)  (y  z);

(l2) (x  y)  z  (x  z)  (y  z).

Note that Boolean algebra and Łukasiewicz algebra,

as two of the most popular logical algebras, are special

cases of LIAs. In addition, LIAs form a proper class,

and include no-chain algebra and no-Boolean algebra as

well. The relationship between LIA with other logical

algebraic structure is discussed in [24]. It shows that all

the results obtained based on LIA or related logic can be

applied into Boolean logic or Łukasiewicz logic at least,

as well as other logical algebras. This reflects the fact

that the investigation of resolution-based automated

reasoning for lattice-valued logic in LIA is worthwhile

in terms of generality and applicability.

2.2 Lattice-valued propositional logic LP(X)

Definition 2.2 [23] Let X be the set of propositional

variables, (L, , , , , O, I) be an LIA, T  L  {,}

be a type with ar()  1, ar()  2 and ar(a)  0 for any

a  L. The proposition logic algebra of the

lattice-valued proposition calculus on the set X of

propositional variables (in short lattice-valued

proposition logic system) is the free T algebra on X and

denoted by LP(X).

Remark 2.1: Note that LP(X) includes the constant

formulae (a L), which has been one of the key

differences from the most existing many-valued logic

systems, because, with the constant formulae included

and the implication connective defined differently from

the Kleene implication, the syntax in LP(X) is

essentially not equivalent to the one in the classical

logic any more.

Definition 2.3 [23] The set  of formula of LP(X) is

the least set Y satisfying the following conditions:

(1) X  Y;

(2) L  Y;

(3) if p, q  Y, then p, p  q  Y.

Note that the set of all the L-type fuzzy sets on  is

denoted by F L(). If AFL(), for any G, A(G)L

represents the membership degree of G in A.

Definition 2.4 [23] A mapping : (LP(X), , , O) 

4

(L, , , O) is called a valuation of LP(X), if it is a

T-homomorphism.

If  is a valuation of LP(X), we have  () = for

any L. The special element O denotes false in (LP(X),

, , O).

Definition 2.5 [25] Let G   and  L. For any

valuation  of LP(X), if  (G)  , we say G is always

less than or equal to  (or G is -false), denoted by G 



2.3 Lattice-valued first-order logic LF(X)

Definition 2.6 [26] Suppose V and F are the set of

variable symbols and that of functional symbols in

LF(X), respectively, the set of terms of LF(X) is defined

as the smallest set J satisfying the following

conditions:

(1) V  J ;

(2) For any n  N, if f (n)  F, then for any t1,…, tn 

J , f (n)(t1,…, tn)  J .

Remark 2.2: f (0) is specified as a constant symbol.

Definition 2.7 [26] Suppose P is a predicate symbol set

in LF(X). The set of atoms of LF(X) is defined as the

smallest set A t satisfying the following condition:

For any n  N, if P (n)  P, then P (n)(t0, t1,…, tn)  A t

for any t0, t1,…, tn  J.

Remark 2.3: P (0) is specified as a certain element in

L.

Definition 2.8 [26] The set of formulas of LF(X) is

defined as the smallest set F satisfying the following

conditions:

(1) A t F ; (2) If p, q  F, then p → q F ;

(3) If p  F and x is a free variable in p, then (x)

p, (x) p F .

Remark 2.4: Note that p  p → O, p  q  (p → q)

→ q, p  q  (p  q), p  q  (p → q)  (q → p).

Therefore, if p, q F, then p, p  q, p  q, p  q F .

Definition 2.9 [26] Suppose G F , FG is the set of all

functional symbols occurring in G, PG is the set of all

predicate symbols occurring in G, and D () is the

domain of interpretations. An interpretation of G over D

is a triple ID   D, D, D , where,

D : FG → UD  
()n

Df
: D n → D | n  N 

 f (0)
(0)

Df
,

(0) 0()Df D
 {

(0)

Df
}  D, D (0) is a

non-empty set

 f (n)
()n

Df
(n  N +),

D : PG → VD   : D n → L | n  N 

 p (0)
(0)

Dp
,

(0) 0()Dp D
 {

(0)

Dp
}  L

 p (n)
()n

Dp
(n  N +).

3. Non-Clausal Multi-ary -Generalized Resolution

Principle for LP(X)

In this section, the outlined work in [29] will be

extended and systematized, and further extended into

the one for first-order logic LF(X) in Section 4.

In the following, the definition of literal is the same

as that in Boolean logic, that is, a literal is either a

propositional logic variable l or its negation ~l.

Definition 3.1 [25] Let G  . G is called an

extremely simple form, in short ESF, if G ()

obtained by deleting any constant or literal or

implication term occurring in G is not equivalent to G.

Definition 3.2 [25] Let G  . G is called an

indecomposable extremely simple form, in short IESF, if

the following two conditions hold:

(1) G is an ESF containing connectives  and  at

most;

(2) For any H  , if H G in LP(X) , then H is an

ESF containing connectives  and  at most,

()LP X =(
)(XLP ,, , , , o , I) is the LIA,


)(XLP

={ p | pLP(X)}, p ={q| qLP(X), q=p},

for any p , q  
)(XLP

, p  q = p q ,

p  q = p q , (p)= 'p , p  q = p q .

5

Definition 3.3 [25] All the constants, literals and

IESFs in LP(X) are called generalized literals

(g-literals). The constants, literals and IESFs in LP(X)

are regarded as atomic formulas in LP(X).

Remark 3.1 In LP(X), a g-literal concept is

normally with respect to a specific generalized clause.

For example, let C = (x  y)  z)  (z  x), although x

 y is a g-literal itself individually, but is not regarded

as a g-literal in C, actually (x  y)  z as an IESF is a

g-literal in C.

Definition 3.4 [25] Let G  . G is called a

generalized clause (g-clause), if G is a formula of the

form below:

G = g1    gi    gn

where gi (i = 1, ..., n) are g-literals in G. A conjunction

of finite g-clauses is called a generalized conjunctive

normal form (GCNF). In this paper, the empty clause is

denoted as .

For example, suppose x, y, z, s, t are propositional

variables in LP(X), L. Then g1  x  y, g2  y  ,

g3  (x  z), g4  s, and g5  (x  t)  z are five

g-literals; C1  (x  y)  (y  ), C2  (x  z)  s, C3

 (y  )  (x  z)  ((x  t)  z) are three

g-clauses; and S= C1  C2  C3 is a GCNF.

Definition 3.5 [25] (-Resolution). Let L, and G1

and G2 be two g-clauses in LP(X) of the forms below

respectively:

G1 = g1    gi    gm, G2 = h1    hj    hn.

If gi  hj  , then

G = g1    gi-1  gi+1    gm  h1    hj -1  hj+1

   hn

is called an -resolvent of G1 and G2, denoted by G =

R(G1, G2), and gi and hj form an -resolution pair,

denoted by (gi, hj)-. The generation of an -resolvent

from two clauses, called as -resolution, is the sole rule

of inference of the -resolution principle, which is a

generalization of O-resolution in the classical logic.

Definition 3.6 [25] In LP(X), suppose a GCNF S = C1

 C2    Cn,   L. w = {D1, D2, ..., Dm} is an

-resolution deduction from S to a g-clause Dm, if for

any i  {1, 2, …, m}

(1) Di  {C1, C2, ..., Cn}; or

(2) there exist j, k < i, such that Di = R(Dj, Dk).

Remark 3.2 Specially, if there exists an -resolution

deduction from S to a clause which is -false (also

called an -false clause, denoted by - to differentiate

it from that in Boolean logic), then this -resolution

deduction w is called an -refutation.

Different from some concepts in Boolean logic and

also the g-clause in Definition 3.4 in LP(X), in the

following, the key concept of this paper is introduced,

that is, -generalized resolution.

A concept of g-clause is recalled in Definition 3.4.

It is called “generalized” due to the fact that it is based

on the disjunction of g-literals (Definition 3.3), where

g-literals could be constants, literals or IESFs in LP(X),

and are regarded as atomic formulae. Here we consider

more general cases, i.e., general generalized clause,

which are actually a composite formula from the

g-literals connected by logical connectives , or , or ,

or  or , that is, they are not limited to atomic formula,

could be any single or composite formula, so it is call

“general”.

Definition 3.7 Let g1,..., gn be g-literals in LP(X).

A lattice-valued propositional logical formula in LP(X)

is called a general generalized ground clause (general

g2-clause), denoted by (g1, ..., gn), if it is a composite

formula from the g-literals g1 ..., gn connected by logical

connectives , or , or , or  or ..

We use some examples to clarify the meaning of

“general g2-clause”. For example, 1 = (y  z)  (w 

s), 2 = (x  y)  z, 3=x ((y  a)  t), 4 =xa,

5 =(y  z)  (x  t), and 6 =((y  z)  (w  s))

((y  z)  (x  t)), are all the general g2-clauses,

where x, y, z, w, s, t are propositional variables in LP(X),

aL. Obviously, 4 is a g-clause itself. 6 is also a

general g2-clause although it is a combination of general

g2-clauses 1 and 5, which reflects the meaning of the

term “general” here, i.e., any general composite formula

by logical connectives , or , or , or  or  can be

regarded as a general g2-clause. From this point of view,

2 and 3 are also g-clauses as in Definition 3.4, but

not for 1, 5 and 6.

6

Based on Definition 3.7, it is easy to say that a

composite formula from the g-literals connected by

logical connectives , or , or , or  or  can be

always transferred into a disjunctive form, and any

lattice-valued propositional logical formula in LP(X)

can be transferred into a conjunction of finite general

g2-clauses. These transformations are based on rules

about logical equivalences [23]: the double negative law,

the De Morgan’s law and the distributive law between 

and .

Here we still use the term “clause” to reflect the

similar idea as the one using CNF in Boolean logic. As

recalled in Definition 3.4, a conjunction of finite

g-clauses is called a generalized conjunctive normal

form (GCNF). Accordingly, a conjunction of finite

general g2-clauses is called a general generalized

ground conjunctive normal form (G3CNF). For example,

 = ((x  y)  z)  ((y  z)  (w  s))  (x ((y 

z)  t))  ((y  z)  (x  t)) is a G3CNF, i.e., a

conjunction of 4 general g2-clauses, where x, y, z, w, s, t

are propositional variables in LP(X).

In essential, although we still use the term “clause”

as the part of new concept, which actually is a kind of

non-clausal formula compared with the one in Boolean

logic.

Definition 3.8 A general g2-clause G in LP(X) is

called a constant g2-clause if all the g-literals in G are

all constants. Particularly, if (G) =  for any valuation 

of LP(X), then G is called an -constant g2-clause.

Definition 3.9 Let  be a general g2-clause in

LP(X). A g-literal g of  is called a local extremely

complex form, if

(1) g can’t be expanded to a more complex g-literal

in  by adding  and ; or

(2) If g = g1  g2, g1 and g2 are g-literals in LP(X),

then g is a local extremely complex form as a whole.

Example 3.1 Let  be a general g2-clause in

LP(X),  = ((x  y)  z)  ((y  z)  (w  s))  (x

((y  z)  t))  ((y  z)  (x  t)), where x, y, z,

w, s, t are propositional variables in LP(X). For (x  y)

 z, the local extremely complex form should not be

generalized literals x, y, z, x  y, but (x  y)  z itself.

Hence the local extremely complex forms in  are (x 

y)  z, (y  z), w  s, x ((y  z)  t), and (y  z)

 (x  t).

Remark 3.3 In the following, all the g-literals

discussed are local extremely complex forms.

In the following discussion, we extend

-resolution for LP(X) introduced in [25] to non-clausal

multi-ary -generalized resolution in LP(X), i.e., (1)

extend from -resolution to -generalized resolution; (2)

extend from binary resolution to multi-ary resolution,

i.e., the resolved generalized literals extended from two

g-literals to the finite g-literals for batch processing

clauses, so it can be regarded as a kind of group

resolution; and also (3) extend from multi-ary resolution

to non-clausal multi-ary resolution. These extensions

can improve the efficiency and applicability of

-resolution, and feasible implementation algorithms

can be much easier to be established based on it.

Accordingly, the concept of non-clausal multi-ary

-generalized resolution principle is firstly introduced

in LP(X), along with the corresponding non-clausal

multi-ary -generalized resolution deduction; its

soundness and completeness are also proved afterwards.

Definition 3.10 (Non-clausal n-ary -generalized

resolution) Let 1, 2,, n be general g2-clauses in

LP(X), Hi be the set of g-literals in i, L. If there

exist general literals gi  Hi (i=1, 2,, n), such

that
1

n

i gi ≤  (i.e.,  false), then G =
1

n

i i (gi = ) is

called a non-clausal n-ary -generalized resolvent of

1, 2, , n, denoted by G = Rp(N-n-)-g (1 (g1), 2

(g2), , n (gn)), here “p” means “propositional logic”

and “(N-n-)-g” means “non-clausal n-ary

-generalized” in “Rp(N-n-)-g”.

Theorem 3.1 Let 1, 2,, n be general

g2-clauses in LP(X), Hi is the set of g-literals in i (i = 1,

2, , n), L. If there exist g-literals gi  Hi (i = 1, 2,

, n), such that
1

n

i gi ≤ , then

1

n

i i ≤ Rp(N-n-)-g (1 (g1), 2 (g2), , n (gn)).

Proof. It follows from the definition of the general

g2-clauses and the logical equivalences in LP(X) that i

(i = 1, 2, , n) could be converted to the corresponding

generalized conjunction normal forms (GCNF), i.e., i

= 1
in

j Gij, where Gij is a g-clause. Hence, i can be

http://en.wikipedia.org/wiki/Logical_equivalence
http://en.wikipedia.org/wiki/Double_negative_elimination
http://en.wikipedia.org/wiki/Distributivity

7

rewritten as

 i = 1
in

j Gij = 1
im

j (gi 
{ }ij ig H g

g
 
)  G0

i, i = 1, 2, , n,

where
im is the g-clause number which the g-clause

Gij in { Gij|j=1,…,
in } includes gi, Hij is the g-literals set

of Gij including gi, and G0
i is the conjunction of all Gij

(j = 1, 2,..., ni) which doesn’t include gi. Note that

1

n

i [
1

im

j (gi 
{ }ij ig H g

g
 
)]=

1

n

i gi 

1 {g 1 21 i}
1, {g ,(g)} {(g ,g ,...,g)}

()mn i li i g H nj
ij

n

l z y ly
z

  
    

 

 1

n

i gi 
i1 1 {g }(g)i

ij

mn

i j g H        

i1 1 {g }(g)i

ij

mn

i j g H      , and

1

n

i i = 1

n

i [
1

im

j (gi 
{ }ij ig H g

g
 
) 

G0
i]= 1

n

i [
1

im

j (gi 
{ }ij ig H g

g
 
)]  1

n

i G0
i,

 [ 
i1 1 {g }(g)i

ij

mn

i j g H     ]

1

n

i G0
i=

i1 1 {g }(g)i

ij

mn

i j g H       1

n

i G0
i


i

0

1 1 {g }[(g)]i

ij

mn

i j g H iG      

=
1 i(g)n

i i   

= Rp(N-n-)-g (1 (g1), 2 (g2), , n (gn)).

Therefore, 1

n

i i ≤Rp(N-n-)-g (1 (g1), , n (gn)).

Remark 3.4 (1) In the proof of Theorem 3.1, the

general g2-clauses should be converted to the

corresponding generalized conjunctive normal forms.

However, in the course of -generalized resolution, the

general g2-clauses need not to be converted.

(2) If a g-literal which includes many implication

connectives is not considered as a local extremely

complex form, then Theorem 3.1 may not hold. An

example is shown as follows.

Example 3.2 [23] Let L6  {O, a, b, c, d, I }, O  I,

a  c, b  d, c  a, d   b, I   O, the Hasse diagram

of L6 be defined as Figure 3.1 and its implication

operator be defined as Table 3.1. Then (L6, , , , , O,

I) is an LIA.

 Table 3.1 Implication Operator of L6

Figure 3.1 Hasse Diagram of L6

Example 3.3 Let 1 and 2 be two general

g2-clauses in L6P(X), 1 = (b  x)  d, 2 = (d  x)

 b, where x is a propositional variable, b, d  L6, and

let the resolution level  = a  L6 (see Example 3.2). So

1  2 = ((b  x)  d)  ((d  x)  b)  (b  d) 

(d  b) = a. On the other hand, since (b  x)  (d 

x)  b  d = d < a, if g1 = (b  x), g2 = (d  x), then

Rp(N-2-)-g (1 (g1), 2 (g2)) = (a  d)  (a  b) = b  b

= b. However, 1  2  Rp(N-2-)-g (1 (g1), 2 (g2))

for a  b.

Definition 3.11 A lattice-valued propositional

logical formula S in LP(X) is called a general g2-clause

set or general generalized ground conjunctive normal

form (G3CNF) if S is a formula of the form S = 1  2

   n, where i (i = 1, 2, ..., n) are general

g2-clauses.

Remark 3.5 The formula S can also be denoted as

 O a b c d I

O I I I I I I

a c I b c b I

b d a I b a I

c a a I I a I

d b I I b I I

I O a b c d I

O

b

 a

d

I

c

8

S ={1, 2, , n} for short.

Definition 3.12 Suppose S is a G3CNFin LP(X), 

 L. Then the sequence D1, D2,..., Dm is called a

non-clausal multi-ary -generalized resolution

deduction from S to a general g2-clause Dm, if

(1) Di S (i = 1, 2,..., m); or

(2) There exist r1, r2,,
ikr < i, such that

Rp(N- ik -)-g (Dr1, Dr2, , D
ikr) = Di.

If there exists a non-clausal multi-ary

-generalized resolution deduction w from S to the

-false clause (denoted by - similar to the one in

Remark 3.2), then w is called a non-clausal multi-ary

-refutation.

Theorem 3.2 (Soundness) Let S be a set of

general g2-clauses in LP(X),  L. the sequence D1,

D2, ..., Dm be a non-clausal multi-ary -generalized

resolution deduction from S to a general g2-clause Dm. If

Dm = -, then S ≤ .

Proof. From Definition 3.10 and Theorem 3.1, it is

easy to obtain that S = S  D1  D2  ...  Dm ≤ Dm =

-.

Theorem 3.3 (Completeness) Suppose S is the set

of general g2-clauses 1, 2, …, n in LP(X). If S ≤ ,

then there exists a non-clausal multi-ary -generalized

resolution deduction from S to -.

Proof. Suppose Hi is the set of g-literals in i (i1,

2, …, n). Let H = 1

n

iU Hi and |H| be the number of

elements in H. We will prove Theorem 3.3 by induction

on |H|.

If |H|  1, then there exists a g-literal g, such that S

 g  . Hence g(g  )  , i.e., S can be

-generalized resolved into -.

If |H|  2, then H  {g1, g2}. Hence if S  g1  g2,

we can obtain g1(g1  )  g2(g2  )  , i.e., S can be

-generalized resolved into -. If S  g1  g2, we can

obtain the same conclusion.

Suppose that Theorem 3.3 is true for |H|  n (n  3),

we prove it also holds for |H| = n.

Let S = 1  2  …n. We consider two cases

as follows.

Case 1. If i is the conjunction of the g-literals for i

=1, 2,…, n, i.e., i = 1
in

j ijg for i =1, 2,…, n, then S

= 1 1
inn

i j ijg   . If S  , then Rp(N-n-)-g (1, 2, , n)

= Rp(N-
1

n

i in -)-g (g11, g12, ...,
11ng , g21, g22,...,

22ng , ..., gn1, gn2,...,
nnng)

= 1 1 ()inn

i j ij ijg g     =. In this case, the

conclusion holds.

Case 2. If there exists a general g2-clause
0i

 ,

such that
00 0

*
ii ig    , where

0i
g is a g-literal in

0i
 ,

0

*
i includes g-literal. Without loss of generality,

suppose i0 = 1, then S = (
*

1 g1)  2  … n = (
*

1

 2  … n)  (g1  2  … n). Let S1 =
*

1 

2  … n, S2 = g1  2  … n. Then S1  , S2 

, |
1SH |  n, and |

2SH |  n, where
kSH is the set of

g-literals in Sk, k=1,2. By induction hypothesis, S1 and

S2 respectively have non-clausal multi-ary

-generalized resolution deduction sequences as

follows:

D11, D12, …,
1

'

1mD , where
1

'

1mD is an -constant

g2-clause;

D21, D22, …,
2

'

2mD , where
2

'

2mD is an

-constant g2-clause.

Now we renew
*

1 to 1 in D11, D12, …,
1

'

1mD ,

and obtain the -generalized resolution deduction

9

sequence from S to
11mD as follows.

D11, D12, …,
11mD , where (1)

11mD is an

-constant g2-clause; or (2)
11mD is   g1.

If
11mD is   g1, for the first g-literal g1 in S2, we

renew it to   g1 in D21, D22, …,
2

'

2mD , and obtain

the -generalized resolution deduction sequence from

(  g1)  2  … n to
22mD as follows: D21,

D22, …,
22mD , where

22mD is also an -constant

g2-clause.

If it is Case (1), the conclusion holds.

If it is Case (2), then the -generalized resolution

deduction sequence

D11, D12, …,
22mD (=  g1), D21, D22, …,

22mD

is the -generalized resolution deduction from S to

-constant g2-clause.

This completes the proof.

The following two examples provide some

illustration of completeness of non-clausal multi-ary

-generalized resolution deduction in LP(X).

Example 3.4 Let L9 = {ai
 | 1  i  9} be a

Łukasiewicz implication algebra (refer to Example 2.3,

here n=9), x, y, z, u, v, w propositional variables in

L9P(X), S = {x, (x  a2)  (z  v)  (u  w), (y  x)

 (u  w), z  a3, a5  v}. We take the resolution

level  = a5, then S  a5. By the completeness of

non-clausal multi-ary -generalized resolution in LP(X)

(i.e., Theorem 3.3), there exists a non-clausal multi-ary

a5-generalized resolution refutation of S, for example,

the one as follows:

(1) x

(2) (x  a2)  (z  v)  (u  w)

(3) (y  x)  (u  w)

(4) z  a3

(5) a5  v

(6) a5  (z  v)  (u  w) by (1), (2)

(7) a5  (u  w) by (1), (3)

(8) a5  (u  w) by (4), (5), (6)

(9) a5- by (7), (8)

Moreover, if we judge the -unsatisfiability of S

by -resolution, we firstly transform S to its generalized

conjunctive normal form S1 = {x, (x  a2)  (z  v) 

(u  w), (x  a2)  (z  v)  (w  u), (y  x)  (u

 w)  (w  u), z  a3, a5  v}. We cannot get a

binary -resolution refutation of S1, but can get an

alternative multi-ary -resolution refutation of S1 using

the multi-ary -resolution principle introduced in [Xu et

al. 2013], however which apparently needs more steps

or is relatively more complex, i.e.,

(1) x

(2) (x  a2)  (z  v)  (u  w)

(3) (x  a2)  (z  v)  (w  u)

(4) (y  x)  (u  w)  (w  u)

(5) z  a3

(6) a5  v

(7) a5  (z  v)  (u  w) by (1), (2)

(8) a5  (z  v)  (w  u) by (1), (3)

(9) a5  (u  w)  (w  u) by (1), (4)

(10) a5  (u  w) by (5), (6), (7)

(11) a5  (w  u) by (5), (6), (8)

(12) a5  (w  u) by (9), (10)

(13) a5- by (11), (12)

Example 3.5 Let (L6, , , , , O, I) be an LIA

as defined in Example 3.2, x, z, s, t propositional

variables in L6P(X), S = {x, (x  a), (x  b) (t  d),

(s  t) (z  t), (s  t), (z  c)}. We take the

resolution level  = d, then S  d. By the completeness

of non-clausal multi-ary -generalized resolution in

LP(X), there exists a non-clausal multi-ary

d-generalized resolution refutation of S, for example,

the one as follows:

10

(1) x

(2) x  a

(3) (x  b) (t  d)

(4) (s  t)  (z  t)

(5) (s  t)

(6) (z  c)

(7) d  (t  d) by (1), (2), (3)

(8) d  (z  t) by (4), (5)

(9) d- by (6), (7), (8)

Similarly, if we judge the -unsatisfiability of S by

-resolution principle, we firstly transform S to its

generalized conjunctive normal form S1 = {x, (x  a),

(x  b) (t  d), (s  t)  (z  t), (t  s)  (z  t), (s

 t)  (t  s), (z  c)}. We cannot get a binary

-resolution refutation of S1, but can get a relatively

complex multi-ary -resolution refutation of S1 [Xu et al.

2013], i.e.,

(1) x

(2) (x  a)

(3) (x  b) (t  d)

(4) (s  t)  (z  t)

(5) (t  s)  (z  t)

(6) (s  t)  (t  s)

(7) (z  c)

(8) d  (t  d) by (1), (2), (3)

(9) d  (s  t) by (4), (7), (8)

(10) d  (t  s) by (5), (7), (8)

(11) d  (t  s) by (6), (9)

(12) d- by (10), (11)

From the above two examples show that there is no

need to transform those complex formula into the

generalized conjunctive normal form (actually it is not

straightforward for the transformation), so that means

“non-clausal” resolution. Theorem 3.2 and Theorem 3.3

show that the non-clausal multi-ary -generalized

resolution deduction in LP(X) is sound and complete,

along with Examples 3.4 and 3.5 to illustrate the distinct

advantages of non-clausal multi-ary -generalized

resolution in terms of reasoning capability and

efficiency. Furthermore, for an -unsatisfiable set of

general g2-clauses in LP(X), if we convert it into the

corresponding generalized conjunctive normal form,

and judge it by the -resolution principle, then it may

not lead to a binary -resolution refutation partially

because its restriction of the number of -resloved

literals is 2. Although sometimes it may lead to a

multi-ary -resolution refutation using the method in

[24], it is more complex than the non-clausal multi-ary

-resolution refutation introduced in this paper.

4. Non-Clausal Multi-ary -Generalized Resolution

Principle for LF(X)

In this section, non-clausal multi-ary -generalized

resolution principle is extended from LP(X) to LF(X),

as extended and systematized version of [30]. The

-unsatisfiability for a general form of the logical

formula, i.e., general g-clause in LF(X) is discussed

firstly. Then, Lifting Lemma of the non-clausal

multi-ary -generalized resolution principle for LF(X)

is established, and the soundness of this general case is

shown. Finally, by the completeness of the ground case,

we lift it to the general case in LF(X), i.e., the

completeness for this general form of non-clausal

multi-ary -generalized resolution deduction for LF(X).

4.1 - unsatisfiability for a general form of the logical

formula in LF(X)

Definition 4.1 [26] A formula G in lattice-valued

first-order logic LF(X) is a generalized-literal, if it

satisfies the following conditions:

(1) G is a literal; or

(2) G is constructed only by some literals and some

implication connectives with the condition that G

cannot be represented by connectives “” or “” and G

cannot be decomposed into a simpler form (G is called

an indecomposable implication form).

The disjunction of a finite number of

generalized-literals is a generalized-clause. The

conjunction of a finite number of generalized-clauses is

a generalized-conjunctive normal form.

Definition 4.2 [26] Let G F,  L. G is said to be

11

-false, if D(G)   for any interpretation ID   D, D,

D  of G.

Definition 4.3 [26] Suppose G is a formula of the

form Q1x1…QnxnG*, where Q1,…, Qn are the quantifiers,

i.e.,  or , and G* is a formula without any quantifier.

Then G is said to be a generalized-prenex conjunctive

normal form, if G* is a generalized-conjunctive normal

form.

Definition 4.4 [26] Suppose a formula G 

Q1x1…QnxnM is a generalized-prenex conjunctive

normal form. The formula G* obtained by the following

steps is called a generalized-Skolem normal form of G:

(1) If Qr is an existential quantifier and without any

universal quantifier occurring ahead it in the prefix

Q1,…, Qn (from left to right), we choose a new constant

c different from other constants occurring in M, replace

all xr occurring in M by c, and then delete Qr from the

prefix Q1,…, Qn.

(2) If Qr is an existential quantifier and
1kQ ,…,

mkQ are all the universal quantifiers occurring ahead

Qr (m  1, 1  k1 < …< km < r), we choose a new m-ary

function symbol
G

mf
 different from all other function

symbols occurring in M, replace all xr in M by
G

mf (
1kx ,…,

mkx) and then delete Qr from the prefix

Q1,…, Qn.

(3) Repeating (1) and (2) until there is no existential

quantifier occurring in the prefix.

Definition 4.5 Let g1, g2, ..., gn be g-literals in

LF(X). A logical formula F in LF(X) is called a general

g-clause if these g-literals are connected by logical

connectives , , ,  and , denoted by (g1, g2,...,

gn).

Definition 4.6 A general g-clause in LF(X) is

called a constant g-clause if it contains only constants.

Particularly, for a constant g-clause G, if D (G) =  for

any interpretation D = <D, D, D>, it follows that then

this constant g-clause G is called an -constant

g-clause.

The conjunction of finite general g-clauses is a

general g-conjunctive normal form. Similar to

-resolution principle in LF(X) [26], we can formally

give definitions of general g-prenex normal form,

general g-prenex conjunction normal form, general

g-Skolem normal form, etc. Also, the definitions such as

substitution, the most general unifier, ground

substitution, instance, ground instance occurring in the

following are the same as those in Boolean logic.

Definition 4.7 Let  be a general g-clause in

LF(X). A g-literal g of  is called a local extremely

complex form, if

(1) g can’t be expanded to a more complex g-literal

in  by adding  and ; or

(2) If g = g1  g2, g1 and g2 are g-literals in LF(X),

then g is a local extremely complex form as a whole.

Remark 4.1 In the following, all the g-literals

discussed are local extremely complex forms.

Here, the g-clause is extended to the general

g-clause, i.e., the general g-clause may not be the

disjunction of the g-literals; it seems that it’s too

complex to explore the -unsatisfiability of the logical

formula in LF(X). Fortunately, note that every variable

in the general g-Skolem normal form is universally

quantified, and many properties of formulas in LF(X)

do not rely on the structure of the g-clauses, many

conclusions in the g-Skolem normal form still hold for

general form as far as -unsatisfiability is concerned.

We only state main results as follows.

Theorem 4.1 Let G and G* be two logical

formulas in LF(X), and G* a general g-Skolem normal

form of G,   L. Then G is -false if and only if G* is

-false.

Proof. It is obvious from Theorem 2.1 in [26].

Theorem 4.2 Suppose G* is a general g-Skolem

normal form of a formula G in LF(X). If an

interpretation D = <D, D, D> -satisfies G*, then the

H-interpretation H = <H, H, H> of G* corresponding

to ID also -satisfies G*.

Proof. It is obvious from Theorem 3.1 in [26].

Theorem 4.3 Suppose G* is a general g-Skolem

normal form of a formula G in LF(X). Then G* is

-false if and only if H (G*)   holds for all H-

interpretations H = <H, H, H> of G*.

Proof. It is obvious from Theorem 3.2 in [26].

Theorem 4.4 Suppose G* is a general g-Skolem

12

normal form of a formula G in LF(X), |L|<+. Then G*

is -false if and only if there exists K such that H

(G*)   holds for every adjoint H of every element

in LK.

Proof. It is obvious from Theorem 3.3 in [26].

Theorem 4.5 Suppose G* is a general g-Skolem

normal form of a formula G in LF(X), |L|<+. Then G*

is -false if and only if there exists a finite ground

instance set G*0 of G* such that Gc
*0 is -false, where

Gc
*0 is the conjunction of all ground instances of G*0.

Proof. It is obvious from Theorem 3.4 in [26].

From Theorem 4.5, in order to judge the

-unsatisfiability of a formula in LF(X), when |L|<+,

we only need to find a finite and ground instance set of

this formula, and validate its -unsatisfiability. Hence it

is relatively achievable.

4.2 Soundness and completeness for the general form

of non-clausal multi-ary -generalized resolution

deduction in LF(X)

This section provides the soundness and completeness

for the general form of the non-clausal multi-ary

-generalized resolution deduction in LF(X).

Definition 4.8 Let  be a general g-clause in

LF(X). If there exists a most general unifier  of

g-literals g1, g2, ..., gm in , then  is called a factor of

.

Definition 4.9 (A general form of non-clausal

multi-ary -generalized resolution) Let 1, 2, , n

be general g-clauses in LF(X), 1
1 be a factor of 1 for

g-literals g11, g12, ...,
11rg , 2

2 be a factor of 2 for

g-literals g21, g22, ...,
22rg , ..., and n

n be a factor of n

for g-literals gn1, gn2, ...,
nnrg , L. If 1

n

i
1

i

ig


≤  (i.e.,

 false), then G = 1

n

i i

i


 (

1
i

ig


 = ) is called a

non-clausal n-ary -generalized resolvent of 1, 2, ,

n, denoted by G = Rf(N-n-)-g (1, 2, , n), here “f”

means “first-order logic”.

Definition 4.10 Suppose S is a general g-clause set

in LF(X),   L, the sequence D1, D2, ..., Dm is called a

non-clausal multi-ary -generalized resolution

deduction from S to general g-clause Dm, if

(1) Di  S (i = 1, 2, ..., m); or

(2) There exist r1, r2, ,
ikr < i, such that

Rf(N-
ik -)-g (Dr1, Dr2, , D

ikr) = Di.

The usual method for proving the completeness of

a version of resolution has two steps. Firstly, one proves

the ground case in propositional logic, in which no

variables occur. Then one lifts it to the general case in

first-order logic.

In the Proof of Theorem 5.3 (Lifting Lemma) for

generalized clause in LF(X) [24], the disjunction of

g-literals was not used, so Theorem 4.6 also holds.

Theorem 4.6 (Lifting Lemma) If 0
1, 0

2,, 0
n

are instances of general g-clauses 1, 2,, n in

LF(X), respectively, P0 is a non-clausal multi-ary

-generalized resolvent of 0
1, 0

2,, 0
n, then there

exists a non-clausal multi-ary -generalized resolvent P

of 1, 2,, n such that P0 is an instance of P.

Theorem 4.7 Let 1, 2,, n be general

g-clauses in LF(X), 1

1

 be a factor of 1 for g-literals

g11, g12, ...,
11rg , 2

2

 be a factor of 2 for g-literals g21,

g22, ...,
22rg , ..., and n

n


 be a factor of n for g-literals

gn1, gn2, ...,
nnrg , L. If 1

n

i
1

i

ig


≤  (i.e.,  false),

then

1

n

i i ≤ 1

n

i i

i


 (

1
i

ig


 = ).

Proof. Similar to the proof of Theorem 3.1, for

most general unifiers i (i = 1, 2, …, n), if 1

n

i
1

i

ig


 ≤ ,

then 1

n

i i

i


 ≤ 1

n

i i
i

 (gi
i1 = ). Hence, it follows

from 1

n

i i ≤ 1

n

i i

i


 that 1

n

i i ≤ 1

n

i i

i


 (

1
i

ig


= ).

Theorem 4.8 (Soundness) Let S be a general

g-clause set in LF(X),  L. The sequence 1, 2, ...,

m be a non-clausal multi-ary -generalized resolution

deduction from S to general g-clause m. If m = -,

then S ≤ , i.e., S is  false.

Proof. According to Theorem 4.7, similar to the

proof of Theorem 3.2, we can easily get the conclusion.

Theorem 4.9 (Completeness) Suppose S is the set

of general g-clauses 1, 2, …, n in LF(X), |L|<+. If

S ≤  (i.e., S is  false), then there exists a non-clausal

multi-ary -generalized resolution deduction from S to

-.

Proof. By Theorem 4.5 and S ≤ , there exists a

13

finite ground instances set S0 of S such that S0  . By

Theorem 3.3, there exists a ground non-clausal

multi-ary -generalized resolution deduction from S0 to

-. By Lifting Lemma (Theorem 4.6), there exists a

non-clausal multi-ary -generalized resolution

deduction from S to -.

The following two examples provide some

illustration of completeness of non-clausal multi-ary

-generalized resolution deduction in LF(X).

Example 4.1 Let 9 = (L9, , , , , a1, a9) be a

Łukasiewicz implication algebra, b, c, d constants, x, y,

w, r, s, t variables in L9F(X), S = {(P(s)  Z1(y)), (P(s)

 Z1(y))  (T(t)  W(w)), ((T(t)  W(w)) a2) 

(Z2(s)  R(r)), (Q(y)  Z1(b))  (R(r)  Z1(c)), R(r)

 Z1(d), (a3  Q(y))}. If we take the resolution level 

= a6, then S  . By the completeness of non-clausal

multi-ary a6-generalized resolution (Theorem 4.9), there

exists a non-clausal multi-ary a6-generalized resolution

refutation from S.

In fact, we take a ground substitution  ={a / x, b /

t, c / w, a / s, c / y, b / r} of S, then S = {(P(a)  Z1(c)),

(P(a)  Z1(c))  (T(b)  W(c)), ((T(b)  W(c)) a2)

 (Z2(a)  R(b)), (Q(c)  Z1(b))  (R(b)  Z1(c)), R(b)

 Z1(d), (a3  Q(c))}, and S  a6, then there exists a

non-clausal multi-ary -generalized resolution

refutation 0 from S in L9P(X) as follows:

(1) P(a)  Z1(c)

(2) (P(a)  Z1(c))  (T(b)  W(c))

(3) ((T(b)  W(c)) a2)  (Z2(a)  R(b))

(4) (Q(c)  Z1(b))  (R(b)  Z1(c))

(5) R(b)  Z1(d)

(6) (a3  Q(c))

(7) a6(P(a) Z1(c))(Z2(a)R(b)) by (2), (3)

(8) a6  (R(b)  Z1(c)) by (4), (6)

(9) a6  (Z2(a)  R(b)) by (1), (7)

(10) a6- by (5), (8), (9)

By Lifting Lemma of non-clausal multi-ary

-generalized resolution, there exists a non-clausal

multi-ary -generalized resolution refutation  from S

in L9F(X), that is, we resume the variable symbols in S

which are substituted by  in S. Therefore, the

non-clausal multi-ary -generalized resolution

refutation  of S is:

(P(s)  Z1(y)),

(P(s)  Z1(y))  (T(b)  W(c)),

((T(b)  W(c)) a2)  (Z2(a)  R(b)),

(Q(c)  Z1(b))  (R(b)  Z1(c)),

R(b)  Z1(d),

(a3  Q(y)),

a6  (P(x)  (P(x)  Z1(c)))  (Z2(s)  R(r)),

a6  (R(r)  Z1(d)),

a6  (Z2(s)  R(r)),

a6-.

Furthermore, if we judge the -unsatisfiability of S

by -resolution principle, we firstly transform S to its

generalized conjunctive normal form S1 = {P(s)  Z1(y),

Z1(y)  P(s), (P(s)  Z1(y))  (Z1(y)  P(s))  (T(t)

 W(w)), ((T(t)  W(w)) a2)  (Z2(s)  R(r)), (Q(y)

 Z1(b))  (R(r)  Z1(c)), R(r)  Z1(d), (a3 

Q(y))}.

Then we take a ground substitution  ={a / x, b / t,

c / w, a / s, c / y, b / r} of S1, then S1
 = {P(a)  Z1(c),

Z1(c)  P(a), (P(a)  Z1(c))  (Z1(c)  P(a))  (T(b)

 W(c)), ((T(b)  W(c)) a2)  (Z2(a)  R(b)), (Q(c)

 Z1(b))  (R(b)  Z1(c)), R(b)  Z1(d), (a3 

Q(c))}, and S1
  a6. We cannot get a binary

-resolution refutation of S1
, but can get a relatively

complex multi-ary -resolution refutation [Xu et al.

2013] of S1
, i.e., there exists a multi-ary -resolution

refutation 0 from S1
 in L9P(X) as follows:

(1) P(a)  Z1(c)

(2) Z1(c)  P(a)

(3) (P(a)Z1(c))(Z1(c)P(a))(T(b) W(c))

(4) ((T(b)  W(c)) a2)  (Z2(a)  R(b))

(5) (Q(c)  Z1(b))  (R(b)  Z1(c))

(6) R(b)  Z1(d)

(7) (a3  Q(c))

(8) a6(Z1(c)P(a))(T(b)W(c)) by (1), (3)

(9) a6  (T(b)  W(c)) by (2), (8)

(10) a6  (Z2(a)  R(b)) by (4), (9)

14

(11) a6  (R(b)  Z1(c)) by (5), (10)

(12) a6- by (6), (7), (11)

Similarly, by Lifting Lemma of multi-ary

-resolution, there exists a multi-ary -resolution

refutation  from S1
 in L9F(X), that is, we resume the

variable symbols in S1 which are substituted by  in S1
.

Therefore, the multi-ary -resolution refutation  of S1

is:

P(s)  Z1(y),

Z1(y)  P(s),

(P(s)  Z1(y))  (Z1(y)  P(s))  (T(t)  W(w)),

((T(t)  W(w)) a2)  (Z2(s)  R(r)),

(Q(y)  Z1(b))  (R(r)  Z1(c)),

R(r)  Z1(d),

(a3  Q(y)),

a6  (Z1(y)  P(s))  (T(t)  W(w)),

a6  (T(t)  W(w)),

a6  (Z2(s)  R(r)),

a6  (R(r)  Z1(c)),

a6-.

Example 4.2 Let (L6, , , , , O, I) be an LIA

defined as Example 2.4, a, c, d  L6, x, y, z, t, w, u

variable symbols in L6F(X), S = {P(x), (P(x) d)

(Z1(w)  Q(y)), (Z1(w)  Q(y))  (T(z)  d), Z(t) 

T(z), (Z(t)  Z1(u))}. If we take the resolution level  =

d, then S  d. By the completeness of non-clausal

multi-ary d-generalized resolution (Theorem 4.9), there

exists a non-clausal multi-ary d-generalized resolution

refutation from S.

In fact, we take a ground substitution  ={a1 / x, a2

/ y, a3 / z, a4 / t, a5 / u, a1 / w} of S, where a1, a2, a3, a4,

and a5 are constant symbols in L6F(X), then S = {P(a1),

(P(a1) d)  (Z1(a1)  Q(a2)), (Z1(a1)  Q(a2)) 

(T(a3)  d), Z(a4)  T(a3), (Z(a4)  Z1(a5))}, and S 

d, then there exists a non-clausal multi-ary

-generalized resolution refutation 0 from S in L6P(X)

as follows:

(1) P(a1)

(2) (P(a1) d)  (Z1(a1)  Q(a2))

(3) (Z1(a1)  Q(a2))  (T(a3)  d)

(4) Z(a4)  T(a3)

(5) (Z(a4)  Z1(a5))

(6) d  (Z1(a1)  Q(a2)) by (1), (2)

(7) d  (T(a3)  d) by (3), (6)

(8) d- by (4), (5), (7)

By Lifting Lemma of non-clausal multi-ary

-generalized resolution, there exists a non-clausal

multi-ary -generalized resolution refutation  from S in

L6F(X) similar to Example 4.1. Therefore, the

non-clausal multi-ary -generalized resolution

refutation  of S is:

P(a1),

(P(a1) d)  (Z1(w)  Q(y)),

(Z1(w)  Q(y))  (T(a3)  d),

Z(a4)  T(a3),

(Z(a4)  Z1(a5)),

d  Q(y),

d  (T(z)  d),

d-.

Furthermore, if we judge the -unsatisfiability of S

by -resolution principle, we firstly transform S to its

generalized conjunctive normal form S1 = {P(x), (P(x)

d) (Z1(w)  Q(y)), (P(x) d) (Q(y)  Z1(w)), (Z1(w)

 Q(y))  (Q(y)  Z1(w))  (T(z)  d), Z(t)  T(z),

(Z(t)  Z1(u))}.

Then we take a ground substitution  ={a1 / x, a2 /

y, a3 / z, a4 / t, a5 / u, a1 / w} of S, then S1
 = {P(a1),

(P(a1) d)(Z1(a1)  Q(a2)), (P(a1) d)  (Q(a2) 

Z1(a1)), (Z1(a1)  Q(a2))  (Q(a2)  Z1(a1))  (T(a3)

 d), Z(a4)  T(a3), (Z(a4)  Z1(a5))}, and S1
  d,

then we cannot get a binary -resolution refutation of

S1
, but can get a relatively complex multi-ary

-resolution refutation of S1
 [24], i.e., there exists a

multi-ary -resolution refutation 0 from S1
 in L6F(X)

as follows:

(1) P(a1)

(2) (P(a1) d)(Z1(a1)  Q(a2))

(3) (P(a1) d)  (Q(a2)  Z1(a1))

(4) (Z1(a1)Q(a2))(Q(a2)Z1(a1))(T(a3)d)

(5) Z(a4)  T(a3)

(6) (Z(a4)  Z1(a5))

15

(7) d  (Z1(a1)  Q(a2)) by (1), (2)

(8) d  (Q(a2)  Z1(a1)) by (1), (3)

(9) d(Q(a2) Z1(a1))(T(a3)d) by (4), (7)

(10) d  (T(a3)  d) by (8), (9)

(11) d- by (5), (6), (10)

Similarly, by Lifting Lemma of multi-ary

-resolution, there exists a multi-ary -resolution

refutation  from S1
 in L6F(X), that is, we resume the

variable symbols in S1 which are substituted by  in S1
.

Therefore, the multi-ary -resolution refutation  of S1

is:

P(x),

(P(x) d) (Z1(w)  Q(y)),

(P(x) d) (Q(y)  Z1(w)),

(Z1(w)  Q(y))  (Q(y)  Z1(w))  (T(z)  d),

Z(t)  T(z),

(Z(t)  Z1(u))

d  (Z1(w)  Q(y)),

d  (Q(y)  Z1(w)),

d  (Q(y)  Z1(w))  (T(z)  d),

d  (T(z)  d),

d-.

Theorem 4.8 and Theorem 4.9 show that the

non-clausal multi-ary -generalized resolution

deduction in LF(X) is sound and complete, along with

Examples 4.1 and 4.2 to illustrate its advantages in

terms of reasoning capability and efficiency. Similarly

in LP(X), Examples 4.1 and 4.2 show that for an

-unsatisfiable set of general g-clause in LF(X), if we

convert it into respectively generalized conjunctive

normal form, and judge it by -resolution principle,

then it may not lead to a binary -resolution refutation

partially because its restriction of the number of

-resloved literals is 2. Although sometimes it may lead

to a multi-ary -resolution refutation, but it is more

complex than the non-clausal multi-ary -resolution

refutation.

Consequently, the proposed work is a great

extension of the results in [24-26] in terms of soundness

and completeness, applicability, reasoning capability

and reasoning efficiency.

Remark 4.2: In fact, it follows from Theorem 4.5

that the determination of -generalized resolution in

LF(X) can be equivalently transformed into that of

-generalized resolution in LP(X) to some extents,

which reduces the difficulty of -generalized resolution

in LF(X) to some extents. Hence, the determination of

-generalized resolution in LP(X) would be the next

key step for developing efficient -resolution reasoning

algorithm for LP(X) as well as LF(X). However, similar

to the one indicated in [24], the practical

implementations of a resolution deduction algorithm are

much more complex, especially in the case of first-order

logic. It can be tracked back to 1931 when Godel

proposed the famous undecidability theory, that is, it is

impossible to construct a single algorithm that can

always lead to a correct true-or-false answer for all

logical formulae in a specified deductive system.

The focus of this paper is on the resolution

principle and the theoretical soundness and

completeness of this resolution-based automated

deduction, not on the concrete algorithms or search

strategies for implementation. For resolution-based

automated reasoning in lattice-valued logic based on

LIA, 1) it is more complex than that in classical logic

from the logical point of view; 2) it will be not that

straightforward either in determining or search which

group of generalized literals could be -resoluble, that

is, resoluble at a truth-value level , or determining at

least how many generalized literals can be chosen in the

-resolution group once given a truth-value level ; 3)

although the resolution process can borrow the similar

ideas from classical logic, it becomes more complex due

to the more complex generalized literals involved in the

resolution and also the fact that it allows the choice of

various truth-value level resolution (different from the

only case of =O in classical logic).

Consequently, it is much harder or more

computationally complex to achieve the

-resolution-based automated reasoning algorithm in

lattice-valued logic based on LIA than to achieve it in

the classical logic. This kind of concrete algorithms or

search strategies for implementation will be still one of

challenge problems in -resolution-based automated

reasoning in lattice-valued logic based on LIA, will

need more efforts to investigate in the future, this topic,

16

however, is beyond the scope of the present work.

5. Related works

Lattice-valued logics as ones of the most important

many-valued logics, extend the chain-type truth-valued

field to a general lattice structure in which the

truth-values are incompletely comparable with each

other [23, 34-43]. Lattice-valued logics are thus an

important and promising research direction that

provides an alternative logical approach to dealing with

imprecision and incomparability as well [23].

Up to now, many researchers have made

investigation on resolution-based automated reasoning

in the framework of fuzzy logic and many-valued logics,

and obtained some important results [38, 42, 44-80].

Aiming at establishing automated deduction for

many-valued logic, Xu et al. introduced a binary

resolution at a certain truth-value level  (called

-resolution principle) and developed the -resolution

deduction in a lattice-valued logic L(X) based on a

lattice-valued logic algebra – lattice implication algebra

(LIA) and proved its soundness and completeness [25, 26].

Compared with the resolution principle in Boolean logic,

the -resolution principle in lattice-valued logic L(X)

has new features such as: (a) -resolution is proceeded

at different truth-value level  (with the possible

incomparability) chosen from the truth-valued field —

LIA; (b) -resolution is based on generalized literals,

which contain constant formula and more general

implication connective than the one in the classical logic.

Hence the expressive power is enhanced. Actually,

implication connectives in L(X) are not reducible to

other classical logical connectives, which is different

from the Kleene implication (i.e., p  q = p  q). This

irreducibility is semantically meaningful, complicates

the calculus; (c) judging whether two generalized

literals are -resolvable should consider both semantic

and syntax consistently [25, 26].

Although LIAs have been investigated

independently, it has been proved [23] that LIAs are

categorically equivalent to (i.e., coincide with) the class

of MV algebra, which are the algebraic semantics of

Łukasiewicz logic. LIAs form a variety of algebras and

the variety of LIA-algebras contains all Boolean

algebras and Łukasiewicz algebra (i.e., the variety of

algebras of Lukasiewicz logic), two of the most

commonly investigated logic algebra in classical logic

and many-valued logic. The focus of the present paper

is establishing a sound and complete resolution-based

reasoning system based on LIAs, which means

establishing a sound and complete resolution-based

reasoning system based on Boolean algebra and also

Łukasiewicz algebra at least. The results obtained in

lattice-valued logics L(X) based on LIA in several ways

have extended and expanded Pavelka fuzzy logic [23, 36].

This shows that the investigation of resolution-based

automated reasoning for L(X) is worthwhile and is an

important extension of classical logic and also some

many-valued logics, and is of importance to the research

and practitioner community in automated reasoning

(where these ideas can be applied in some other relevant

logic systems based on different logic semantic

algebras). This reflects the key motivation for the

proposed work.

Although there has been some research work on

resolution-based automated reasoning methods based on

non-classical logic (e.g., for fuzzy logic and

many-valued logic) as cited earlier, the essential idea in

many of those methods is to transform the resolution

algorithm in fuzzy logic and many-valued logic to that

of classical logic, because there is no constant formula

involved in the syntax of the logic system so they have

the syntactical equivalence, this is one of the key

differences form the automated deduction in signed

logic or annotated logic [20, 44, 56, 57, 81, 82], Bilattice-based

logics [83], probabilistic logic [84], similarity-based logic
[85]. The works related to Lukasiewicz logic have been

mainly focused on generalized CNF based on bold

product and bold sum operators or logic programming
[59, 76, 77]. As far as we know, proof theory for

lattice-valued logic has so far not been extensively

developed.

6. Conclusions

In this paper, a non-clausal multi-ary -generalized

resolution principle and its resolution deduction for

lattice-valued logic based on a lattice-valued logical

algebra - LIA were proposed. The definitions of the

17

general form of non-clausal multi-ary -generalized

resolution and non-clausal multi-ary -generalized

resolution deduction in LP(X) were given, along with its

soundness and completeness. In order to obtain the

completeness of this general form of non-clausal

multi-ary -generalized resolution principle in LF(X),

the -unsatisfiability of the general form of logical

formula was discussed. Finally, by Lifting Lemma and

the completeness of the ground case, the completeness

of the general case was obtained. This contribution is

expected to provide a theoretical foundation for more

efficient and effective resolution based automated

reasoning algorithms and tools in lattice-valued logic

with the goal of applying them to some practical fields

such as expert system design, intelligent robot design,

and machine learning system design under uncertain

environment. The further research will be concentrated

on contriving an algorithm to achieve the efficiency of

the non-clausal multi-ary -generalized resolution, and

investigating the non-clausal multi-ary -generalized

resolution in linguistic truth-valued lattice-valued

logic[86] for some applications.

Acknowledgments

This work is supported by the National Science

Foundation of China (Grant No. 61673320) and the

Fundamental Research Funds for the Central

Universities (Grant No. 2682017ZT12).

References

1. J.P. Robinson, A machine-oriented logic based on the

resolution principle, J. ACM 12 (1965), 23-41.

2. Johan van Benthem and Alice ter Meulen, Handbook

of Logic and Language, 2rd edition, Elsevier, 2010.

3. W. Bibel, Early history and perspectives of automated

deduction. Proc. of the 30th Annual German

Conference on AI, Osnabruck, Germany, September

10-13, 2007, pages 2–18.

4. [Davis 2001] M. Davis, The early history of automated

deduction, in: A. Robinson and A. Voronkov eds.:

"Handbook of Automated Reasoning", pages: 5-15.

5. D. Plaisted, History and prospects for first-order

automated deduction, Proceedings of the 25th

International Conference on Automated Deduction,

Berlin, Germany, August 1-7 2015, pp. 3-28.

6. S.H. Muggleton, Alan Turing and the development of

Artificial Intelligence, AI communications,

forthcoming, 2013.

7. S.H. Muggleton and L. De Raedt. Inductive logic

programming: Theory and methods. Journal of Logic

Programming, 19, 20 (1994), 629–679.

8. S.H. Muggleton, L. De Raedt, D. Poole, I. Bratko, P.

Flach, and K. Inoue. ILP turns 20: biography and

future challenges. Machine Learning, 86(1) (2011),

3–23.

9. S. H. Lee, N. Van, Danny, Yang, Kyung-Ae Lee,

In-Hee Zhang, B. T. Park, H. Tai. Biomolecular

theorem proving on a chip: a novel microfluidic

solution to a classical logic problem, Lab Chip, 12

(2012), 1841-1848.

10. S. G. Naveen, L. John, B. Selmer, Small Steps toward

Hypercomputation via Infinitary Machine Proof

Verification and Proof Generation, Unconventional

Computation and Natural Computation, 7956 (2013),

102-112.

11. C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M.

Rinard. Using first-order theorem provers in the Jahob

data structure verification system. In: Verification,

Model Checking, and Abstract Interpretation (pp.

74-88). Springer Berlin Heidelberg.

12. B. Blanchet, M. Abadi, and C. Fournet. Automated

verification of selected equivalences for security

protocols. In: Logic in Computer Science, 2005. LICS

2005. Proceedings. 20th Annual IEEE Symposium on

(pp. 331-340). IEEE.

13. C. Green, The application of theorem proving to

question-answering systems Ph.D. thesis, Stanford

University, Stanford, 1969.

14. U. Furbach, I. Glöckner, and B. Pelzer, An application

of automated reasoning in natural language question

answering, AI Communications, 23 (2-3)(2010),

241-265.

15. Y. Xu, J. Liu, D. Ruan, and T.T. Lee, On the

consistency of rule-bases based on lattice–valued

first-order logic LF(X), International Journal of

Intelligent System, 21 (2006), 399-424.

16. X.H. Wang, X.H. Liu, Generalized resolution, Chinese

journal of computers, 2 (1982), 81-92 (in Chinese).

17. Z. Stachniak, Resolution Proof Systems: An Algebraic

Theory, Kluwer Academic Publisher, Netherlands,

1996.

18. Z. Stachniak, Non-Clausal Reasoning with Definite

Theories, Fundamenta Informaticae, 48 (2001), 1–26.

19. N. Murray, Completely non-clausal theorem proving.

Artificial Intelligence, 18 (1982), 67-85.

20. R. Hahnle, Automated deduction in multiple-valued

logics, 1993, Oxford University Press, Inc.

21. H. Habiballa, Non-clausal resolution - theory and

18

practice. Research report: University of Ostrava, 2000.

22. Y. Xu, Lattice implication algebras, J. Southwest

Jiaotong University, 89(1) (1993), 20-27 (in Chinese).

23. Y. Xu, D. Ruan, K.Y. Qin, and J. Liu, Lattice-Valued

Logic: An Alternative Approach to Treat Fuzziness

and Incomparability, Springer-Verlag, Berlin, 2003.

24. Y. Xu, J. Liu, X.M. Zhong, and S.W. Chen, Multi-ary

-resolution principle for a lattice-valued logic, IEEE

Transactions on Fuzzy Systems, 21 (5) (2013),

898–912.

25. Y. Xu, D. Ruan, E.E. Kerre, and J. Liu, -Resolution

principle based on lattice-valued propositional logic

LP(X). Information Sciences, 130(2000), 195-223.

26. Y. Xu, D. Ruan, E.E. Kerre, and J. Liu, -Resolution

principle based on lattice-valued first-order

lattice-valued logic LF(X), Information Science, 132

(2001), 221-239.

27. Y. Xu, W. T. Xu, X. M. Zhong and X. X. He,

-Generalized Resolution Principle Based on

Lattice-Valued Propositional Logic System LP(X), in

Proc. of the 9th International FLINS Conference on

Foundations and Applications of Computational

Intelligence (FLINS2010), 66–71.

28. Y. Xu, J. Liu, D. Ruan, and X.B. Li, Determination of

-resolution in lattice-valued first-order logic LF(X),

Information Sciences, 181 (2011), 1836–1862.

29. Y Xu, J. Liu, X.X. He, X.M. Zhong, and S.W. Chen,

Non-clausal multi-ary -generalized resolution

principle for a lattice-valued propositional logic,

Proceeding of the 11th International FLINS

Conference on Decision Making and Soft Computing

(FLINS2014)/9th International Conference on

Intelligent Systems and Knowledge Engineering

(ISKE 2014), Joao Pessoa, Brazil, August 17-20, 2014,

pp.

30. Y Xu, J. Liu, X.X. He, X.M. Zhong, and S.W. Chen,

Non-clausal multi-ary -generalized resolution

principle for a lattice-valued first-order logic, IEEE

Proceeding of the 10th International Conference on

Intelligent Systems and Knowledge Engineering

(ISKE2015), 24-27 Nov. 2015, Taipei, Taiwan, pp.

1-7.

31. W.T. Xu, W.Q. Zhang, D.X. Zhang, Y. Yang, X.D.

Pan, α -Resolution method for lattice-valued Horn

generalized clauses in lattice-valued propositional

logic systems, International Journal of Computational

Intelligence Systems, 2015(8): pp 75-84.

32. X.M. Zhong, Y. Xu, J. Liu, and S.W. Chen, General

form of alpha-resolution based on linguistic

truth-valued lattice-valued logic, Soft Computing

Journal, Vol. 16, 2012, pp. 1767-1781.

33. Y. Liu, Y. Xu, X.M. Zhong, Multi-ary α -semantic

resolution automated reasoning based on lattice-valued

first-order logic LF(X), Journal of Intelligent and

Fuzzy Systems, 29(4)(2015): pp 1581-1593.

34. J. A. Goguen, L-type Fuzzy Sets, J. Math. An. Appl.,

18 (1967), 145-174.

35. J. A. Goguen, The logic of inexact concepts, Synthese,

19(1968/69), 325-373.

36. J. Pavelka, On fuzzy logic I: Many-valued rules of

inference, II: Enriched residuated lattices and

semantics of propositional calculi, III: Semantical

completeness of some many-valued propositional

calculi, in: Zeitschr. F. Math. Logik und Grundlagend.

Math, 25(1979), 45-52, 119-134, 447-464.

37. S. Gottwald, A Treatise on Many-Valued Logics.

Studies in Logic and Computation, Vol. 9, Research

Studies Press Ltd., Baldock, 2001.

38. L. Bolc, P. Borowik, Many-Valued Logics, Springer,

Berlin, 1992.

39. V. Novak. Fuzzy Sets and Their Applications. Bristol:

Adam Hilger, 1989.

40. V. Novak, I. Perfilieva, and J. Mockor. Mathematical

Principles of Fuzzy Logic, Dordrecht: Kluwer, 2000.

41. P. Hajek, Metamathematics of fuzzy logic. Kluwer

Academic Publishers - Dordrecht, 2000.

42. R. Cignoli, I. D'Ottaviano, and D. Mundici. Algebraic

Foundations of Many-valued Reasoning, Dordrecht:

Kluwer, 2000.

43. G. Birkhoff, Lattice Theory, 3rd edition, American

Mathematical Society, Providence, R.L., 1967.

44. C.C. Chang, Algebraic analysis of many valued logic.

Trans. Amer. Math. Soc., 88 (1958), 467–490.

45. R. Hahnle, Many-valued logic and mixed integer

programming, Annals of Mathematics and Artificial

Intelligence 12 (3-4)(1994), 231-263

46. P. Kullmann, S. Sandri, An annotated logic theorem

prover for an extended possibilistic logic, Fuzzy Sets

and Systems 144 (1) (2004) 67–91.

47. D. Guller, Binary resolution over Boolean lattices,

Fuzzy Sets and Systems 157(2006), 2100-2127.

48. D. Guller, Binary resolution over complete residuated

stone lattices, Fuzzy Sets and Systems, 159(2008),

1031-1041.

49. J. Ignjatović, M. Ćirić, and S. Bogdanović,

Determinization of fuzzy automata with membership

values in complete residuated lattices, Information

Sciences, 178 (1)(2008), 164-180.

50. D. Guller, On the refutational completeness of signed

binary resolution and hyperresolution, Fuzzy Sets and

Systems, 160 (8)(2009), 1162-1176.

51. M. Banibrata and S. Raha. Approximate reasoning in

fuzzy resolution, Fuzzy Information Processing

Society (NAFIPS), 2012 Annual Meeting of the North

American. IEEE.

52. M. Banibrata and S. Raha, Fuzzy resolution with

19

similarity-based reasoning. Recent Developments and

New Directions in Soft Computing. Springer

International Publishing, 2014, pp. 361-378.

53. C. Ansótegui, M. Bofill, F. Manyà, & M. Villaret, SAT

and SMT technology for many-valued logics. Journal

of Multiple-Valued Logic & Soft Computing,

24(1-4)(2015), pp. 151-172.

54. C. Ansótegui, M. Bofill, F. Manyà, & M. Villaret,

Automated theorem provers for multiple-valued logics

with satisfiability modulo theory solvers, Fuzzy Sets

and Systems, 292(1)(2016), pp. 32–48.

55. X.H. Liu, Resolution-Based Automated Reasoning,

Academic Press, Beijing, China, 1994 (in Chinese).

56. V. Loia, S. Senatore and M.I. Sessa, Similarity-based

SLD resolution and its role for web knowledge

discovery, Fuzzy Sets and Systems, 144 (1)(2004),

151-171.

57. J.J. Lu, N.V. Murray, E. Rosenthal, A framework for

automated reasoning in multiple-valued logics, Journal

of Automated Reasoning 21 (1998) 39–67.

58. J. Medina and M. Ojeda-Aciego, Multi-adjoint

t-concept lattices, Information Sciences, 180 (5)

(2010), 712-725.

59. S. Lehmke. A resolution-based axiomatisation of

`bold' propositional fuzzy logic. In: Fuzzy Sets, Logics,

and Reasoning about Knowledge (Eds. by D. Dubois,

E. P. Klement, and H. Prade), Kluwer Academic

Publishers, Applied Logic, 1999.

60. C.S. Kim, D.S. Kim, J.S. Park, A new fuzzy resolution

principle based on the antonym, Fuzzy Sets and

Systems 113 (2) (2000) 299–307.

61. J. Liu, D. Ruan, Y. Xu, Z.M. Song, A resolution-like

strategy based on a lattice-valued logic, IEEE

Transactions on Fuzzy Systems, 11 (4) (2003),

560-567.

62. J. Hoffmann, Finding a tree structure in a resolution

proof is NP-complete, Theoretical Computer Science,

410 (21-23)(2009), 2295-2300.

63. L. Di Lascio and A. Gisolfi, Graded tableaux for

Rational Pavelka Logic, International Journal of

Intelligent Systems, 20(12) (2005), 1273–1285.

64. P. Hofner and G. Struth, Automated reasoning in

kleene algebra, In CADE 2007, F. Pfennig (ed.),

LNCS 4603, 2007, pp. 279-294.

65. X.X. He, Y. Xu, J. Liu, D. Ruan, -Lock resolution

method for lattice-valued logic based on lattice

implication algebra, Engineering Applications of

Artificial Intelligence, Vol. 24, 2011, 1274-1280.

66. X.X. He, J. Liu, Y. Xu, L. Martinez, and D. Ruan, On

-satisfiability and its -Lock resolution in a finite

lattice-valued logic, Logic Journal of the IGPL, Logic

Journal of IGPL, 20(3)(2011), 579–588.

67. X.X. He, Y. Xu, J. Liu, S.W. Chen, On compatibilities

of -lock resolution method in linguistic truth-valued

lattice-valued logic, Soft Computing Journal,

16(4)(2012), pp. 699-709.

68. X.X. He, J. Liu, Y. Xu, L. Martinez, and D. Ruan, On

-satisfiability and its -Lock resolution in a finite

lattice-valued logic, Logic Journal of the IGPL,

20(3)(2012), pp. 579-588.

69. X.X. He, Y. Xu, J. Liu, S.W. Chen. A unified algorithm

for finding k-IESFs in linguistic truth-valued

lattice-valued propositional logic, Soft Computing,

18(11)(2014), pp. 2135-2147.

70. X.X. He, Y. Xu, J. Liu, α -Lock paramodulation for

lattice-valued propositional logic, International

Conference on Intelligent Systems and Knowledge

Engineering (ISKE 2015), 24 Nov – 27 Nov, 2015,

Taibei, pp 18-20

71. X.M. Zhong, Y. Xu, J. Liu, S.W. Chen, α-Quasi-lock

semantic resolution method based on lattice-valued

logic. International Journal of Computational

Intelligence Systems, 7(3)(2014): 418-431.

72. X.M. Zhong and Y. Xu, alpha- group quasi-lock

semantic resolution method based on lattice-valued

propositional logic LP(X). Multiple-Valued Logic and

Soft Computing 22(4-6)(2014): 581-598.

73. H.R. Jia, Y. Xu, Y. Liu, and J. Liu, Alpha-minimal

resolution principle for a lattice-valued logic,

International Journal of Computational Intelligence

Systems, Vol. 8. No. 1, 2015, pp. 34-43.

74. S. Schockaert, J. Janssen, and D. Vermeir,

Satisfiability checking in Łukasiewicz logic as finite

constraint satisfaction, Journal of Automated

Reasoning, 49(2012), pp. 493–550.

75. D. Smutná-Hlinĕná and P. Vojtáš, Graded many-valued

resolution with aggregation, Fuzzy Sets and Systems,

143 (2004), 157-168.

76. V. Sofronie-Stokkermans, Automated theorem proving

by resolution for finitely-valued logics based on

distributive lattices with operators, Multiple-Valued

Logic—An International Journal, 6(3-4) (2001),

289-344.

77. V. Sofronie-Stokkermans and C. Ihlemann, Automated

reasoning in some local extensions of ordered

structures, Journal of Multiple-Valued Logic and Soft

Computing, 13(4-6) (2007), 397-414.

78. F. Liu, Tabulation proof procedures for fuzzy linguistic

logic programming, International Journal of

Approximate Reasoning, 63(2015), pp. 62-88.

79. J. Ma, W.J. Li, D. Ruan, Y. Xu, Filter-based resolution

principle for lattice-valued propositional logic LP(X),

Information Sciences, 177 (2007), 1046-1062.

80. T.D. Khang, A resolution method for linguistic

many-valued logic. Applied Mathematics &

20

Information Sciences, 7(3)(2013), pp. 1193.

81. M. Kifer and V.S. Subrahmanian, Theory of

generalized annotated logic programming and its

applications, Journal of Logic Programming,

12(4)(1992): 335-367.

82. E. Komendantskaya, A.K. Seda, Sound and complete

SLD-resolution for bilattice-based annotated logic

programs, Electronic Notes in Theoretical Computer

Science 2009, 225, 141-159.

83. M. Fitting, Bilattices and the semantics of logic

programming. Journal of Logic Programming,

11(1991): 91-116.

84. F. Bacchus, Representing and Reasoning with

Probabilistic Knowledge: A Logical Approach to

Probabilities, 1991, MIT Press Cambridge, MA, USA.

85. P. Julián-Iranzo and C. Rubio-Manzano, A sound and

complete semantics for a similarity-based logic

programming language, Fuzzy Sets and Systems

317(15)(2017): 1–26.

86. Z. Pei, D. Ruan, J. Liu, Y. Xu, Linguistic Values-based

Intelligent Information Processing: Theory, Methods,

and Applications, Atlantis Press, 2009.

