780 research outputs found

    Blockchain-Based Distributed Marketplace

    Get PDF
    Developments in Blockchain technology have enabled the creation of smart contracts; i.e., self-executing code that is stored and executed on the Blockchain. This has led to the creation of distributed, decentralised applications, along with frameworks for developing and deploying them easily. This paper describes a proof-of-concept system that implements a distributed online marketplace using the Ethereum framework, where buyers and sellers can engage in e-commerce transactions without the need of a large central entity coordinating the process. The performance of the system was measured in terms of cost of use through the concept of ‘gas usage’. It was determined that such costs are significantly less than that of Amazon and eBay for high volume users. The findings generally support the ability to use Ethereum to create a distributed on-chain market, however, there are still areas that require further research and development

    Integrating Blockchains and Intelligent Agents in the Pursuit of Artificial General Intelligence

    Get PDF
    Artificial General Intelligence (AGI) is the next greatest technological milestone. AGI can be defined as a realized artificial intelligence (AI) with the ability to understand and solve problems of various scope within constantly changing environments. To take steps toward this goal, a baseline of information will be provided regarding surrounding topics and the current state of AGI, itself. Through the culmination of swarms of highly optimized narrow AI agents, a collaborative effort will be extended toward general intelligence. Blockchains have been selected to facilitate this connection. A software deliverable will accompany this thesis to illustrate how this idea might be realized. The SingularityNET platform is utilized for this end due to its advanced protocols and methods for inter-AI communication

    ARTICONF decentralized social media platform for democratic crowd journalism

    Get PDF
    Media production and consumption behaviors are changing in response to new technologies and demands, giving birth to a new generation of social applications. Among them, crowd journalism represents a novel way of constructing democratic and trustworthy news relying on ordinary citizens arriving at breaking news locations and capturing relevant videos using their smartphones. The ARTICONF project as reported by Prodan (Euro-Par 2019: parallel processing workshops, Springer, 2019) proposes a trustworthy, resilient, and globally sustainable toolset for developing decentralized applications (DApps) to address this need. Its goal is to overcome the privacy, trust, and autonomy-related concerns associated with proprietary social media platforms overflowed by fake news. Leveraging the ARTICONF tools, we introduce a new DApp for crowd journalism called MOGPlay. MOGPlay collects and manages audiovisual content generated by citizens and provides a secure blockchain platform that rewards all stakeholders involved in professional news production. Besides live streaming, MOGPlay offers a marketplace for audiovisual content trading among citizens and free journalists with an internal token ecosystem. We discuss the functionality and implementation of the MOGPlay DApp and illustrate four pilot crowd journalism live scenarios that validate the prototype

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    Blockchain and smart contracts in health-related MyData scenario

    Get PDF
    Abstract. The MyData is concept framework that refers to human-centric ways of personal data management. Personal data gained significant attention recently. As the developing of Ubicomp technology, more and more particularly personal data are generating and collecting. Personal data own increasingly important economic, social, and practical value. However, individuals have little or no power to control when and how their data being created or processed by companies, organizations or governments. The MyData aim to provide individuals with practical methods to obtain, access, and utilize their personal datasets and to encourage organizations to give users control over their personal data. In this way, access and trade personal data can expect to build an open data market. Two challenges to achieve this goal is how to gain the individuals trust and permission and how to provide a more human-centric way to support personal data management and utilization. To explore a novel and reliable way to address the challenges in MyData, this thesis utilizes blockchain technology to support MyData framework. Blockchain is a decentralized transparent ledger with the transaction information that shared among all peer-to-peer network nodes. It has the potential to gain users trust and provide a solution to gain users permission in data trade. This thesis work focuses on studying blockchain and smart contract performance in MyData architecture. An Ethereum blockchain based MyData system that combined AWARE platform designed and implemented. The system deploys smart contract that provides users’ account management, personal data access, trade services, and information inquiry services in the Ethereum blockchain. Based on this system, two experiments designed to evaluate the performance of the integrated MyData system. The experiments results demonstrate how blockchain can facilitate MyData concept and how gas price influences the system performance. The thesis work shows that the blockchain and smart contract have the potential to provide the necessary technology support to solve the challenge in gain users’ trust and permission and support new business models and open data market to benefit both the data consumer and data producer. Additionally, blockchain and the smart contract can provide a more fine-grained and transparent way to help individuals to manage and utilize their personal data

    The role of Artificial Intelligence and distributed computing in IoT applications

    Get PDF
    [EN]The exchange of ideas between scientists and technicians, from both academic and business areas, is essential in order to ease the development of systems which can meet the demands of today’s society. Technology transfer in this field is still a challenge and, for that reason, this type of contributions are notably considered in this compilation. This book brings in discussions and publications concerning the development of innovative techniques of IoT complex problems. The technical program focuses both on high quality and diversity, with contributions in well-established and evolving areas of research. Specifically, 10 chapters were submitted to this book. The editors particularly encouraged and welcomed contributions on AI and distributed computing in IoT applications.Financed by regional government of Castilla y León and FEDER funds

    The role of Artificial Intelligence and Distributed computing in IoT applications

    Get PDF
    [ES] La serie «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» contiene publicaciones sobre la teoría y aplicaciones de la computación distribuida y la inteligencia artificial en el Internet de las cosas. Prácticamente todas las disciplinas como la ingeniería, las ciencias naturales, la informática y las ciencias de la información, las TIC, la economía, los negocios, el comercio electrónico, el medio ambiente, la salud y las ciencias de la vida están cubiertas. La lista de temas abarca todas las áreas de los sistemas inteligentes modernos y la informática como: inteligencia computacional, soft computing incluyendo redes neuronales, inteligencia social, inteligencia ambiental, sistemas auto-organizados y adaptativos, computación centrada en el ser humano y centrada en el ser humano, sistemas de recomendación, control inteligente, robótica y mecatrónica, incluida la colaboración entre el ser humano y la máquina, paradigmas basados en el conocimiento, paradigmas de aprendizaje, ética de la máquina, análisis inteligente de datos, gestión del conocimiento, agentes inteligentes, toma de decisiones inteligentes y apoyo, seguridad de la red inteligente, gestión de la confianza, entretenimiento interactivo, inteligencia de la Web y multimedia. Las publicaciones en el marco de «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» son principalmente las actas de seminarios, simposios y conferencias. Abarcan importantes novedades recientes en la materia, tanto de naturaleza fundacional como aplicable. Un importante rasgo característico de la serie es el corto tiempo de publicación. Esto permite una rápida y amplia difusión de los resultados de las investigaciones[EN] The series «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» contains publications on the theory and applications of distributed computing and artificial intelligence in the Internet of Things. Virtually all disciplines such as engineering, natural sciences, computer and information sciences, ICT, economics, business, e-commerce, environment, health and life sciences are covered. The list of topics covers all areas of modern intelligent systems and computer science: computational intelligence, soft computing including neural networks, social intelligence, ambient intelligence, self-organising and adaptive systems, human-centred and people-centred computing, recommendation systems, intelligent control, robotics and mechatronics including human-machine collaboration, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, web intelligence, and multimedia. The publications in the framework of «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» are mainly the proceedings of seminars, symposia and conferences. They cover important recent developments in the field, whether of a foundational or applicable character. An important feature of the series is the short publication time. This allows for the rapid and wide dissemination of research results
    • …
    corecore