
Matteo Baldoni, Cristina Baroglio,
Roberto Micalizio (eds.)

Computational
Accountability and
Responsibility in
Multiagent Systems

First Workshop, CARe-MAS 2017
co-located with 20th International Conference
on Principles and Practice of Multi-Agent Sys-
tems (PRIMA 2017)
Nice, France, October 31st, 2017
Workshop Notes

CARe-MAS 2017 Home Page:
http://www.di.unito.it/~baldoni/CAREMAS17/

Preface

Individual and organizational actions have social consequences that call for the
implementation of recommendations of good conduct at multiple levels of gran-
ularity. For firms, business ethics is the essence of a healthy society (OECD
reports) and, indeed, a growing number of companies issue voluntary codes of
conduct to commit to values like legal compliance, accountability, privacy, and
trust. Government agencies, on the other side, identify transparency as a key
value that promotes accountability, public participation, collaboration, and ef-
fectiveness. United Nations continuously stress “the need for a robust, yet flex-
ible, accountability framework to assess progress and achieve results, as well as
ensure that all actors honour their commitments” (General Assembly President
John Ashe, 2014).

The CARe-MAS Workshop aims at providing a discussion forum for re-
searchers and practitioners who are investigating issues related to computational
accountability and responsibility in multi-agent systems. In other words, CARe-
MAS concerns the use of Artificial Intelligence techniques and approaches –
with particular care to multiagent systems– to help supporting the realization
of accountability frameworks which, in turn, help organizations to respect their
commitments, help individuals in organizing their work, help managers in taking
decisions, improve infrastructure and procedures, and so forth. The development
of such specialized management systems introduces challenges and requirements
for handling ethical issues, e.g. serving the requirements of transparency, ac-
countability, and privacy preservation. We believe that such challenges can be
faced with the support of intelligent systems, with plenty of potential appli-
cations in fields like finance and business transactions, fair business practices,
resource management, consumer protection, economic systems, corruption, sales
and marketing, health care, public administration, smart cities, and decision
support.

The CARe-MAS Workshop is the conclusive event of the two-year project
AThOS1 (Accountable Trustworthy Organizations and Systems), and is held as a
full day workshop co-located with the PRIMA conference in Nice, France on Oc-
tober 31st, 2017. The workshop receive 6 submissions, each of which had at least
three reviews. The program also includes two invited talks. The first “Account-
ability by Dialogue: a new approach to data protection” by dr. Joris Hulstijn
from Tilburg University (The Netherlands). The second “How to Approach the
Problem of Coming to Responsible Intelligent Systems?” by Jan Broersen from
Utrecht Univeristy (The Netherlands).

We are confident that the talks offer an interesting perspective of the work
that has been done about accountability in from a computational perspective,
and they will also offer the opportunity for fruitful and interesting discussions.

1 http://di.unito.it/athos

VI

We would like to thank the members of the Program Committee for their
excellent work during the reviewing phase. We also acknowledge the EasyChair
conference management system that –as usual– provided its reliable and useful
support of the workshop organization process. Moreover, we would like to thank
the members of the Steering Committee of PRIMA for their valuable suggestions
and support.

January 16th, 2018

Matteo Baldoni
Cristina Baroglio

Roberto Micalizio

VII

Workshop Organisers

Matteo Baldoni University of Torino, Italy
Cristina Baroglio University of Torino, Italy
Roberto Micalizio University of Torino, Italy

Programme Committee

Marco Alberti DMI - University of Ferrara
Olivier Boissier ENS Mines Saint-Etienne
Jan Broersen Utrecht University
Barbara Carminati University of Insubria
Cristiano Castelfranchi Institute of Cognitive Sciences and Technologies
Amit Chopra University of Lancaster
Mehdi Dastani Utrecht University
Virginia Dignum TU Delft
Joris Hulstijn Tilburg University
Nadin Kokciyan Bogazici University
Emiliano Lorini IRIT
Felipe Meneguzzi Pontifical Catholic University of Rio Grande do Sul
Antonio Carlos Rocha Costa Universidade Federal do Rio Grande do Sul - UFRGS
Jean-Claude Royer Ecole des Mines de Nantes
Marija Slavkovik University of Bergen
M. Birna van Riemsdijk TU Delft
Pinar Yolum Bogazici University

Acknowledgements

The organizers were partially supported by the Accountable Trustworthy Orga-
nizations and Systems (AThOS) project, funded by Università degli Studi di
Torino and Compagnia di San Paolo (CSP 2014).

Table of Contents

Invited Talks

Accountability by Dialogue: A New Approach to Data Protection 1
Joris Hulstijn

How to Approach the Problem of Coming to Responsible Intelligent
Systems? . 2
Jan M. Broersen

Contributed Papers

The AThOS Project: First Steps towards Computational Accountability . 3
Matteo Baldoni, Cristina Baroglio, Roberto Micalizio

Instrumenting Accountability in MAS with Blockchain 20
Fernando G. Papi, Jomi F. Hübner, Maiquel de Brito

Towards the Specification of Natural Language Accountability Policies
with AccLab: The Laptop Policy Use Case . 35
Walid Benghabrit, Jean-Claude Royer, Anderson Santana De Oliveira

Requirements for a Temporal Logic of Daily Activities for Supportive
Technology . 43
Malte S. Kliess, M. Birna van Riemsdijk

Open Data for Accountability in the Fight Against Corruption 52
Joris Hulstijn, Darusalam Darusalam, Marijn Janssen

Classifying the Autonomy and Morality of Artificial Agents 67
Sjur Dyrkolbotn, Truls Pedersen, Marija Slavkovik

Author Index . 84

Accountability by Dialogue: A New Approach to
Data Protection

Joris Hulstijn

Tilburg School of Economics and Management
Department of Management

Abstract. Current legal frameworks for data protection have a number
of flaws. The notion of informed consent does not work in practice. Leg-
islation only covers personal data, but it doesnt cover data about groups
and it doesn’t cover conditions on usage of data for certain purposes.
Supervision is largely based on self-regulation. Regulatory agencies have
little capacity. On the other hand, we observe that many business models
are based on data about users. Users pay with their data. Access to data
should therefore be seen as a counteroffer in a contract. In this paper
we will therefore suggest a different approach to data protection, based
on the idea of accountability. In this short paper, we propose a dialogue
framework to facilitate such accountability, in the application domain
of data protection. The idea is to empower users to negotiate better
terms and conditions in their contracts, monitor compliance, and chal-
lenge the organization in case of breaches of contract. That means that
in addition to the current legal framework for data protection, which is
generally based on public law, we suggest to make more use of private law
as the legal framework of preference. To enable accountability over data
protection, we foresee two kinds of functionality. Tools that may help
users negotiate sensible contracts that take data protection aspects into
account. An infrastructure that monitors actual usage of data, detects
possible breaches of contract and allows users to challenge the organi-
zation. In addition, we discuss the necessary elements of a governance
structure to enable effective enforcement.

1

How to Approach the Problem of Coming to
Responsible Intelligent Systems?

Jan M. Broersen

Department of Information and Computing Sciences
Universiteit Utrecht

Abstract. I will give an overview of how over the last three year my
thoughts about how to approach the problem of coming to responsible
intelligent systems have changed. I will sketch sub-problems and will
attempt to match them to relevant theories in computer science, AI and
(moral) philosophy.

2

The AThOS Project: First Steps towards
Computational Accountability

Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio

Università degli Studi di Torino — Dipartimento di Informatica
firstname.lastname@unito.it

Abstract. This work studies the support research on multiagent sys-
tems can give to the automation of computation of accountability (com-
putational accountability), an din particular to accountability in organi-
zational contexts. It introduces the idea of guaranteeing accountability
as a design property of socio-technical systems, and explain a set of
principles which a socio-technical system should respect. We explain the
ADOPT protocol, which is a way that allows to realize computational
accountability in an organizational setting, by means of multiagent sys-
tems technology.

Keywords: Computational Accountability, Business Artifacts, Normative MAS,
Social Commitments

1 The AThOS Project: Motivations and Introduction

Thanks to the recent technological advances, that make devices such as smart
phones and tablets indispensable tools in everyday life, the paradigm of So-
ciotechnical Systems (STSs) is rapidly spreading. STSs are complex systems
where human beings interact with each other by means of ICT infrastructures.
Humans may interact as members of the same organization, or enterprise, to
achieve an organizational (business) goal. More often than not, however, inter-
acting actors can belong to different organizations, and interaction is a means
for reaching their goals.

In STSs, humans are the central elements of the system, they are essential
to deliver the business goals. This central role of people makes STSs nondeter-
ministic systems, because human behavior is generally unpredictable1. However,
within organizations (and STSs) humans have relationships, duties, and com-
mitments, whose satisfaction is crucial to the delivery of the business goals and,
thus, to the well-being of the organization itself. Consistently, it is important,
both to the employee and to the management, to be aware when duties (or com-
mitments) are neglected, to understand the reasons, and decide if and how to act.
The problem is that the mere availability of an ICT infrastructure does not sup-
port the interacting principals in being aware of the expectations that are put on

1 In the sense that the same person may react in different ways to similar situations,
depending on conditions that more often than not are not modeled in the system.

3

them, as it does not support who is in charge to get a clear picture of how tasks
are, or are not, being carried on. This aspect becomes aggravated when the STS
involves principals who belong to different organizations and cross-organizational
relationships have to be established and maintained.

It is precisely because of the principals’ autonomy that accountability becomes
a critical feature for an enterprise. When something deviates from the expected
and desired behavior, an accountable enterprise is committed to understand
what went wrong and why, and to find a proper course of repairing action. What
one expects from STSs is that such a process be, at least partially, automated.
In other words, STSs should provide the ground for a form of computational
accountability [4], where accountability is a property that can be checked at
runtime, or even enforced at design time.

There are, indeed, attempts in business software applications to model the
distribution of tasks and the related responsibility. For instance, the BPMN
language for modeling workflows supplies the lane construct to distribute tasks
among different actors. The idea is that an actor is responsible for performing
the activities that lay in its lane, but a lot is left to intuition. Specifically, re-
sponsibility is not modeled explicitly, it is grasped from the workflow structure
and may concern an office, not necessarily individuals. Then, being responsible
for carrying out some activity does not mean being accountable for it. A more
explicit instrument is the RACI matrix [29] by which each activity is associated
with at least one responsible actor, exactly one accountable actor, and possibly
some consulted and informed actors. The limit is that a RACI matrix is sub-
stantially an off-line resource that does not support actively an actor during her
activities. It cannot be used as a monitoring tool on-line, but just as piece of
data that a forum consults a posteriori to determine who was in charge of what.
In [14] RACI matrices are automatically derived from BPMN specifications, but
they are just used to support the resource assignment to each activity.

This paper reports the results of the two-year piloting phase of the AThOS 2

project. The ambitious, long-term objective of the AThOS project is the de-
sign of a framework for computational accountability in the context of cross-
organizational business processes. From a methodological point of view, AThOS
aims at providing a modeling framework for STSs, where the focus is shifted from
a procedural representation of workflows to a declarative representation that is
centered around the key notions of interaction and social relationships among
actors. From a practical perspective, AThOS aims at providing a new enterprise
software engine that monitors on-going interactions (and processes), and sup-
ports accountability. To achieve these results, the framework we are developing
takes advantage of previous declarative approaches to the modeling of business
processes, and integrates them with an explicit, first-class representation of the
notion of “relationship”, that relies on social commitments [27]. On the practi-
cal side, relying on previous works in literature (among which [28,13]), we are
investigating the adoption of the paradigm of Multi-Agent Oriented Program-

2 The Accountable Trustworthy Organizations and Systems (AThOS) project, funded
by Università degli Studi di Torino and Compagnia di San Paolo (CSP 2014).

4

ming for the realization of business processes. This would allow a programmer
to fully exploit the power of declarative agent programming frameworks (such
as JaCaMo [10]).

The paper begins by explaining the kind of accountability the research fo-
cuses on (Section 2). Then, it introduces the notion of accountability by design,
studying its feasibility in computational settings (Section 3). It continues by ex-
plaining the ADOPT protocol, which is a way to achieve computational account-
ability in multiagent systems (Section 4), and a first direction of implementation
(Section 5). A discussion ends the paper (Section 6).

2 Organizational accountability and why it is important

Accountability is a wide-ranging concept, that can take on many different char-
acteristics and meanings, depending on the discipline in which discussion takes
place. So, the first point that it is relevant to underline is that our focus is
posed on accountability in organizational settings. We do not care whether the
organization is persistent, meaning that it has long-lasting goals that will pro-
duce many interactions (like a selling company), or if it is specifically created
to achieve a once-in-a-time goal (like building a house), and will dissolve after-
wards. We assume, however, the organization’s functioning to be supported by
an STS. In such a context, we aim at realizing accountability as computational
process; more specifically, a backward-looking, institutional process that permits
one entity to be held to account by another.

The accountability process activates when a state of interest is reached, and
an authoritative entity wishes to hold to account those behind said state. Fol-
lowing [11], the process encompasses three primary phases: 1) an investigative
entity (forum) receives all information regarding the agents’ actions, effects, per-
missions, obligations, etc. that led to the situation under scrutiny, 2) the forum
contextualizes actions to understand their adequacy and legitimacy, and finally
3) the forum passes judgment on agents with sanctions or rewards. Our goal
consists in automating the entire process for use in a MAS, although we will
presently leave out the sanctioning piece of the third phase, which is already
studied in the literature on electronic institutions [16]. To realize our goal, we
begin by looking at the reasoning process behind accountability to identify points
of adaptation into the software world. Following [12], we believe that three condi-
tions should all realize for an STS to support an accountability system: agency,
causal relevancy, and avoidance opportunity. Such conditions enable account-
ability attribution. Agency means that the involved individuals are autonomous
(indeed, in our setting they are autonomous by assumption), that they have
reasoning capacity (idem), and that they can distinguish right and wrong. The
third condition is the one that, in our understanding, calls for support by an
STS. In order to distinguish right from wrong, individuals must be aware of the
binds they have with the others and with the organization, as agent’s “ethics”
will be expressed through adherence to norms and commitments contextualized
within an organization. Causal relevancy expresses the necessity of causation

5

linking a given agent to a situation under scrutiny. The avoidance opportunity
condition specifies that an “agent should have had a reasonable opportunity to
have done otherwise” [12]. Once again, awareness of the conditions an individual
will be held to account for is crucial, since such knowledge has an impact on the
choices of individuals as well as on its liability.

The realization of organizational accountability brings along practical advan-
tages which motivate the purpose of studying accountablity as a system prop-
erty. Evidence is provided by many studies and documents which promote the
adoption of accountability frameworks. Among them, reports by the United Na-
tions [33] and organizations like the OECD [26]. We briefly summarize the main
reasons for realizing accountability frameworks and, thus, to study computa-
tional accountability. First of all, accountability within an organization is more
than reporting information, disclosing reasons, or sanctioning the culprits. It is
generally considered as a powerful feedback mechanism aimed at improving per-
formance. An accountability framework, like the one of UNICEF [31] or WHO
[32], explicitly establishes desired results, monitors and measures performance,
uses the feedback obtained by the accountable parties to decide which changes
should be made (which actions should be taken) to achieve the intended result.
Such a process enables the evolution of an organization in a way that is func-
tional to the fulfillment of its objectives. It is helpful both in those situations
where the objectives, to be achieved, need to rely on external actors after the
stipulation of a covenant, and in those cases where objectives depend entirely on
processes that are internal to the organization itself. Another positive effect of
organizational accountability is that it helps turning implicit expectations into
explicit expectations. This is important because expectations that are not com-
municated create confusion and tensions inside an organization. Parties may be
unaware of what they should deliver. Instead, a clear awareness of the expec-
tations (and of the accountabilities) increases reliability, improves performance
and trust, and helps to achieve common goals.

3 Accountability by Design

The research question that raises at this point is whether it is possible to create
STSs that show accountability as a design property, that is, such that in every
state the accountable parties are clearly identifiable. Providing accountability
by design requires decision of how to tackle certain situations, long discussed
in philosophy as ethical dilemmas. One of these concerns is causal determin-
ism, that in our context we can rephrase as whether or not an agent should be
considered accountable for an adverse state if this state is inevitable, whatever
action the agent will perform. We adopt the incompatibilist position to moral
responsibility and conclude in a software setting that an agent cannot be held
accountable in causal determinism but that the discovery of inevitable states
lies with the agents. If an agent stipulates provisions for an inevitable adverse
state, that same adversity would be represented to some degree in its provisions
due to its inevitable nature. The agent would still be held accountable for the

6

state, because it effectively declares responsibility for a goal through its accepted
stipulated conditions. Likewise if an agent offers to realize a goal in the pres-
ence of a certain provisions, it is declaring for all intents and purposes that the
goal is possible under certain conditions. Should that agent offer up an incor-
rect assessment and the goal be effectively impossible even with stipulations, the
agent will nevertheless be held accountable, because the organization “believes”
an agent’s declaration. We therefore conclude, thanks to the distributed nature
of our vision of accountability, that an organization can consider absent both
impossibilities and inevitabilities. Another ethical dilemma concerns knowledge
of the consequences of one’s actions. That is, can one be held accountable for an
unforeseeable outcome?

As an example, consider a setting where a house is being built. The companies
and the workers who contribute to the construction constitute an organization.
In particular, the organization involves two members: one who should prepare
a wall, wall-preparer, and another, painter, who should paint the wall white at
some agreed price. The wall-preparer fulfills her/his task by spackling the wall
but instead of using a standard white spackle some dark colored one (a remainder
of a previous work) is used. Due to this unexpected action, painter has not the
correct amount of materials and cannot fulfill the painting task at the agreed
price. Though not coerced, painter cannot fulfill what expected of him/her,
due to the choices of another. Clearly, despite the fact that wall-preparer did
what assigned, the kind of spackle that was used hampers the painter ’s work. In
this case it is difficult to identify an accountable party: the painter might have
provided adequate provisions instead of giving them as granted, the wall-preparer
might have asked if an unusual choice would have had consequences before doing
the work, the organization might have checked that the two members properly
coordinated. Their selfishness prevents their understanding the assigned tasks
as part of a greater work, and the lack of an explicit account of the relationships
between the agents (and their tasks) contributes to the picture but. On the
other hand, if expectations are not clear and shared, how could it be otherwise?
For instance, wall-preparer does not know the circumstances under which the
painter can achieve its goal, should it be held accountable for its decision of using
a colored spackle? To foster the good functioning of the organization, then, there
is the need of adequate support.

3.1 Characterization of Organizational Accountability

Accountability as a design property means that an STS is built in such a way that
accountability can be determined from any future institutional state. Indeed,
our goal lies in automating the entire process, that is, to create a structure
that creates and collects contextualized information so that accountability can
actually be determined from any future institutional state. We consider integral
to this process the following steps: a forum must receive all information, including
all causal actions, regarding a given situation under scrutiny, the forum must be
able to contextualize actions to understand their adequacy and legitimacy, and
finally the forum must be able to pass judgment on agents. One of the key

7

difficulties in realizing our goal lies with the notion of contextualized action. In
our own societies, contextualizing might entail an examination of circumstances:
for example, what should have a person done, why didn’t she/he do that, what
impact did her/his actions have, and given what the person had to work with,
did she/he act in an exemplary fashion? The same process in a MAS would be
guided by the same type of questions, though in order to facilitate the answers,
we need to make use of different structures. In particular, we need structures that
allow assessing who is accountable without actually infringing on the individual
and private nature of agents.

We identify the following necessary-but-not-sufficient principles a MAS must
exhibit in order to support the determination of organizational accountability.

Principle 1 All collaborations and communications subject to considerations
of accountability among the agents occur within a single scope that we call
organization.

Principle 2 An agent can enroll in an organization only by playing a role that
is defined inside the organization.

Principle 3 An agent willing to play a role in an organization must be aware
of all the powers associated with such a role before adopting it.

Principle 4 An agent is only accountable, towards the organization or another
agent, for those goals it has explicitly accepted to bring about.

Principle 5 An agent must have the leeway for putting before the organization
the provisions it needs for achieving the goal to which it is committing. The
organization has the capability of reasoning about the requested provisions
and can accept or reject them.

Principle 1 calls for situatedness. Accountability must operate in a specific con-
text because individual actions take on their significance only in the presence
of the larger whole. What constitutes a highly objectionable action in one con-
text could instead be worthy of praise in another. Correspondingly, a forum can
only operate in context and an agent’s actions must always be contextualized.
The same role in different contexts can have radically diverse impacts on the
organization and consequently on accountability attribution. When determining
attribution, thus, an organization will only take into account interactions that
took place inside its boundaries. Placing an organizational limit on accountabil-
ity determination serves multiple purposes. It isolates events and actors so that
when searching for causes/effects, one need not consider all actions from the be-
ginning of time nor actions from other organizations. Agents are reassured that
only for actions within an organization will they potentially be held accountable.
Actions, thanks to agent roles (Principle 2), also always happen in context.

To adequately tackle accountability by categorizing action, we must deal with
two properties within a given organization: 1) an agent properly completes its
tasks and 2) an agent does not interfere with the tasks of others. The principles
2–5 deal more explicitly with the first property, i.e., how to ensure that agents
complete their tasks in a manner fair for both the agents and the organization.
The second property is also partially satisfied by ensuring that, in the presence
of goal dependencies, the first agent in sequence not to complete its goal will bear

8

accountability, not only for its incomplete goal, but for all dependent goals that
will consequently remain incomplete. That is, should an agent be responsible
for a goal on whose completion other agents wait, and should that agent not
complete its goal, then it will be accountable for its incomplete goal and for that
goal’s dependents as well.

As an organizational and contextual aid to accountability, roles attribute so-
cial significance to an agent’s actions and can, therefore, provide a guide to the
severity of non-adherence. Following the tradition initiated by Hohfeld [20], a
power is “one’s affirmative ‘control’ over a given legal relation as against an-
other.” The relationship between powers and roles has long been studied in
fields like social theory, artificial intelligence, and law. By Principle 3 we stip-
ulate that an agent can only be accountable for exercising the powers that are
publicly given to it by the roles it plays. Such powers are, indeed, the means
through which agents affect their organizational setting. An agent cannot be
held accountable for unknown effects of its actions but, rather, only for conse-
quences related to an agent’s known place in sequences of goals. On the other
hand, an agent cannot be held accountable for an unknown goal that the organi-
zation attaches to its role, and this leads us to Principle 4. An organization may
not obligate agents to complete goals without prior agreement. In other words,
an organization must always communicate to each agent the goals it would like
the agent to pursue. Notice that with this principle we diverge from consider-
ations in the field of ethics regarding accountability in the presence of causal
determinism [19,12], where even in the absence of alternate possibilities humans
can be morally responsible thanks to the significance of the choice to act. Find-
ing the conversation fundamentally shifts when speaking of software agents, we
consequently conclude that accountability is not attributable in the presence of
impossibilities. Correspondingly, agents must be able to stipulate the conditions
under which a given goal’s achievement becomes possible, i.e. the agent’s re-
quested provisions. The burden of discovery for impossibilities, therefore, rests
upon an agent collective who announce them by their combined silence for a
given goal. That is, a goal becomes effectively impossible for a group of agents
should no agent stipulate a method of achievement. Conversely, an agent also
declares a goal possible the moment it provides provisions to that goal. Should
an uniformed agent stipulate insufficient provisions for an impossible goal that
is then accepted by an organization, that agent will be held accountable because
by voicing its provisions, it declared an impossible goal possible. The opportu-
nity to specify provisions, therefore, is fundamental in differentiating between
impossibilities and possibilities.

Going back to the painter example, before agreeing to be the organization’s
painter, painter would stipulate provisions for its role goals, in this case, white
wall. An organization, accepting painter ’s provisions, would then add white wall
as a goal condition to the job description of wall-preparer. Wall-preparer would
in turn accept its new goal condition. Come execution time, when wall-preparer
adds the black stripe, not only will painter ’s provisions not be met, but wall-
preparer will also have violated its own goal conditions. Since wall-preparer

9

knows what it did was wrong thanks to goal conditions, causally contributed
to an adverse situation of work failure, and could have avoided causally con-
tributing, it will be held accountable for the adverse state.

4 Reaching Accountability via the ADOPT Protocol

We now introduce our vision to achieve computational accountability via a
proper design of the interactions between software components. The first step
is a paradigm shift: from the process-oriented view to the agent-oriented view.
The process-oriented view is substantially activity-centric – that is, procedural.
It focuses on the (business) process that is carried on by a software component,
but overlooks the interaction between components, at the core of the realiza-
tion of STSs. Instead, an STS can be conveniently thought of as a Multi-agent
System (MAS) where software agents interact with each other on behalf of hu-
man principals. An advantage of the agent perspective is that it enables the
use of some design (and programming) abstractions.These are, for instance, the
environment where the agents operate, the norms governing organizations and
institutions, the roles, and their powers, possibly defined therein, and an explicit
representation of interactions, for instance, via social commitments.

The agent abstraction allows us to think of software modules as goal-oriented
components. That is, the focus moves from the activities within a process to the
goal the process aims at reaching. The design process can therefore be modu-
larized, because the interactions among agents (i.e., components) can be kept
separated from the inner process of each agent. In fact, interactions can be
specified as a consequence of the agents’ goals. That is, the agents create and
maintain interactions as a means for reaching their goals. The internal process
of the agent lies at a different design level with respect to interaction. For the
accountability purpose, only the interaction level is relevant since it makes ex-
plicit the engagements that agents have agreed upon. Monitoring the progress
of these engagements is one the main objectives of an accountable system.

Our intuition is that an STS can be seen as an organization in which agents
(i.e., the software components of the STS at hand) can join and operate. More
precisely, we follow the ontological definition of organizations given in [9]. Or-
ganizations are characterized by roles, which are first-class modeling entities.
Roles are actually social roles, and are related to their players (i.e., the agents),
and their organization by three properties: (1) a role must always be associated
with the institution it belongs to and with its player; (2) a role is meaningful
only within the institution it belongs to, and hence the definition of a role is
only given within an institution; (3) the actions defined for a role in an institu-
tion have access to the state of the institution and of other roles; these actions
are, therefore, the powers a role player is endowed with. In order to obtain an
accountable organization, we require that the interactions between the organiza-
tion and its members follow a given accountability protocol (ADOPT3 [3,5]) that,

3 Accountability-Driven Organization Programming Technique

10

by realizing the five principles introduced above, guarantees accountability as a
design property of the system as a whole. In essence, the accountability protocol
makes the legal relationships between each agent and its organization explicit.
Relationships are expressed as a set of (abstract) commitments (i.e., contracts),
directed from the agents towards the organization itself, and vice versa. ADOPT
consists of two phases: the enactment phase, and the goal-assignment phase.

Enactment Phase. In this phase, an agent enrolls in an organization by playing
a role. During this phase, the agent is made aware of the powers the organization
will grant to it as a player of a specific role, and the agent will commit towards
the organization to use these powers when time will demand it. Let Agi be the
agent willing to enroll in organization Org:

(1) Agi : commit to be a player for role Ri with powers pwri,1 . . . pwri,n if Org accepts
(2) Org : accept Agi as player of role Ri

(3) Agi : commit to use the powers pwri,1 . . . pwrin when Org demands to

In step (1) agent Agi asks Org to join the organization becoming a player of
role Ri, with powers pwri,1 . . . pwri,n. Note that a power calls for a capability
of the agent to exercise it. For instance, the wall-preparer is given the power
to prepare the walls of the house being built, but to prepare the wall it needs
materials, skill, and to take approriate action. Thus, the powers associated with
role Ri will pose some capability requirements on the agent side. An agent willing
to play role Ri is made aware of the capabilities it has to possess for being a
proper actor of that role. The powers will be the means through which the agent
will operate within the organization by changing the state of the organization
itself. Capabilities, instead, will be sets of behaviors, owned by the agent, that
allow it to exercise the powers that go with some role the agent plays. In the
enactment phase the agent takes on the responsibility of this (previously implicit)
declaration. This allows overcoming the impossibility to inspect the agents’ code
(which is not disclosed) that characterizes, in particular, cross-organizational
settings as well as many STSs: the organization cannot verify whether the agent’s
implementation is compliant with the capability requirements, but if, during the
execution, the agent will be unable to exercise one of its powers, it will be deemed
accountable thanks to the commitments established during this phase.

The internal decision process, by which Org decides whether to accept the
agent, are outside the scope of ADOPT. Here we are only interested in the final
decision of accepting the agent. Step (2) encodes such a case. Once Org has
accepted Agi, this agent is obliged, by the engagement created at step (1), to
commit to use Ri powers in case Org will ever need them. This is done with the
commitments created at step (3). After these three steps, agent Agi is enrolled
within the organization. Notably, these few steps are sufficient to satisfy the first
three principles we have identified. In fact, the protocol imposes the existence
of an organization within which all the relevant events must occur (Principle 1).
The protocol allows an agent to be part of an organization only by playing a
role within that organization (Principle 2), and finally, the protocol is such that
an agent is aware of the powers it will possibly use within the organization as
player of a specific role (Protocol 3).

11

Goal-assignment Phase. The second phase of ADOPT considers the assignment
of goals to some member of the organization. According to Principle 5, an agent
should be able to negotiate with the organization the provisions it needs in order
to accomplish a given goal. This negotiation is not part of the ADOPT proposal,
and any negotiation algorithm can be used. Here, we just assume that after the
negotiation, the agent and the organization have agreed upon the goal gi,k the
organization wants Agi to perform, and the provision provi,k the agent demands
to the organization as a prerequisite. Such an agreement is “sealed” by the agent
and the organization in the ADOPT protocol as below outlined.

(4) Org : commit to assign goal gi,k with provisions provi,k if Agi accepts
(5) Agi : commit to bring about gi,k if Org assigns it and brings about provisions provi,k
(6) Org : assign gi,k to Agi
(7) Org : bring about provision provi,k
(8) Agi : achieve goalgi,k

In step (4), Org commits towards agent Agi that, if the agent will accept to
accomplish the goal, it will assign the goal to the agent, and will supply Agi the
agreed provisions. Thus, also Org takes on commitments towards its members.
These commitments, in particular, assure that Org will never ask an agent to
bring about a goal, for which either no agreement was reached, or provisions are
missing. In case Org contravenes this expectation, it will be held accountable
as any other player in the system. In step (5), Agi creates the commitment of
bringing about goal gi,k provided that the provisions provi,k have been supplied,
and the goal has been assigned to it. In the last three steps, the two parties
operate so as to satisfy their commitments. Org will bring about the provisions4,
and will assign goal gi,k to Agi. On its side, Agi will try achieve the assigned
goal so as to satisfy its commitment towards Org.

ADOPT supports the realization of an accountable system through the mu-
tual commitments that exist between Org and any agent Agi, which are made
explicit. This feature realizes Principle 4, for which an agent is accountable only
for those goals it has explicitly accepted to achieve. In fact, in our proposal,
an organization cannot command one of its members to achieve a goal. Rather,
the organization will propose a goal, and the agent will have to decide whether
explicitly accepting that goal. Only in this way it becomes possible to assess
accountability. It is possible to verify that the ADOPT protocol satisfies Princi-
ple 4 via model checking. In fact, differently from the other principles that are
directly satisfied by the structure of the organization we propose, the verification
of this principle demands consideration of the possible evolutions of the proto-
col. Indeed, one has to guarantee that, in any possible run of the protocol, the
organization assigns a goal to an agent only when this goal is accepted. In [3] we
discuss how the ADOPT protocol can be encoded as an interpreted system [18],
and then, by means the MCMAS model checker [21], the validity of Principle 4
can be verified in terms of CTL formulae.

4 Provisions will reasonably be supplied by other agents within the organization.

12

Conditional Detached

Expired Satisfied Violated

Active

antecedent fail

antecedent

consequent failconsequent

Fig. 1. Commitment life cycle.

5 Implementing ADOPT and Future Directions

One straightforward way for implementing ADOPT is to rely on the notion of
social commitment [15,27]. A social commitment (sometimes called commitment,
for simplicity, in the following) is a sort of contract between two parties: a debtor
commits towards a creditor to bring about a consequent condition con should
an antecedent condition ant occur. Social commitments, thus, find a direct map-
ping with the commitments that arise in the ADOPT protocol. Formally, com-
mitments have the form C(debtor, creditor, ant, con), and their evolution follows
the lifecycle reported in Figure 1: a commitment is Violated either when its an-
tecedent is true but its consequent will forever be false, or when it is canceled
when Detached. It is Satisfied, when the engagement is accomplished (notice
that a commitment does not need to be detached before being satisfied). It is
Expired, when it is no longer in effect and therefore the debtor would not fail to
comply even if does not accomplish the consequent. Active has two substates:
Conditional as long as the antecedent does not occur, and Detached when the
antecedent has occurred. Commitments have a normative value because when
the antecedent condition is satisfied, the debtor is obliged to bring about the
consequent, lest the violation of the commitment. Differently from obligations
in deontic logic, however, a commitment can only be created by its debtor; thus,
its creation is a consequence of an internal process of the debtor, rather than
the consequence of a normative system as it happens with obligations.

Commitments can be used to specify the semantics of message-based pro-
tocols, or they can be a means for specifying protocols on their own, see for
instance the JaCaMo+ agent platform [1], an extension of JaCaMo [10], where
commitment-based protocols are made available as a specification of protocol ar-
tifacts. Commitments are, therefore, a viable tool for the realization of account-
able systems because, on the one side, the ADOPT protocol is easily mapped
into a commitment-based interaction protocol and, on the other side, there are
agent platforms that support commitments as a native programming element,
providing a technological infrastructure for the implementation of accountable
STSs. The adoption of commitments opens also novel development directions,
that we will shortly outline in the rest of this section.

13

5.1 Accountability of Information Management with Normative
Business Artifacts

In the quest for the computational accountability, we have previously advocated
a shift from a procedural view to an agent-oriented view, which usually features
on a declarative approach. Think, for instance to BDI agents and the way they
are realized in many agent-based platforms (e.g. JaCaMo [10] and JaCaMo+
[1]). Indeed, the use of declarative formalisms for Business Process Management
is not new. BALSA [7] is a first attempt to define processes in terms of declara-
tive ECA-rules (i.e., Event-Condition-Action). The BALSA methodology relies
on the important notion of business artifact [25]. A business artifact is a key con-
ceptual business entity that is used in guiding the operation of a business. It is a
concrete, identifiable, self-describing chunk of information. It is characterized by
two specifications: (1) an information model that defines what relevant data are
traced by the artifact, and (2) a lifecycle model that defines how such data can
evolve as a consequence of business operations on the artifact itself. Importantly,
both specifications are accessible to the processes that use the business artifact.
The BALSA methodology is targeted to specify a data-centric declarative model
of business operations. It can be summarized in three steps: 1) identify the rel-
evant business artifacts of the problem at hand and their lifecycles, 2) develop
a detailed specification of the services (or tasks) that will cause the evolution of
the business artifact lifecycles, 3) define a number of ECA-rules that create asso-
ciations between services and business artifacts. ECA-rules thus are the building
blocks to define, in a declarative way, processes operating on data.

BALSA is extremely interesting, in particular because it introduces a novel
perspective on the modeling of business processes. However, when it comes to the
coordination of different business processes, the methodology refers to choreogra-
phy languages and techniques proposed for service-oriented computing. Thence
one of the major disadvantages of this approach and of its descendants, that is
the lack of a clear separation of concerns between the coordination logic and the
business logic. A business process will internalize the message exchange specified
by the choreography at hand. Should the choreography be changed, it would
be necessary to modify also the business processes accordingly. The happens
because choreographies realize a form of subject coordination.

In [2] we introduce the notion of normative business artifact, as a way to
obtain objective coordination. Inspired by the activity theory [17], we propose
to use a business artifact as a coordination medium. To this end, the business
artifact is enhanced with a normative layer in which the mutual expectations
that each agent has on the others are made explicit, and hence can be used
for coordinating the agents’ activities. Apart from the advantage of having a
form of objective coordination, normative business artifacts allow one to think
about accountability of data and information management. That is, instead of
considering just the state changes of a piece of information, it is also important
to take into account other aspects of information management such as its cor-
rectness, its accessibility and spreading (inside and outside an organization), its
usage during the decision making of agents, and so on. An interesting direction

14

of research is to investigate the use of social commitments for tackling these in-
formation management aspects as accountability requirements that, specified at
design time, become a guide for the practical development of accountable STS.

5.2 Practical Reasoning and Accountability

The ADOPT protocol aims at supporting accountability at the organizational
level, that is, ADOPT formalizes how an accountable relationship can be estab-
lished between an organization and each of its members. Our long-term goal,
however, is to realize an accountable system where the accountability property
cuts across all aspects of an organization, and hence it holds not only between
the organization and each member, but also between any two members of the
organization. This is particularly important, and challenging, in an STS, where
agents are autonomous in the achievement of their goals, and the interactions
raising in this process may be problematic. The intuition, thus, is that every
interaction that arises between any two agents in an organization should be ac-
countable, in the sense that it should always be possible to identify an agent
that is held to account towards another agent about its conduct. It is worth
noting, however, that the accountability property must not be thought of as a
means for limiting the autonomy of the agents. On the contrary, in our view, an
accountable system supports the agents in their practical reasoning by making
their (mutual) expectations explicit.

Commitments can play a fundamental role in realizing this vision since they
formalize a tie between the internal goal of an agent with the relationships that
the same agent may create in order to achieve that goal. In [30] this relation
between goals and commitments is formalized by an operational semantics given
as a set of patterns of practical reasoning rules. The Social-Continual Planning
(SCP) technique introduced in [6] is a first attempt to integrate practical rules
within a planning framework. SCP enables agents to plan their interactions as
a means for achieving their goals. As future work, we intend to extend the SCP
technique so as to guarantee that the planned interactions compose, altogether,
an accountable system.

Another important aspect that we have to consider in the development of an
accountable system, is that agents are autonomous and can violate their commit-
ments on purpose. This eventuality must not be overlooked by a well-designed
accountable framework; nonetheless, an accountable system is not, in our view,
finalized to sanctioning the agents that violate their commitments (although
sanctioning mechanisms could be contemplated). Our goal, in fact, is in providing
agents with feedback about their accountability relationships. Under this respect,
an accountable framework should include some form of diagnostic reasoning (see
e.g., [24,23]), in order to detect deviations from the expected evolutions of an
interaction, and provide the involved agents with possible explanations of what
has occurred. These explanations (the feedback) are an important source of in-
formation that the agents can exploit in their practical reasoning for recovering
from the violation of some commitments. A plan repair technique, driven by the
results of a diagnostic inference in a multi-agent setting, is discussed in [22]. In

15

the next future, we aim at integrating such a plan repair technique within SCP,
this would allow agents not only to plan their interactions, but also to properly
react when these interactions do not progress as expected.

6 Discussion and Conclusions

In this paper we have summarized the main results about computational ac-
countability we have collected in the scope of the AThOS project. AThOS was
a two-year, local project completed in 2017, whose main objective was to shed
some light on the design and development of accountable Sociotechnical Systems
(STSs). Current methodologies for the development of STSs, are mainly focused
on procedural aspects, with the purpose of gaining in efficiency of execution.
Many such systems rely on languages (like BPMN, YAML, or UML Activity
Diagrams) and related tools for modeling workflows. The procedural perspec-
tive is inadequate for the computational accountability purpose. First of all, it
results in a too rigid model where the possible lines of activity are all delineated
a priori. Each actor is forced to follow a predefined course of action, without
the possibility to deviate for taking advantage of arising opportunities or for
managing unexpected emergencies. More importantly, a procedural perspective,
being activity-centric, overlooks the interaction dimension, which is central for
the accountability reasoning. An accountability system, in fact, should in prin-
ciple involve at least two actors: one which is held to account for its actions, and
one (often referred to as the forum) which judges the conduct of the previous
one. Both actors rely on the relationships they have created, and on the mutual
expectations these relationships induce, to sustain their position (i.e., good vs.
bad conduct). The AThOS project answers to these deficiencies by modeling
STSs based on the typical abstractions provided by the agent-oriented paradigm
(e.g., electronic institutions, organizations, norms, etc.). By leveraging on these
abstraction, the main contribution of AThOS lies in the definition of organi-
zational accountability : the STS becomes the organization within which all the
relevant interactions among the actors (i.e., the agents) occur, and are explicitly
traced. We have introduced five principles underpinning the accountability at the
organizational level, and presented the ADOPT protocol as a means for satisfy-
ing these principles at the design of the STS. From a practical point of view, we
have envisaged the use of social commitment for representing, and manipulating,
the accountability relationships between the organization and its members.

Social commitments pave the way to further extensions that are sketched
in the paper. They provide a promising solution for dealing with accountability
of data and information management, overcoming some limits of the artifact-
centric proposals [7,8], namely the use of choreographies for the synchronization
of the activities of different processes. Since choreographies capture interaction
only in terms of exchanged messages, it will not be possible, by looking at a
choreography, to reason on the relationships between some actors, or to have
expectations on their behavior. In AThOS, we have investigated an extension
to business artifacts with a normative layer. Such a normative layer makes ex-

16

plicit the mutual expectations that processes (i.e., agents in our agent-oriented
perspective) may have on each other while using a given business artifact. A
first advantage of normative business artifacts is that the coordination among
agents needs not a further modeling element such a choreography. Indeed, the
business artifact itself becomes the medium of coordination, with a significant
improvements from the software engineering point view, as we have observed.
In addition, normative business artifact could be the key for the definition of
accountability of data and information. The idea, is not only to model how the
information can evolve over an interaction, but also how operations on data
influence the way in which agents behave.

Another interesting line of research that stems from using social commit-
ments is about acting in an accountable system. In [6] we have introduced
a methodology–Social Continual Planning–integrating practical reasoning pat-
terns relating goals and commitments [30] into a multi-agent planning frame-
work. The technique is a good starting point for developing systems where the
accountability property is guaranteed not only between an agent and the orga-
nization it belongs to, but also between any two agents that come to interact
in the attempt to achieve their own goals. Thus, this is a promising line for
reaching the desiderata of establishing accountable relationships across all levels
of an organization.

References

1. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. Commitment-based
Agent Interaction in JaCaMo+. Fundamenta Informaticae, 157:1–33, 2018.

2. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
Objective Coordination with Business Artifacts and Social Engagements. In E. Te-
niente and M. Weidlich, editors, Business Process Management Workshops, BPM
2017 International Workshops, Revised Papers, volume 308 of Lecture Notes in
Business Information Processing (LNBIP), pages 1–18, Barcelona, Spain, 2018.
Springer. This paper has been presented at the First Workshop on BP Innovations
with Artificial Intelligence, BPAI 2017, organized by Koehler, J., Montali, M., Sri-
vastava, B., Stuckenschmidt, H., De Masellis, R., Di Fracescomarino, C., Maggi,
F. M., and Senderovich, A.

3. Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and Ste-
fano Tedeschi. ADOPT JaCaMo: Accountability-Driven Organization Program-
ming Technique for JaCaMo. In A. Bo, A. Bazzan, J. Leite, L. van der Torre,
and S. Villata, editors, PRIMA 2017: Principles and Practice of Multi-Agent Sys-
tems, 20th International Conference, number 10621 in Lecture Notes in Computer
Science, pages 295–312, Nice, France, October 30th–November 3rd 2017. Springer.

4. Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and
Stefano Tedeschi. Computational accountability. In Proceedings of the AI*IA
Workshop on Deep Understanding and Reasoning: A Challenge for Next-generation
Intelligent Agents 2016, volume 1802 of CEUR Workshop Proceedings, pages 56–62.
CEUR-WS.org, 2017.

5. Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and Ste-
fano Tedeschi. Supporting Organizational Accountability inside Multiagent Sys-
tems. In R. Basili, F. Esposito, S. Ferilli, and F. A. Lisi, editors, AI*IA 2017:

17

Advances in Artificial Intelligence, XVI International Conference of the Italian
Association for Artificial Intelligence, volume 10640 of Lecture Notes in Computer
Science, pages 403–417, Bari, Italy, November 14th–17th 2017. Springer.

6. Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio. Social continual plan-
ning in open multiagent systems: A first study. In PRIMA 2015: Principles and
Practice of Multi-Agent Systems - 18th International Conference, Bertinoro, Italy,
October 26-30, 2015, Proceedings, pages 575–584, 2015.

7. Kamal Bhattacharya, Nathan S. Caswell, Santhosh Kumaran, Anil Nigam, and
Frederick Y. Wu. Artifact-centered operational modeling: Lessons from customer
engagements. IBM Systems Journal, 46(4):703–721, 2007.

8. Kamal Bhattacharya, Richard Hull, and Jianwen Su. A data-centric design method-
ology for business processes, pages 503–531. Handbook of Research on Business
Process Modeling. IGI Publishing, 2009.

9. Guido Boella and Leendert W. N. van der Torre. The Ontological Properties of
Social Roles in Multi-Agent Systems: Definitional Dependence, Powers and Roles
playing Roles. Artificial Intelligence and Law Journal (AILaw), 15(3):201–221,
2007.

10. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Sci. Comput. Program.,
78(6):747–761, 2013.

11. Mark Bovens, Robert E. Goodin, and Thomas Schillemans, editors. The Oxford
Handbook of Public Accountability. Oxford University Press, 2014.

12. Matthew Braham and Martin van Hees. An anatomy of moral responsibility. Mind,
121(483), 2012.

13. P. Bresciani and P. Donzelli. A Practical Agent-Based Approach to Requirements
Engineering for Socio-technical Systems. In Agent-Oriented Information System,
volume 3030 of LNCS. Springer, 2003.

14. Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. Automated Re-
source Assignment in BPMN Models Using RACI Matrices, pages 56–73. Springer,
Berlin, Heidelberg, 2012.

15. Cristiano Castelfranchi. Commitments: From individual intentions to groups and
organizations. In ICMAS, pages 41–48. The MIT Press, 1995.

16. Mark d’Inverno, Michael Luck, Pablo Noriega, Juan A. Rodŕıguez-Aguilar, and
Carles Sierra. Communicating open systems. Artif. Intell., 186:38–94, 2012.

17. Yrjö Engeström, Reijo Miettinen, and Raija-Leena Punamäki, editors. Perspectives
on Activity Theory. Cambridge University Press, Cambridge, UK, 1999.

18. Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi. Reasoning about knowledge.
MIT Press, 1995.

19. Harry G. Frankfurt. Alternate possibilities and moral responsibility. The Jounral
of Philosophy, 66(23), 1969.

20. Wesley Newcomb Hohfeld. Some fundamental legal conceptions as applied in ju-
dicial reasoning. The Yale Law Journal, 23(1):16–59, 1913.

21. Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an open-source
model checker for the verification of multi-agent systems. STTT, 19(1):9–30, 2017.

22. Roberto Micalizio. Action failure recovery via model-based diagnosis and confor-
mant planning. Computational Intelligence, 29(2):233–280, 2013.

23. Roberto Micalizio and Pietro Torasso. Agent cooperation for monitoring and di-
agnosing a MAP. In Multiagent System Technologies, 7th German Conference,
MATES 2009, Hamburg, Germany, September 9-11, 2009. Proceedings, pages 66–
78, 2009.

18

24. Roberto Micalizio and Pietro Torasso. Cooperative monitoring to diagnose multi-
agent plans. Journal of Artificial Intelligence Research, 51:1–70, 2014.

25. Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to operational
specification. IBM Systems Journal, 42(3):428 – 445, 2003.

26. OECD. Effective institutions and the 2030 agenda for sustainable develop-
ment. http://www.effectiveinstitutions.org/media/Session_1_Background_

note_SDG.pdf.
27. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.

Intell. Law, 7(1):97–113, 1999.
28. Munindar P. Singh. Norms as a basis for governing sociotechnical systems. ACM

Transactions on Intelligent Systems and Technology, 5(1):21:1–21:23, 2013.
29. Michael L. Smith and James Erwin. Role and responsibility charting

(RACI). https://pmicie.starchapter.com/images/downloads/raci_r_web3_1.

pdf, 2005.
30. Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith. Relating Goal and

Commitment Semantics. In Post-proc. of ProMAS, volume 7217 of LNCS. Springer,
2011.

31. United Nations Children’s Fund. Report on the accountability sys-
tem of UNICEF. https://www.unicef.org/about/execboard/files/

09\discretionary{-}{}{}15\discretionary{-}{}{}accountability\

discretionary{-}{}{}ODS-English.pdf, 2009. E/ICEF/2009/15.
32. World Health Organization. WHO accountability framework. http://www.who.

int/about/who_reform/managerial/accountability-framework.pdf, 2015.
33. Mounir Zahran. Accountability Frameworks in the United Nations Sys-

tem. https://www.unjiu.org/en/reports-notes/JIU%20Products/JIU_REP_

2011_5_English.pdf, 2011. UN Report.

19

Instrumenting Accountability
in MAS with Blockchain

Fernando Gomes Papi1, Jomi Fred Hübner1 and Maiquel de Brito2

1 Federal University of Santa Catarina, SC, Brazil
fernando.papi@posgrad.ufsc.br, jomi.hubner@ufsc.br,

2 Federal Institute of Education, Science and Technology, RS, Brazil
maiquel.brito@rolante.ifrs.edu.br

Abstract. In this paper, we investigate a proposal where Blockchains
could provide powerful tools for Multi Agent Systems. Specially regard-
ing accountability, Blockchains could prove to be very useful tools for
agents to reason upon contracts, commitments, responsibilities and so
on. We list some possible approaches to integrate blockchains and Multi
Agent Systems, by providing adequate abstractions and discussing over
possible advantages and disadvantages of these different abstractions.

Keywords: Multi Agent Systems, Blockchain, Smart Contracts, Com-
putational Accountability

1 Introduction

Multi Agent Systems (MAS) are commonly used to model complex, distributed
systems such as Smart Grids, Supply Chain Management, Virtual Auctions and
Marketplaces, Virtual Collaborative Enterprises, Crowdfunding Platforms, Rep-
utation Systems and so on. These could possibly be open MAS, where there
is no guarantee, by design, of cooperation among the agents in these systems.
Even the opposite could be true, there could be malicious agents that freely
enter and leave the MAS. In this perspective, there is the need for tools that
enable accountability in the system. According to [1], accountability is “the ac-
knowledgment and assumption of responsibility for decisions and actions that
an individual, or an organization, has towards another party.” The key word is
responsibility: agents should be responsible for their actions, decisions and com-
mitments. Moreover, agents are responsible for whatever agreement they put
themselves through. But how can we provide agents reliable tools so that they
can be accountable for their actions?

Blockchains have a good perspective on this matter because they offer agents
the possibility of trustless exchange, data that is consistent and timestamped,
and complete transparency and immutability. The common development tools of
Multi Agent Systems could benefit from some properties provided by a blockchain.
For example, there is the absolute guarantee that an interaction between agents

20

recorded on the blockchain (as in, a message from agent A to agent B) was per-
formed. If two agents resolve to sign a blockchain-based Smart Contract, there is
the guarantee that this contract will be executed, even if that means penalizing
an agent that breaks it. This could be a way to enforce cooperation, prevent
malicious agents from harming the objective of other agents, and provide the
system with logics for authorization, fairness and incentives, as described by [2].

Blockchain is currently on of the the most discussed topics in the area of
financial technology. In 2009, an anonymous person (or group of people), under
the pseudonym of Satoshi Nakamoto, released a white-paper [3] describing the
world’s first fraud-proof digital currency, the Bitcoin. The technology that en-
abled such technological disruption, which had been around for some time before
the Bitcoin, is now known as the Blockchain, a data structure composed of chains
of data blocks containing the record of all of the currency’s transactions. Its cryp-
tographic nature makes the Blockchain an unhackable time-stamped database of
transactions, disseminating trust along a distributed network of nodes [4]. This
characteristic enables a great number of applications that would benefit from
disseminated consensus.

With this in mind, comes the questions: In terms of accountability, what
could change with the integration of Blockchains and MAS? How can we suc-
cessfully integrate a blockchain and MAS? What is the best abstraction from
MAS for the Blockchain? If we are dealing with an environment based MAS,
is the Blockchain like an ordinary environment or does it have special proper-
ties that agents should consider in their reasoning? Is it more effective if left as
a generic artifact in the environment, or maybe the Blockchain would be bet-
ter used if specifically tailored for the application in MAS? For example: in an
auction application of MAS, the Blockchain could just receive bids and register
winners, but it could also be implemented through Blockchain Smart Contracts
to enforce the execution of the auction, where, in order to bid, an agent should
have available funds and if it wins, the funds would be transferred automatically.

In this paper we present some initial discussion towards answering these
questions and it is organized as follows. In Section 2, a quick explanation of how
a blockchain works is given. In Section 3, possible approaches for the MAS and
Blockchain integration is discussed considering their particularities, advantages
and disadvantages. In Section 4, we present a practical example illustrating one
of the proposed approaches. A brief conclusion is presented in Section 5.

Regarding nomenclature, there is an important note to be made: whenever
talking about the Blockchain as a technology or system, the letter “B” will be
uppercase. If we are referring to the data structure, the actual implementation of
the ledger, then “blockchain” will be lowercase. Similarly, Bitcoin is written with
an uppercase “B” when referring to the “system”, while bitcoin with lowercase
“b” refers to the tokens of the Bitcoin network, as in “the price is 2 bitcoins”.

21

2 The Blockchain Technology

To the best of our knowledge, not many authors have yet proposed links between
Blockchains and Multi Agent Systems, so it is worth defining what blockchains
are, quickly mentioning how they work, as well as stating some terms commonly
used in the blockchain community and along this paper.

In short, the blockchain is a database that has its data cryptographically
signed to state its veracity. This data is packed up in blocks that will be chained
by hash pointers pointing to the previous block of data. The most common data
structure being used today is the Merkle Tree [5].

Fig. 1. Schematic of a blockchain

Figure 1 shows the structure of a blockchain. Each block contains a Merkle
Tree, which is a linked tree of hashes of transactions in that block, along with
a pointer that points to the previous block. The block has a timestamp and a
Nonce, which is a number that was generated to approve that block by miners.
Finally, it has the hash of the previous block. This means that in order to modify
the data in previous blocks, it is necessary to change all the hash pointers of all
the subsequent blocks to maintain consistency. In the case of Figure 1, changing
data on block 10 means that the hash of blocks 11, 12... will need to be updated
as well. These changes need to be replicated throughout the network, since the
blockchain is essentially a peer-to-peer technology. In that case, only someone
with control of at least 51% of the network will be able to do such changes.
This is the reason why blockchains are considered fraud proof. The comput-
ers that execute this database are called nodes. Nodes are able to confirm if a
block of transactions is valid by spending an enormous amount of computing
power with the objective of solving a computational problem that can only be
solved by brute force algorithms, generating the Nonce. This is the case of the
Bitcoin ledger (some other projects offer different ways of confirming transac-
tions). There is a reward, an incentive, for spending this computational effort

22

(called Proof of Work, or PoW), and when a node solves the puzzle and con-
firms a block, this block is appended to the blockchain and propagated through
the network. This process of confirming blocks is commonly called mining. There
are many sources that go deeper into the mechanics of the blockchain, such as [6].

The Blockchain was already a concept by the early 90’s, but only rose to
prominence after the 2008 financial crisis, when Bitcoin was created. Bitcoin
solved a fundamental problem with digital cash: the double spending problem
[5]. Since data can be easily replicated, that is, the same token could be sent
to many people, it was not trivial to develop a system where an individual can
spend a given token only once. Even though some projects already tackled this
problem, Bitcoin became economically viable by creating a deflationary nature.
The absolute amount of bitcoins that will ever exist is 21 million, according to
Satoshi Nakamoto’s original proposal [3]. Therefore, there is a tendency for an
increase of its face value in relation to fiduciary currencies (which are not lim-
ited in supply since abandoning the gold standard in the mid 70’s) if there is an
increase in demand, according to the law of supply and demand.

The Blockchain quickly evolved to be more than a safe record of transactions
to be a platform for decentralized computing, in the form of Smart Contracts.
The Ethereum Project [7] uses the computational power from the nodes of its
blockchain for decentralized computing of functions, instead of basically wast-
ing it. That is, one can deploy pieces of code that will be executing as long
as the blockchain itself is executing in the decentralized network. Nodes will be
rewarded to perform this computations. These pieces of code are the Smart Con-
tracts. Smart Contracts are immutable, where only parameters of the operations
can be changed by participants and only when there is consensus about it. If
two nodes agree upon a certain contract, there is the absolute guarantee that it
will execute when conditions are met. A simple example is a contract that will
transfer a particular amount of tokens from participant A to participant B when
a bar code is read, meaning participant A bought something from participant
B. Participant A will not be able to default on the agreement with participant
B, and if there are no funds in the account, then the sale is never completed in
the first place. This “either wholly do some specific action, or don’t do it at all”
is called an atomic operation, and is a powerful characteristic of Smart Contracts.

This particular concept of Smart Contracts could be very valuable to MAS
applications. Currently, the Bitcoin protocol does not support Smart Contracts.
The most developed platform for this technology is the Ethereum Project, though
some other platforms are being evolved to support Smart Contracts, such as De-
cred [8].

23

3 Integration Models

In this Section we consider possible models of integration between Blockchain
and MAS. First, in Section 3.1, a generic model is proposed, where the Blockchain
serves as a tool for the secure propagation of messages among agents. Then,
from Sections 3.2 to 3.2.3, we explore some more complex approaches where the
blockchain is part of the environment where the agents act.

3.1 Blockchain as a means of communication

The first Bitcoin transaction block ever created contained the message “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks” [9]. This
message was the headline of the London, UK, newspaper “The Times”, on Jan-
uary 3rd 2009. This headline announced that the Government was on the verge
of using taxpayers’ money to bail bankers out of the crisis they had created.
We cannot prove that the semantic content of the message is true. But we can
prove, as long as a copy of the Bitcoin blockchain exists, that a transaction was
made to the address “1A1zP1...” and this fact is what makes the blockchain such
a promising technology. The owner of this address will never be able to state
that his address did not receive 50 bitcoins upon the creation of the blockchain.
Nor will s/he be able to change the contents of this transaction. After another 6
transactions occur, it is statistically impossible to change what was recorded on
the blockchain [10]. The first transaction in the Bitcoin ledger supports the idea
that blockchains can be used as effective and reliable means of communication.

Disregarding the economic value of the transactions in the blockchain, we
could propose a Blockchain where each and every transaction would cost ex-
actly 1 token (as an incentive for mining and confirming transactions), but it
should contain a message that is structured in a predefined way, that is, it be-
longs to the formal semantics of a language. When agent A makes a transaction
to agent B, agents A and B will never be able to argue that no message was
ever exchanged between them. They might strongly disagree on the content of
the message or the consequences this message might imply, but the existence of
the triple 〈Message, Interlocutor,Receptor〉 is undeniable. This small example
supports the idea that agents can use the blockchain as a way to exchange mes-
sages in an accountable way. It would be the most basic usage of a blockchain
in a MAS, supporting a reliable means of communication among agents. It is
reliable because the record of message exchanges will exist as long as a suffi-
cient number of agents hold a copy of the blockchain. Technically speaking, the
blockchain will exist if at least one agent executes it. But this agent might be
able to change its contents, since it is the only node in the network. If there are
two nodes in the network, and one node does not accept a change made by the
other, then effectively there are two different systems being executed. If there
are three nodes, when two nodes accept a change in the blockchain, the third
node will be compelled to accept this change as well, in order to keep its records
updated and its chain valid. This is the process of achieving consensus in the

24

network. Figure 2 illustrates this proposal, where agents use the blockchain to
securely exchange messages between them.

Fig. 2. Model of the Blockchain as a channel of communication between agents

However, this approach falls short in terms of accountability. Herlihy and
Moise [2] bring the definition of two types of accountability: proactive and re-
active. The proactive type of accountability happens upon authorization, such
as in a scenario where agent A is authorized to make a transaction or send a
message to agent B. The reactive kind would be the scenario where an agent is
accountable for its actions after it has performed them. As stated by the authors,
reactive accountability is of limited value if agents do not have adequate mecha-
nisms to penalize other agents (or hold them accountable) for their actions. That
is, since this approach only states that a message was exchanged between agents,
only the reactive kind of accountability is achieved. Agents will still need extra
tools to assess accountability. This creates the opportunity for blockchains to be
more than message loggers in MAS, mainly because blockchains have evolved
from distributed databases to distributed autonomous computation, in the form
of Smart Contracts.

3.2 Blockchain as MAS environment

It is rational to make a case for a blockchain based environment for MAS when we
look back at the history of mankind itself. Ian Grigg [11] states that blockchains
are the third revolution in accounting. Thousands of years ago, primitive so-
cieties came up with the method of writing down transactions. Before that,
humans hunted and farmed and were able only to barter these goods among a
limited range of other people, normally within the same village or tribe. When
the single-entry bookkeeping emerged, along with the usage of currency, numbers
and writing, it was now possible to record the exchange of values and goods be-
tween a wider range of people and keep record of who owes what to whom. This
created the possibility of a more complex system of commerce, which commonly
boosts human societies development. The double-entry bookkeeping method,

25

created in the medieval republics and kingdoms of modern Italy, enabled even
more complexity in commerce. It allowed for better tracking of errors and au-
dition of exchanges, since every transaction was both an asset and a liability,
and both columns of assets and liabilities must sum to the same value. With a
more robust method of transaction recording, goods were able to flow from one
empire to the other.

As commerce and transactions grow more complex, better ways of auditing
transactions are needed. Companies and governments commit fraud in their ac-
counting books and are rarely caught or punished. Thus, the accountability of
today’s system is broken. Blockchain is a new revolution in accounting because
it is a triple-entry bookkeeping system. Agent A transacts with agent B, and
a large number of agents confirm that the transaction is valid, though none of
these agents actually know who are A and B, nor A and B know who are the
agents who confirmed the transaction. This anonymity in the chain of transac-
tions adds another layer of security to the system. This is possible only through
the peer-to-peer replication of the ledger, while cryptography keeps the consis-
tency along these replications. The Blockchain is a solution to the Byzantine
Generals Problem, common in distributed computing [12].

This time, rather than emulating human societies’ social realities and tech-
nologies to evolve MAS, we are able to develop a blockchain model for MAS
on the go, that is, while it is also being applied and improved in different use
cases. This scenario presents more opportunities than using blockchains as the
channel of communication between agents, as previously proposed. Today, it is
generally accepted that the environment is an essential part of the development
of Multi Agent Systems, its justification being derived from many different sub-
jects. Classic AI not only brings the concept of environment, but also defines
agents as anything that perceives, through sensors, and acts upon its environ-
ment through effectors, such as the definition brought by Russel&Norvig [13]. In
the MAS domain, artifacts have been proposed as first class entities to compose
the MAS environment in order to achieve better coordination between agents
and to provide them with information about and functionalities in regard to their
environment, allowing for enhanced cognition. Artifacts are said to be reactive
entities to provide functions that make agents cooperate in MAS, and shape the
environment according to the system’s needs [14].

In the sequence, we discuss possible places for the Blockchain in the environ-
ment shared by agents.

3.2.1 Blockchain as a generic environment

Blockchains could be modeled as the whole environment of the MAS. The
Ethereum Project is the first prominent provider of Smart Contracts and will be
utilized in this work. All the artifacts that agents need or have access to could

26

be coded as Smart Contracts in the chosen Blockchain platform. The advantage
to this approach is largely the simplicity of developing every needed artifact on
the same platform. Also, every single action or transaction made by agents will
be recorded and immutable, therefore accountable. Whether an agent is dele-
gating a task to another agent, sending another agent a particular amount of
currency or simply stating a fact, everything will be forever recorded, as long as
the blockchain exists.

But this does not come cheaply. Blockchain transactions are expensive regard-
ing computational effort. Specially for large public permissionless blockchains,
such as Bitcoin or Ethereum. For example, a simple Bitcoin transaction takes at
least 10 minutes to be executed, and could take up to one hour to be considered
fraud-proof (also said to be “confirmed”, when at least 6 blocks of transactions
have been linked to the blockchain after the block containing the transaction was
added). Today, it operates in the speed of about 2.5 transactions per second.

Scalability is definitely Blockchain’s main challenge for mass adoption today.
The Bitcoin ledger was larger than 100GB by the end of 2016 and some imple-
mentations of the Ethereum’s ledger were larger than 25GB by early 2017. As the
technology gains adoption, this problem will only worsen. Satoshi Nakamoto’s
idea on this was that Moore’s Law would take care of both processing power
and storage needed to run a full node of the Bitcoin ledger. But maybe he did
not foresee the large attention Bitcoin has drawn in less than a decade. With
the concentration of mining in just a few “players” running mainly in China and
Russia, the development of the system became slower and more difficult, spe-
cially when there are conflicts of interest between miners, developers and users.

This can be a huge drawback for the approach of implementing every artifact
in the blockchain. The whole system could become impracticably slow, with every
single action needing confirmation before being executed. This does not make
sense, specially when we think of human societies: we do not register every single
interaction we have with other humans or objects. We register only very special
interactions, normally those that involve promises with serious consequences,
contracts, transactions of valuable assets and so on. This brings the idea that
perhaps a Blockchain is better modeled for MAS as one artifact available to
the agents, and not the whole of the environment, in order to register special
interactions that agents find suitable. Figure 3 illustrates this proposed model,
where agents will only have access to artifacts and other agents through the
blockchain.

3.2.2 Blockchain as a single artifact in the environment

We have discussed the idea of using a blockchain as the technology to provide
the whole environment for the agents, arguing that it could be unfeasible since
every action would need to be registered in the blockchain. Since it is probable

27

Fig. 3. Model of the Blockchain as a generic environment

that not all, but only a few, of the actions taken by agents need to be registered
for accountability, we can model the blockchain as a single artifact available to
the agents.

This way, agents will be able to perceive the blockchain, obtaining informa-
tion from it and will be able to act by registering data on it. The abstraction
provides a blockchain node running behind an artifact in the environment. Such
artifact provides the agents only one type of action: blockchain transactions.
By using a blockchain that does not support Smart Contracts, such as the Bit-
coin protocol itself, agents are limited to transferring amounts of bitcoin and
sending messages with this transaction. Though there are some limitations to
sending messages in the Bitcoin protocol [15], it wouldn’t be hard to conceive
a blockchain that is suitable for this task. Figure 4 shows the concept of this
proposal, where the blockchain is modeled as one simple transaction artifact in
the environment.

Fig. 4. Model of the Blockchain as a single artifact in the environment

28

This approach is fairly reasonable in cases where there is no need for extra
complexity in the design of the system. In the common MAS example of an
auction among agents, they can use cryptocurrencies to make payments for their
bids, thus needing only to be in the sending/receiving end of a transaction. But
again, this will not suffice for accountability. What if agent A, responsible for
conducting the auction, does not deliver accordingly? And if agent B, winner of
the auction, does not pay what was agreed upon? If it didn’t have the necessary
funds, why was it able to join the auction in the first place? Who will hold
them accountable for the tasks they did not complete? Surely enough, all these
considerations should be made upon the design of the system, in order to provide
agents with the necessary tools for handling these scenarios.

3.2.3 Blockchain instrumenting application artifacts

Merlihy and Moir [2] cites examples of accountability problems that arise
when blockchains are inserted in societies of agents, such as “because A en-
dorsed false statement x, A can no longer be trusted with the nuclear code”.
These kinds of problems have long been studied by the Multi Agent Systems
community, and many normative models are proposed. It is valuable noting that
there is a reliable, cryptographic, fraud-proof way to solve these types of prob-
lems. Smart Contracts are a way to provide a safe logic of authorization and
incentives mechanism for the agents related to the MAS.

It has been long accepted that the environment is not something that just
exists, but that this environment should have a meaningful design as to support
agents in their tasks [16,14]. Since Smart Contracts are programmable contracts
that can be developed to perform specific functions, it makes sense to envision
these Smart Contracts as specific artifacts in the environment. For example, a
voting system to decide whether agent A has endorsed a false statement can
be modeled to be exactly this, a voting artifact (with all the advantages of the
blockchain). The nuclear code can be another artifact, with much more security
embedded, for example, a strict method of access available only to agents car-
rying very specific roles or authorizations. These choices of design really depend
on the requirements of the system and its goals. Blockchains can provide those
logics of authorization, fairness and incentives.

When an agent registers itself on a contract artifact, it becomes responsi-
ble for whatever agreement this contract implies. If this contract states that all
agents participating in it should vote regarding a particular issue and there is a
penalization for not doing so, all agents that do not perform the required task can
be automatically penalized. This means that this accountability is, in some way,
automated. It is a proactive accountability. The Blockchain can create a whole
new layer of trust among agents. There are many studies that propose Rep-
utation Models for MAS. With blockchains, these Reputation Models become
very powerful tools when we are dealing with Open MAS, since they cannot be

29

tampered with. Figure 5 shows how, in this model, artifacts model the interface
between agents and the blockchain. Agents are still able to flexibly communicate
amongst themselves, and access other types of artifacts.

Fig. 5. Model of the Blockchain as specific artifacts in the environment

The scalability of this model depends greatly on the requirements of the
system. The Ethereum Blockchain is essentially a world computer: users pay
mining nodes for performing computations for them. But it is a very slow com-
puter (somewhere around 10 to 30 executions per second). If the system requires
the advantages brought by blockchains in all of its artifacts, then it must loose its
requirements of speed. The number of artifacts implemented in the blockchain
is not necessarily limited, but there will always be a compromise of execution
time and number of interactions with the blockchain. The example of the house
building auctions, presented later, makes this clear: modeling the auctions in
separate artifacts makes the execution orders of magnitude slower than a simple
execution of the MAS by itself (which shouldn’t take longer than a couple of
seconds, for example). But when actions don’t need to be held accountable, they
do not need to be unnecessarily incorporated in the Blockchain. For example,
when the agent that creates the auctions tell other agents that auctions are open.
This design trade-off will always be present.

One of the main challenges from this point on is how to design agents that will
reason upon these characteristics provided by blockchains. Can we make agents
distinguish the hard consequences of recording data in the blockchain rather
than another database that can more easily be tampered with? This approach
creates new possibilities for the advancement of Multi Agent Systems.

4 Case Study: Building a House

This Section presents the implementation of the model described in Section 3.2.3.
We aim to demonstrate how can Smart Contracts be mapped into artifacts, and

30

what are the necessary tools for this integration. Also, we can evaluate what is
the impact of using a blockchain, a very slow system, with a much faster MAS
programming platform.

For the design of the MAS, we have used JaCaMo [17], a programming lan-
guage that provides abstractions of agents, environment and organizations. The
Smart Contracts will be implemented in the Ethereum Platform, using the Par-
ity [18] implementation of the Ethereum client. The communication between the
MAS implemented in JaCaMo and the Smart Contracts will be done via the
Web3j Java library [19]. The example is implemented in the Testing Network
Kovan, for simplicity [20]. The source code is publicly available. 3

The problem consists of an agent, Giacomo, that wants to build a house.
Giacomo knows all the tasks that need to be done, and knows the budget for
each task. Tasks are steps needed for completing the construction of the house,
such as “laying the foundation”, “building the floor”, “building walls” and so
on. Since each task has a budget, Giacomo will launch individual auctions for
tasks. The whole of this example is a little bit more complex than explored in
this work, involving an organization to ensure completion of tasks, but we will
be focusing on the first part of the simulation, namely the contracting phase.
Agents with the role of constructors will place bids for the tasks they want to
execute. The bids will be placed directly in the blockchain, and the Smart Con-
tract will make sure the smallest bid wins. When a given deadline is reached,
Giacomo will check the Smart Contract to announce the winner for a task.

At this point, the winner will never be able to state that it wasn’t in fact
the winner. It has the responsibility over the commitment it made when bidding
in the auction. With some complexity added, the blockchain could take care
of a few extra enforcing steps, such as registering a proof of completion of the
task, and the direct payment from Giacomo to the winner. The Auction arti-
fact has the Observable Properties task description, max value, current winner,
best bid and the Operation bid. Disagreements between agents could be resolved
by looking at the data available in the Blockchain. One of the challenges resides
in constructing Smart Contracts that are verifiable by all agents involved, and
that any agent interacting with it can trust. For example, a Smart Contract can
have its code hashed and implemented as an Observable Property. Then a copy
of the same Smart Contract can be deployed in the blockchain so that agents
can use it to test its functions as they wish, without further commitments. Once
they are confident in the fairness of the copy, they can securely interact with the
original.

As mentioned earlier, the execution time of such a system is orders of magni-
tude slower than a pure MAS built in JaCaMo, since each bid made by construc-
tors need to be registered in the blockchain. For reference, this example deploys

3https://github.com/FerPapi/HouseBuilding JaCaMo-Blockchain

31

10 different Smart Contracts to the network, each interfacing a different task.
Each contract receives several transactions since agents are using the Operation
bid, which requires a change in the state of the contract that must be confirmed
by the network. It is also worth noting that if this was a real application de-
ployed in Ethereum’s Main Net, “real” Ethereum Tokens, called Ether, would
be needed. By today’s market price, each Ether costs about US$ 300,00. It is
not trivial to estimate how much this example would cost in US Dollars, but
given that this is a fairly simple execution, it shouldn’t be more than a few cents
of the dollar. More complex Contracts that are executed for longer periods will
indeed be more costly. The advantage of this cost is that a MAS integrated with
a Blockchain can be used for real life applications involving transaction of assets
without further complexity, such as integrating to traditional banking payment
systems.

Regarding accountability, the blockchain will provide agents with reliable
data and statements from the past. It can also automate the processes of payment
and penalty enforcement, which makes the system more reliable overall. But
blockchains will do exactly as they are programmed. So, in order to program
them correctly for accountability of agents, external models and frameworks will
be necessary, such as the work presented in [21]. This work also uses this house
building example to demonstrate the application of an accountability protocol
in MAS.

5 Conclusion and Further Works

Along this paper, we have discussed the adoption of a new technology into Multi
Agent Systems. The blockchain is promising a revolution in accounting, finance
and technology. We have briefly explained how a blockchain works and the rea-
sons for integrating blockchain into MAS. Then we argued about approaches for
modeling blockchain in a MAS: as a standalone means of communication between
agents, as the environment as a whole, as a single artifact in the environment
performing only transactions, or as a provider of different meaningful artifacts
for the agents, going over advantages and disadvantages of each approach.

We have decided to use the blockchain to model specific artifacts in the
environment, thus delegating the functionality of these artifacts to Smart Con-
tracts. The interaction between agents and Smart Contracts is then performed
through artifacts in the MAS. With this model, we implemented an integration
of Ethereum’s blockchain to a MAS running on JaCaMo, using a specific Java
library for this purpose. The integration was successful, and an example was pre-
sented. The example was also implemented successfully, achieving its objectives.
But it made clear that, when using blockchains along with MAS, there will be
a trade-off between taking advantage of the blockchain’s capabilities and speed.
The system runs much slower when the blockchain is present, since transactions

32

need to be confirmed by the network.

The Multi Agent Systems community has the opportunity to not only im-
prove the MAS field itself, but also to contribute to the blockchain commu-
nity with frameworks for development of pure blockchain systems. For instance,
the MAS tools that implement high level abstractions as commitments [22],
norms [23], and situated institutions [24] can bring significant contributions for
the blockchain community. Further works in this topic would include further
discussions on the most useful way of using blockchains in MAS, as well as
applications in decentralized systems to simulate how agents would react and
interact in the presence of this new technology. Scalability poses one of the great
challenges for this new approach, and this could be tackled in further works as
well.

References

1. M. Baldoni, C. Baroglio, K. M. May, R. Micalizio, and S. Tedeschi, “Computational
accountability,” in Proceedings of the AI*IA Workshop on Deep Understanding and
Reasoning: A Challenge for Next-generation Intelligent Agents 2016 co-located with
15th International Conference of the Italian Association for Artificial Intelligence
(AIxIA 2016), Genova, Italy, November 28th, 2016., pp. 56–62, 2016.

2. M. Herlihy and M. Moir, “Blockchains and the logic of accountability: Keynote
address,” in Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pp. 27–30,
2016.

3. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
4. M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.”, 2015.
5. A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University
Press, 2016.

6. A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocurrencies. ”
O’Reilly Media, Inc.”, 2014.

7. V. Buterin et al., “Ethereum white paper,” 2013.
8. “Decred roadmap.” available at https://medium.com/decred/2017-decred-

roadmap-d0da20c39db3.
9. “Bitcoin wiki: Genesis block.” available at http://en.bitcoin.it/wiki/Genesis block.

10. “Bitcoin wiki: Confirmation.” available at https://en.bitcoin.it/wiki/Confirmation.
11. I. Grigg, “Triple entry accounting.” available at

http://iang.org/papers/triple entry.html.
12. A. Miller and J. J. LaViola Jr, “Anonymous byzantine consensus from moderately-

hard puzzles: A model for bitcoin,” Available on line: http://nakamotoinstitute.
org/research/anonymous-byzantine-consensus, 2014.

13. S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach (3. inter-
nat. ed.). Pearson Education, 2010.

14. A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the a&a meta-model for multi-
agent systems,” Autonomous Agents and Multi-Agent Systems, vol. 17, no. 3,
pp. 432–456, 2008.

33

15. “Embedding data in the blockchain with op return.” available at
https://21.co/learn/embedding-data-blockchain-op-return/.

16. D. Weyns, A. Omicini, and J. Odell, “Environment as a first class abstraction in
multiagent systems,” Autonomous Agents and Multi-Agent Systems, vol. 14, no. 1,
pp. 5–30, 2007.

17. O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, “Multi-agent ori-
ented programming with jacamo,” Sci. Comput. Program., vol. 78, no. 6, pp. 747–
761, 2013.

18. “Parity technologies.” available at https://parity.io/.
19. C. Svensson, “Web3j.” available at https://web3j.io/.
20. ““kovan” public testnet to provide a stable environment for

ethereum development.” available at https://github.com/kovan-
testnet/proposal/blob/master/Press%20Release.md.

21. M. Baldoni, C. Baroglio, K. M. May, R. Micalizio, and S. Tedeschi, “Supporting
organizational accountability inside multiagent systems,” in AI*IA 2017 Advances
in Artificial Intelligence - XVIth International Conference of the Italian Associ-
ation for Artificial Intelligence, Bari, Italy, November 14-17, 2017, Proceedings,
pp. 403–417, 2017.

22. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio, “Commitment-based
agent interaction in jacamo+,” Fundamenta Informaticae, 2017.

23. J. F. Hübner, O. Boissier, and R. H. Bordini, “A normative programming language
for multi-agent organisations,” Ann. Math. Artif. Intell., vol. 62, no. 1-2, pp. 27–53,
2011.

24. M. de Brito, J. F. Hübner, and O. Boissier, “Situated artificial institutions: stabil-
ity, consistency, and flexibility in the regulation of agent societies,” Autonomous
Agents and Multi-Agent Systems, pp. 1–33, 2017.

34

Towards the Specification of Natural Language
Accountability Policies with AccLab: The

Laptop Policy Use Case

Walid Benghabrit1 and Jean-Claude Royer1 and Anderson Santana De
Oliveira2

1 IMT Atlantique, site de Nantes, 5 rue A. Kastler, F-44307 Nantes, France
{firstname.lastname}@imt-atlantique.fr

2 SAP Labs France, 805 avenue du Dr Donat Font de l’Orme, France - 06250,
Mougins, Sophia Antipolis

anderson.santana.de.oliveira@sap.com

1 Introduction

Accountability allows to assign legal responsibility to an entity. It is the ba-
sis for many contracts, obligations or regulations, either for digital services or
not. In our previous work we studied the Abstract Accountability Language for
expressing accountability [BGRS15,RSDO16] with a logical focus.

We demonstrate the AccLab tool support over a set of policies from the
Hope University in Liverpool governing the use of their IT systems and computer
resources. These policies are representative of terms of use and other agreements,
being really part of the University management, under control of the University
Council. Moreover, this application context is more familiar to the general public
than other domains, such as financial or health care services.

One important task is to analyze and interpret these policies which are writ-
ten in a natural, sometimes legal style. Of course, during this analysis we found
many ambiguities, omissions, inconsistencies and other problems, but our pur-
pose is to demonstrate that a part of it can be formalized and automatically
verified. This paper presents the laptop user agreement policy and discussed its
specification with our tool support.

2 Use Case Introduction

The policy of interest is a set of seven texts from [Uni17] related to IT concerns
and data protection. We will focus here on the laptop agreement. The laptop
agreement is rather short (10 clauses), included below.

In accepting the use of a University laptop, I agree to the following conditions:

1. I understand that I am solely responsible for the laptop whilst in my posses-
sion

2. I shall only use the laptop for University related purposes.

35

3. I shall keep the laptop in good working order and will notify I.T. Services of
any defect or malfunction during my use.

4. I shall not install and / or download any unauthorized software and / or
applications

5. I shall not allow the laptop to be used by an unknown or unauthorized person.
I assume the responsibility for the actions of others while using the laptop.

6. I shall abide by the University Acceptable Use, Information Security and
Portable Data Device security policies as published on the I.T. Services Web-
site

7. Any work saved on the laptop will be deleted prior to the machine’s return
8. If the laptop is lost, stolen or damaged, the incident must be reported to the

University Secretary’s Office within 24 hours
9. If the lost, stolen or damaged laptop and / or accessories is determined to be

caused by negligence or intentional misuse, I shall assume the full financial
responsibility for repair costs or fair market value of the laptop.

10. I am aware that any breach of these policies may render me liable to disci-
plinary action under the University’s procedures

In the remainder of this paper we will go through the exercise of formalizing
and verifying this policy.

2.1 AAL

Our policies are written with the Abstract Accountability Language (AAL) and
we will comment the main constructions. In our approach, we consider that an
accountability clause should express three things: a usage, an audit and a recti-
fication. The usage expression describes access control, obligations, privacy con-
cerns, usage controls, and more generally an expected behavior. In the course of
the design of AAL we reviewed several related languages, and our requirements
are aligned with several points raised by [BMB10]. Expressiveness is ensured
by negation, unrestricted set of actions, type hierarchies, conditions and policy
templates. We also advocate for a readable language with succinct unambigu-
ous semantics. In this context we introduce notions of permission, interdiction
and obligation, but we do not have the exact concepts of deontic logic since we
want to get our approach free from paradoxes and we aim at reusing classic logic
with its tool support. Point to point communications with messages passing,
used by many related work, is a good abstraction, simple and flexible. The audit
and rectification expressions are similar to usage expression but dedicated to
auditing, punishment and remediation. The audit expression defines a specific
audit event which triggers the auditing steps. The rectification expression de-
notes actions that are done in case of usage violations. For instance, to punish
the guilty party and to compensate the victim agent. We follow [Sch99,Mul00]
which argue that punishments and sanctions are parts of accountability. AAL
allows to define types with union, intersection, inclusion and negation to help in
modeling data and roles. An action or a service call is represented as a message
sender.action[receiver](parameters). The language enables predicates (prefixed by @)

36

and if Type is a type, @Type denotes its associated unary predicate. Authorizations
are denoted by the PERMIT and DENY keywords prefixing an action or an expres-
sion. The language provides Boolean operators, first-order quantifiers and linear
temporal operators. We need to define policies and to reuse them thus we imple-
ment a notion of template (introduced by TEMPLATE) which improves readability
and structuration. A template enables to name a policy with parameters (called
with @template) but it also supports higher-order definitions helpful in defining
common schemas of accountability or usage.

2.2 The Laptop Policy

As we can see in the policy from Section 2, sentences are often vague but some-
times they contain more precise information. It is the case in other policies like
the data protection, data portable or information security policies. Thus we did
a first reading of all the policies to extract some elements about the informa-
tion system. From that, we conclude that the “I” is referring to a student or a
staff of the university (named here resp) which is explicitly defined as of type
EligibleUser in the IT usage policy. In fact another kind of person (AllPerson) ap-
pears in clause 5 which obliged us to reconsider clause 2 with a different meaning
as other persons may use the laptop assigned to resp.

As a first simple example the clause 10 above states that “disciplinary action
under the University’s procedures” may take place in case of breach. This defines
the policy rectification and we represent it as an abstract action in Listing 1.1
with a simple policy with a typed parameter. LHU is a constant denoting the
University representative lawyer, it may be a fictitious or a real person.

Listing 1.1. Simple Rectification in AAL

TEMPLATE LHURectificationPolicy (resp:AllPerson)
(IF (@EligibleUser(@arg(resp))) THEN {LHU.disciplinaryAction[@arg(resp)]()}))

In the laptop policy there is no more information about rectification and nothing
about audit. This last can be reduced to auditor.audit[LHU](). As in the case of
rectification once we have more details, the template construction allows to refine
these definitions. A large section of the laptop policy describes in fact information
about permissions, prohibitions, obligations and some conditions. Most of this
usage policy will be described by a template named laptopUA, see Listing 1.2. Only
our interpretation of few clauses is given but this policy covers clauses 1 to 9. The
first line says that if a person is permitted to use a laptop then he is an eligible
user and this laptop was assigned to him. We also assume that the eligible user
should bring back his assigned laptop in the future to the university secretary.

Listing 1.2. Laptop Policy Agreement in AAL

TEMPLATE laptopUA(resp:AllPerson)(
(FORALL laptop:Laptop FORALL p:Purpose (IF (PERMIT @arg(resp).use[laptop](p))

THEN {@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop)})) AND
(FORALL laptop:Laptop FORALL p:Purpose

(IF (@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop))
THEN {SOMETIME (@arg(resp).bringBack[LHUsecretary]())})) AND ...)

37

They are many things which are left implicit, are wrong or skipped in natural
language policies. One important benefit is that problems and omissions appear
during the specification phase or will be detected by the verification tools.

The laptop clause 2 is simple, however, it interacts with the clause 5 which
leaves open the use of the laptop by a known and authorized person, maybe a
colleague. But in fact we do not have information about which kind of person is
permitted and for what kind of purposes. Other technical problems occur with
the clause 5, 7 and 8: they need explanations, as we will see later. Finally, the
overall structure of the laptop accountability policy is as in Listing 1.3. The
accountability policy has two parts, the first is related to all clauses except
clause 7 which is related to the second part.

Listing 1.3. Laptop Accountability Policy in AAL

TEMPLATE LaptopAccountabilityPolicy (resp:AllPerson) (
// from 1 to 10 but clause 7
@template(ACCOUNT, @template(laptopUA, @arg(resp)),

@template(LHURectificationPolicy, @arg(resp))) AND
// from clause 7 since it is another schema
@template(ACCUNTIL, @template(condition7, @arg(resp)),

@template(achievement7, @arg(resp)), @template(LHUWeakRectificationAndPay, @arg(resp)))}))

The ACCOUNT and ACCUNTIL templates define accountability schemas. Let us describe
the most classic which is quite similar to the one used in our previous papers,
see Listing 1.4.

Listing 1.4. Basic Accountability Template in AAL

TEMPLATE ACCOUNT(UE:Template, RE:Template) (
ALWAYS (auditor.audit[LHU]() AND (IF (NOT(@arg(UE)))

THEN {ALWAYS (IF (auditor.audit[LHU]()) THEN {@arg(RE)})})))

This template assumes that the audit is simple and at each instant (in linear
time) if the usage (@arg(UE)) is not satisfied then rectification (@arg(RE)) applies in
case of an audit. The ACCUNTIL will be discussed later. Note that for clause 7 we
diverge from the original text and we choose a weaker rectification to illustrate
the language flexibility.

3 AccLab

Formal specifications are beneficial but they are really more effective if we have
tool support and preferably some automated verification means. Thus we de-
velop AccLab for Accountability Laboratory to experiment the specification,
verification and monitoring of accountability policies. AccLab is compound from
a set of tools which are: The component editor, the AAL editor and its verifica-
tion, and the monitoring tools. The last release of AccLab is version 2.2 which
was released on July 23, 2017 on github (https://github.com/hkff/AccLab)
under GPL3 license. The AccLab IDE is a web interface that provides a com-
ponent diagram editor and tools to work with the AAL language. The back-
end is written in Python3 and the front-end in JavaScript based on dockspawn

(http://www.dockspawn.com) which is a web based dock layout engine released

38

under MIT license. For verification purposes AccLab is interacting with the
TSPASS tool ([LH10]), a prover for first-order linear temporal logic (FOTL).
The implementation is still in progress we will give an overview of its main cur-
rent features. Some features like the full type constructions and the template
are not fully operational thus we mix the use of AccLab and the TSPASS prover
with some manual manipulations to process our example.

To manage more easily the AAL language a dedicated editor has been imple-
mented. This editor is directed by the syntax and highlights the language key-
words. There are syntactic checking but also semantic controls for type checking
and the consistency of the declared services. A panel in the editor arranges a
set of tools providing assistance in writing by the use of dedicated templates,
for instance generating type declarations, accountability clauses or specific pri-
vacy expressions. This panel also contains few verification tools mainly the con-
flict checking with localization and the compliance checking. AccLab translates
the AAL language into FOTL and the checking tools use the connection with
TSPASS and its satisfiability algorithm. In case of unsatisfiability we imple-
mented a mean to isolate the minimal core unsat. The tool provides macro calls
which are useful in automating some complex tasks related to the translation to
FOTL and the interaction with TSPASS.

One idea behind AccLab is to see accountability in action, and one way to
achieve that is to be able to run simulations. AccLab includes a simulation mod-
ule that allows it to monitor agents in a system and to observe accountability
in action. We also proposed a tool called AccMon which reuses the above mon-
itoring principles and provides means to monitor accountability policies in the
context of a real system.

4 Lessons Learned and Discussion

This is an ongoing work but from now on we formalize several parts. One im-
portant task was to built and partly invent the information system and to get
it consistent.

4.1 Accountability Schemas

The basic accountability scheme for a given usage is expressed simply as (UE

OR RE), or equivalently IF (NOT UE) THEN RE, where UE is the usage expression and
RE the rectification expression. However, often we need quantifiers, for instance
to identify the responsible user. We also consider time and our choice was to
consider linear time as it seems sufficient in many cases. Thus we write formulas
like ALWAYS FORALL resp:Any IF (NOT UE(resp)) THEN RE(resp), or FORALL resp:Any ALWAYS IF (NOT

UE(resp)) THEN RE(resp). These are two distinct schemas, the first implies the second
but the reverse is false (it is related to the Barcan formula).

Note that the above scheme allows to define first order accountability, that is
the user is responsible and will be subject to rectification in case of a violation.
But it is possible to define second order accountability, that is the processor or

39

implementer is responsible to enforce IF (NOT UE) THEN RE and in case of violation it
is rectified with RE2. In this case, the schema will be (UE OR RE OR RE2), and more gen-
erally higher-order responsibility is defined as (UE OR RE OR ... OR REn). Templates
are useful here to capture relevant accountability schemas.

4.2 Laptop User Agreement

We consider to have a full specification of the laptop agreement but it evolved
since our first specification. We prove the satisfiability with most of the types
and actions declarations and we also prove that violation of every clause will
result in a rectification of the responsible person. As a general comment it is
always possible to represent any kind of information but without semantics it
remains purely syntactic. Of course aligning the syntax between different policies
is a non obvious requirement. In our work we elaborate a rich information model
resulting from the analyzing of most of the 7 policies. We have a type hierarchy
with nearly 50 types and 50 relations, a set of 40 actions and more than 40
predicates and constants. This is a critical task because there is more or less
nothing in the texts and sometimes they have some flaws. An important part
is to add some behaviours to link together actions and predicates. Except type
relations the action and predicate the behaviour is still poor but may be enriched
later with the analysis of other policies.

The overall structure of the laptop policy has been given in Listing 1.3.
We succeed in proving the satisfiability of the clauses and taking into account
some user behaviours. The FOTL formula generation takes around 3s, the prover
generates a total of around 1000 conjunctive normal forms in less than one
second. We express several different user behaviours, for instance (see Listing 1.5)
once a user signs the policy he gets an assigned laptop and accept the policy
until he leaves.

Listing 1.5. A user behaviour

FORALL res:AllPerson FORALL laptop:Laptop
ALWAYS (IF (resp.signed[LaptopAccountabilityPolicy]())

THEN {(@assigned(resp, laptop) AND @template(LaptopAccountabilityPolicy, resp))
UNTIL (resp.leave[LHU]())})

Indeed, the interaction between the proper user behaviour and the policy is
a critical point for semantic reasons but it also brings some difficulties about
quantifiers. The above formula is not monodic (this is a constraint for decidabil-
ity of satisfiability) and we reformulate it with the laptop quantifier inside the
accountability policy rather than in the user behaviour.

With the laptop clause 7 there is a technical point to discuss. The simplest
formulation is to use an UNTIL operator, however this is more tricky to align with
our ACCOUNT accountability clause which is based on a ALWAYS pattern. One solution
is to use the principles of the separated normal form, for instance from [Fis11].
We can rewrite this expression as an ALWAYS clause without the need of the UNTIL

operator. However, the result is not intuitive and only understandable by spe-
cialists of linear logic. We implement another solution that is to define a separate

40

accountability clause based on a different pattern. This pattern is ACCUNTIL = (A

UNTIL B) | (A AND NOT B) UNTIL NOT (A OR B). The second term of this pattern represents
a part of the negation of the first, and then the case where rectification should
happen. This pattern is not equivalent to the A UNTIL B OR NOT (A UNTIL B) scheme,
but the difference is on the negative part. This difference is an infinite trace which
is not really monitorable thus it can be discarded. Nevertheless, this behaviour
introduces new quantifiers and the satisfiability process does not terminate. We
reconsider it and succeed with a weaker specification (see Listing 1.6) and addi-
tional behaviour for the delete action.

Listing 1.6. Clause 7 specification

FORALL laptop:Laptop IF (@assigned(resp, laptop) AND resp.bringBack[LHUsecretary](laptop))
THEN {@deletedSavedWork(resp)}

The clause 8 introduces a notion of real time with “before 1 day”, while we
have a construction for that we choose to replace it with a NEXT construction.
In fact there are only three such references in all the 7 policies. But during the
verification step we realize that it is not sufficient because: It is acceptable that
the user reports immediately and this is not acceptable that he reports after two
states. Furthermore the ALWAYS pattern is not correct since the rectification may
occur before the violation will be effectively realized. Thus, as for clause 7, a
separate accountability pattern can be used, see Listing 2.

Listing 1.7. Clause 8 specification

FORALL laptop:Laptop
(IF (@EligibleUser(resp) AND @assigned(resp, laptop)

AND (@lost(laptop) OR @damaged(laptop) OR @stolen(laptop)))
THEN {(resp.report[LHUsecretary](problem)

OR (NEXT (resp.report[LHUsecretary](problem))))})

Another important point to note is related to clause 5 which states that “I
assume the responsibility for the actions of others while using the laptop”. The
“I” is represented by resp in our usage policy and appears at the level of the
accountability policy, see Listing 1.3. From that we can verify that if another
user did a breach with the laptop assigned to resp then rectification is effectively
applied to the responsible person. These verifications where successfully done,
however, not without some technical difficulties.

4.3 Discussion

This is an ongoing work, as we need to complete our information model, to for-
malize other policies and at least to verify their consistency. The current natural
language policies have many drawbacks: lack of precision, redundancies, ambi-
guities etc, unsurprisingly. Regarding accountability there are some information
about monitoring and really few details about the remediation, compensation
and punishment parts. One important task before any formalization of the poli-
cies is to build a consistent information model with sufficient relevant details
about data and behaviour.

41

There are ambiguities about the status of some statements and our language’s
strength in clarifying them. For instance, in several policies (laptop, IT usage)
there are sentences related to the fact that a person will sign and accept a policy.
If we consider it as a part of the accountable usage it will say that to not sign is a
breach which is not sensible. Thus it should be part of the proper user behavior,
it is free to sign, and if he signs he will accept the responsibilities included in
the policy. As we have seen, this impacts the structure of the specification but
also brings some difficult points regarding the interaction between quantifiers
and modal operators.

The use of FOTL or linear temporal logic often simplifies the specification
and there is only few references to precise dates or dense time in the policies.
However, there are several subtleties in writing formulas with both quantifiers
and temporal operators. FOTL is quite expressive but the bottleneck is the
tool support, there is only one, TSPASS, which is now not maintained. Another
problem is that it relies on the monodic constraint which is constraining for
the behaviour specification. Improvements are possible here but need important
theoretical and implementation efforts. Another point is the use of the standard
semantics based on infinite traces which is not suitable for real monitoring. The
alternative is a translation into pure FOL, the drawback is the explicit man-
agement of time parameters. These additional parameters may compromise the
decidability of satisfiability but this logic has been intensively studied and a com-
plete map of the decidable fragments exists. An adaptation of our language and
its tool support is perfectly possible and it seems a sensible future perspective.

References

[BGRS15] Walid Benghabrit, Hervé Grall, Jean-Claude Royer, and Mohamed Sellami.
Abstract accountability language: Translation, compliance and application.
In APSEC, New Delhi, India, 2015. IEEE Computer Society.

[BMB10] Moritz Y. Becker, Alexander Malkis, and Laurent Bussard. A practical
generic privacy language. volume 6503 of ICISS 2010, pages 125–139.
Springer, 2010.

[Fis11] Michael Fisher. An Introduction to Practical Formal Methods using Tempo-
ral Logic. Wiley, 2011.

[LH10] Michel Ludwig and Ullrich Hustadt. Implementing a fair monodic temporal
logic prover. AI Commun, 23(2-3):69–96, 2010.

[Mul00] Richard Mulgan. ’accountability’: An ever-expanding concept? Public Ad-
ministration, 78(3):555–573, 2000.

[RSDO16] Jean-Claude Royer and Anderson Santana De Oliveira. AAL and static
conflict detection in policy. In CANS, 15th International Conference on
Cryptology and Network Security, LNCS, pages 367–382. Springer, Novem-
ber 2016.

[Sch99] Andreas Schedler. Self-Restraining State: Power and Accountability in New
Democracies, chapter Conceptualiazing Accountability, pages 13–28. Lynne
Reiner, 1999.

[Uni17] Liverpool Hope University. IT services policies, 2017.
https://www.hope.ac.uk/aboutus/itservices/policies/.

42

Requirements for a Temporal Logic of Daily
Activities for Supportive Technology

Malte S. Kließ? and M. Birna van Riemsdijk?

Delft University of Technology
Delft, The Netherlands

m.s.kliess@tudelft.nl, m.b.vanriemsdijk@tudelft.nl

Abstract. Behaviour support technology is aimed at helping people or-
ganize their daily routines. The overall goal of our research is to develop
generic techniques for representing people’s actual and desired behav-
ior, i.e. commitments towards themselves and others, and for reasoning
about corresponding supportive actions to help them comply with these
commitments as well as handle non-compliance appropriately. Describing
daily behavior concerns representing the types of behaviour the user typi-
cally performs, but also when, i.e. we need to take into account temporal
dimensions of daily behaviour. This paper forms a first requirements
analysis of the types of temporal dimensions that are relevant for the
purpose of supporting people’s daily activities and how these may be
formalized. This analysis forms the starting point for selecting or devel-
oping a formal temporal representation language for daily activities.

1 Introduction

Behaviour support technology [10] is aimed at helping people organize their daily
routines and change their habits. The overall goal of our research is to develop
generic techniques for representing and reasoning about people’s actual and de-
sired behavior for the purpose of providing support by means of technology [11,
15]. These expressions of desired behaviour can originate from users themselves
or from others in their social context, such as caregivers. The idea underly-
ing our approach is to model desired behaviour as norms [1] or commitments
[12] regarding people’s behaviour [9, 15, 11, 14]. Reasoning techniques are then
aimed at deriving corresponding supportive actions to help people comply with
these norms and commitments as well as handle non-compliance appropriately,
i.e. with an understanding of the social relations and the values underlying the
established agreements [11, 15, 8].

Describing (actual and desired) daily behavior concerns not only which types
of behaviour the user typically performs, which can be represented in a behaviour
hierarchy [11], but also when these activities are performed, i.e. we need to take
into account temporal dimensions of daily behaviour. This paper forms a first
requirements analysis of the types of temporal dimensions that are relevant for

? Supported by NWO Vidi project CoreSAEP.

43

the purpose of supporting people’s daily activities. Once we have an understand-
ing of which notions of temporality we want and need to capture for this type of
technology, we can analyze which of many existing frameworks for representing
and reasoning about norms and time we can build on, e.g. [6, 4, 2, 3, 7, 14]. This
paper forms a preliminary exploration in this direction.

We present an illustrative scenario and preliminaries regarding temporal logic
(Section 2). We identify key temporal dimensions of daily activities in Section 3.
For each of these dimensions we provide an example formalization in temporal
logic of an aspect of our scenario (Section 4). We conclude the paper in Section
5.

2 Scenario and technical preliminaries

2.1 Scenario

In this paper, we will explore examples involving temporal dimensions of daily
activities based on the following scenario, where we intend to follow a few exam-
ples of daily activities in the fictitious life of Pedro, a young person with mental
disabilities who can take care of most daily activities himself, but needs support
in order to do them in a timely fashion.

Pedro can usually take care of everyday tasks himself, like getting ready in
the morning, getting to work, going shopping and preparing meals. He needs
support and regular reminders to schedule these activities. For this he has a
support agent, which knows about Pedro’s regular activities and preferences.

We intend to address the temporal dimensions of these routines. For example,
when we describe our daily routines we would usually put these habits in some
order in which we engage in these activities. We would certainly say that we get
up before we wash ourselves, and that right next after that we have breakfast.
However, there are a lot of subtleties involved when we want to formalize this
description in a precise way so that an artificial agent is able to render efficient
support for these activities: Is there a specific order in which we prepare the
breakfast? Is it necessary to boil the water before we put in the tea bag, and
when does this happen compared to preparing the bread we want to eat?

In order to deal with these kind of questions it is not enough for an agent to
have an idea of the usual behaviour and habitual order. It also needs to ensure
that actions are performed in a coherent way. For instance, putting the kettle
on to boil water certainly needs to be done before we pour the water in a cup,
but while we wait for the water to boil we can already toast the bread. Putting
the kettle on before we go to the bathroom to wash, however, might not be a
good idea: if we take too long in the bathroom the water will be too cold for
tea, so we should start boiling the water only after we finished washing. This
means that if we want an artificial agent to help users organize their day in an
efficient way, then we need temporal reasoning with which not only the order in
which activities are done can be stated, but also temporal ‘closeness’ to ensure
that the user does not wait too long between finishing one step of an activity
and starting to do the next step.

44

2.2 Temporal logic

We will formalize the logical framework in the following definition. We will
roughly follow the definitions given in [11] for the HabInt habit support agent.

Definition 1. Let LStr be a propositional language over strings. Let Act ⊆ LStr

be the set of activities or actions. Let Part be a function Act → P(Act), with b ∈
Part(a) if the action b is a part1 of doing action a. For the sake of readability we
introduce predicates start, stop and doing on Act, signifying when an activity
is started, stopped, or being done, but we will still treat Act as atomic. We close
these atomic sentences as usual under ¬ and ∨, and interpret all other logical
connectives in the usual way.

As for the temporal dimensions, we will use notions from Linear Tempo-
ral Logic [5] as a way of sketching formalizations for the temporal dimensions
discussed. In particular, we will have in mind trace semantics and the usual
connectives �, ♦, R, U , © (to be read as always, eventually, Release, Until and
Next, respectively). We will take this as a form of ‘proof of concept’, showing
that some of the dimensions we have in mind may be expressed using notions of
already existing frameworks.

3 Key temporal dimensions

In this section we will explore five temporal dimensions we believe are key to
modelling human behaviour for supporting agents. We will provide examples
demonstrating how each aspect covers part of an every-day behaviour pattern
an agent should be able to support. Note that the examples are intentionally
formulated very strictly: if a person states they are having dinner at 6 pm,
then this should be formulated in the language just like that. Even though in
reality, this will likely almost always be violated2, it is important for the agent
to recognize this. Whether an intervention is necessary, and if so, how the agent
should intervene, should be delegated to the Norm Compliance Support system
of the agent. Our intention is to provide the necessary formalization to state
norms and thus give an agent the ability to detect deviance from these norms.

The five key dimensions are:

1. Clocktime. A supporting agent will no doubt have to be able to deal with
clocktime. This is particularly important for keeping certain deadlines, as
well as ensuring that scheduled actions are executed at the given time.

2. Ordering. Some behaviours require multiple distinct actions to be executed
in a certain order, e.g. washing vegetables before cutting them. However,
human behaviour is much more flexible than a deterministic routine; it is
enough to know that vegetables should be cut after they have been washed,

1 For example, brewing tea is an action in its own right, but may also be considered
as part of ‘preparing breakfast’.

2 E.g., starting dinner five seconds after 6 pm.

45

but not necessarily directly after (partial order): it should be acceptable
behaviour to wash all of the vegetables first, and then cut them.

3. Coherence. When describing behaviour with multiple parts it is not enough
to state that they will all eventually be done. When cooking vegetables it is
not good enough to wash them today, cut them tomorrow and finally cook
them next week. Rather, these actions should be performed coherently, i.e.
without too much delay. An immediate ‘next’ step, however, may be too
rigid, so we need a notion that allows us to state that a set of actions form
a coherent unit.

4. Duration. The duration of actions is a two-fold notion. On the one hand
certain actions have a fixed or typical duration, e.g. ‘pasta takes 8 minutes
to cook’. On the other hand, an agent should be able to infer the duration
of an action that is being performed, i.e. the actual duration of a specific
instance of action execution, so that it can support the user in achieving the
desired habitual goals. This becomes important, e.g. when supporting the
user with keeping deadlines or making sure they do not exhaust themselves
with certain exercises.

5. Repetition. The agent should be able to deal with repetition. This involves
both regularly scheduled events and the cyclic nature of weeks and days. If
a user wants to be supported having dinner at 6 pm every day, then this
event regularly resets. The same is true for weekly exercises.

In the usual formalization, LTL semantics consists of a linear trace with one
end point, namely the starting point of the trace. However, as one easily sees
particularly in the clocktime example we have to deal with cyclic time: every
night at 11.59 pm, when the time progresses one minute, the clock resets to
12.00 am, and a new day begins. Similarly, starting the week with Monday,
the weekday variable changes each day until Sunday is reached, whereafter the
variable resets to Monday again.

Linearity is not completely lost, though: we cannot repeat the actual day or
week, but irrevocably progress into the future. The idea is, thus, to model this
using two separate notions of time: micro-time, which is of cyclic nature and
models the time passing each day, and macro-time, which is linear and models
the fact that each day that has passed is certainly not coming back.

The way we suggest to model this is by using a two-dimensional trace index:
we will write each separate point in the trace s as s〈a,b〉, where the first compo-
nent refers to macro-time, and the second component refers to micro-time. We
will use lexicographic ordering on the pairs 〈a, b〉: today at 5 pm is earlier than
tomorrow 5 am.

While one can think of macro- and micro-time as separated into days pass-
ing and the time of the current day, respectively, this need not be the desired
separation: there are larger cycles common in every-day life: weeks, months and
years share a cyclic nature as well. It may depend on the specific task or use
case how fine-grained one wants to make this separation. For the sake of this
scenario, days and time of day are sufficient.

46

4 Scenario Formalization

In the following examples we will explore how the key dimensions identified
above can be formalized in the framework outlined in Definition 1.

Example 1 (Clocktime).
Scenario: Pedro intends to have his dinner at 6 pm every day.
Formalization: Introduce a variable t ranging over time. Abusing notation,

we will write t = 6pm to mean that t has the value corresponding to real-world
time of 6 pm. Then the statement above can be formalized as

�
(
t = 6pm → start(HavingDinner)

)
.

Discussion: The statement above is very sharp: each day there is precisely
one point in time when t has the value of 6 pm. So how do we then deal with
situations when Pedro starts his dinner slightly earlier or later? We would argue
here that this may be deferred to norm compliance: if we casually state ‘I have
my dinner each day at 6pm.’, then we would argue this is meant precisely in the
sense of the formal statement above.

Example 2 (Ordering).
Scenario: Pedro wants to bake a pizza for dinner. He already has a pizza

dough prepared, and wants to decorate the pizza with tomato sauce, mushrooms
and cheese.

Formalization: We want to express certain orders in the execution of an
action, when that action is itself composed of smaller parts. As an example, take
baking a pizza. For that we have to first prepare all ingredients, then put the
toppings on the pizza, and finally put it in the oven. There is a strict ordering
implicit here: we cannot3 put the pizza in the oven and then afterwards put the
(unprepared) toppings on the pizza dough, and finally prepare the toppings by
washing and cutting them.

Take the LTL-formulation of before, as in e.g. [13], i.e. φ before ψ ≡ ¬ (¬φUψ),
where U is Until. Then the situation in the scenario above can be formalized by

apply tomato sauce before decorate with mushrooms, (1)

apply tomato sauce before decorate with cheese, (2)

decorate pizza before bake pizza. (3)

Discussion: As an alternative formulation one could think of using after :
φ before ψ should be (almost) the same as ψ after φ – both give a temporal link
between φ and ψ, φ is the first statement that should come true, and ψ the
second. Switching the roles of φ and ψ and negating the statement, however,
will not turn before into after : we would be introducing the possibility of syn-
chronicity, i.e. φ and ψ being executed simultaneously. Another problem is what
to do once the second event, ψ, has occurred. From the definition using U , this

3 Or rather: should not attempt, as it gives undesired results.

47

does not prevent us from witnessing another φ later. While we certainly do not
want to prevent Pedro from ever washing mushrooms again, the same mushroom
should not be washed again once it has been cut.

Example 3 (Coherence).

Scenario: We will use the same scenario as for example 2, and focus on what
it means to be ‘coherent’.

Formalization: Using the example of preparing a pizza for dinner, what does
it mean to ‘coherently bake a pizza’? The dough has to be spread out, the
ingredients put on it, and finally the pizza needs to be baked. While we also
have the constraints that the toppings should first be washed, then cut, then
put on the dough, we face the same issue of multiple instances as above: do we
allow each mushroom to be washed, and then cut them all, or individually first
cut, then wash, and repeat the process for each mushroom until we are done?
We would argue here that this should not make a difference for the process
of ‘baking pizza’, as long as we are not putting other activities in between,
e.g. taking out the trash. So ‘coherent’ should mean that we do not engage in
unrelated activities.

This seems to suggest an ‘Axiom of Coherence’:

(Coh) :∀a ∈ Act . [doing(a)→ (¬wait(a)→ ∀b /∈ Part(a).¬start(b))] .

This statement says that as long as we do not have some mandatory waiting
time on our hand, e.g. when the pizza is in the oven, we should not start any
other unrelated activity.

Discussion: ‘Coherence’ should also mean ‘close together temporally’, which
is currently not encoded in the Axiom above. We can still have arbitrary idle
time between washing the mushroom and putting it on the pizza. Setting a strict
time limit for the distance between stopping some part of an activity and starting
the next one may be too strict. In the pizza example, we may get some help via
deadlines to solve this: if Pedro wants to have pizza for dinner, and have his
dinner at 6 pm tonight, then this deadline already forces him to have shorter
breaks. The question is then whether Coherence actually is a derived notion, and
the Axiom stated above is implicitly given by the other temporal dimensions.

Example 4 (Duration).

Scenario: Pedro usually takes 20 minutes to prepare a pizza, and then puts
it into the oven for 20 minutes. Thus the activity ‘make pizza’ has a duration of
40 minutes.

Formalization: We can equip any action a with an attributed duration d ∈ N,
given in minutes, to form the ordered pair 〈a, d〉. Assuming that no action can
be done instantaneously, we allow d = 0 to indicate that no duration has been
stated for the current action.

In the scenario above, we would then have 〈make pizza, 40〉 in the model,
stating that preparing pizza has a duration of 40 minutes.

48

For the model, assume we are looking at traces4 s = 〈s0, s1, . . . , si, . . . 〉,
where si is the state of the model at minute i, and s0 is the initial state. Then
‘preparing pizza takes 40 minutes’ would be modeled by

si |= start(make pizza)⇒ ∃j ≥ i+ 40 .sj |= done(make pizza).

Discussion: This example sees duration as an explicit notion present in the
model. One could also see it as an implicit notion, where ‘duration’ is nothing
but the difference of the two end-points of an activity, i.e. the difference between
start(a) and stop(a). The explicit notion is needed for planning and norm
compliance: if the agent knows that baking a pizza takes 40 minutes, then this
needs to be started at least 40 minutes before the planned dinner time; similarly,
the norm of ‘having dinner at 6 pm’ is certainly violated if Pedro starts preparing
the pizza at 10 to 6. How does the implicit notion fit in here? Is it just used to
update the explicitly given duration by experience, or as a monitoring tool to
make sure the pizza stays in the oven for just the right time? Or does it have
some importance in its own right, other than being checked against the recorded
duration while doing an instance of an activity?

Example 5 (Repetition). Scenario: Pedro has a ‘Pizza Day’: every Monday he
has pizza for dinner.

Formalization: Introduce a variableD for the weekday. Then we can formalize
the above by:

�(D = Monday → pizza for dinner).

Discussion: There seems to be nothing much needed for this except for
variable types that allow access to the trace time. One could expand this ex-
ample to ‘pizza every other week’, in which case one can then check against
the past week. Letting W range over weeks, we then would obtain (W = n ∧
pizza for dinner)→ (W = n+ 1 ∧ ¬pizza for dinner), and similarly swap-
ping the negation in front of pizza for dinner on both sides of the implication.

5 Discussion and future work

The examples above can all be expressed using LTL, using a two-dimensional
index for the temporal trace; essentially, it is still discrete, linear, but it has
the added benefit that we are now able to code daily routines using the second
component of the trace index only. This suggests that LTL may be a suitable
language for encoding temporal aspects of everyday activities. However, there
are still many open questions such as those discussed in Section 4. In particular,
we have not adressed the issue of expressing ‘temporal closeness’, or: ‘how late
is too late?’. A hard restriction on temporal distance between two activities that
should be performed ‘closely together’ may be too strict for practical purposes.
On the other hand, this may be an issue that can be dealt with by defining

4 For the sake of simplicity, we omit the ‘macro-time’ component for the moment,
looking at a one-dimensional trace.

49

norm compliance appropriately. Using a temporal language for reasoning about
compliance support may require adaptations to the temporal language to make it
tractable. As in [14] we use LTL without deontic operators. Whether this suffices
for expressing norms regarding desired daily behaviour is also to be explored in
future research.

Acknowledgements. We would like to thank two anonymous referees and the
participants of the CARe-MAS workshop for insightful comments and discussions
that helped improve the work presented in this paper.

References

1. G. Andrighetto, G. Governatori, P. Noriega, and L. van der Torre, editors. Nor-
mative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2013.

2. J. Broersen, F. Dignum, V. Dignum, and J.-J. Ch. Meyer. Designing a deontic
logic of deadlines. In Proceedings Seventh International Workshop on Deontic Logic
in Computer Science (DEON’04), volume 3065 of LNCS, pages 43–56. Springer-
Verlag, 2004.

3. S. Cranefield. A rule language for modelling and monitoring social expectations in
multi-agent systems. In Coordination, Organizations, Institutions, and Norms in
Multi-Agent Systems (ANIREM’05 and OOOP’05), volume 3913 of LNCS, pages
246–258, 2006.

4. F. Dignum and R. Kuiper. Specifying deadlines with dense time using deontic and
temporal logic. International Journal of Electronic Commerce, 3(2):67–86, 1998.

5. E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, pages
996–1072. Elsevier, Amsterdam, 1990.

6. G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo. Characterising deadlines
in temporal modal defeasible logic. In Proceedings of the 20th Australian joint
conference on Advances in artificial intelligence, pages 486–496. Springer-Verlag,
2007.

7. K. V. Hindriks and M. B. van Riemsdijk. A real-time semantics for norms with
deadlines. In Proceedings of the twelfth international joint conference on au-
tonomous agents and multiagent systems (AAMAS’13), pages 507–514. IFAAMAS,
2013.

8. A. Kayal, W.-P. Brinkman, R. Gouman, M. A. Neerincx, and M. B. van Riems-
dijk. A value-centric model to ground norms and requirements for epartners of
children. In Coordination, Organizations, Institutions, and Norms in Agent Sys-
tems IX (COIN’13), volume 8386 of LNCS, pages 329–345. Springer, 2014.

9. A. Kayal, W.-P. Brinkman, H. Zoon, M. A. Neerincx, and M. B. van Riemsdijk.
A value-sensitive mobile social application for families and children. In Posters,
Demos, Late-breaking Results and Workshop Proceedings of the 22nd Conference on
User Modeling, Adaptation, and Personalization (UMAP’14), volume 1181. CEUR,
2014.

10. H. Oinas-Kukkonen. Behavior change support systems: A research model and
agenda. pages 4–14, 2010.

50

11. P. Pasotti, M. B. van Riemsdijk, and C. M. Jonker. Representing human habits: to-
wards a habit support agent. In Proceedings of the 10th International workshop on
Normative Multiagent Systems (NorMAS’16), LNCS. Springer, 2016. To appear.

12. M. P. Singh. An ontology for commitments in multiagent systems: toward a unifi-
cation of normative concepts. Artificial Intelligence and Law, 7(1):97–113, 1999.

13. M. B. van Riemsdijk, L. Dennis, M. Fisher, and K. V. Hindriks. Agent reason-
ing for norm compliance: a semantic approach. In Proceedings of the twelfth in-
ternational joint conference on autonomous agents and multiagent systems (AA-
MAS’13), pages 499–506. IFAAMAS, 2013.

14. M. B. van Riemsdijk, L. Dennis, M. Fisher, and K. V. Hindriks. A semantic
framework for socially adaptive agents: Towards strong norm compliance. In Pro-
ceedings of the fourteenth international joint conference on autonomous agents and
multiagent systems (AAMAS’15). IFAAMAS, 2015.

15. M. B. van Riemsdijk, C. M. Jonker, and V. Lesser. Creating socially adaptive
electronic partners: Interaction, reasoning and ethical challenges. In Proceedings of
the fourteenth international joint conference on autonomous agents and multiagent
systems (AAMAS’15), pages 1201–1206. IFAAMAS, 2015.

51

Open data for accountability in the fight against
corruption

Joris Hulstijn1 Darusalam Darusalam2 Marijn Janssen2

 1 Tilburg School of Economics and Management, Tilburg University
2 Department of Technology, Policy and Management, Delft University of Technology

j.hulstijn@uvt.nl, d.darusalam@tudelft.nl, M.F.W.H.A.Janssen@tudelft.nl

Abstract. There has been a lot of research on the use of open data in the fight
against corruption. Although there are some promising examples, it appears that
a systematic approach is lacking. What are the design principles for an
architecture to open up data and thereby reduce corruption? In this paper we use
theory about fraud, and about public accountability to derive design principles
for an open data architecture. Crucial is the sustained presence of a specific
forum: a group of people who are critical, have expertise, are free to challenge
the authorities. Unlike the general public, a specific forum has an interest in
reviewing the data. The architecture is motivated and illustrated by an extensive
example of an E-procurement system in the context of an anticorruption program
in Palembang, Indonesia.

1 Introduction

There has been a lot of attention for ‘opening up’ government data in the
field of e-government [28]. One particular application area of open data
is the fight against corruption. Corruption is a complex and difficult
problem, also in government [12]. Corruption can harm society and
result in increased poverty, reduce available money for essential public
services, destroy citizens’ trust in government and undermine economic
growth [26]. There are many factors that can lead to corruption in
government [21]. In principle, addressing these different factors will lead
to different approaches in the fight against corruption. In this paper, we
will focus on the factors of transparency and accountability. Therefore
we investigate a particular strategy to fight corruption: to open up
government data to the public [25]. One of the claimed benefits of open
data is that the government becomes more transparent and accountable
[15]. This appears intuitive. Open data allows scrutiny by the public,
which will reduce opportunities for corruption and increase changes of
detection. Indeed, there are successful examples of e-government
systems to reduce corruption, see [16] and [2] (p 265-266). There have

52

also been examples of system to open up government data to reduce
corruption, for example in Brazil. A recent study by Transparency
International [14] shows that a lot has been achieved in Brazil.
“Nonetheless, open data is still underutilized, and anti-corruption
enforcement is weak” [14](p 4). In particular, there are problems with
data quality. Moreover, the initiatives lack involvement: when there is a
‘lead’ there is not always a follow up. Apparently, the relationship
between open data, transparency and accountability and eventually
reducing corruption is not immediate, but rests on specific assumptions.
For instance, in the context of corporate governance, Elia argues that
opening up too much data, in too much detail, is pointless or even
counterproductive [11]. Details of illicit behavior may be drowned out.

In this discussion paper we therefore propose design principles for an
open data architecture that should foster accountability, and in turn,
reduce opportunities for corruption. We will take a theoretical approach,
based on an analogy with fraud [1, 9], and theory of public accountability
by Bovens [3]. Following Day and Klein [10], Bovens characterizes
accountability as a dialogue between an actor and a ‘significant other’,
called the forum. The actor feels obliged to provide accounts of its
conduct to the forum. In order to hold the actor accountable, the forum
should be critical and powerful enough to ask for explanations, and
eventually pass judgement about the conduct of the actor.

To motivate the approach and validate the design principles, we
discuss a case study of an e-procurement system at the local government
of Palembang in Indonesia.

The remainder of the paper is structured as follows. Section 2 provides
a background on corruption and how it can be reduced. Section explain
the idea of accountability as a dialogue, and derives some general
principles about the actor and the forum. Section 3 applies these
principles to an architecture for opening up data. Section 4, finally,
discusses application of these ideas in the Palembang case study.

2 Corruption and Fraud

In this section we provide a background of the notion of corruption in
government and how it can be reduced. Corruption is an important topic
that deserves a proper literature review. In this discussion paper, we
cannot provide a full review. Instead, we will focus on two elements.

53

First, we will draw an analogy with fraud, and derive three ways to
address corruption. Second, we will discuss anti-corruption strategies.

The word ‘corruption’ is based on Latin: corrumpere means to spoil
or destroy. Corruption is defined as “behavior which deviates from the
normal duties of a public role because of private-regarding (family, close
private clique) pecuniary or status gains” [21] (p. 4). An additional aspect
of corruption in the case of government, is the misuse of power [12]. So
similar to the notion of fraud, which is defined as a violation of trust [9],
corruption involves the misuse of responsibilities related to a public role
or duty. For instance, corruption involves “bribery (use of reward to
pervert the judgments of a person in a position of trust), nepotism
(bestowal of patronage because of ascriptive relationship rather than
merit), and misappropriation (illegal appropriation of public resources
for private-regarding uses” [21] (p. 4).

Figure 1. Fraud triangle [1, 9]

There is an interesting analogy between corruption and the notion of

fraud as studied in accounting [1] and criminology [9]. In Figure 1, fraud
is depicted as a triangle, involving three necessary elements.

(1) Opportunity: the actor has been trusted with responsibilities that
involve certain powers (budget; decision rights),

(2) Pressure: the actor has a ‘non-shareable problem’ (e.g. financial
problems, status), and misuse of trust can offer a ‘private solution’

(3) Rationalization: the actor provides a kind of explanation for crossing
the line: “I am only borrowing the money” or “others do it too”.

The triangle suggests three ways of reducing fraud or corruption. These
are effectively means to improve management control [19] and the
system of internal controls [8], in particular the control environment.

First, one could try to reduce opportunities for corruption. That means
limiting the powers of an actor in a certain role, by putting administrative
restrictions in the procedures or by recording details of execution (audit
trail). This is the easiest element to adjust. In modern organizations,
many institutional powers are controlled by ICT, such as the ERP system

54

or business process management system. In accounting, there is a lot of
expertise on ways to strengthen internal controls, partly by means of ICT.
In particular, there are so called application controls, which are built into
software applications. For instance, there are authorization tables,
restrictions on the budget a person can control, on tariffs and pricing
policies, etc. In addition, there are also many manual controls, that are
supported by technological means. For instance, if all invoices are
numbered consecutively, it is harder to make one disappear. Finally,
there are the IT general controls, that help to maintain a reliable control
environment. In particular, consider such measures as segregation of
duties, audit trail, access controls, logging and monitoring [23]

Second, one could try to reduce pressure. In the financial sector there
has been a lot of debate about remuneration. If you pay people enough,
is the argument, there should be less incentives to misuse trust for
personal gains. However, the evidence as to the effectiveness of this
measure is inconclusive, at best [24]. Another option to reduce pressure
is suggested by Cressey’s original paper [9]: foster an environment in
which people feel safe to discuss problems. In this way, when people do
have a problem (gambling debts, dissatisfaction), they are less likely to
see misuse of trust as a way out. For example, one could implement a
regular meeting structure, in which officials have an opportunity to
discuss – in secret – difficult decisions with peers.

Third, one could try to raise moral standards and make it harder for
people to ‘rationalize’ misuse of trust. This is perhaps the most effective
but also the hardest option. It involves elements of organizational
culture, such as public values, social practices and role models [13, 22].
Organizational culture can’t be managed directly. Instead, one can only
try and improve side conditions. The ‘tone at the top’ makes an enormous
difference. For example, in the Enron case, efforts to improve
compliance were useless, as executives themselves were seen to violate
the rules [24]. Public values such as quality awareness, safety or
integrity, can be stimulated. For example, to stimulate quality awareness,
one could routinely publish examples of products that are rejected. This
will demonstrate the borderline. Practices and procedures may help to
reach consensus. If it is mandatory to rate and discuss quality of a
product with colleagues, this will help establish a common threshold.

We will now discuss an example from the literature, to see how these
approaches to fraud are applied.

55

Example. Kim [16] reports about the OPEN system, as part of a long-
term effort in Korea to fight corruption (1998-2007). The OPEN system
“is an online system used to disclose administrative procedures (likely
to be related to corruption) to citizens in various public service areas
(such as housing and construction, sanitation, and urban planning,
among others).” [16] (p 45). The purpose was to improve efficiency, by
preventing unnecessary delays or unfair handling by civil servants, and
also to improve transparency in some areas of civil administration.

First, such a system is likely to reduce opportunities for corruption. By
allowing citizens to view the procedures and status of their requests, an
audit trail is created. Decisions can be compared. Moreover, the system
was supported by projects to clarify the procedures and design systems
that simplify, standardize, and de-personalize delivery of services [16].

Second, we do not know if the system helped to reduce pressure. We
do know, that the system reduced personal contact between applicants
and officials [16], thus reducing opportunities to be put under pressure.

Third, the ‘tone at the top’ proved decisive. The system was supported
by Kun Koh, mayor of the city of Seoul. “Mayor Koh took resolute steps
to fight corruption. He launched a variety of reform programs which
culminated in the declaration of a ‘War against Corruption’” [16] (p 46).
By doing this, Koy set values such ‘clean’ and ‘transparent’ as norms
that no one could deny.

Strategies to Combat Corruption
Activities to reduce corruption are often presented as phases in an anti-
corruption cycle: prevention, detection, investigation and sanction [20].

Alternatively, the literature mentions four strategies to combat
corruption: prevention, enforcement, access to information and
empowerment, and capacity building [16]. Unlike the stages, which
focus on officials, these strategies also assign an important role to
citizens. They indicate how ICT or open data can help: by providing
access to information and empowering citizens, and by helping to
organize and improve expertise, i.e. capacity building. In the next
section, we will try to make these ideas about empowerment more
systematic, by relating them to a theory of public accountability.

56

3 Accountability as a dialogue

Accountability has positive connotations, and is used as a kind of
synonym to good governance. However, the meaning of the term
depends on the context, on a relationship with others: “Accountability
can be defined as a social relationship in which an actor feels an
obligation to explain and to justify his or her conduct to some significant
other” [10]. According to Bovens [3, 4] an accountability relationship
involves an actor and a forum (Figure 2). The actor can be a person or
agency. Then there is some significant other, who can be a person or
agency, but can also be a more abstract entity, such as God or ‘the
public’. Bovens calls this the forum.

Figure 2. Accountability as a dialogue

The accountability relationship develops in three stages. First, the

actor must feel obliged to inform the forum about its conduct, including
justifications in case of failure. The obligation may be both formal, i.e.,
required by law or by contract, or informal and self-imposed, for instance
because the actor is dependent on the forum. Second, the information
may be reason for the forum to challenge the actor, ask for explanations
and debate the adequacy of the conduct. The actor responds, providing
additional facts or motivations. Third, the forum passes judgement on
the actor’s conduct. A negative judgment often leads to some kind of
sanction; again this can be both formal and informal. This means that an
accountability relation should provide room for discussion: it is not a
one-way stream of reports, but rather a dialogue. The process can be
formalized as a dialogue game [5].

Bovens [3] identifies five necessary conditions of public
accountability, which characterize the dialogue game just described:
(1) “public accessibility of the account giving—and not purely internal,

discrete informing;

57

(2) explanation and justification of conduct—and not propaganda, or the
provision of information or instructions to the general public;

(3) the explanation should be directed at a specific forum—and not be
given at random;

(4) the actor must feel obliged to come forward—instead of being at
liberty to provide any account whatsoever; and

(5) there must be a possibility for debate and judgment, including an
optional imposition of (informal) sanctions, by the forum—and not
a monologue without engagement” [3] (p 185); italics added.

The prototypical example of an accountability relation exists between
government and parliament, where parliament derives its power from the
population, and can send the government home (confidence vote).
Journalists play an important role, demanding transparency and
challenging the government. By informing the public, they can mobilize
the underlying power of parliament.

Another example of an accountability relation is auditing [6, 5]. In that
case, management is the actor, reporting the annual financial accounts.
The shareholders act as a forum. The forum is assisted by an auditor,
who has the expertise and authority to evaluate the financial accounts,
compare them to standards and norms and provide assurance about their
reliability [17]. However, the auditor as such has little power. The power
derives from the shareholders, or other powerful stakeholders, such as
the board of directors or regulators.

Based on these examples, we derive four additional necessary
conditions for a fruitful accountability relationship, compare also [6] .

(6) The organization of the actor must provide reliable reports about its
conduct. Reports must be accurate (correspond to reality) and
complete (contain all relevant aspects of reality). In practice this can
be ascertained by internal controls.

(7) The forum must be independent of the actor, allowing it to challenge
the actor, as stated in (5) above. In particular, the forum should not
depend on the actor for employment. Individual members should not
have family ties, or personal relationships.

(8) The forum must have, or have access to, expertise, to evaluate the
reports, compare them to standards and norms, and eventually pass
judgement. If necessary, the forum can be supported by experts or
auditors, who possess specific expertise. That means that those
experts must also be independent.

58

(9) The forum must wield enough power or influence over the actor to
“make the actor feel obliged to come forward” as in (4), and to have
a credible claim to sanctions, as in (5). In particular, when the actor
is dependent on the forum in some way, the forum has the power to
withhold whatever the actor depends upon.

4 An open data architecture for accountability

So how can we apply these ideas to an open data architecture?
An architecture is a set of fundamental concepts or properties of a

system in its environment, embodied in its elements, relationships, and
in the principles of its design and evolution [18] (p 2).

What are the components, what are their relationships, and what are
the design principles? If we want to conform to conditions (1) – (9)
above, we have to include some form of governance. So we will treat
architecture here in a broad sense, including also the organizational
structure. An open data architecture is a socio-technical system [7].

Figure 1. Conceptualizing open data [27] (p 157)

At first sight, an open data architecture seems to be just a website to
publish data in a particular format. The website makes the data available
to the forum (D0. Availability). Crucial elements are the legislation,
policies and business rules that determine which data eventually gets

5. Discussing and
providing feedback on

(linked) open data

2. Opening data

3. Finding open data
4. Using open data (e.g.

curating, annotating,
enhancing, processing,

visualising, linking)

1. Creating Data (e.g.
producing, collecting,
storing and paying for

data)

(Governmental)
organizations

Users

59

published (D1. Data selection). Published data should be relevant to the
issues addressed by the application, and later to the challenges or
inquiries made. Data should be fit to be published. In particular, state
secrets, data that are recognized to be confidential (e.g. medical;
military) or data about individual persons should not be published. This
means that data selection should involve a careful trade-off between
transparency and confidentiality. Ideally, the forum should have an
advisory role on setting the roles and policies for data selection.
Moreover, data sets should adhere to representation standards, that
improve interoperability between various systems, and allow for
comparison (D2. Representation standards). Data sets are filled with real
data by interfaces with day-to-day operational systems, such as databases
and ERP systems (D3. Content). A coherent system of internal controls
should help guarantee reliability of the data (accuracy and completeness)
(D4. Reliability). Note that completeness is hard to ensure, as it involves
comparison to what is considered to be ‘all’. Once selected for
publication, officials should not be able to delete data or obstruct
publication. Finally, the architecture should have features to respond to
challenges and inquiries with data that are relevant (D5. Relevance).

Because accountability involves a relationship, the architecture should
not only focus on what governments have to do in order to reliably ‘open
up’ data sets, but also on the forum. That means in particular that the
architecture should have components for the forum to gather, and
mobilize support (F0. Mobilize). Consider for example outlets on social
media. Clearly, mobilizing a forum is not the responsibility of the
government! The government should collaborate with those institutions
that happen to represent the forum, such as pressure groups, branch
organizations, watchdogs, regulators, parliaments, etc. Given such
collaboration, the platform should allow all members of the forum easy
access (F1. Access). The platform should have components for the
forum, or experts and auditors, to analyze the data (F2. Analysis). The
architecture should have components to pose challenges and questions,
about specific data elements and get a relevant proper response
(F3. Challenge and response), see also D5. Responses should be
archived, and should in principle also be made public (F4. Archive). In
some cases, absence of a response would also be telling. Finally, the
architecture should make it possible to escalate and file complaints, in
case of a suspected deviation from the policies (F5. Complaints

60

procedure). In addition, the architecture should have specific support for
journalists, experts or auditors (F1 and F2).

The list of requirements is summarized in Table 1.

Data publishing requirements Forum requirements
D0. Availability F0. Mobilize
D1. Data selection policies F1. Access
D2. Representation standard F2. Analysis
D3. Content F3. Challenge and response
D4. Reliability F4. Archive
D5. Relevant F5. Complaints procedure

Table 1. Requirements for an open data architecture, focusing both on

publishing open data (D) and on the role of the forum (F)

5. Case: E-procurement in Palembang

Data Collection Data for this case study was collected by investigating
various sources, including the official website, official documents, prior
research and the participating observations of one of the authors.
Case Description. The local government in Palembang South Sumatera
Indonesia uses the Systems Electronic Procurement Service (LPSE) for
the procurement of government goods and services. The LPSE system
has been introduced to improve the efficiency, effectiveness, quality, and
transparency in the procurement of goods and services. The system
matches vendors and governments. LPSE is hosted by a unit formed
across ministries and other institutions. This system facilitates
procurement officers and also provides services for the provider of goods
and services, in the territory of the LPSE concerned.

The procurement process starts by defining the needs, which is
followed by publishing the Request for Quotation (RFQ). Next, suppliers
receive the RFQ and develop their quotes. The supplier sends the quotes
to government, government who receives the proposals. Once the
proposals are received and the deadline has passed, the proposals are
evaluated and supplier(s) will be selected and a final tender will be
requested and the contract is signed. Thereafter follows the execution of
the contract in which the products and services are delivered and paid.
Finally, the delivered products and services can be evaluated.

61

According to local government regulation, all working units of local
government must use the LPSE system. This should prevent bypassing
and the risks of fraud. All the working units are obliged to announce their
planning, implementation and results of their procurement processes via
the LPSE system. As such, there is a huge potential for opening data.
The types of data available in the LPSE system are as follows:
 Auction announcement: The LPSE system provides an

announcement about what types of procurement are available from
working units in Palembang;

 Information about system failure: The system provides information
in case a package cannot be generated, or if a file failed to upload, so
the system can provide solutions;

 Electronic Catalogue (EC): This catalogue provides a detailed listing
of vendor offerings. For example, description of products, prices,
delivery times.

 Monitoring and online evaluation: The system provides information
about planning packages of procurements, financial progress,
physical progress, procurement of goods and services progress;

 Whistleblowing: The LPSE system has a link to
https://wbs.lkpp.go.id/container.php. This website provides an
opportunity for a person who has information about illegal, unethical
or corruption related behavior related to procurement. The person
can report these activities to the corruption watch or audit board.

In the current system, all this data is not yet open to the public. In the
next section we present patterns for opening data.

Case Problem. How could opening up such data, help to reduce
corruption?

Case Solution. In earlier research on the case, we found six types of
patterns for corruption detection, which are presented in Table 2. These
patterns are all based on internal control measures [23].

Evaluation. The patterns show that not only the resulting data should be
opened, but also information about the operation of the administrative
processes and the implemented internal control measures to prevent
corruption should be opened. However, these internal control principles
are not commonly known. Accounting expertise is needed to evaluate

62

which segregations of duties, ought to be met. This puts additional
requirements on the kind of audience that the Palembang authorities are
trying to reach. Without proper guidance, providing such meta-data may
distract users from viewing the actual procurements.

Pattern name Description Categorization
1. Storing and opening

documentation
Opening of documents generated in
several activities

Process data

2. Cross-data
comparison

Comparison of data collected in
different phase to detect discrepancies

Process data

3. Four-eyes-principle Process data, should demonstrate that
decisions are made by at least two
independent persons

Control data

4. Segregations of
Duties

Process data, should demonstrate that
a single individual or department is
not allowed to process a transaction in
its entirety

Control data

5. Authorization Process data, should demonstrate that
only people who are authorized to
approve an activity, have done so

Control data

6. Application controls Opening of data about built in
measures to avoid the making of
mistakes and the availability of alerts
in the system

Control data

Table 2. Opening data, based on patterns to detect corruption

A possible ‘forum’ for this case is the pool of potential vendors. It is

likely that competitors of the vendor who received the procurement
contract, have enough interest to actually analyze the data, and challenge
the local government in case of irregularities. Collectively, the pool of
vendors is large enough to wield some power or influence over the local
government, as they form a substantial portion of the voting population.

The most promising pattern seems to be number 2: cross data
comparison. This may help to identify whether awarded contracts
actually conform to the stated contract requirements, and whether there
are any oddities in awarding behavior.

63

6 Conclusions

Opening up government data to the public, seems a good strategy to try
and fight corruption. The claim is that opening up government data will
somehow improve transparency and accountability. Current examples of
systems that attempt to open up data in the fight against corruption,
therefore make an ad hoc impression. In this paper, we have tried to
provide some theoretical underpinning to these attempts, in two ways.

First, we have used an analogy with fraud, to identify three ways of
reducing fraud or corruption: (1) by reducing opportunities for misuse of
trust, essentially by strengthening the internal controls, (2) by fostering
an environment in which people talk about their problems, before they
become insurmountable, and (3) by stimulating an organizational
culture, in which normative decisions are being discussed and recorded,
establishing consensus on norms and values.

Second, we have used the theory of public accountability of Bovens,
with five necessary conditions for a fruitful accountability relationship.
Based on an analogy with accounting, we derived another four necessary
conditions: reliable reporting (for the actor), and independence, expertise
and power (for the forum). These conditions can be translated into a set
of five requirements for an architecture and governance procedure for
opening up data (Availability, Data selection policies, Representation
standard, Content, Reliability, Relevance) and five requirements
focusing on establishing a critical forum (Mobilize, Access, Analysis,
Challenge and response, Archive and Complaints procedure).

Some of these requirements were discussed in the context of a case
study of an e-procurements system in Palembang, that makes it possible
to open up crucial data about the procurement process. The case shows
that indeed it is crucial to identify a specific forum. This is contrary to
current practice in the open data community, where data is being opened
up for a general public, in the hope they will find some purpose for it
(e.g. hackatons). Lack of a specific audience and purpose for the data
being shared, means in particular, that reliability and relevance are hard
to establish. This may partly explain the current problems with data
quality that are reported for many open data initiatives, e.g. [28].

In the Palembang e-Procurement case, it is likely that the forum will
include vendors, in particular the competitors of those vendors who
received the contract, because they have an incentive to protect their
interests. The case also shows, that it makes sense to open up meta-data,

64

to reveal if the internal controls that ensure reliable reporting, are
effective. However, this will require the forum to involve experts, such
as accountants, who can interpret and evaluate such data.

Future research will have to show whether also the dialogue-related
aspects of the theory are valid in this case.

References

1. Albrecht, S. and M. Romney, Red Flagging Management Fraud: A Validation. Advances in
Accounting, 1986. 3: 323-333.

2. Bertot, J.C., P.T. Jaeger, and J.M. Grimes, Using ICTs to create a culture of transparency:
E-government and social media as openness and anti-corruption tools for societies.
Government information quarterly, 2010. 27(3): 264-271.

3. Bovens, M., Public Accountability, in The Oxford Handbook of Public Management, ferlie,
Editor. 2005: Oxford, United Kingdom.

4. Bovens, M., Analysing and Assessing Accountability: A Conceptual Framework. European
Law Journal, 2007. 13(4): 447-468.

5. Burgemeestre, B., J. Hulstijn, and Y.-H. Tan, Value-based Argumentation for Justifying
Compliance. Artificial Intelligence and Law, 2011. 19(2-3): 149-186.

6. Burgemeestre, B. and J. Hulstijn, Design for the Values of Accountability and Transparency,
in Handbook of Ethics, Values, and Technological Design, J. van den Hoven, P. Vermaas,
and I. van de Poel, Editors. 2015, Springer Verlag: Berlin. 303 -- 333.

7. Clegg, C.W., Sociotechnical principles for system design. Applied Ergonomics, 2000. 31:
463-477.

8. COSO, Internal Control - Integrated Framework. 1992, Committee of Sponsoring
Organizations of the Treadway Commission.

9. Cressey, D.R., The Criminal Violation of Financial Trust. American Sociological Review,
1950. 15(6): 738-743.

10. Day, P. and R. Klein, Accountabilities: Five Public Services. 1987, London: Tavistock.
11. Elia, J., Transparency rights, technology, and trust. Ethics and Information Technology,

2009. 11(2): 145–153.
12. Heidenheimer, A.J., M. Johnston, and V.T. LeVine, Political corruption. New York: Holt,

Rinehart & Winston, 1970. 24: 26-27.
13. Hofstede, G., et al., Measuring Organizational Cultures: A Qualitative and Quantitative

Study. Administrative Science Quarterly, 1990. 35(2): 286-316.
14. Iglesias, D., Open Data and the Fight Against Corruption in Brazil. 2017, Transparency

International: Berlin.
15. Janssen, M. and A. Zuiderwijk. Open data and transformational government. in

Transforming Government Workshop. Brunel University, United Kingdom. 2012.
16. Kim, S., H.J. Kim, and H. Lee, An institutional analysis of an e-government system for anti-

corruption: The case of OPEN. Government Information Quarterly, 2009. 26: 42-50.
17. Knechel, W., S. Salterio, and B. Ballou, Auditing: Assurance and Risk. 3 ed. 2007: Thomson

Learning, Cincinatti.
18. Lankhorst, M., ed. Enterprise Architecture at Work: Modelling, Communication and

Analysis. 2009, Springer Verlag: Berlin.
19. Merchant, K.A., Modern Management Control Systems, text & cases. 1998, New Jersey:

Prentice Hall.

65

20. Newburn, T. and B. Webb, Understanding and preventing police corruption: lessons from
the literature. 1999: Home Office London.

21. Nye, J.S., Corruption and political development: A cost-benefit analysis. American political
science review, 1967. 61(02): 417-427.

22. Pettigrew, A.M., On studying organizational cultures. Administrative Science Quarterly,
1979. 2(4): 570-581.

23. Romney, M.B. and P.J. Steinbart, Accounting Information Systems 13th ed. 2015: Pearson
Education.

24. Soltani, B., The Anatomy of Corporate Fraud: A Comparative Analysis of High Profile
American and European Corporate Scandals. Journal of Business Ethics, 2014. 120(2): 251–
274.

25. Sousa, L.d., Open government and the use of ICT to reduce corruption risks. PPT, 2016.
26. UNDP, T.C., Transforming Lives: Accelerating Human Development in the Asia and the

Pacific. 2008, New Delhi: Macmillan.
27. Zuiderwijk, A., et al., Socio-technical Impediments of Open Data. Electronic Journal of e-

Government, 2012. 10(2): 156 - 172.
28. Zuiderwijk, A. and M. Janssen, Open data policies, their implementation and impact: A

comparison framework. Government Information Quarterly, 2014. 31(1): 17-29.

66

Classifying the Autonomy and Morality of
Artificial Agents

Sjur Dyrkolbotn1, Truls Pedersen2, and Marija Slavkovik2

1 Høgskulen p̊a Vestlandet sdy@hvl.no
2 Universitetet i Bergen, {truls.pedersen, marija.slavkovik}@uib.no

Abstract. As we outsource more of our decisions and activities to ma-
chines with various degrees of autonomy, the question of clarifying the
moral and legal status of their autonomous behaviour arises. There is
also an ongoing discussion on whether artificial agents can ever be liable
for their actions or become moral agents. Both in law and ethics, the
concept of liability is tightly connected with the concept of ability. But
as we work to develop moral machines, we also push the boundaries of
existing categories of ethical competency and autonomy. This makes the
question of responsibility particularly difficult. Although new classifica-
tion schemes for ethical behaviour and autonomy have been discussed,
these need to be worked out in far more detail. Here we address some
issues with existing proposals, highlighting especially the link between
ethical competency and autonomy, and the problem of anchoring classi-
fications in an operational understanding of what we mean by a moral
theory.

1 Introduction

We progressively outsource more and more of our decision-making problems
to artificial intelligent agents such as unmanned vehicles, intelligent assisted
living machines, news aggregation agents, dynamic pricing agents, stock-trading
agents. With this transfer of decision-making also comes a transfer of power. The
decisions made by these artificial agents will impact us both as individuals and
as a society. With power to impact lives, there comes the natural requirement
that artificial agents should respect and follow the norms of society. To this end,
the field of machine ethics is being developed.

Machine ethics, also know as artificial morality, is concerned with the prob-
lem of enabling artificial agents with ethical3 behaviour [3]. It remains an open
debate whether an artificial agent can ever be a moral agent [11]. What is clear
is that as artificial agents become part of our society, we will need to formu-
late new ethical and legal principles regarding their behaviour. This is already

3 An alternative terminology is to speak of moral agency, as in the term “moral ma-
chines”. However, since many philosophers regard morality as a reflection of moral
personhood, we prefer to speak of “ethical” agency here, to stress that we are re-
ferring to a special kind of rule-guided behaviour, not the (distant) prospect of full
moral personhood for machines.

67

witnessed by increased interest in developing regulations for the operation of
automated systems e.g., [6, 7]. In practice, it is clear that some expectations of
ethical behaviour have to be met in order for artificial agents to be successfully
integrated in society.

In law, there is a long tradition of establishing different categories of legal per-
sons depending on various characteristics of such persons. Children have always
had a different legal status than adults; slaves belonged to a different category
than their owners; men did not have the same rights and duties as women (and
vice versa); and a barbarian was not the same kind of legal person as a Roman.

Today, many legal distinctions traditionally made among adult humans have
disappeared, partly due to a new principle of non-discrimination, quite unheard
of historically speaking. However, some distinctions between humans are still
made, e.g., the distinction between adult and child, and the distinction between
someone of sound mind and someone with a severe mental illness.

Artificial agents are not like humans, they are tools. Hence, the idea of cate-
gorising them and discriminating between them for the purposes of ethical and
legal reasoning seems unproblematic. In fact, we believe it is necessary to dis-
criminate, in order to ensure congruence between the rules we put in place and
the technology that they are meant to regulate. We need to manage expecta-
tions, to ensure that our approach to artificial agents in ethics and law reflects
the actual capabilities of these tools.

This raises a classification problem: how do we group artificial agents together
based on their capabilities, so that we can differentiate between different kinds of
agents when reasoning about them in law and ethics? In the following, we address
this issue, focusing on how to relate the degree of autonomy with the ethical
competency of an artificial agent. These two metrics are both very important;
in order to formulate reasonable expectations, we should know how autonomous
an agent is, and how capable it is at acting ethically. Our core argument is
that current approaches to measuring autonomy and ethical competence need
to be refined in a way that acknowledges the link between autonomy and ethical
competency.

When considering how ethical behaviour can be engineered, Wallach and
Allen [19, Chapter 2] sketch a path for using current technology to develop ar-
tificial moral agents. They use the concept “sensitivity to values” to avoid the
philosophical challenge of defining precisely what counts as agency and what
counts as an ethical theory. Furthermore, they recognise a range of ethical “abil-
ities” starting with operational morality at one end of the spectrum, going via
functional morality to responsible moral agency at the other. They argue that
the development of an artificial moral agents requires coordinated development
of autonomy and sensitivity to values. We take this idea further by proposing
that we should actively seek to classify agents in terms of how their autonomy
and their ethical competency is coordinated.

There are three possible paths we could taken when attempting to imple-
ment the idea of relating autonomy to ethical competency. Firstly, we could
ask computer science to deliver more detailed classifications. This would lead to

68

technology-specific metrics, whereby computer scientist attempt to describe in
further detail how different kinds of artificial intelligence can be said to behave
autonomously and ethically. The challenge would be to make such explanations
intelligible to regulators, lawyers and other non-experts, in a way that bridges
the gap between computer science, law and ethics.

Secondly, we could ask regulators to come up with more fine-grained classi-
fications. This would probably lead to a taxonomy that starts by categorising
artificial agents in terms of their purpose and intended use. The regulator would
then be able to deliver more fine-grained definitions of autonomy and ethical be-
haviour for different classes of artificial agents, in terms of how they “normally”
operate. The challenge would be to ensure that the resulting classifications make
sense from a computer science perspective, so that our purpose-specific defini-
tions of autonomy and ethical capability reflect technological realities.

Thirdly, it would be possible to make the classification an issue for adju-
dication, so that the status of different kinds of artificial agents can be made
progressively more fine-grained through administrative practice and case law.
The challenge then is to come up with suitable reasoning principles that adju-
dicators can use when assessing different types of artificial agents. Furthermore,
this requires us to work with a pluralistic concept of what counts as a moral the-
ory, allowing substantive moral and legal judgements about machine behaviour
to be made in concrete cases, not in advance by the computer scientists or the
philosophers. Specifically, there should be a difference between what counts as
ethical competency – the ability to “understand” ethics – and what counts as
objectively good behaviour in a given context.

In the following, we argue that a combination of the second and third option
is the right way forward. While it is crucial that computer science continues
working on the challenge of developing machines that behave ethically, it is
equally important that the legal and ethical classifications we use to analyse such
machines are independently justifiable in legal and ethical terms. For this reason,
the input from computer science should be filtered through an adjudicatory
process, where the role of the computer scientist is to serve as an expert witness,
not to usurp the role of the regulator and the judge. To do this, we need reliable
categories for reasoning about the ability of machines, which keep separate the
question of ability from the question of goodness.

This paper is structured as follows. We begin with discussing the possible
moral agency of autonomous systems. In Section 2, we introduce the best known,
and to our knowledge only, classifications of moral agency for non-human agents
proposed by Moor in [15]. In Section 3, we then discuss the shortcomings of this
classification and the relevance of considering autonomy together with moral
ability when considering machine ethics. In Section 4, we discuss existing levels
of autonomy for agents and machines, before pointing out some shortcomings
and proposing an improved autonomy scale. In Section 5, we go back to Moor’s
classification and outline ways in which it can be made more precise. Related
work is discussed continuously throughout the paper.

69

2 Levels of ethical agency

The origin of the idea that different kinds of ethical behaviour can be expected
from different agents can be traced back to Moor [15]. Moor distinguishes four
different types of ethical agents: ethical impact agents, implicit ethical agents,
explicit ethical agents, and full ethical agents. We briefly give the definitions of
these categories.

Ethical impact agents are agents who do not themselves have, within their
operational parameters, the ability to commit unethical actions. However, the
existence of the agents themselves in their environment has an ethical impact on
society. There are many examples of an ethical impact agent. A search engine
can be seen as an ethical impact agent. By ranking search results to a query
it can promote one world view over another. The example that Moor gives in
[15] is that of a robot camel jokey that replaced slave children in this task, thus
ameliorating, if not removing, the practice of slavery for this purpose in the
United Arab Emirates and Qatar.

Implicit ethical agents are agents whose actions are constrained, by their
developer, in such a way that no unethical actions are possible. The agents
themselves have no “understanding”, under any interpretation of the concept, of
what is “good” or “bad”. An example of an implicit ethical agent is an unmanned
vehicle paired with Arkin’s ethical governor [4]. Another example of an implicit
ethical agent can be found in [8]. These examples have constraints that remove
unethical or less ethical actions from the pool of actions the agents can take.
A much simple example that can also be considered an implicit ethical agent
is a robotic floor cleaner, or a lawn mower, who have their capability to hurt
living beings removed altogether by design – they do not have the power to
inadvertently harm humans, animals or property in a significant way.

Explicit ethical agents are those that are explicitly programmed to discern
between “ethical” and “unethical” decisions. Both bottom-up and top-down ap-
proaches [20] can be used to develop explicit ethical agents. Under a bottom-up
approach the agents themselves would have “learned” to classify ethical decisions
using some heuristic, as in [1]. Under a top-down approach the agent would be
given a subroutine that calculates this decision property, as in [13].

Lastly, full ethical agents are agents that can make explicit ethical judgements
and can reasonably justify them. Humans are considered to be the only known
full ethical agents and it has been argued that artificial agents can never be
full ethical agents [15]. This is because full ethical agency requires not only
ethical reasoning, but also an array of abilities we do not fully understand with
consciousness, intentionality and an ability to be personally responsible (in an
ethical sense) being among the most frequently mentioned in this role.

To the best of our knowledge, apart from the work of [15], no other effort in
categorising agents with respect to their ethical decision making abilities exists.
However, Moor’s classification is problematic, as we will now show.

70

3 Problems with Moor’s classification

First, it should be noted that the classification is based on looking at the internal
logic of the machine. The distinctions described above are all defined in terms of
how the machines reason, not in terms of how they behave. This is a challeng-
ing approach to defining ethical competency, since it requires us to anchor our
judgements in an analysis of the software code and hardware that generates the
behaviour of the machine.

While understanding the code of complex software systems can be difficult,
what makes this really tricky is that we need to relate our understanding of
the code to an understanding of ethical concepts. For instance, to determine
whether a search engine with a filter blocking unethical content is an implicit
ethical agent or an explicit ethical agent, we need to know how the content
filter is implemented. Is it accurate to say that the system has been “explicitly
programmed to discern” between ethical and unethical content? Or should the
filter be described as a constraint on behaviour imposed by the developer?

If all we know is that the search engine has a feature that is supposed to
block unethical search results, we could not hope to answer this question by
simply testing the search engine. We would have to “peek inside” to see what
kind of logic is used to filter away unwanted content. Assuming we have access
to this logic, how do we interpret it for the purposes of ethical classification?

If the search engine filters content by checking results against a database of
“forbidden” sites, we would probably be inclined to say that it is not explicitly
ethical. But what if the filter maintains a dynamic list of attributes that char-
acterise forbidden sites, blocking all sites that contain a sufficient number of the
same attributes? Would such a rudimentary mechanism constitute evidence that
the system has ethical reasoning capabilities? The computer scientist alone can-
not provide a conclusive answer, since the answer will depend on what exactly
we mean by explicit ethical reasoning in this particular context.

A preliminary problem that must be resolved before we can say much more
about this issue arises from the inherent ambiguity of the term “ethical”. There
are many different ethical theories, according to which ethical reasoning takes
different forms. If we are utilitarian, we might think that utility maximising is
a form of ethical reasoning. If so, many machines would be prima facie capable
of ethical reasoning, in so far as they can be said to maximise utility functions.
However, if we believe in a deontological theory of ethics, we are likely to protest
that ethical reasoning implies deontic logic, so that a machine cannot be an
explicit ethical agent unless it reasons according to (ethical) rules. So which
ethical theory should we choose? If by “ethical reasoning” we mean reasoning in
accordance with a specific ethical theory, we first need to answer this question.

However, if we try to answer, deeper challenges begin to take shape: what
exactly does ethical reasoning mean under different ethical theories? As long as
ethical theories are not formalised, it will be exceedingly hard to answer this
question in such a way that it warrants the conclusion that an agent is explicitly
ethical. If we take ethical theories seriously, we are soon forced to acknowledge
that the machines we have today, and are likely to have in the near future, are

71

at most implicit ethical agents. On the other hand, if we decide that we need
to relax the definition of what counts as explicit ethical reasoning, it is unclear
how to do so in a way that maintains a meaningful distinction between explicit
and implicit ethical agents. This is a regulatory problem that should be decided
in a democratically legitimate way.

To illustrate these claims, consider utilitarianism. Obviously, being able to
maximise utilities is neither necessary nor sufficient to qualify as an explicitly
ethical reasoner under philosophical theories of utilitarianism. A calculator can
be said to maximise the utility associated with correct arithmetic – with wide-
reaching practical and ethical consequences – but it hardly engages in ethical
reasoning in any meaningful sense. The same can be said of a machine that is
given a table of numbers associated with possible outcomes and asked to calculate
the course of action that will maximise the utility of the resulting outcome. Even
if the machine is able to do this, it is quite a stretch to say that it is an explicitly
ethical agent in the sense of utilitarianism. To a Mill or a Benthem [10] such a
machine would be regarded as an advanced calculator, not an ethical reasoner.
By contrast, a human agent that is very bad at calculating and always makes
the wrong decision might still be an explicit ethical reasoner, provided that the
agent attempts to apply utilitarian principles to reach conclusions.

The important thing to note is that the artificial agent, unlike the human,
cannot be said to control or even understand its own utility function. For this
reason alone, one seems entitled to conclude that as far as actual utilitarianism
is concerned, the artificial agent fails to reason explicitly with ethical principles,
despite its calculating prowess. It is not sufficiently autonomous. From this, we
can already draw a rather pessimistic conclusion: the ethical governor approaches
such as that by Arkin et al. [4] does not meet Moor’s criteria for being an explicit
ethical agent with respect to utilitarianism (for other ethical theories, it is even
more obvious that the governor is not explicitly ethical). The ethical governor
is nothing more than a subroutine that makes predications and maximises func-
tions. It has no understanding, in any sense of the word, that these functions
happen to encode a form of moral utility.

The same conclusion must be drawn even if the utility function is inferred by
the agent, as long as this inference is not itself based on explicitly ethical reason-
ing. Coming up with a utility function is not hard, but to do so in an explicitly
ethical manner is a real challenge. To illustrate the distinction, consider how
animals reason about their environment. Clearly, they are capable of maximis-
ing utilities that they themselves have inferred, e.g., based on the availability of
different food types and potential sexual partners. Some animals can then also
be trained to behave ethically, by exploiting precisely their ability to infer and
maximise utilities. Even so, a Mill and a Benthem, would no doubt deny that
animals are capable of explicit ethical reasoning based on utilitarianism.4

From this observation follows another pessimistic conclusion: the agents de-
signed by Anderson et al. [1–3], while capable of inferring ethical principles

4 Someone like Kant [12] might perhaps have said it, but then as an insult, purporting
to show that utilitarianism is no theory of ethics at all.

72

inductively, are still not explicitly ethical according to utilitarianism (or any
other substantive ethical theory). In order for these agents to fulfil Moor’s cri-
teria with respect to mainstream utilitarianism, inductive programming as such
would have to be explicitly ethical, which is absurd.

These two examples indicate what we believe to be the general picture: if
we look to actual ethical theories when trying to apply Moor’s criteria, explicit
ethical agents will be in very short supply. Indeed, taking ethics as our point
of departure would force us to argue extensively about whether there can be a
distinction at all between explicit and full ethical agents. Most ethicists would
not be so easily convinced. But if the possibility of a distinction is not clear as a
matter of principle, how are we supposed to apply Moor’s definition in practice?

A possible answer is to stop looking for a specific theory of ethics that “cor-
responds” in some way to the reasoning of the artificial agent we are analysing.
Instead, we may ask the much more general question: is the agent behaving in a
manner consistent with moral reasoning? Now the question is not to determine
whether a given agent is able to reason as a utilitarian or a virtue ethicist, but
whether the agent satisfies minimal properties we would expect any moral rea-
soner to satisfy, irrespectively of the moral theory they follow (if any). Something
like this is also what we mean by ability in law and ethics: after all, you do not
have to be utilitarian to be condemned by one.

However, Moor’s classification remains problematic under this interpretation,
since it is then too vague about what is required by the agent. If looking to
specific ethical theories is not a way of filling in the blanks, we need to be
more precise about what the different categories entail. We return to this in
Section 5, where we offer a preliminary formalisation of constraints associated
with Moor’s categories. First, we consider the question of measuring autonomy
in some further depth.

4 Levels of autonomy

Before moving on to refining the Moor scale of ethical agency we fist discuss
the issue of autonomy. With respect to defining autonomy, there is somewhat
more work available. The UK Royal Academy of Engineering defines [16] four
categories of autonomous systems with respect to what kind of user input the
system needs to operate and how much control the user has over the system.
The following are their different grades of control:

– Controlled systems are systems in which the user has full or partial control
of the operations of the system. An example of such a system is an ordinary
car.

– Supervised systems are systems for which an operator specifies operation
which is then executed by the system without the operators perpetual con-
trol. An example of such a system is a programmed lathe, industrial machin-
ery or a household washing machine.

73

– Automatic systems are those that are able to carry out fixed functions from
start to finish perpetually without any intervention from the user or an
operator. An example of such a system is an elevator or an automated train.

– An autonomous system is one that is adaptive to its environment, can learn
and can make ‘decisions’. An example of such a system is perhaps NASA’s
Mars rover Curiosity.

The [16] considers all four categories continuous, as in the autonomous sys-
tems can fall in between the described categories. The precise relationship be-
tween a category of autonomy and the distribution of liability, or the expectation
of ethical behaviour is not made in the report.

The International Society of Automotive Engineers’5 focuses on autonomous
road land vehicles in particular and outlines six levels of autonomy for this type
of systems [17]. The purpose of this taxonomy is to serve as general guidelines
for identifying the level of technological advancement of a vehicle, which can
then be used to identify correct insurance policy for the vehicle, or settle other
legal issue including liability during accidents.

The six categories of land vehicles with respect to autonomy are:

– Level 0 is the category of vehicles in which the human driver perpetually
controls all the operations of the vehicle.

– Level 1 is the category of vehicles where some specific functions, like steering
or accelerating, can be done without the supervision of the driver.

– Level 2 is the category of vehicles where the “driver is disengaged from
physically operating the vehicle by having his or her hands off the steering
wheel and foot off pedal at the same time,” according to the [17]. The driver
has a responsibility to take control back from the vehicle if needed.

– Level 3 is the category of vehicles where drivers are still necessary to be in po-
sition of control of the vehicle, but are able to completely shift “safety-critical
functions” to the vehicle, under certain traffic or environmental conditions.

– Level 4 is the category of vehicles which are what we mean when we say “fully
autonomous”. These vehicles, within predetermined driving conditions, are
“designed to perform all safety-critical driving functions and monitor road-
way conditions for an entire trip.”[17].

– Level 5 is the category of vehicles which are fully autonomous systems that
perform on par with a human driver, including being able to handle all
driving scenarios.

There is a clear correlation between the categories outlined in [16] and those
outlined in [17]. Level 0 corresponds to controlled systems. Level 1 corresponds to
supervised systems and Levels 2 and 3 refine the category of automatic systems.
Level 4 corresponds to the category of autonomous systems. Level 5 does not have
a corresponding category in the [16] scale since the latter does not consider the
possibility of systems that are with respect to autonomy capability comparable
to humans. An additional reason is that perhaps, it is not straightforward to
define Level 5 systems for when the system is not limited to vehicles.

5 http://www.sae.org/

74

Interestingly, both scales define degrees of autonomy based on what functions
the autonomous system is able to perform and how the system is meant to be
used. There is hardly any reference to the intrinsic properties of the system and
its agency. All that matters is its behaviour. This is a marked contrast with
Moor’s definition. It also means that we face different kinds of problems when
trying to be more precise about what the definitions actually say.

For instance, it is beside the point to complain that the definition of a “fully
autonomous car” provided by the International Association of Automotive Engi-
neers is incorrect because it does not match how philosophers define autonomy.
The definition makes no appeal to any ethical or philosophical concept; unlike
Moor’s definition, it is clear from the very start that we are talking about a
notion of autonomy that is simply different from that found in philosophy and
social science.6

This does not mean that the definition is without (philosophical) problems.
For one, we notice that the notion of a Level 5 autonomous car is defined using a
special case of the Turing test[18]; if the car behaves “on par” with a human, it
is to be regarded as Level 5. So what about a car that behaves much better than
any human, and noticeably so. Is it Level 4 only? Consider, furthermore, a car
that is remote controlled by someone not in the car. Is it Level 5? Probably not.
But what about a car that works by copying the behaviour of (human) model
drivers that have driven on the same road, with the same intended destination,
under comparable driving conditions. Could it be Level 5 in principle? Would it
be Level 4 in practice, if we applied the definition to a specially built road where
only autonomous cars are allowed to drive?

Or consider a car with a complex machine learning algorithm, capable of
passing the general Turing test when engaging the driver in conversation. Assume
that the car is still rather bad at driving, so the human has to be prepared to
take back control at any time. Is this car only Level 2? If it crashes, should we
treat it as any other Level 2 car?

As these problems indicate, it is not obvious what ethical and legal implica-
tions – if any – we can derive from the fact that a car possesses a certain level
of autonomy, according to the scale above. Even with a Level 5 car, the philoso-
phers would be entitled to complain that we still cannot draw any important
conclusions; it does not automatically follow, for instance, that the machine has
human-level understanding or intelligence. Would it really help us to know that
some artificial driver performs “on par” with a human? It certainly does not
follow that we would let this agent drive us around town.

Indeed, imagine a situation where autonomous cars cause as many traffic
deaths every year as humans do today. The public would find it intolerable;
they would feel entitled to expect more from a driver manufactured by a large
corporation than an imperfect human like themselves [14]. Moreover, the legal
framework is not ready for cars that kill people; before “fully autonomous” can
ever become commercially viable, new regulation needs to be put in place. To

6 Philosophers and social scientists who still complain should be told not to hog the
English language!

75

do so, we need a definition of autonomy that is related to a corresponding notion
of ethical competency.

It seems that autonomy – as used in the classification systems above – is not
a property of machines as such, but of their behaviour. Hence, a scale based on
what we can or should be able to predict about machine behaviour could be a
good place to start when attempting to improve on the classifications provided
above. While the following categorisation might not be very useful on its own,
we believe it has considerable potential when combined with a better developed
scale of ethical competency. Specifically, it seems useful to pinpoint where a
morally salient decision belongs on the following scale.

– Dependence or level 1 autonomy: The behaviour of the system was predicted
by someone with a capacity to intervene.

– Proxy or level 2 autonomy: The behaviour of the system should have been
predicted by someone with a capacity to intervene.

– Representation or level 3 autonomy: The behaviour of the system could have
been predicted by someone with a capacity to intervene.

– Legal personality or level 4 autonomy: The behaviour of the system cannot
be explained only in terms of the systems design and environment. This are
systems whose behaviour could not have been predicted by anyone with a
capacity to intervene.

– Legal immunity or level -1: The behaviour of the system counts as evidence of
a defect. Namely, the behaviour of the system could not have been predicted
by the system itself, or the machine did not have a capacity to intervene.

To put this scale to use, imagine that we have determined the level of ethical
competency of the machine as such, namely its ability in principle to reason with
a moral theory. This alone is not a good guide when attempting to classify a
given behaviour B (represented, perhaps, as a choice sequence). As illustrated by
the conversational car discussed above, a machine with excellent moral reasoning
capabilities might still behave according to some hard-coded constraint in a given
situation. Hence, when judging B, we should also look at the degree of autonomy
displayed by B, which we would address using the scale above. The overall
classification of behaviour B could then take the form min{i, j} where i and j
is the degree of ethical competence and the degree of autonomy respectively. To
be sure, more subtle proposals might be needed, but as a first pass at a joint
classification scheme we believe this to be a good start. In the next section, we
return to the problem of refining Moor’s classification, by providing a preliminary
formalisation of some constraints that could help clarify the meaning of the
different levels.

5 Formalising Moor

We will focus on formalising constraints that address the weakest aspect of
Moor’s own informal description, namely the ambiguity of what counts as a

76

moral theory when we study machine behaviour. When is the autonomous be-
haviour of the machine influenced by genuinely moral considerations? To distin-
guish between implicitly and explicitly ethical machines, we need some way of
answering this question.

The naive approach is to simply take the developer’s word for it: if some
complex piece of software is labelled as an “ethical inference engine” or the
like, we conclude that the agent implementing this software is at least explicitly
ethical. For obvious reasons, this approach is too naive: we need some way of
independently verifying whether a given agent is able to behave autonomously in
accordance with a moral theory. At the same time, it seems prudent to remain
agnostic about which moral theory agents should apply in order to count as
ethical: we would not like a classification system that requires us to settle ancient
debates in ethics before we can put it to practical use. In fact, for many purposes,
we will not even need to know which moral theory guides the behaviour of the
machine: for the question of liability, for instance, it might well suffice to know
whether some agent engages autonomously in reasoning that should be classified
as moral reasoning.

A machine behaving according to a highly flawed moral theory – or even an
immoral theory – should still count as explicitly ethical, provided we are justified
in saying that the machine engages in genuinely moral considerations. Moreover,
if the agent’s reasoning can be so described, it might bring the liability question
in a new light: depending on the level of autonomy involved, the blame might
reside either with the company responsible for the ethical reasoning component
(as opposed to, say, the manufacturer) or – possibly – the agent itself. In practice,
both intellectual property protection and technological opacity might prevent us
from effectively determining exactly what moral theory the machine applies.
Still, we would like to know if the agent is behaving in a way consistent with the
assumption that it is explicitly ethical.

Hence, what we need to define more precisely is not the content of any given
moral theory, but the behavioural signature of such theories. By this we mean
those distinguishing features of agent behaviour that we agree to regard as ev-
idence of the claim that the machine engages in moral reasoning (as opposed
to just having a moral impact, or being prevented by design from doing certain
(im)moral things).

However, if we evaluate only the behaviour of the machine, without ask-
ing how the machine came to behave in a certain way, it seems clear that our
decision-making in this regard will remain somewhat arbitrary. If a self-driving
car is programmed to avoid crashing into people whenever possible, without
exception, we should not conclude that the car engages in moral reasoning ac-
cording to which it is right to jeopardise the life of the passenger to save that of
a pedestrian. The car is simply responding in a deterministic fashion to a piece
of code that certainly has a moral impact, but without giving rise any genuine
moral consideration or calculation on part of the machine.

In general, any finite number of behavioural observations can be consistent
with any number of distinct moral theories. Or, to put it differently, an agent

77

might well appear to behave according to some moral theory, without actually
implementing that moral theory (neither implicitly nor explicitly). Moral imita-
tion, one might call this, and it is likely to be predominant, especially in the early
phase of machine ethics. At present, most engineering work in this field arguably
tries to make machines appear ethical, without worrying too much about what
moral theory – if any – their programs correspond to (hand-waving references
to “utilitarianism” notwithstanding).

From a theoretical point of view, it is worth noting that it could even occur
randomly: just as a bunch of monkeys randomly slamming at typewriters will
eventually compose Shakespearean sonnets, machines might well come to behave
in accordance with some moral theory, just by behaving randomly. This is im-
portant, because it highlights how moral imitation can occur also when it is not
intended by design, e.g., because some machine learning algorithm eventually
arrives at an optimisation that coincides with the provisions of virtue ethics. In
such a case, we might still want to deny that the machine is virtuous, but it
would not be obvious how to justify such a denial (the Turing test, in its original
formulation, illustrates the point).

This brings us to the core idea behind our formalisation, which is also closely
connected to an observation made by Dietrich and List[9], according to whom
moral theories are under-determined by what they call “deontic content”. Specif-
ically, several distinct moral theories can provide the same action recommenda-
tions in the same setting, for different reasons. Conversely, therefore, the ability
to provide moral justifications for actions is not sufficient for explicit ethical com-
petence. Reason-giving, important as it is, should not be regarded as evidence
of genuinely moral decision-making.

At this point we should mention the work of [1] where the effects of the
inability to verify the behaviour of an autonomous system whose choices are
determined using a machine learning approach can be somewhat mitigated by
having the system provide reasons for its behaviour and eventually be evaluated
against human ethicists using a Moral Turing Test. Arnold and Scheutz [5], on
the other hand, argue against the usefulness of Moral Turing Tests in determining
moral competency in artificial agents.

If the machine has an advanced (or deceptive) rationalisation engine, it might
be able to provide moral “reasons” for most or all of its actions, even though
the reason-giving fails to accurately describe or uniquely explain the behaviour
of the machine. Hence, examining the quality of moral reasons is not sufficient
to determine the ethical competency of a machine. In fact, it seems beside the
point to ask for moral reasons in the first place. What matters is the causal chain
that produces a certain behaviour, not the rationalisations provided afterwards.
If the latter is not a trustworthy guide to the former – which by deontic under-
determination it is not – then reasons are no guide to us at all.

In its place, we propose to focus on two key elements: (1) properties that
action-recommendation functions have to satisfy in order to count as implemen-
tations of moral theories and (2) the degree of autonomy of the machine when
it makes a decision. The idea is that we need to use (1) and (2) in combina-

78

tion to classify agents according to Moor’s scale. For instance, while a search
engine might be blocking harmful content according to a moral theory, it is not
an explicitly ethical agent if it makes its blocking decisions with an insufficient
degree of autonomy. By contrast, an advanced machine learning algorithm that
is highly autonomous might be nothing more than an ethical impact agent, in
view of the fact that it fails to reason with any action-recommendation function
that qualifies as an implementation of a moral theory.

In this paper, we will not attempt to formalise what we mean by “autonomy”.
The task of doing this is important, but exceedingly difficult. For the time being,
we will make do with the informal classification schemes used by engineering
professionals, who focus on the operation of the machine in question: the more
independent the machine is when it operates normally, the more autonomous it
is said to be. For the purposes of legal (and ethical) reasoning, we believe our
categorisation at the end of the previous section captures the essence of such
an informal and behavioural understanding of autonomy. It might suffice for the
time being.

When it comes to (1) on the other hand – describing what counts as a moral
theory – we believe a formalisation is in order. To this end, assume given a set A
of possible actions with relations ∼α,∼β⊆ A×A such that if x ∼X y then x and
y are regarded as ethically equivalent by X. The idea is that α is the agent’s own
perspective (or, in practice, that of its developer) while β is the objective notion
of ethical identity. That is, we let β be a parameter representing a background
theory of ethics. Importantly, we do not believe it is possible to classify agents
unless we assume such a background theory, which is only a parameter to the
computer scientists.

Furthermore, we assume given predicates Gα, Gβ ⊆ A of actions that are
regarded as permissible actions by α (subjective) and β (objective background
theory) respectively. We also define the set C ⊆ A as the set of actions that
count as evidence of a malfunction – if the agent performs x ∈ C it means that
the agent does not work as the manufacturer has promised (the set might be
dynamic – C is whatever we can explain in terms of blaming the manufacturer,
in a given situation).

We assume that Gβ satisfies the following properties.

(a) ∀x ∈ Gβ : ∀y ∈ A : x ∼β y ⇒ y ∈ Gβ
(b) C ∩Gβ = ∅ (1)

These properties encode what we expect of an ethical theory at this level of
abstraction: all actions that are equally good as the permitted actions must also
be permitted and no action that is permitted will count as a defective action
(i.e., the promise of the manufacturer gives rise to an objective moral obligation:
a defective action is by definition not permitted, objectively speaking).

We can now formalise our expectations of machines at different levels of
Moor’s scale, in terms of properties of its decision-making heuristic at a very
high level of abstraction. Instead of focusing on the content of moral theories, or
the term “ethical”, we focus on the operative word “discern”, which is also used

79

in the definition of an explicitly ethical agent. Acknowledging that what counts
as an ethical theory is not something we can define precisely, the requirements we
stipulate should instead focus on the ability of the agent to faithfully distinguish
between actions in a manner that reflects moral discernment.

The expectations we formalise pertain to properties of a decision-making
heuristic over the entire space of possible actions (at a given state). We are
not asking why the machine did this or that, or what it would have done if
the scenario was so and so. Instead, we are asking about the manner in which it
categorises its space of possible options. If no such categorisation can be distilled
from the machine, we assume α = β and Gα = ∅.
Definition 1. Given any machine M , if M is classified at level Li in Moor’s
scale, the following must hold:

– Level L1 (ethical impact agent):

(a) ∅ ⊂ Gβ ⊂ A
(b) ∀x, y ∈ A : x ∼α y
(3) A = Gα

– Level L2 (implicit ethical agent):

(a) ∀x, y ∈ Gα : x ∼β y
(b) A \Gα = C
(c) Gα ⊆ Gβ

– Levels L3 and L4 (explicit and full ethical agents):

(a) ∀x ∈ Gα : ∀y ∈ A : x ∼β y ⇒ y ∈ Gα
(b) ∀x ∈ Gβ : ∀y ∈ A : x ∼α y ⇒ y ∈ Gβ
(c) (A \Gβ) \ C 6= ∅

Intuitively, the definition says that if M is an ethical impact agent, then
not all of its available actions are permitted and not all of its actions are for-
bidden, objectively speaking. The agent must have the potential of making an
ethical impact, not just indirectly by having been built, but also through its own
decision-making. At the same time, ethical impact agents must be completely
indifferent as to the moral properties of the choices they make: all actions must
be subjectively permitted as far as the machine is concerned.

An implicit ethical agent, by contrast, must pick out as subjectively permit-
ted a subset of the actions that are objectively permitted. Moreover, it must be
unable to discern explicitly between actions based on their moral qualities: all
subjectively permitted actions must be morally equivalent, objectively speaking.
The agent must not be able to evaluate two morally distinguishable actions and
regard them both as permitted in view of an informative moral theory. Further-
more, any action that is not morally permitted must be regarded as evidence of
a defect, i.e., an agent can be regarded as implicitly ethical only if the manufac-
turer promises that no unethical action is possible, according to the parameter
theory β.

80

Finally, an explicit ethical agent is an agent that discerns between actions on
the basis of their objective moral qualities. By (a), if some action is permitted
then all actions morally equivalent to it are also permitted. Moreover, by (b), if
two actions are morally equivalent, subjectively speaking, then they are either
both permitted or both forbidden, objectively speaking. In addition, the machine
has the ability – physically speaking – to perform actions that are neither good,
objectively speaking, nor evidence of a defect. The machine itself might come to
regard such actions as permitted, e.g., if it starts behaving explicitly immorally.

Admittedly, the classification above is quite preliminary. However, we believe
it focuses on a key aspect of moral competency, namely the ability to group
together actions based on their status according to some moral theory. If the
moral theory is a parameter and we acknowledge that engaging in immoral
behaviour is a way of discerning between good and bad, it seems we are left
with something like the definition above, which indicates that if a machine is
explicitly ethical with respect to theory β then it must reason in accordance
with the notion of moral equivalence of β.

It is noteworthy that the distinction between explicit and full ethical agents
is not addressed. This distinction must be drawn by looking at the degree of
autonomy of the machine. More generally, the properties identified in Definition
1 can be used in conjunction with a measure of autonomy, to get a better metric
of moral competency. The point of the properties we give is that they allow us to
rule out that a machine has been able to attain a certain level of moral compe-
tency. The conditions appear necessary, but not sufficient, for the corresponding
level of ethical competency they address. However, if a machine behaves in a
manner that is difficult to predict (indicating a high degree of autonomy), yet
still conforms to the conditions of explicit ethical reasoning detailed in Definition
1 it seems we have a much better basis for imputing moral and legal responsibil-
ity on this agent than if either of the two characteristics are missing. We conclude
with the following simple proposition, which shows that our definition suffices
to determine an exclusive hierarchy of properties that a machine might satisfy.

Proposition 1. Given any machine M , we have the following.

1. If M is implicitly ethical then M is not an ethical impact agent.
2. If M is explicitly ethical then M is neither an implicit ethical agent nor an

ethical impact agent.

Proof. (1) Assume M is implicitly ethical and assume towards contradiction
that it is also an ethical impact agent. Then ∅ ⊂ Gβ ⊂ A and A = Gα. Let
x ∈ Gβ with y ∈ A \Gβ . Since M is implicitly ethical, ∀x, y ∈ Gα : x ∼β y. But
then by Equation 1 (1), y ∈ Gβ , contradiction. (2) Assume that M is explicitly
ethical. We first show (I) M is not an ethical impact agent. Assume that M
satisfies conditions (a) and (b) for ethical impact agents, i.e., ∅ ⊂ Gβ ⊂ A and
∀x, y ∈ A : x ∼α y. This contradicts that M is explicitly ethical since by point
(b) for explicitly ethical agents we now obtain Gβ 6= ∅ ⇒ Gβ = A. (II) M is
not an implicit ethical agent. Assume towards contradictions that it is. Since
A \Gα = C 6= A \Gβ , we know Gα 6= Gβ . But then Gβ ∩ C 6= ∅, contradicting
Equation 1.

81

6 Conclusions

Autonomy, agency, ethics are what Marvin Minsky called “suitcase words” – they
are loaded with meanings, both intuitive and formal. The argument of whether
an artificial system can ever be an agent, or autonomous, or moral is somewhat
overshadowed by the need to establish parameters of acceptable behaviour from
such systems that are being integrated in our society. Hence, it also seems clear
that the question of moral agency and liability is not – in practice, at least – a
bland and white issue. Specifically, we need new categories for reasoning about
machines that behave ethically, regardless of whether or not we are prepared to
regard them as moral or legal persons in their own right.

In developing such categories, we can take inspiration from the law, where
liability is dependent on the ability and properties of the agent to “understand”
that liability. Working with machines, the meaning of “understanding” must
by necessity be a largely behavioural one. Hence, in this paper we have been
concerned with the question of measuring the ethical capability of an agent,
and how this relates to its degree of autonomy. To tackle this question we need
to refine our understanding of what ethical behaviour and autonomy are in a
gradient sense. This is what we focused on here.

We discussed the classification of ethical behaviour and impact of artificial
agents of Moor. This classification is, as far as we are aware, the only attempt to
consider artificial agent morality as a gradient of behaviour rather as simply a
comparison with human abilities. We further consider the issue of autonomy, dis-
cuss existing classifications of artificial agent and system abilities for autonomous
behaviour. Here too we make a more specific classification of abilities.

In our future work we intend to further refine the classification of autonomy
to include context dependence. Having accomplished these two tasks we can
then focus on building a recommendation for determining the scope of ethical
behaviour that can and should be expected from a system with known autonomy.
Our recommendations can be used to establish liability of artificial agents for
their activities, but also help drive the certification process for such systems
towards their safe integration in society.

References

1. M. Anderson and S. Leigh Anderson. Geneth: A general ethical dilemma analyzer.
In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages 253–261, 2014.

2. M. Anderson and S. Leigh Anderson. Toward ensuring ethical behavior from au-
tonomous systems: a case-supported principle-based paradigm. Industrial Robot,
42(4):324–331, 2015.

3. M. Anderson, S. Leigh Anderson, and Vincent Berenz. Ensuring ethical behavior
from autonomous systems. In Artificial Intelligence Applied to Assistive Technolo-
gies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix,
Arizona, USA, February 12, 2016.

82

4. R.C. Arkin, P. Ulam, and A. R. Wagner. Moral Decision Making in Autonomous
Systems: Enforcement, Moral Emotions, Dignity, Trust, and Deception. Proceed-
ings of the IEEE, 100(3):571–589, 2012.

5. T. Arnold and M. Scheutz. Against the moral turing test: Accountable design and
the moral reasoning of autonomous systems. Ethics and Information Technology,
18(2):103–115, 2016.

6. National Transport Commission Australia. Policy paper novem-
ber 2016 regulatory reforms for automated road vehicles.
https://www.ntc.gov.au/Media/Reports/(32685218-7895-0E7C-ECF6-
551177684E27).pdf.

7. J. Bryson and A. F. T. Winfield. Standardizing ethical design for artificial intelli-
gence and autonomous systems. Computer, 50(5):116–119, May 2017.

8. L. A. Dennis, M. Fisher, M. Slavkovik, and M. P. Webster. Formal Verification
of Ethical Choices in Autonomous Systems. Robotics and Autonomous Systems,
77:1–14, 2016.

9. F. Dietrich and C. List. What matters and how it matters: A choice-theoretic
representation of moral theories. Philosophical Review, 126(4):421–479, 2017.

10. J. Driver. The history of utilitarianism. In Edward N. Z., ed-
itor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, winter 2014 edition, 2014.
https://plato.stanford.edu/archives/win2014/entries/utilitarianism-history/.

11. A. Etzioni and O. Etzioni. Incorporating ethics into artificial intelligence. The
Journal of Ethics, pages 1–16, 2017.

12. R. Johnson and A. Cureton. Kant’s moral philosophy. In Ed-
ward N. Z., editor, The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, fall 2017 edition, 2017.
https://plato.stanford.edu/archives/fall2017/entries/kant-moral/.

13. F. Lindner and M. M. Bentzen. The HERA approach to morally competent
robots. In Proceedings of the 2017 IEEE/RSJ International Conference on In-
telligent Robots and System, IROS ’17, page forthcoming, 2017.

14. B. F. Malle, M. Scheutz, T. Arnold, J. Voiklis, and C. Cusimano. Sacrifice one
for the good of many?: People apply different moral norms to human and robot
agents. In Proceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’15, pages 117–124. ACM, 2015.

15. J. H. Moor. The nature, importance, and difficulty of machine ethics. IEEE
Intelligent Systems, 21(4):18–21, July 2006.

16. UK Royal Academy of Engineering. September 2016, autonomous systems: social,
legal and ethical issues
. http://www.raeng.org.uk/publications/reports/autonomous-systems-report.

17. Society of Automotive Engineers SAE International. September 2016, taxonomy
and definitions for terms related to driving automation systems for on-road motor
vehicles. http://standards.sae.org/j3016 201609/.

18. A. M. Turing. Computers & thought. chapter Computing Machinery and Intelli-
gence, pages 11–35. MIT Press, 1995.

19. W. Wallach and C. Allen. Moral Machines: Teaching Robots Right from Wrong.
Oxford University Press, 2008.

20. W. Wallach, C. Allen, and I. Smit. Machine morality: Bottom-up and top-down
approaches for modelling human moral faculties. AI and Society, 22(4):565–582,
2008.

83

Author Index

Baldoni, Matteo, V, 3
Baroglio, Cristina, V, 3
Benghabrit, Walid, 35
Broersen, Jan M., 2

Darusalam, Darusalam, 52
de Brito, Maiquel, 20
De Oliveira, Anderson Santana, 35
Dyrkolbotn, Sjur, 67

Hübner, Jomi F., 20
Hulstijn, Joris, 1, 52

Janssen, Marijn, 52

Kliess, Malte S., 43

Micalizio, Roberto, V, 3

Papi, Fernando G., 20
Pedersen, Truls, 67

Royer, Jean-Claude, 35

Slavkovik, Marija, 67

van Riemsdijk, M. Birna, 43

84

