1,088 research outputs found

    Prerequisites for a high-level framework to design sustainable plants in the e-waste supply chain

    Get PDF
    Currently few attempts to properly structure knowledge that specifically supports a fully sustainable e-waste treatment system design have been proposed in literature. As a result, this paper sets up the prerequisites for a high-level framework to design sustainable plants in the supply chain of e-waste. The framework addresses production and environmental engineers mainly. The methodology grows out of literature studies, research project’s outcomes and interviews with a group of sector experts. Stemming from this, a list of prerequisites was presented for the case study of an automated plant for e-waste sorting in order to design it while considering the triple-bottom-line of sustainability

    Alternative transport network designs and their implications for intermodal transhipment technologies

    Get PDF
    Six principles for operation of the rail part of intermodal rail freight transport systems are described: direct link, corridor, hub-and-spoke, connected hubs, static routes, and dynamic routes. The first part is a theoretical discussion of the characteristics of the transport network designs. The theory is then applied to intermodal freight transport by analysing how each transport network design affects the need for terminal performance. The discussion includes a classification of existing transfer technologies and an analysis of how well developed technologies meet the demands. It is concluded that there is a sufficient supply of technologies, but some need to be taken further than the current blueprint phase and prove their viability in technical and economic terms

    Design, Application and Evaluation of a Multi Agent System in the Logistics Domain

    Full text link
    The increasing demand for flexibility of automated production systems also affects the automated material flow systems (aMFS) they contain and demands reconfigurable systems. However, the centralized control concept usually applied in aMFS hinders an easy adaptation, as the entire control software has to be re-tested, when manually changing sub-parts of the control. As adaption and subsequent testing are a time-consuming task, concepts for splitting the control from one centralized to multiple, decentralized control nodes are required. Therefore, this paper presents a holistic agent-based control concept for aMFS, whereby the system is divided into so-called automated material flow modules (aMFM), each being controlled by a dedicated module agent. The concept allows the reconfiguration of aMFS, consisting of heterogeneous, stationary aMFM, during runtime. Furthermore, it includes aspects such as uniform agent knowledge bases through metamodel-based development, a communication ontology considering different information types and properties, strategic route optimization in decentralized control architecture and a visualization concept to make decisions of the module agents comprehensible to operators and maintenance staff. The evaluation of the concept is performed by means of material flow simulations as well as a prototypical implementation on a lab-sized demonstrator.Comment: 13 pages, https://ieeexplore.ieee.org/abstract/document/9042827

    Artificial Intelligence for Hospital Health Care:Application Cases and Answers to Challenges in European Hospitals

    Get PDF
    The development and implementation of artificial intelligence (AI) applications in health care contexts is a concurrent research and management question. Especially for hospitals, the expectations regarding improved efficiency and effectiveness by the introduction of novel AI applications are huge. However, experiences with real-life AI use cases are still scarce. As a first step towards structuring and comparing such experiences, this paper is presenting a comparative approach from nine European hospitals and eleven different use cases with possible application areas and benefits of hospital AI technologies. This is structured as a current review and opinion article from a diverse range of researchers and health care professionals. This contributes to important improvement options also for pandemic crises challenges, e.g., the current COVID-19 situation. The expected advantages as well as challenges regarding data protection, privacy, or human acceptance are reported. Altogether, the diversity of application cases is a core characteristic of AI applications in hospitals, and this requires a specific approach for successful implementation in the health care sector. This can include specialized solutions for hospitals regarding human-computer interaction, data management, and communication in AI implementation projects

    Transferability of urban freight transport measures: A case study of Cariacica (Brazil)

    Get PDF
    This paper presents a case study describing a transferability case study in Cariacica (Brazil), identifying various urban freight planning measures from other parts of the world that might be implemented in Cariacica. The case study developed a light transferability approach, which uses a low level of expert input and data requirements, and is thus appropriate for cities with highly limited financial resources. The case study focussed upon regulatory measures that are under the control of the local authority, and also identified possible barriers and facilitators for their implementation. It was generally considered that the ‘light’ transferability approach had been successful and could be used in many other ‘smaller’ cities. The paper provides insights both for research and transport planning practice (on identifying barriers, and hence solutions, for the successful implementation of urban freight transport measures). Furthermore, the paper provides a number of reflections about the transfer process, paying particular attention to the precise objectives of such exercises and the roles of transfer agents. Finally, conclusions are given which make a further justification of using a ‘light’ approach for policy transfer exercises in the context of the complexity of the urban freight transport system (further ‘complexified’ by transferability issues)

    Integration of a Flat Holonic Form in an HLA Environment

    No full text
    International audienceManagers need to create and sustain internal systems and controls to ensure that their customer focused strategies are being implemented. Companies are currently in a spiral of permanent optimization. Accordingly, many companies turn to their core activity. In this framework, one notices the development of the concept of “industrial partnership”. In this context and to control the customer–supplier relationships (CSR), we proposed a self-organized control model in which all partner entities (customers/suppliers) negotiate to guarantee good quality connections between customers and suppliers. This means meeting customer expectations as closely as possible and respecting supplier capacities. In this proposal, self-organized control is characterized more precisely by an organizational architecture of the flat holonic form type. This flat holonic form is based on the concept of autonomous control entity (ACE). The holonic architecture, the behaviour of an ACE, the interaction mechanisms between ACEs and the self-evaluation supplier process are presented, and then the modelling of ACEs using discrete event system specification (DEVS) is described. An implementation of the simulation of such a system was done via a distributed simulation environment high level architecture (HLA). A case study illustrating the proposed approach is presented
    • …
    corecore