78 research outputs found

    A Review of Emotion Recognition Methods from Keystroke, Mouse, and Touchscreen Dynamics

    Get PDF
    Emotion can be defined as a subject’s organismic response to an external or internal stimulus event. The responses could be reflected in pattern changes of the subject’s facial expression, gesture, gait, eye-movement, physiological signals, speech and voice, keystroke, and mouse dynamics, etc. This suggests that on the one hand emotions can be measured/recognized from the responses, and on the other hand they can be facilitated/regulated by external stimulus events, situation changes or internal motivation changes. It is well-known that emotion has a close relationship with both physical and mental health, usually affecting an individual’s and a team’s work performance, thus emotion recognition is an important prerequisite for emotion regulation towards better emotional states and work performance. The primary problem in emotion recognition is how to recognize a subject’s emotional states easily and accurately. Currently, there are a body of good research on emotion recognition from facial expression, gesture, gait, eye-tracking, and other physiological signals such as speech and voice, but they are all intrusive and obtrusive to some extent. In contrast, keystroke, mouse and touchscreen (KMT) dynamics data can be collected non-intrusively and unobtrusively as secondary data responding to primary physical actions, thus, this paper aims to review the state-of-the-art research on emotion recognition from KMT dynamics and to identify key research challenges, opportunities and a future research roadmap for referencing. In addition, this paper answers the following six research questions (RQs): (1) what are the commonly used emotion elicitation methods and databases for emotion recognition? (2) which emotions could be recognized from KMT dynamics? (3) what key features are most appropriate for recognizing different specific emotions? (4) which classification methods are most effective for specific emotions? (5) what are the application trends of emotion recognition from KMT dynamics? (6) which application contexts are of greatest concern

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Behaviour-aware mobile touch interfaces

    Get PDF
    Mobile touch devices have become ubiquitous everyday tools for communication, information, as well as capturing, storing and accessing personal data. They are often seen as personal devices, linked to individual users, who access the digital part of their daily lives via hand-held touchscreens. This personal use and the importance of the touch interface motivate the main assertion of this thesis: Mobile touch interaction can be improved by enabling user interfaces to assess and take into account how the user performs these interactions. This thesis introduces the new term "behaviour-aware" to characterise such interfaces. These behaviour-aware interfaces aim to improve interaction by utilising behaviour data: Since users perform touch interactions for their main tasks anyway, inferring extra information from said touches may, for example, save users' time and reduce distraction, compared to explicitly asking them for this information (e.g. user identity, hand posture, further context). Behaviour-aware user interfaces may utilise this information in different ways, in particular to adapt to users and contexts. Important questions for this research thus concern understanding behaviour details and influences, modelling said behaviour, and inference and (re)action integrated into the user interface. In several studies covering both analyses of basic touch behaviour and a set of specific prototype applications, this thesis addresses these questions and explores three application areas and goals: 1) Enhancing input capabilities – by modelling users' individual touch targeting behaviour to correct future touches and increase touch accuracy. The research reveals challenges and opportunities of behaviour variability arising from factors including target location, size and shape, hand and finger, stylus use, mobility, and device size. The work further informs modelling and inference based on targeting data, and presents approaches for simulating touch targeting behaviour and detecting behaviour changes. 2) Facilitating privacy and security – by observing touch targeting and typing behaviour patterns to implicitly verify user identity or distinguish multiple users during use. The research shows and addresses mobile-specific challenges, in particular changing hand postures. It also reveals that touch targeting characteristics provide useful biometric value both in the lab as well as in everyday typing. Influences of common evaluation assumptions are assessed and discussed as well. 3) Increasing expressiveness – by enabling interfaces to pass on behaviour variability from input to output space, studied with a keyboard that dynamically alters the font based on current typing behaviour. Results show that with these fonts users can distinguish basic contexts as well as individuals. They also explicitly control font influences for personal communication with creative effects. This thesis further contributes concepts and implemented tools for collecting touch behaviour data, analysing and modelling touch behaviour, and creating behaviour-aware and adaptive mobile touch interfaces. Together, these contributions support researchers and developers in investigating and building such user interfaces. Overall, this research shows how variability in mobile touch behaviour can be addressed and exploited for the benefit of the users. The thesis further discusses opportunities for transfer and reuse of touch behaviour models and information across applications and devices, for example to address tradeoffs of privacy/security and usability. Finally, the work concludes by reflecting on the general role of behaviour-aware user interfaces, proposing to view them as a way of embedding expectations about user input into interactive artefacts

    Designing Affective Loop Experiences

    Get PDF
    There is a lack of attention to the emotional and the physical aspects of communication in how we up to now have been approaching communication between people in the field of Human Computer Interaction (HCI). As de-signers of digital communication tools we need to consider altering the un-derlying model for communication that has been prevailing in HCI: the in-formation transfer model. Communication is about so much more than trans-ferring information. It is about getting to know yourself, who you are and what part you play in the communication as it unfolds. It is also about the experience of a communication process, what it feels like, how that feeling changes, when it changes, why and perhaps by whom the process is initiated, altered, or disrupted. The idea of Affective Loop experiences in design aims to create new expressive and experiential media for whole users, embodied with the social and physical world they live in, and where communication not only is about getting the message across but also about living the experi-ence of communication- feeling it. An Affective Loop experience is an emerging, in the moment, emotional experience where the inner emotional experience, the situation at hand and the social and physical context act together, to create for one complete em-bodied experience. The loop perspective comes from how this experience takes place in communication and how there is a rhythmic pattern in com-munication where those involved take turns in both expressing themselves and standing back interpreting the moment. To allow for Affective Loop experiences with or through a computer system, the user needs to be allowed to express herself in rich personal ways involv-ing our many ways of expressing and sensing emotions – muscles tensions, facial expressions and more. For the user to become further engaged in inter-action, the computer system needs the capability to return relevant, either diminishing, enforcing or disruptive feedback to those emotions expressed by the user so that the she wants to continue express herself by either strengthening, changing or keeping her expression. We describe how we used the idea of Affective Loop experiences as a con-ceptual tool to navigate a design space of gestural input combined with rich instant feedback. In our design journey, we created two systems, eMoto and FriendSense

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfĂŒgbare und leicht zugĂ€ngliche FlĂ€che fĂŒr Interaktion. JĂŒngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer GerĂ€te gefĂŒhrt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten EpidermisgerĂ€te haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dĂŒnn, oft dĂŒnner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles VerstĂ€ndnis von EpidermisgerĂ€ten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen AnsĂ€tzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinĂ€re Analyse von EpidermisgerĂ€ten die Designziele und Herausforderungen, die angegangen werden mĂŒssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale GerĂ€te unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des GerĂ€ts und den taktilen Empfindlichkeitsschwellen sowie der FĂ€higkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen fĂŒr die Realisierung epidermaler GerĂ€te ab. Zweitens trĂ€gt diese Thesis zu neuartigen EpidermisgerĂ€ten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trĂ€gt zur Herstellung und zum Design neuartiger EpidermisgerĂ€te bei, die hochgradig an die Haut angepasst sind und BerĂŒhrungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese GerĂ€te können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum fĂŒr die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir prĂ€sentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und GrĂ¶ĂŸen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestĂ€tigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-VerhĂ€ltnis erreicht und eine hohe rĂ€umliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da EpidermisgerĂ€te in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestĂŒtzten Design von multimodalen EpidermisgerĂ€ten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten GerĂ€te können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale AktivitĂ€t) messen. DarĂŒber hinaus stellen wir eine computergestĂŒtzte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte GerĂ€tedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der FĂ€higkeit zur Erfassung physiologischer Signale und der GrĂ¶ĂŸe des GerĂ€ts. Das grafische Tool ermöglicht die einfache Festlegung von DesignprĂ€ferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinĂ€ren Perspektive einen Fahrplan fĂŒr zukĂŒnftige Forschung in diesem Bereich, indem wir die nĂ€chsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trĂ€gt diese Arbeit zu einem ganzheitlichen VerstĂ€ndnis von EpidermisgerĂ€ten bei: Sie liefert ein empirisches und konzeptionelles VerstĂ€ndnis sowie technische Einblicke durch BeitrĂ€ge zu DIY (Do-It-Yourself), schneller Fertigung und computergestĂŒtzten Entwurfstechniken

    Practical and Rich User Digitization

    Full text link
    A long-standing vision in computer science has been to evolve computing devices into proactive assistants that enhance our productivity, health and wellness, and many other facets of our lives. User digitization is crucial in achieving this vision as it allows computers to intimately understand their users, capturing activity, pose, routine, and behavior. Today's consumer devices - like smartphones and smartwatches provide a glimpse of this potential, offering coarse digital representations of users with metrics such as step count, heart rate, and a handful of human activities like running and biking. Even these very low-dimensional representations are already bringing value to millions of people's lives, but there is significant potential for improvement. On the other end, professional, high-fidelity comprehensive user digitization systems exist. For example, motion capture suits and multi-camera rigs that digitize our full body and appearance, and scanning machines such as MRI capture our detailed anatomy. However, these carry significant user practicality burdens, such as financial, privacy, ergonomic, aesthetic, and instrumentation considerations, that preclude consumer use. In general, the higher the fidelity of capture, the lower the user's practicality. Most conventional approaches strike a balance between user practicality and digitization fidelity. My research aims to break this trend, developing sensing systems that increase user digitization fidelity to create new and powerful computing experiences while retaining or even improving user practicality and accessibility, allowing such technologies to have a societal impact. Armed with such knowledge, our future devices could offer longitudinal health tracking, more productive work environments, full body avatars in extended reality, and embodied telepresence experiences, to name just a few domains.Comment: PhD thesi

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics
    • 

    corecore