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ABSTRACT

Mobile touch devices have become ubiquitous everyday tools for communication, information, as
well as capturing, storing and accessing personal data. They are often seen as personal devices, linked
to individual users, who access the digital part of their daily lives via hand-held touchscreens. This
personal use and the importance of the touch interface motivate the main assertion of this thesis:
Mobile touch interaction can be improved by enabling user interfaces to assess and take into account
how the user performs these interactions. This thesis introduces the new term “behaviour-aware” to
characterise such interfaces.

These behaviour-aware interfaces aim to improve interaction by utilising behaviour data: Since users
perform touch interactions for their main tasks anyway, inferring extra information from said touches
may, for example, save users’ time and reduce distraction, compared to explicitly asking them for
this information (e.g. user identity, hand posture, further context). Behaviour-aware user interfaces
may utilise this information in different ways, in particular to adapt to users and contexts. Important
questions for this research thus concern understanding behaviour details and influences, modelling
said behaviour, and inference and (re)action integrated into the user interface. In several studies cov-
ering both analyses of basic touch behaviour and a set of specific prototype applications, this thesis
addresses these questions and explores three application areas and goals:

1) Enhancing input capabilities — by modelling users’ individual touch targeting behaviour to cor-
rect future touches and increase touch accuracy. The research reveals challenges and opportunities
of behaviour variability arising from factors including target location, size and shape, hand and fin-
ger, stylus use, mobility, and device size. The work further informs modelling and inference based
on targeting data, and presents approaches for simulating touch targeting behaviour and detecting
behaviour changes.

2) Facilitating privacy and security — by observing touch targeting and typing behaviour patterns
to implicitly verify user identity or distinguish multiple users during use. The research shows and
addresses mobile-specific challenges, in particular changing hand postures. It also reveals that touch
targeting characteristics provide useful biometric value both in the lab as well as in everyday typing.
Influences of common evaluation assumptions are assessed and discussed as well.

3) Increasing expressiveness — by enabling interfaces to pass on behaviour variability from input to
output space, studied with a keyboard that dynamically alters the font based on current typing be-
haviour. Results show that with these fonts users can distinguish basic contexts as well as individuals.
They also explicitly control font influences for personal communication with creative effects.

This thesis further contributes concepts and implemented tools for collecting touch behaviour data,
analysing and modelling touch behaviour, and creating behaviour-aware and adaptive mobile touch
interfaces. Together, these contributions support researchers and developers in investigating and
building such user interfaces.

Overall, this research shows how variability in mobile touch behaviour can be addressed and exploited
for the benefit of the users. The thesis further discusses opportunities for transfer and reuse of touch
behaviour models and information across applications and devices, for example to address tradeoffs
of privacy/security and usability. Finally, the work concludes by reflecting on the general role of
behaviour-aware user interfaces, proposing to view them as a way of embedding expectations about
user input into interactive artefacts.






ZUSAMMENFASSUNG

Mobile Gerite mit berithrungsempfindlichem Bildschirm (“Touchscreen”) sind unerléssliche Alltags-
helfer geworden, sei es zur Kommunikation, Informationssuche oder dem Erstellen, Speichern und
Abrufen persénlicher Medien und Daten. Insbesondere Smartphones werden dabei oft als pesonliche
Gerite betrachtet, die einem bestimmten Nutzer gehoren und fiir diesen den individuellen Zugang
zum mobilen digitalen Leben bedeuten. Diese personliche Nutzung, kombiniert mit der zentralen
Bedeutung des Touchscreens zur Interaktion, motiviert die zentrale Aussage dieser Dissertation: In-
teraktion mit mobilen Geriten mit Touchscreen kann verbessert werden, indem Nutzerschnittstellen
in die Lage versetzt werden, zu erfassen und zu beriicksichtigen wie der Nutzer Interaktionen damit
ausfiihrt. Diese Dissertation fiihrt den Begriff “behaviour-aware” (d.h. “verhaltenssensitiv’’) ein, um
solche Nutzerschnittstellen zu charakterisieren.

Diese verhaltenssensitiven Nutzerschnittstellen zielen darauf ab, die Interaktion durch die Verwen-
dung von Verhaltensdaten zu verbessern. Solche Daten fallen bei der Nutzung ohnehin an, weshalb
jegliche zusitzliche Information, die daraus abgeleitet werden kann, einen Gewinn verspricht. So
konnte dies dem Nutzer Zeit und Unterbrechungen sparen, die andernfalls notig wéaren um dieselbe
Information direkt zu erfragen (z.B. Informationen zur Nutzeridentitdt, Handhaltung sowie weiterem
Kontext). Verhaltenssensitive Nutzerschnittstellen konnen solche Informationen auf verschiedene Ar-
ten nutzen, insbesondere um sich an unterschiedliche Nutzer und Kontexte anzupassen. Wichtige
Forschungsfragen adressieren deshalb das Verstidndnis von Verhaltenscharakteristika und -einfliissen,
deren Modellierung, sowie Konzepte zu Inferenz und Reaktion und deren Integration in die Nutzer-
schnittstellen. Diese Fragen werden im Rahmen dieser Dissertation in mehreren Studien untersucht.
Dazu werden sowohl grundlegende Verhaltensaspekte von Interaktionen mit Touchscreens auf mobi-
len Geriten analysiert, als auch eine Reihe von konkreten Anwendungen mittels nutzbarer Prototypen
betrachtet. Dabei werden drei Anwendungsbereiche und -ziele untersucht:

1) Verbesserung der Eingabeleistung, durch Modellierung des invidividuellen Zielverhaltens eines
Nutzers bei der Verwendung des Touchscreens, um zukiinftige Eingaben zu korrigieren und somit die
Eingabegenauigkeit zu verbessern. Hierbei zeigen sich Herausforderungen und Moglichkeiten bei der
Nutzung von Verhaltensvariabilititen, die sich aus mehreren Faktoren ergeben, darunter: Position,
GroBe und Form des Zielelements auf dem Touchscreen, verwendete Hand und Finger bzw. Daumen,
Nutzung eines Stifts, Bewegung wihrend der Eingabe, sowie Groe des Gerits. Die Ergebnisse geben
dariiber hinaus Hinweise zur Modellierung und Inferenz basierend auf Daten zum Zielverhalten und
fiihren zu konkreten Ansdtzen fiir die Simulation von Nutzerverhalten sowie der Erkennung von
Verhaltensdanderungen.

2) Forderung von Privatsphdre und Sicherheit, durch die Analyse von Mustern im Ziel- und Tippver-
halten, womit Nutzer implizit wihrend der Eingabe identifiziert bzw. unterschieden werden konnen.
Hierbei betrachtet die vorliegende Arbeit auch spezifische Herausforderungen bei mobilen Geriten,
insbesondere wechselnde Handhaltungen bei der Nutzung. Zentral wird zudem der biometrische Wert
von jenen Verhaltensmerkmalen herausgestellt, die sich aus der Analyse des Zielverhaltens ergeben.
Der Nutzen dieser Merkmale wird sowohl im Labor als auch bei Interaktionen im Alltag untersucht.
Auf methodischer Ebene werden die Auswirkungen hiufig getroffener Annahmen bei der Analyse
solcher Daten und Systeme quantifiziert und diskutiert.

3) Verbesserung der Ausdrucksstdirke von Interaktionen, durch das Verkniipfen von Verhaltensmerk-
malen in der Eingabe mit Eigenschaften der Ausgabe. Insbesondere wird eine Tastatur vorgestellt



und evaluiert, welche die Textdarstellung dynamisch verindert, in Abhéngigkeit des aktuellen Tipp-
verhaltens. Die Ergebnisse zeigen, dass Nutzer grundlegende Kontexte sowie individuelle Personen
anhand dieser Schriftanpassungen unterscheiden kénnen. Aulerdem werden die Schrifteinliisse von
den Nutzern fiir personliche Kommunikation mit kreativen Effekten verwendet.

Dariiber hinaus stellt diese Dissertation mehrere Konzepte und implementierte Werkzeuge vor fiir
das Sammeln von Verhaltensdaten aus der Interaktion, der Analyse und Modellierung von Interak-
tionsverhalten, sowie dem Erstellen von verhaltenssensitiven und adaptiven Nutzerschnittstellen fiir
mobile Gerite mit Touchscreen. Diese Beitrdge unterstiitzen Forscher und Entwickler bei der Unter-
suchung und praktischen Umsetzung von solchen Nutzerschnittstellen.

Insgesamt zeigt die vorliegende Arbeit, wie Verhaltensmerkmale in der Interaktion mit mobilen Ge-
rdten mit Touchscreen zum Vorteil der Nutzer adressiert und genutzt werden konnen. Vor diesem
Hintergrund werden auBerdem Transfer und Wiederverwendung von Verhaltensinformationen und
-modellen diskutiert, zum Beispiel im Hinblick auf Kompromisse zwischen Bedienbarkeit und Pri-
vatsphire bzw. Sicherheit. SchlieBlich reflektiert die Arbeit die generelle Rolle verhaltenssensitiver
Nutzerschnitstellen. Dabei zeichnet sie eine Perspektive, in der solche Nutzerschnitstellen der direk-
ten Einbettung von “Erwartungen” an das Bedienverhalten in interaktive Systeme dienen.

Vi
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Introduction

It is widely believed that “everyone should be computer literate”. [...]
The premise of the research that is reported in this volume is that
“computers should be user literate”.

Browne, Totterdell & Norman, Adaptive User Interfaces, 1990

1.1 Thesis Statement

Mobile touch devices have become ubiquitous tools in our everyday lives. We use them, for example,
to communicate, to navigate information spaces and physical space, and to capture, store and access
personal data, such as photos. Thus, they often become personal devices, linked to an individual
and the digital part of their world. A common window and door to this world is the touchscreen.
Both from this personal use and the importance of the touch interface arises the main assertion of this
thesis: Mobile touch interaction can be improved by enabling touch interfaces to assess and consider
how the user executes these interactions.

Our work supports this assertion with an exploration of three application areas for behaviour-aware
mobile touch interfaces. We first give concrete examples from these areas (see Figure 1.1): For in-
stance, behaviour-aware user interfaces can learn about touch behaviour and errors of a particular
user, in order to correct that person’s future touches to render the touchscreen more accurate (Fig-
ure 1.1a). Related, behaviour-aware interfaces may also use expectations about touch behaviour to
better understand the user’s intention. For example, such interfaces could then interpret input more
reliably, despite inaccuracy (e.g. due to mobile use — touching while moving). This approach has been
employed successfully by mobile touch keyboards to enable fast and accurate typing (see e.g. [56,
170]). With our ProbUI concept and framework [P3], our research contributes to integrating expecta-
tions about touch behaviour into more general touch interfaces (and their development). For instance,
we used ProbUI to realise sliders, lists, and menu widgets which adapt their shape and layout to
the currently used hand posture (Figure 1.1b and c¢). Another example addresses usable privacy and
security: Identifying or (re)authenticating users based on their touch behaviour characteristics might
allow users to avoid (some) explicit interactions for identity management (e.g. switching accounts,
“logging in”). Finally, our behaviour-aware keyboard and chat app TapScript personalises the user’s
font for mobile text messaging based on input behaviour details, like finger placement or (device)
movement (Figure 1.1d).

In summary, our work explores the following three aspects in which behaviour-aware touch interfaces
improve our personal mobile devices and interactions:

Enhancing input capabilities: In multiple user studies, we investigate touch targeting errors, that is,
users’ offsets between intended targets and sensed touch locations. We evaluate in detail how offset
patterns and models are influenced by device, hand posture, implement, mobility, and GUI target size
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and shape at different screen locations. We show and discuss improvements of touch accuracy with
these models, as well as related challenges. Our work also informs modelling and inference based on
such data, and presents and evaluates models for simulating touch targeting behaviour and detecting
behaviour changes.

Facilitating privacy and security: Our user studies of targeting and typing behaviour show that touch
offsets and other touch features have biometric value for (implicit, continuous) user identification
and authentication. We show that this provides opportunities to improve usable privacy and security
systems on mobile touch devices, contributing to the protection of users’ data. We also reveal and
address mobile-specific challenges, in particular changing hand postures. More generally, we assess
and discuss the influence of common evaluation assumptions in this area as well.

Increasing expressiveness: We propose to embrace variability in individual touch input behaviour
as additional degrees of freedom to influence output. We demonstrate this idea with our mobile
keyboard and chat app TapScript, which dynamically modifies the font based on input behaviour
while typing. Our studies show that users can distinguish basic contexts and individuals. They
perceive communication as more personal and explicitly control font influences for creative effects.

Beyond investigating these application areas, this thesis contributes several concepts and imple-
mented tools for collecting behaviour data, analysing and modelling touch behaviour, and creating
behaviour-aware and adaptive mobile touch Uls. Together, these contributions support researchers
and developers in investigating and building behaviour-aware mobile touch Uls.

Our research overall shows how variability in mobile touch behaviour can be addressed and exploited
to support users by contributing to effective, secure, and personalised mobile interactions and sys-
tems. Looking ahead, we discuss opportunities for transfer and reuse of touch behaviour models and
information across applications and devices. As a particular case, we outline how this reframes and
affects tradeoffs of privacy/security versus usability. Finally, we further reflect on the general role
of behaviour-aware interfaces in Human-Computer-Interaction. We outline a general perspective that
regards such interfaces as a way of embedding expectations about user input into interactive artefacts.
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Figure 1.1: Examples for behaviour-awareness in mobile touch Uls from our research: a) Using a touch
targeting model (visualised as arrows) to correct a user’s touch location to improve accuracy; b) these
ProbUI sliders adapt their shape to match the thumb’s movement arc (top), including feedback about un-
certainty (bottom, uncertain slider selection); c) this ProbUI contact list flips its button/name alignments
depending on the finger trajectory, thus adapting to left vs right hand use; d) the TapScript keyboard and
chat app personalise fonts based on several aspects related to input behaviour.



Contributing Publications

1.2

Contributing Publications

A note on the format and relationship of this document and the publications: This is a cumulative
dissertation. The individual research projects have been published before. This additional thesis
document presents a summary and overarching discussion, relating the work to the literature. Thus,
it serves the roles of intro, related work and discussion sections — introducing and reflecting on the
content of the published papers. These publications are listed in their own reference list below.
Citations of the contributing publications are marked by “P” (e.g. [P1]). The full publications are
available at the given DOIs below. The overarching narrative and concept of behaviour awareness
emerged from this research and reflection. Thus, the term is introduced here and does not appear
directly in the earlier publications.

[P1]

[P2]

[P3]

[P4]

[P5]

Daniel Buschek. “A Model for Detecting and Locating Behaviour Changes in Mobile Touch
Targeting Sequences”. In: Proceedings of the 23rd International Conference on Intelligent
User Interfaces. IUI *18. ACM, 2018. DOI: 10.1145/3172944 .3172952 (cited on pp. xi, 3,
5,7,8, 11-14, 19-21, 23, 25, 28, 34).

Daniel Buschek. “There is more to biometrics than user identification: Making mobile in-
teractions personal, secure and representative”. In: it - Information Technology 58.5 (2016),
pp. 247-253. DOI: 10.1515/itit-2016-0013 (cited on pp. 5, 12, 14, 15, 24, 28, 33, 37).

Daniel Buschek and Florian Alt. “ProbUI: Generalising Touch Target Representations to En-
able Declarative Gesture Definition for Probabilistic GUIs”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI *17. ACM, 2017, pp. 4640-4653.
DOI: 10.1145/3025453.3025502 (cited on pp. 1, 4, 5, 7, 8, 11-14, 24, 25, 31, 34, 38-40).

Daniel Buschek and Florian Alt. “TouchML: A Machine Learning Toolkit for Modelling
Spatial Touch Targeting Behaviour”. In: Proceedings of the 20th International Conference
on Intelligent User Interfaces. IUI *15. ACM, 2015, pp. 110-114. DOI: 10.1145/2678025.
2701381 (cited on pp. 5, 7, 8, 11-15, 17-23, 25, 28, 30, 31, 33, 34).

Daniel Buschek, Benjamin Bisinger, and Florian Alt. “ResearchIME: A Mobile Keyboard
Application for Studying Free Typing Behaviour in the Wild”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’18. ACM, 2018. DO1: 10.1145/
3173574.3173829 (cited on pp. xi, 5-9, 12, 19, 23-26, 28-30, 33, 34, 39).

Daniel Buschek, Alexander De Luca, and Florian Alt. “Evaluating the Influence of Targets
and Hand Postures on Touch-based Behavioural Biometrics”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’16. ACM, 2016, pp. 1349-1361.
DOI: 10.1145/2858036.2858165 (cited on pp. 5, 7-9, 11-15, 17-23, 25, 26, 28, 30, 31, 33,
34, 39).

Daniel Buschek, Alexander De Luca, and Florian Alt. “Improving Accuracy, Applicability
and Usability of Keystroke Biometrics on Mobile Touchscreen Devices”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI *15. ACM, 2015,
pp. 1393-1402. po1: 10.1145/2702123.2702252 (cited on pp. 5, 7-9, 11, 12, 14, 19, 22,
23, 25, 26, 28, 29, 33, 34, 37, 39).
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1.3 Overview and Guiding Research Questions

As a first overview of our work, Table 1.1 provides a summary structured by six main areas and
questions. These motivated and guided the research contributing to this thesis.

Empirical

Conceptual

Constructive

RQ1 - Analysis: How do users execute basic mobile touch interactions? Which factors influence this behaviour?

Analyses of targeting behaviour on smart-
phones, with factors and effects: hand and
finger [P4, P6, P10]; target location, shape
and size [P4, P6]; implement and mobil-
ity [P9]; device-specific [P10] and user-
specific [P6] differences.

Revealing connections between these as-
pects, in particular influence of GUI and
hand posture on user individuality of
touch behaviour [P6, P7].

ResearchIME keyboard app for observing
users’ “natural” mobile typing behaviour

in the wild [P5].

RQ2 - Modelling: How can we model relevant aspects of users’ mobile touch behaviour?

Investigation of the above factors and ef-
fects for touch targeting (offset) mod-
els [P4, P6, P9, P10]. Evaluation of dif-
ferent models for capturing user-specific
typing behaviour [P5, P7].

Concept for transfer of offset models
across devices [P10]. Generalising GUI
target representations to prob. gestures
("bounding behaviours”) [P3].  Offset
model that handles touch targeting se-
quences [P1].

TouchML toolkit that implements offset
models for research and applications [P4].
ProbUI framework which implements the
“bounding behaviours” models [P3].

RQ3 - Inference: Which information can interfaces infer from mobile touch behaviour? How?

Evaluation of inferring user [P6, P10],
user changes [P1], hand/finger [P4, P10]
and implement [P9] based on touch target-
ing behaviour with offset models. Eval-
uation of inferring user from typing be-
haviour with various models [P5, P7].

Concept for inference with offset mod-
els [P1, P4, P6, P10]. Concept for in-
ferring user from password typing with
changing postures [P7]. ProbUI concept
for inferring intended gesture and target
from touch behaviour [P3].

Implemented offset-based inference ex-
amples in TouchML [P4]. Implemented
ProbUI framework; example widgets
which infer left vs right hand use [P3].

RQ4 - Application: How and in which application areas can users benefit from behaviour-aware mobile touch interfaces?

Studies on: 1) Improving touch accuracy
with offset models [P4, P6, P9, P10]. 2)
Identifying & authenticating users based
on touch behaviour [P1, P6, P7]. 3) Fa-
cilitating personal messaging by adapting
fonts based on input behaviour [PS8].

Overarching motivation and discussion of
application areas for behavioural (bio-
metric) information beyond security [P2].
GUI target representation concept for fa-
cilitating UI adaptations in ProbUI [P3].
A concept that links input behaviour to
font adaptations [P8].

Prototypes: 1) Improving touch accuracy
in apps and on websites [P4]. 2) TapScript
chat & keyboard app for dynamic font
personalisation [P8]. 3) ProbUI widgets
which react to left vs right hand use [P3].

RQS5 - Evaluation: How can we evaluate behaviour-aware mobile touch interfaces and their components?

Measuring influences of evaluation as-
sumptions on accuracy for touch biomet-
rics with password typing data [P7]. Ex-
periences from lab and field studies and
online surveys, with users and developers.

Concept for estimating biometric value of
mobile touch GUIs [P6]. Critical discus-
sion of evaluation assumptions in touch
biometrics [P7].

Visualisation and evaluation methods for
touch targeting behaviour and models in
the TouchML toolkit [P4]. Live model vi-
sualisations for debugging in ProbUI [P3].

RQ6 - Engineering: How can we facilitate the development and implementation of behaviour-aware mobile touch interfaces?

Insights and feedback from: 1) Devel-
opers learning ProbUI’s declarative lan-
guage PML with a tutorial and 2) using
ProbUI in a workshop [P3]. Experiences
from implementing prototypes.

ProbUI framework; with declarative lan-
guage PML for specifying expected touch
behaviours (gestures) in GUIs; concept for
automatically inferring probabilistic mod-
els from PML statements [P3].

Implementation of ProbUI, with PML and
its mapping to probabilistic models [P3].
TouchML toolkit that implements offset
models for research and applications [P4].

Table 1.1: Overview of our work organised by research question and contribution type, following Lau-
dan’s taxonomy [94], as adapted for HCI by Oulasvirta and Hornbzk [123].
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1.4 Research Approach and Methods

Research Approach and Perspective

To set the stage for more specific discussions later on, here we first characterise and reflect on our
research with respect to broader structures and perspectives.

Themes and Structure The research contributing to this thesis is structured into three larger
themes: First, we analyse and model mobile touch targeting behaviour to assess variability and con-
sistency and the influence of several factors. Second, we explore three application areas in which
users could benefit from these models and related behaviour information. Third, we investigate and
implement methods and tools to facilitate building touch behaviour models and behaviour-aware mo-
bile touch interfaces. Roughly, these three themes also can be seen as subsequent steps in our overall
research process. However, the work was often intertwined and inspired across them (e.g. generalis-
ing tools based on experiences with prototype implementations and data analyses from other studies).

The Three Paradigms of HCl Harrison et al. [62] distinguish three paradigms of HCI. Besides
focus and values, these also differ in their “ways of knowing” along several dimensions. Considering
those, we characterise our own methodological stance as follows: In the tradition of the Second
Paradigm, we seek to contribute objective and generalised knowledge related to interaction behaviour
and influencing factors, and accordingly value methods that support this (e.g. controlled experiments,
statistical data analyses). In the same vein, our framing of behaviour-aware Uls highlights and values
information about behaviour which is assessed and utilised by such Uls, for example with statistical
models. However, we also value opportunities of behaviour awareness in Uls to enable interactions
that stimulate human interpretation — a Third Paradigm value [62]. Our work on TapScript [P8] uses
this perspective, emphasising interest in a more experiential quality of typing behaviour over Second
Paradigm performance measures.

Interaction and Practice Paradigms Our behaviour-aware Uls focus on awareness of input be-
haviour, and thus on UI and interaction tasks. This follows what Kuutti and Bannon [93] called
“Interaction Paradigm” (as contrasted with the “Practice Paradigm™). Our analyses of targeting be-
haviour present a prime example: Interaction is at the centre, influenced by context. However, we also
argue that practical value of behaviour-aware Uls arises from their capability to utilise and/or account
for behaviour variations. These are often due to (changing) context factors. Thus, our view includes
aspects of Kuutti and Bannon’s “turn to practice”, towards “the ultimate context” — artefacts in real ev-
eryday use in the wild. More specifically, such aspects are present in 1) our work on behaviour-aware
UIs for “expressiveness”, in particular regarding users’ daily mobile messaging (TapScript [P8]), and
2) our ResearchIME [P5] concept and tool, which facilitate studies of free typing in the wild. Overall,
we thus position our work in the tradition of the primary interaction focus, yet also value context not
only as an influence but as an integral interest of many behaviour-aware Uls. Besides controlled lab
studies, our research thus seeks to facilitate the use of methods which capture changing contexts in
the wild, both for behaviour analyses and data collection as well as prototype deployments. Still, this
is done with a focus arising from the Second Paradigm and Interaction Paradigm (e.g. ResearchIME
facilitates collecting quantitative usage data, not e.g. users’ surrounding social experiences).
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Perspectives on Interaction Besides HCI paradigms, our research perspective can be charac-
terised via its view of interaction. Hornbak and Oulasvirta provide a recent overview and discus-
sion of seven such views [74]. Two seem particularly relevant to our work: First, interaction can be
conceived as transmission of information. This prespective underlies our work on touch targeting:
Touch offset models increase targeting accuracy and thus reduce the noise (i.e. varying touch points)
associated with messages along a channel (i.e. intended target selections). To argue that this im-
proves the Ul thus follows the perspective that good interaction is about achieving high throughput.
Moreover, this information view is also present in our work on touch biometrics, in particular with
regard to measuring individuality of user input behaviour and estimating “biometric value” of touch
GUIs [P6]. Our general framing of behaviour-aware Uls in this thesis also follows this perspective.
For example, we outline that such Uls assess and consider input behaviour information (see Sec-
tion 2.1). Second, interaction can be seen as control [74]: Users are controllers who continuously act
based on feedback about the system’s state. This view is fundamental to the concepts and goals of
our ProbUI framework [P3], which accommodates continuous touch interaction with live feedback
and faciliates Ul adaptations. Moreover, some of the questions highlighted in Section 3.2 arise from
this control view.

Empirical Research Methods

We employed a variety of empirical methods and tools. Table 1.2 provides an overview of studies
and datasets. The following paragraphs motivate and reflect on these choices.

Lab studies were used to investigate mobile touch behaviour under controlled conditions. This al-
lowed us to isolate and analyse the influence of individual factors, such as target location [P4, P6, P9,
P10], target shape and size [P4, P6], hand posture [P4, P6, P7, P10], as well as implement and mobil-
ity [P9]. Moreover, lab studies allowed us to repeatedly study behaviour under the same conditions
to observe consistency and change in people’s mobile touch behaviour over time [P4, P6, P7, P9].

Field studies helped us to explore how people behave and use prototypes in daily live: TapScript [P8]
personalised text message fonts based on typing behaviour. A field study allowed us 1) to observe real
behavioural variability, and 2) to assess users’ experiences with our concept embedded into actual
personal communication. Moreover, we collected typing behaviour “in the wild” via a modified
Android keyboard app [P1, P5]. This allowed us 1) to study everyday typing behaviour, keyboard
usage, and biometrics [P5], and 2) to evaluate our sequential offset model for detecting behaviour
changes on real-world touch sequences [P1].

A workshop was set up as a special type of lab study to evaluate the use of our ProbUI framework [P3]
for creating behaviour-aware touch GUIs. This allowed us to directly observe how developers ap-
proach and use our framework upon first contact.

Interviews were conducted to gain qualitative insights into experiences with using our prototypes. We
used group interviews to assess how users’ chatting behaviour and experiences were influenced by
our font personalisations in TapScript [P8]. Moreover, interviews provided feedback and reflections
by developers after using our ProbUI framework [P3].

The think-aloud technique was used to gain insights into people’s assumptions, reasoning, and “pain
points”. We used this during the workshop evaluation of ProbUI [P3].
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Name Summary Type N Refs.

TAPS-I Participants targeted cross-hairs with the right thumb on multiple smart- lab study 30 [P10]
phones in portrait orientation; partly also with the left thumb, and in two
sessions.

TAPS-II Participants targeted cross-hairs, buttons shaped like keys and app-icons, lab study 24 [P1, P4, P6]

and full width buttons with the right thumb and index finger on a smart-
phone in portrait orientation in two sessions.

TAPS-STYLUS Participants targeted cross-hairs with two kinds of styli and the right index lab study 28 [P9]
finger on a smartphone in portrait orientation while sitting and walking in
two sessions.

PWD-TYPING Participants entered six given passwords 20 times each, using the right lab study 28 [P7]
thumb, both thumbs, and the right index finger on a smartphone in portrait
orientation in two sessions.

TYPING-WILD A modified keyboard app collected typing touches from participants’ free field study 30 [P1, P5]
text entry on their own devices used “in the wild” for three weeks.

TYPING-WILD-SURVEY Participants rated perceived privacy violation of different filtering con- web survey 349 [P1]
cepts for privacy-respectful collection of free typing data in the wild.

TAPSCRIPT-CHAT Groups of participants used our chat app with TapScript keyboard and field study 11 [P8]
fonts for one to three weeks on their own smartphones.

TAPSCRIPT-SURVEY Participants distinguished typists and walking/sitting contexts by looking web survey 91 [P8]
at messages rendered in TapScript fonts created by five users in a pre-
study.

PROBUI-DEV Android developers were introduced to ProbUI in a 20 minute presenta- workshop 8 [P3]

tion and completed six coding projects with it while “thinking aloud”.

PROBUI-SURVEY Participants read a tutorial on ProbUI’s modelling language PML, then web survey 33 [P3]
completed three kinds of tasks: matching gestures to PML and PML to
gestures, and writing PML themselves.

Table 1.2: Overview of empirical research contributing to this thesis.

Questionnaires supported all studies. Beyond demographics and specific questions of interest, we
used them to assess user perception of the tasks, including controlled factors. This allowed us to
compare measured and subjective results (e.g. see [P5, P9]).

The experience sampling method (ESM) was used to enrich logging data. In particular, we assessed
hand postures via ESM in our typing study in the wild [P5]. This enabled comparisons of free
typing behaviour between postures and revealed further insights. For example, we found that users
underestimated their use of typing with both thumbs in our pre-study questionnaire compared to
assessments in situ via ESM.

Web surveys were used to reach a larger number of people and to address a specific audience. In
particular, we deployed a web survey to gain insights into the overall perception of personalised fonts
in TapScript [P8] by an extended number of people. Another web survey was created to reach sea-
soned Android developers via a corresponding online forum to gather feedback and assess the basic
usability of the declarative touch gesture language “PML” designed for our ProbUI framework [P3].

Limitations of these methodological choices are discussed in the respective parts and in Section 3.4.
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Methodological Reflections and Contributions

Here, we highlight particular aspects which contribute to methodology and related practices in this
research context, also beyond our own work.

Combining and comparing lab and field results: As a general reflection across multiple projects, we
consider results obtained in different environments. In particular, we studied typing biometrics both
in the lab [P7] and in the wild [P5]. In both studies we found that spatial touch features outperformed
temporal ones for user identification/authentication. This combination seems generally suitable for
work on behaviour-aware Uls, since it covers different aspects of behavioural variability: In the lab
we study variability between specific (controlled) factor levels, which the UI might want to consider
and/or address. In contrast, field studies capture real-life variability and occurrence of these factor
levels, as well as behaviour variability “as noise”, which is relevant with regard to robustness of the
behaviour-aware system.

Quantifying influences of evaluation assumptions for touch biometrics: We examined the influence
of several evaluation assumptions for mobile touch typing and targeting biometrics [P6, P7]. Our
experiments show that one obtains overly optimistic results by 1) using data from a single day, or 2)
assuming that the system knows other users or even the particular attacker, or 3) assuming fixed hand
postures. We quantify these influences by comparing results obtained under different assumptions
(e.g. changes in user authentication error rates). Our results and discussion emphasise that evaluation
schemes for touch biometrics analyses need to be carefully considered with respect to their implied
assumptions about deployments in practice. For example, evaluations with data from only one hand
posture imply the (often unrealistic) assumption that users always interact with the same posture.

Logging “natural” touch typing behaviour beyond the lab: We proposed and studied different filters
for privacy-respectful logging of free text entry behaviour [P5]. We found that randomly logging
short n-grams yields useful data for many research interests, yet filter parameters need careful con-
sideration. Moreover, we contribute a keyboard app and backend which implement this concept to
facilitate studies of touch typing behaviour, keyboard use, and related biometrics in the wild. Sec-
tion 3.3.1 discusses more details.

Direct integration of ESM into touch GUIs: As part of ResearchIME [P5], we integrated an ESM [32]
screen directly into the keyboard GUI to assess users’ typing hand postures. This stands in contrast
to, for example, presenting ESM via separate notifications and apps (cf. survey by Berkel et al. [11]).
Our ESM view showed up as a keyboard overlay when opening the keyboard. From participant feed-
back and quantitative data, we learned that this yields many answers, since it cannot be overlooked.
Moreover, it introduces no extra loading time beyond the existing keyboard slide-in animation. ESM
interaction also takes place at the same screen location as the main task, facilitating a fluid transition
from answering to typing. Pretests and feedback showed that this integrated ESM view should stay
limited to a single action (tap) and an easy-to-process presentation (we used pictograms). Moreover,
it should not be shown too frequently to avoid annoyance. Such direct integration might be useful for
other studies as well (e.g. context-aware messaging). The specific ESM content in our keyboard app
could be modified to assess other data than hand postures (e.g. mood). Future work might investigate
further aspects, for example, comparing blocking and non-blocking integration of ESM screens.
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2

Background and Definitions

This section provides background information and definitions of central terms used throughout this
thesis. It further discusses their relationship to other terms and concepts.

2.1 Touch Behaviour Information

We define touch behaviour as behaviour exhibited by users to perform interactions that involve a
touchscreen. For mobile touch devices in particular, concrete examples include tapping on buttons,
typing on a keyboard, moving a slider, pinching with two fingers to zoom on a map, and so on.

Following the way that Dey and Abowd formulated their definition of context information [39], we
define touch behaviour information as any information that can be used to characterise how a touch
interaction is performed. Examples include the speed of a finger gliding on the screen, touch pressure,
duration of interaction, and the rhythm of tapping and typing in interaction sequences.

The term information instead of, say, data or features, is used to respect results derived from the
“raw” data via processing, modelling, and inference. This includes, for example, derived information
about the hand or finger in use [P4, P10], or the interacting user [P7, P6].

The examples given above already hint at a focus: This thesis focuses on touch behaviour information
related to the physical execution of touch interactions. In a larger view, touch behaviour could be
linked to higher-level aspects, for example, daily patterns of smartphone use or decision-making
processes. Such aspects are not considered here.

2.2 Assessing Touch Behaviour Information

Touch behaviour information is obtained by observing a user’s touch behaviour in interactions. In
general, such observations could be qualitative — e.g. with a human reporting on what they notice
about the behaviour — or they could be quantitative, which is the main approach taken in this work.
Hence, “observation” here always involves data recording and quantitative analyses of said data.
These analyses are structured into three parts.

Measurement: Some touch behaviour information can be measured directly from typical interaction
logs, such as task completion time. Direct measurement involves minimal processing and no addi-
tional assumptions beyond the data.

Modelling: Models help to capture and reveal underlying patterns not directly observable in the raw
data. These patterns may depend on other properties of the user, the user interface, and the context
of use. The work contributing to this thesis models 2D targeting error (offset) patterns across the
screen [P1, P4, P6, P9, P10], as well as touch gestures in mobile GUIs [P3]. We could also say that
such models represent our “expectations” about future behaviour.
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Inference: Finally, quantitative data analyses may aim to infer information, often involving previously
obtained models. This information can be regarded as implicit (cf. [P2]) and often tells us something
about the user and context of the observed touch interaction. For example, we infer user identity
(and user changes) as well as hand in use from touch targeting behaviour [P1, P4, P6, P10] and from
typing behaviour [P5, P7]. We also propose and implement GUI elements that infer finger and hand
in use from touch interactions with sliders, menus, and lists [P3].

2.3 Behaviour Awareness as a Property of Uls

We define behaviour awareness as a property of user interfaces as follows: A behaviour-aware user
interface assesses information about interaction behaviour to take into account ~ow the user executes
interactions with it. This is a general definition; in our case, we assess and take into account touch
behaviour information, including measurement of touch input features, modelling of related patterns,
and consequently inference and adaptation.

Note that our definition does not require interfaces to adapt to behaviour information, as this would
be too limiting. For example, an interface that simply displays behaviour information would not
be behaviour-aware if adaptation was required. A similar line of thought underlies the omission of
adaptation in the definition of context-aware systems by Dey and Abowd [39].

Nevertheless, we envision that most behaviour-aware Uls respond to behaviour information by adapt-
ing interface and/or resulting output. They may do so during an ongoing interaction and/or with re-
gard to future use. The details of this response are not prescribed by definition, yet this thesis explores
examples in three application areas (see Section 3.2).

This awareness is not to be confused with other uses of the term in HCI. For example, groupware
and awareness systems [42, 75] aim to make one user or group aware of another’s activity, context,
and so on. Moreover, ambient displays make people aware of information such as weather or stock
values [166]. This is awareness between multiple people or between a person and surrounding infor-
mation. In contrast, we describe a relationship between a user and an interface, which is aware of the
interacting user’s details of interaction behaviour.

Finally, “awareness” here is not meant to convey something akin to human consciousness, but merely
“using information about”, in the sense in which it is also understood for context-aware systems [39].

2.4 Discussion of Related Concepts

One might ask how behaviour-aware user interfaces as described in this thesis relate to other concepts,
such as context awareness or intelligent and adaptive user interfaces. Table 2.1 gives an overview of
several related concept classes/definitions and main connections and distinctions. These concepts
were selected based on insightful and reoccurring discussions over the course of this thesis research;
the goal here is to characterise the work and embed it into conceptual context. However, we do not
claim that this is a comprehensive list.
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Concept Common Ground / Connection Focus / Extension / Difference
Context Awareness Behaviour information can be seen as a Behaviour-aware Uls 1) provide a source
subset of context information. of behaviour information (e.g. for other

context-aware systems), and 2) use it
themselves (e.g. to adapt).

Intelligent Uls Behaviour awareness contributes to In particular: behaviour-aware Uls embed
“intelligence” in Uls. expectations about input behaviour.
Adaptive Uls Behaviour-aware Uls can be adaptive. In particular: adaptation is based on input

behaviour information.

Behavioural Biometrics ~ Shared interest in utilising variability and Extended application scope: not limited to

individuality of human behaviour. security/privacy.
Tools vs Agents Behaviour-aware Uls as interfaces to tools, Awareness of input behaviour, i.e. not
not agents. replacing user action.
Fore-/Background Varying degrees of user attention and “Background in the foreground”:
intention; using background “signals” to behaviour-aware Uls utilise
support foreground interaction. (“unintentional”’) behaviour details

exhibited in intentional interactions.

Table 2.1: Overview of related concepts with connections and comparisons to the described concept of
behaviour awareness for (mobile touch) user interfaces.

Behaviour Awareness & Context Awareness

Regarding context awareness, we argue that behaviour information is a subset of context, if we view
the way a user executes an interaction as part of that interaction’s context. Beyond that, behaviour-
aware Uls can be seen as a source of information that facilitates context awareness. As an example,
touch targeting behaviour reveals hand posture [P4, P10], which is often regarded as important con-
text information (see e.g. [54, 55, 68]). Hence, a behaviour-aware user interface that infers hand
posture from touch behaviour — for example to adapt the GUI as in our ProbUI framework [P3] —
would also be context aware. On the other hand, not all context-aware systems are behaviour-aware:
For example, the considered context information might simply not be part of the user’s interaction
behaviour (e.g. weather).

Behaviour-Aware Uls & Intelligent User Interfaces

We regard behaviour awareness as a way of contributing to “intelligence” in Uls. In particular, it sets a
focus on (predictive) processing of behaviour signals along those channels directly employed by users
for interaction, in our case mobile touchscreen interactions. In other words, behaviour awareness
embeds expectations about user behaviour into the UI itself (see Section 4.1). Since building and
utilising adequate expectations demands information and models about the world [30], we argue
that such user interfaces may then be deemed more “intelligent” than non-behaviour-aware ones. For
example, our work on offset models [P1, P4, P6, P9, P10] captures expectations about future targeting
behaviour to improve touch accuracy. Moreover, widgets in our ProbUI framework [P3] expect — and
adapt to — more than one way of being used (e.g. slider bends to match thumb reach in left-handed
vs right-handed use).

13
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Behaviour-Aware Uls & Adaptive User Interfaces

Behaviour-aware user interfaces can be adaptive as well if they adapt to behaviour instead of just
assessing and/or displaying it. They then represent a subset of adaptive interfaces, namely those
that base their adaptations on (input) behaviour information, as defined in this thesis. Moreover, this
subset overall favours implicit adaptations (e.g. see ProbUI’s adaptive widgets [P3]), as opposed to
explicit user decisions (cf. adaptive vs adaptable Uls [19]; “levels of adaptation”, e.g. [95]). The latter
are not excluded per se, though, and one might explore behaviour-aware interfaces that present the
user with adaptation options (cf. “adaptation tips” [120]), in our case based on behaviour information.

Behaviour Awareness & Behavioural Biometrics

We see a strong link between behaviour awareness and behavioural biometrics. Fundamentally, both
concepts build on variability in human behaviour. They particularly share a common interest in
detailed behaviour information related to the execution of certain physical tasks, such as in our case
operating a mobile touchscreen device.

The main distinction between the concepts lies in their target applications for such behaviour informa-
tion: The term “biometrics” is traditionally strongly associated with the distinction and recognition
of individual human beings (“identity management”, see e.g. [80]). In contrast, behaviour-aware user
interfaces as envisioned in this thesis also utilise behaviour information beyond this. We also covered
the security aspect in our work on distinguishing users based on password typing [P7] and target-
ing behaviour [P1, P6]. However, we further used behavioural (biometric) information to adapt and
personalise both input method (offset models adapt touch interpretation [P4, P9, P10]) and the inter-
action’s output (dynamic font adaptation in TapScript [P8]). An essay by the author [P2] presents a
more detailed motivation and discussion for opening “biometrics” to encompass more than security
in this way (also see Section 3.2).

Behaviour-Aware Uls & Tools vs Agents

An ongoing discussion in HCI research is concerned with the degrees of autonomy and integration in
the human-computer relationship (see e.g. discussions spanning conferences from CHI "97 [145] to
CHI ’17 [46]). In this regard, all our thesis projects view behaviour-aware Uls as interfaces to tools.
These might be deemed intelligent tools, but we do not cast them as intelligent agents. Metaphorically
speaking, the hammer assesses grasp and swing in order to adapt to it, yet it must still be wielded in
the first place (cf. instrumental interaction [7] vs dialogue with agents or servants).

This is evident in our focus on channels directly employed by users for using those tools, thus in our
case touchscreen interaction. In other words, in this thesis, behaviour-aware user interfaces focus
on awareness of input behaviour. In contrast, cast as an agent, we might instead aim to extend that
agent’s awareness through perception along any suitable channel, employed directly for interaction or
not. Moreover, an agent might aim to replace (the need for some) explicit user actions (e.g. by acting
on the user’s behalf), while our behaviour-aware Uls aim to “get more out of” the user’s actions.

Behaviour-Aware Uls & Foreground/Background Model

Finally, it is particularly interesting to relate behaviour awareness to the foreground/background
model described by Buxton [23], as adapted and discussed for sensor-enhanced mobile devices by
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Hinckley et al. [69]: Foreground interaction describes intentional “step-by-step human guidance for
the computer” [69] (e.g. typing). In contrast, background sensing registers actions that users “would
have had to perform anyway” [69] as part of their task (e.g. picking up the phone). Most impor-
tantly for our work, such background sensing can also facilitate foreground interaction (e.g. directly
launching the messenger when picking up the phone after receiving a text).

Hinckley et al. [69] particularly refine the foreground/background model to view it as degrees of atten-
tion and intention (foreground: intentional; background: unintentional). Our concept of behaviour-
awareness in user interfaces covers this spectrum by utilising behaviour information as defined above:
These “details” of (input) behaviour are observed for intentional interactions (i.e. foreground), yet
they are usually not intentionally controlled (i.e. in the background). For example, offset patterns
result from a variety of factors (as our work shows [P4, P6, P9, P10]), but usually not from a user’s
intention to, say, touch too far to the right of a target. The user’s decisions might still influence the
pattern, for example, by choosing a certain hand posture — although it is unlikely that the change
of the pattern was the primary goal of that decision (rather, hand posture is chosen e.g. due to en-
cumbrance). However, users may start to control previously unintentional behaviour details once a
behaviour-aware Ul introduces a feedback loop (e.g. see our work on ZapScript [P8] and the discus-
sion in Section 3.2.2).

Thus, related to the foreground/background view, it is 1) the consideration of “interaction signals”
with varying degrees of attention and intention, and 2) the idea of combining background sensing and
foreground interaction that is also at the heart of our work. Hence, to summarise, behaviour-aware
user interfaces as envisioned in this thesis utilise the “background in the foreground”.

As an alternative formulation, using the information-centric terminology introduced in the author’s
essay [P2], these behaviour-aware user interfaces utilise implicit information assessed for explicitly
performed user interactions.
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This section reflects on our research with a focus on positioning it in the literature. The structure
follows the guiding research questions and the resulting three main contribution areas: 1) analyses
and models of mobile touch (targeting) behaviour, 2) application areas for behaviour-aware mobile
touch Uls, and 3) methods and tools for creating them. Figure 3.1 presents a visual overview.

Information flow & adaptation schemes applications e enhancing input capabilities (introverted)
in behaviour-aware mobile touch Uls isual Ul ad . (characters) am facilitating privacy & security (mediative) :
visua adaptation : increasing expressiveness (extroverted)

e.g. adapt layout to hand posture, e
see ProbUl's example widgets
behaviour-aware Ul system

e.g. tap at key I e.g. output word .
behaviour foreground
----- details T P> | expectations |p»| inference (P»| decisions RS bt S LRy EEEEEEEEEEEE
e.g. offset models, e.g. infer user, e.g. target selection,
Q ProbUI's "bounding gesture, targets, touch correction, background
—> behaviours" hand posture authentication
e.g. exact location e.g. distort letters,

e dﬁ: v e | see TapScript
v
38 J ‘

user comparison non-visual Ul adaptation
e.g. touch data from others e.g. update offset models or . .
ProbUI's "bounding behaviours" introverted ' extroverted »
user input sensing / interpretation output
action interface

Figure 3.1: Information flow and adaptation schemes in behaviour-aware mobile touch Uls. This figure
presents a visual summary highlighting aspects and concepts discussed in this thesis. Note that not all
possible information flows are depicted here (e.g. does not show feedback loops back to the user).

3.1 Analysis, Modelling and Inference: Mobile Touch Targeting

3.1.1 Insights into Touch Targeting Behaviour and Modelling

Table 3.1 gives an overview of our investigation into factors which influence touch offset patterns and
modelling. Considering related work (also see Table 3.2), we position our research as follows: We are
the first 1) to analyse offset patterns and models from the same users across different devices [P10],
2) to investigate the influence of hand postures and GUI targets on offset modelling, considering
accuracy improvements and biometric value [P4, P6], and 3) to analyse offset patterns and models
for stylus input [P9]. We refer to the original publications for discussions on individual findings.
Here, in a broader view, we discuss the main challenges and opportunities for utilising offset patterns
and models in practice.
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Cate- Factor / Findings References
gory Comparison
target location Basic factor for offset patterns: offsets depend on location. Screen edges Buschek et al. [P4, P9,
and corners are most relevant for characterising targeting behaviour patterns. P10], Weir et al. [159]
target shape and Offset lengths & angles vary more for large targets. Small targets lead to Buschek et al. [P4, P6]
size more individual and consistent patterns. Patterns are less posture-specific
for large/broad targets.
hand left vs right Generally mirrored patterns, left vs right hand can be recognised based on Buschek et al. [P10]
posture offset patterns.
hand thumb vs Thumb vs index can be recognised based on offset patterns. Index finger Buschek et al. [P4, P6]
posture index finger  input is more accurate than thumb, but less individual. Offset patterns are

less similar across hand postures than across target types.

imple- index finger  Stylus is more accurate than the finger, yet the extent depends on the screen ~ Buschek et al. [P9]
ment vs stylus location. Fingers benefit relatively more from offset corrections than styli.
Stylus offset models also improve finger touch, but not vice versa.

stylus nib type & Stylus width/nib affects offset patterns more than the hover cursor. A thin Buschek et al. [P9]

hover cursor  plastic nib glides more and in a more complex pattern than a thick nib (and
the finger).

mobility  sitting vs Offsets are larger while walking (i.e. less accurate targeting). Implement Buschek et al. [P9]
walking (stylus vs finger) has a stronger influence on offset patterns than mobility.

device phone model  Offset patterns contain device-specific and user-specific aspects. Combining Buschek et al. [P10]
(size) them allows us to transfer a user-specific offset pattern across devices.

hand size Small hands tend to show larger vertical offsets near the top of the screen, Buschek and Alt [P4]

yet shorter ones near its bottom.

Table 3.1: Overview of our investigation of factors influencing touch offset patterns (and modelling),
with a short summary of our main findings.

Challenges: Dealing with Variability in Offset Patterns

Throughout our studies, we found that offset models improve touch accuracy under a variety of
influences and conditions. This is the case for different GUI targets, hand postures and fingers, styli,
and while walking. In that sense, offset patterns and models can be considered as fairly robust.
However, our analyses also showed that these models ideally should be trained on touches collected
under the same conditions. In the worst case, they might otherwise even lead to worse accuracy; for
example, finger offset models should not be applied to correct stylus touches [P9]. Thus, specific
offset patterns and models are not robust across all contexts. Since mobile touch devices are used in
a variety of everyday situations, this is a main obstacle for utilising offset patterns and models for
improving touch accuracy in practice. To address this, our insights point towards several directions:

First, we could train models on touches from a variety of contexts. For the 2D offset models discussed
here, this would likely lead to simpler patterns and consequently more “conservative” predictions
(cf. [63]). The data collected across all our studies could be combined to support such efforts.

Second, we could use (stronger) regularisation via the models’ hyperparamters to push the model
towards more careful predictions which might improve generalisation across contexts.

Third, we could take models from contexts known to be more robust. For example, we found that
stylus models also improve finger touch [P9], partly since a stylus is more accurate and the resulting
models thus predict smaller (i.e. more “conservative”) corrections. Similarly, posture-specific models
(thumb vs index finger) work across different GUI target sizes for the same posture [P6].
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Fourth, we could combine models in a “chain of responsibility” pattern, similar to the concept for
touch keyboard models by Yin et al. [170]. This would require detecting the current context to use
the most specific model available. For example, the system might store one model for index finger
use and another one for the thumb. Detecting the current posture then allows the system to determine
which model to use for correcting current touches. Touch behaviour itself already helps to detect
such contexts (shown by our work and others, see Table 3.3), and future devices might employ other
sensors to facilitate this further (e.g. around-device touch sensing [97, 108, 109, 110]). We thus plan
to build such a hierarchical model in future work and evaluate it in the wild under varying contexts.

Finally, we could directly integrate context data into the offset model as a predictor. Related work
showed this for gait phase [113] and acceleration [115] (Table 3.2). Considering the strong influence
of different hand postures revealed in our studies, (further) grip and posture-related data seems a
particularly promising addition to investigate in the future. With more information beyond the touch-
screen, the 2D offset pattern models might then be viewed as (part of) a more general approach of
mapping behaviour patterns to input points. This can also be seen as extending general (touch-based)
mappings, for example investigated for users with motor impairments (e.g. Smart Touch [111]).

Opportunities: Utilising Variability in Offset Patterns

On the other hand, offset pattern variability need not be bad news for applications — it can also be seen
as an opportunity for gathering information. Indeed, our investigated applications (Section 3.2.2) are
motivated by exploiting such variability in touch input behaviour.

Besides the context factors discussed in the previous section, individual users are the main fac-
tor influencing offset patterns. Throughout our projects, we observed that mobile touch targeting
behaviour is highly individual [P1, P4, P5, P6, P7, P9, P10]. This confirms results from related
work [160]. Beyond prior work, we explicitly analysed individuality of offset patterns and studied
how such user-specific behaviour is influenced by factors like hand postures and GUI targets [P6]
and implement [P9]. Based on our findings, we conclude that this individuality opens up opportuni-
ties for utilising the discussed variability in offset patterns, in particular for user authentication and
identification (also see sections 3.1.3 and 3.2).

We can look beyond individuality with a similar perspective: The previous section discussed the
context-specific nature of offset patterns as a challenge for accuracy improvement. For other appli-
cations, however, this might be seen as an opportunity. For example, we proposed a concept [P4, P6,
P10] for detecting hand postures and fingers in use based on differing offset patterns under these con-
ditions (see Section 3.1.3). Moreover, our TapScript project exploited the variability in offset patterns
while typing in different contexts to subtly reveal such contexts to messaging partners [P8].

Summary: Targeting Behaviour Insights

Regarding analyses of targeting offset patterns and models, this thesis research contributes novel
insights, analysing: 1) patterns of the same users across devices, 2) influences of hand postures
and GUI targets, and 3) offset patterns and models for stylus tapping. Moreover, our results
highlight variability in offset patterns, which presents a challenge for practical touch accuracy
improvement, yet also an opportunity for utilising these patterns, for example to distinguish users
and contexts or to communicate context.
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Name

Input

Output

Model/Method

Parameters

References

Offset Cursor

Shift Correction
Vector

Polynomial Offset
Model

Linear Offset Model

GP Offset Model

RVM Offset Model

XY + Grip Offset
Model

Gait Phase GP
Offset Model

Inverse Offset
Model

Change Point Offset
Model

vertical touch
location (y)

past touch down-up
distances

touch location (x,y
separate)

touch location (x,y)

touch location (x,y)

touch location (x,y)

touch location (x,y),
device acceleration
and rotation

(500 ms before
touch)

touch location,
acceleration (from
which gait phase is
estimated)

target location (x,y
separate), target
width/height

sequence of touch
locations (x,y)

intended vertical
touch location (y)

intended touch
location (x,y)

intended touch
location (x,y
separate)

2D Gaussian
describing likely
intended locations
(x,y)

2D Gaussian
describing likely
intended locations
(x,y)

intended touch
location (x,y)

intended touch
location (x,y
separate)

intended touch
location (x,y
separate)

2D Gaussian
describing likely
touch locations
(x,y)

probability of
behaviour change
per timestep (e.g.
user change)

constant offset
added

constant offset
added, updated per
touch

polynomial function

quadratic function

one Gaussian
Process regression
model

Relevance Vector
Machine

two GP regression
models (x,y
separate)

two GP regression
models (x,y
separate), gait phase
estimation
algorithm

linear/GP regression

polynomial
functions

constant offset in y
only

w updating weight

coefficients of two
fifth order
polynomials

coefficients of two
quadratic
polynomials

GP hyperparameters

RVM
hyperparameters

GP hyperparameters

GP hyperparameters

coefficients / GP
hyperparameters, €
noise scaling

coefficients of
polynomials

Potter et al. [125],
Sears and
Shneiderman [142]

Vogel et al. [156]

Henze et al. [63]

Buschek et al. [P10,
P4]

Weir et al. [160]

Weir et al. [159]

Negulescu et
al. [115]

Musié et al. [113]

Buschek et al. [21,
P6]

Buschek [P1]

Table 3.2: Overview of touch offset models.

3.1.2 Touch Offset Models

Beyond using touch offset models to analyse behaviour patterns, we also contribute to offset mod-
elling itself. To position our work, Table 3.2 presents an overview of related research. In the follow-
ing, we discuss our contributions regarding three key aspects.

Informing Modelling Decisions

We proposed a “2D” linear model [P10]; it uses both dimensions x,y for its predictions for both
x,y. Earlier work had either investigated a linear model using each dimension separately (i.e. x/y
only predicted based on x/y respectively) [63] or a non-linear model [160]. Taking into account all
our studies, we found that using both x,y is important (e.g. see [P10]), yet linear models are often
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expressive enough (with appropriate basis functions) to improve touch accuracy. They offer practical
benefits compared to the non-linear Gaussian Process (GP) models, most importantly faster training
and a much smaller memory footprint, which enables handling very large datasets. On the other hand,
we found that the GP models’ greater flexibility makes them a much better choice for our inference
method, in particular for user authentication/identification [P6].

Inverse Offset Models

We proposed the inverse use of offset models, that is, predicting likely touch locations for a given
target location. In particular, we used this to simulate touch behaviour for given GUI layouts [P6],
in order to estimate their biometric value. To do so, we embedded the inverse offset models into
a probabilistic touch interaction model that sampled users, hand postures, targets, and finally touch
locations. Beyond this application, such generated touch behaviour might also prove useful as a proxy
for real user interaction for other analyses or computational GUI optimisation (cf. [121]). As another
application scenario, we used inverse models for predicting and analysing touch behaviour on mobile
websites [21]. We investigated inverse offset modelling with our 2D linear model [21] and the GP
model [P6]. However, our concept is flexible and could also be used with other offset models from
related work (see Table 3.2).

A Change Point Offset Model

We proposed and evaluated a change point offset model [P1], based on change point estimation with
linear models [128]. In light of the related work, this is the first offset model to explicitly consider
touches as sequences with behaviour changes. It embeds linear models to detect changes in model
parameters and outputs a probability of such a change per timestep. In particular, we evaluated this
for detecting and locating user changes (also see Section 3.1.3).

Summary: Modelling

Regarding modelling mobile touch behaviour, this thesis research 1) informs model choices
for touch offset modelling, 2) enables computational simulation of (spatial) touch targeting be-
haviour for mobile GUIs via inverse offset models, and 3) extends offset modelling to utilise
touch sequences with change points.

3.1.3 Inference on Mobile Touch Targeting Behaviour

Using touch offset data and models, we also investigated inferring further information about user
and context. To position our work on such inference, Table 3.3 gives a broad overview of work on
inferring different kinds of information from mobile touch behaviour. We discuss our contributions
regarding three aspects.

Inference Using Touch Offset Patterns

We provide and investigate an inference method for touch offset models to infer information based
on touch targeting (offset) patterns [P4, P6, P10]: We evaluate observed touch offsets using the
predictions (i.e. expectations) of models trained on previously recorded touches per class (e.g. left
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Informa- Interaction Features and Sensors Models and Methods
tion
intended tapping touch location (x,y) 2D Gaussian per target [56], two 2D Gaussians per
target target (FFitts’ Law [14]), Bayes’ rule (Bayesian Touch
Criterion) [15], other methods e.g. for users with motor
impairments (e.g. Smart Touch [111])
intended typing touch sequence (x,y), language context, 2D Gaussians, n-gram language model, Bayes’
text IMU [53] rule [53, 56], Gaussians with restricted support [57],
abs./rel. location mapping [127], model graph [170],
decision trees [53], shape-based [90, 91, 154, 173].
user tapping, typing, touch offset [P7, P6, 41], size [P7, 41, offset models [P7, P6], template matching [37, 47, 133,
scrolling, 169, 174], location [P7], distance [P7, 151, 174] / k-nearest neighbours [P7, 144], decision
gestures, other 81], drag [P7, 41], gesture features [20, trees [34], Bayes nets and Naive Bayes [P7, 81, 114],
(non-touch, e.g. 37,47, 51, 133], pressure [P7, 41, 169, logistic regression [34], NN [134, 144], SVM [20, 51,
device 1741, IMU [41, 144, 174] 144, 169] and other kernel methods [P7]
pick-up [110])
hand tapping, typing, touch offset [P4, P10], size [54], offset models [P4, P10], heuristics [28, 54], k-nearest
posture scrolling, timing [54, 170], distance [170], gesture  neighbours [98], SVM [170]
gestures features [98], capacitive sensors [67]
also around the device [28, 119, 171]
finger tapping cap. (touch) sensors [104, 131, 168], particle filter [131], Gaussian Process [168],
orientation depth-camera [89] heuristics [168], CNN [104]
finger tapping touch area [17, 43, 55, 129], IMU [55, special stylus [78, 76], vibration damping [55, 77],
pressure / 65, 70, 77, 147], microphone [78, 79], DSP and heuristics [65, 70, 79, 147]
“force” magnetometer [76], wrist-worn
IMU [163]
unintended  tapping, drawing  contact area [5, 71], touch (sequence) heuristics [71], decision trees [100, 141], geometric
touches features (e.g. speed, no. of events, occlusion model [157]
distance between touches) [100, 141],
IMU [100], hover and other
stylus-specific information [5]
cognitive swiping cap. sensors (around device) and Random Forest, SVM [109]
errors IMU [109]
result zooming, swipe and zoom features (pressure, size,  regression trees [58], decision trees [88], random
relevance / swiping, count, distance, etc.) [58, 88, 164] forest[164]
satisfaction  inactivity
affect / tapping, typing, scroll and swipe features (length, speed,  several classifiers [29, 52, 143]: SVM, NN, decision
emotion / scrolling, swiping pressure, etc.) [29, 52, 143], tap features  trees, Bayes nets, discriminant analysis, kNN, etc.
stress (pressure, size, drag, number) [29, 143],
corrections [29]
“truth / tapping, swiping  timing, touch area, offset, pressure [112] SVM [112]
lying”
sex swiping swipe features (length, time, width, Naive Bayes, logistic regression, SVM, decision
height, area, thickness, pressure) [107] tree [107]
age (group, tapping, dragging touch/drag time and distance [153], Naive Bayes [153], sigma-lognormal neuromotor
e.g. child vs touch locations and timestamps [66], model [66], DSP plus several classifiers [36]
adult) IMU [36]
thumb size  swiping swipe features (length, time, thickness, correlations only [12]

pressure, speed, acceleration) [12]

Table 3.3: Overview of information inferred from mobile touch interaction behaviour. For each informa-
tion type, the table shows main models and methods with example references.
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vs right hand). This yields a likelihood for each class per touch, which we aggregate over multiple
touches. Using this approach, we inferred users [P6, P10] as well as hand and finger/implement in
use [P4, P9, P10].

Related work (Table 3.3) inferred hand posture for specific GUIs and tasks (in particular typing [54,
170]) or used extra sensors [28, 119, 171]. In contrast, our approach addresses tapping in general
and only requires touch and target locations. On the other hand, reliable inference with such limited
features tends to require a greater number of touches [P4, P6, P10]. To address this, future work could
apply our inference method to offset models which use further sensor data, in particular those which
combine touch and motion sensing ([113, 115], see Table 3.2). One could also combine evidence
from our approach on the screen with that from around-device sensors.

Our change point offset model [P1] provides an alternative inference method based on touch offset
sequences. This approach allows us to detect and locate behaviour changes in touch targeting se-
quences. Existing related touch models and methods (Tables 3.2 and 3.3) could be used for change
detection as well, yet none of them is explicitly designed to do so. One benefit of our approach using
a dedicated change point model is that it does not require training data (detecting change vs recognis-
ing previously seen behaviour). Nevertheless, observing a certain number of touches is still required
for accurate inference [P1].

Looking ahead, full capacitive array data [67, 104] could facilitate inference. This might be combined
with offset models by training them on such data instead of 2D touches. Related work [160] supports
this for touch correction; future work could study it also for inferring postures or other information.
Moreover, screens with fingerprint sensing (see [72, 73, 148]) promise to greatly improve recognition
of users, postures, and fingers. In this light, our approach provides an alternative for users who do
not like to submit fingerprints, for devices without such sensors, or for contexts that might not eas-
ily have access to them (e.g. websites). Finally, interest in offset-based inference is not exclusively
motivated by applied prediction but also by fundamentally analysing behaviour: For example, infer-
ring user/posture from offsets yields insights into the user/posture-specific information in pointing
behaviour. We argue that this offers value independent of details of screen technology, for example
for generative behaviour models (see e.g. our touch simulation [P6]; cf. use of simulation in “Com-
putational Interaction” [124]), or to complement related perspectives on pointing characteristics, like
speed-accuracy tradeoffs (e.g. [50, 167]) and endpoint distributions (e.g. [6]).

Touch Offsets as a Feature in Mobile Touch Typing Biometrics

We also examined touch offsets for inference independent of specific touch offset models. In partic-
ular, we proposed and evaluated a new feature set for touch typing biometrics: We combined touch-
specific spatial features (incl. offsets) with the “traditional” temporal ones. Most previous work
had not used touch-specific typing features and some related work thus called for new features [33].
Touch typing offsets in particular were not considered, or not evaluated [41], as highlighted in other
work [169]. Our results [P7] show that these spatial touch typing features can offer higher biomet-
ric value than the temporal ones and thus should be considered in touch typing biometrics. Indeed,
touch-specific spatial typing features have recently gained more attention (e.g. see a recent survey on
mobile touch biometrics [150]).

We further evaluated these spatial touch features on data collected from users’ own “free” typing in
the wild [P5]. Compared to our lab results [P7], the difference between spatial and temporal features
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seemed even more prominent. Our results thus indicate that finger placement is more characteristic
and consistent than typing rhythm throughout the varying contexts of real-world mobile typing. Using
our logging tool [P5], future studies can further investigate this, for example, with a more diverse user
group and long-term observation.

A Framework for Probabilistic Inference in Mobile Touch GUIs

Finally, we took a step towards using touch input behaviour-based inference in practical applications:
We contribute a probabilistic framework for continuously inferring users’ intended targets and be-
haviours from touch input (ProbUI [P3]). This includes both simple taps as well as (a limited class of)
touch gestures. Considering related work, ProbUI takes ideas from probabilistic target and keyboard
models (first two rows in Table 3.3) and adapts them for general mobile touch GUIs. In particular,
ProbUI uses Gaussians to represent targets, like work on touch keyboards (e.g. [56, 170]). Moreover,
targets in ProbUI can be represented by more than one behaviour component, similar to the use of
two Gaussians in FFitts’ Law and the Bayesian Touch Criterion by Bi et al. [14, 15]. We discuss
ProbUI in relation to other frameworks in more detail in Section 3.3.3.

Summary: Inference

Regarding inference on mobile touch behaviour, based on several studies, our thesis research
contributes: 1) an approach for utilising touch targeting patterns to infer information, such as
user, hand, and finger, as well as behaviour changes in targeting sequences; 2) a novel feature set,
including touch offsets, for inferring users from mobile touch typing data, with evaluations on
static text in the lab and free text in the wild; and 3) a concept and framework for probabilistically
inferring intended target and touch behaviours (gestures) in mobile touch GUISs.

3.2 Applications: Personalised, Secure and Expressive Mobile
Touch Interaction

In this section, we reflect on application opportunities for behaviour-aware mobile touch interfaces.
We first characterise such applications in general, before discussing specific application areas, based
on examples from the projects conducted as part of this thesis research.

3.2.1 Characterising Applications of Behaviour-Aware Uls

We first describe application areas on an abstract level. They originated from the author’s essay [P2],
which highlighted a common interest in user individuality in both biometrics and the concept of
“Extended Self” (ES, see Belk [8, 9]). According to ES, people use (digital) objects to define, reflect
and communicate their identities. Belk’s discussion [9] refers to the functions of Having, Doing, and
Being. We related this to systems using behavioural biometric information for security (Having), UI
personalisation (Doing) and user representation (Being). In a similar yet broader view, beyond the
strong biometrics link of the essay [P2], here we describe application “characters” for behaviour-
aware mobile touch interfaces. The use of such terminology for describing “intelligent” Uls takes
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inspiration from work on smart touch keyboards by Quinn and Zhai [126]. We propose to characterise
applications of behaviour-aware Uls with these terms:

e Introverted applications utilise behaviour information to adapt to the one person currently in-
teracting with that (part of the) interface. Examples from our work include adapting GUISs (e.g.
ProbUI [P3]) or touch input interpretation (e.g. user-specific offset models [P4, P9, P10]).

* Mediative applications utilise behaviour information related to the existence of multiple users
(or the possibility thereof), most often to compare them. For personal mobile touch devices,
the most prominent examples of this kind are systems for user identification or authentication,
such as our projects on biometrics for targeting [P1, P6] and typing [P5, P7].

e Extroverted applications utilise user behaviour information to adapt the output of the user’s
interactions. Here, “output” does not refer to system feedback but to the user’s created digital
artefacts. In the mobile touch context, such outputs are often related to communication tasks
with other people (e.g. creating a message, see our TapScript [P8] project).

3.2.2 Investigated Application Areas

Here, we reflect on behaviour awareness applied in mobile touch Uls with the different described
“characters”. In particular, we investigated applications regarding 1) UI adaptation, 2) privacy and
security, and 3) expressiveness. For brevity, we focus on the relation to prior work as well as high-
lighting a key consideration for each area.

User Interface Adaptation

Behaviour-aware user interfaces can assess a user’s input behaviour to adapt to it. This is an example
of an introverted application (see Section 3.2.1). Following related work on user-specific adaptation
in touch GUISs [49], we investigated two kinds of adaptation:

1. Adaptation of input interpretation [P4, P9, P10]: Offset models trained on users’ previous
touches can be applied to improve touch accuracy. By mapping raw touches to likely intended
locations, these models change the way future touches are interpreted. However, this does not
visually change the user interface.

2. Visual GUI adaptation: In contrast, our work on ProbUI [P3] introduced models of touch input
into a GUI framework, also to visually adapt the interface. For example, we adapted it to the
user’s hand posture to improve reachability.

In one sentence, we position our work on Ul adaptation as addressing “influences and integration”
— in more detail: The first application directly continues related research, which also applied touch
offset models to correct touches (see related work in Table 3.2). However, we studied these models
in further detail with a focus on influencing factors relevant for practical applications, such as hand
postures and GUI targets (see Table 3.1 and the related discussion in Section 3.1.1). Beyond offset
models, our second project in this application area (ProbUI [P3]) contributes a novel concept for
integrating touch behaviour models into GUIs — in particular to facilitate UI adaptation. A detailed
comparison to related concepts and frameworks is discussed in Section 3.3.3.
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Looking beyond this thesis and further towards (long-term) practical deployments, we argue that
many relevant questions surrounding adaptation in behaviour-aware (mobile touch) interfaces arise
from the choice (or mix) of these adaptation types. In particular, one needs to take into account
possible feedback loops between the system’s adaptation and the user’s.

Related work showed that visual feedback improves touch targeting performance (e.g. [64, 162, 172]),
yet the co-evolution of such learning effects under continuously “learning” offset corrections remains
to be studied. Work on adaptive touch keyboards found that visual adaptations in particular can result
in unfortunate co-evolution leading to heavily distorted and less usable and effective GUIs [49, 57].
Thus, we plan to investigate such feedback loops in dedicated experiments in the future.

Privacy and Security

Relating behaviour-aware Uls to biometrics (see Section 2.4), this application area has historically
gained most attention when it comes to assessing and utilising interaction behaviour information. The
grand goal is reliable user identification/authentication. This is an example of a mediative application
(see Section 3.2.1). Table 3.3 (row “user”) presents an overview of the different kinds of interactions
and behaviour information used in related work.

In one sentence, we position our work in this area as “facilitating the use of touch offsets and further
research”, explained as follows: We first refer to our contributions related to utilising touch offsets
for inferring users from touch behaviour, as discussed in detail in Section 3.1.3. Beyond this, it
is important to note in this application section that we did not deploy an actual identification or
authentication system “live” and in the wild. This decision to “take a step back™ was based on
remaining practical challenges revealed by the literature (e.g. dealing with changing hand postures,
see our related work and discussions in [P7] and [P5]). Thus, we focused on analyses, methodology,
and tools as prerequisites for developing robust future applications:

1. We evaluated, discussed and addressed evaluation schemes [P7] and influencing factors that
need to be considered for practical applications, such as the influence of hand postures [P6, P7]
and GUI properties [P6].

2. We contribute to methodology and practical research with a concept and tool (Re-
searchIME [P5]) for collecting users’ “natural” typing data in the wild, in a privacy-respectful
manner. To the best of our knowledge, we are the first to collect such mobile touch typing data
(also see related work in [P5]).

Going forward, we plan to further develop and employ our tools to inform robust modelling and new
biometric features. Moreover, we plan to assess user perception of such data collection and use, as
already started with the ResearchIME project [P5].

Expressiveness

Related work on mobile touch input proposed a wide range of ideas to enrich touch and render
related interactions more expressive. Table 3.4 shows an overview. Behaviour-aware user interfaces
in this area present examples of extroverted applications. In one sentence, we position our work on
expressiveness as “revealing the background in the foreground”, unfolded in the following.
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What? When? Where? What for? Perspective References
touch area during touch on screen e.g. mode switch foreground Fat Thumb, Boring
(pan vs zoom) etal. [17]
finger/stylus during touch on screen e.g. mode switch, foreground GripSense, Goel et
pressure drawing, gaming al. [55]; Hwang et
al. [76, 77, 78, 79]
hand posture several touches on screen, device e.g. adaptive background GripSense,
(discrete) keyboard [54] ContextType, Goel
et al. [54, 55]
hand hover posture  before touch above screen e.g. targeting, GUI  fore/background Hinckley et al. [67]
adaptation
grip changes before/after touch on device e.g. anticipating background Mohd Noor et
touches [108, 115], al. [108, 109, 110],
detecting Negulescu et
errors [109], al. [115]
identifying
users [110]
hand contact shape  during touch on screen e.g. mode switch foreground TouchTools,
Harrison et al. [61]
finger orientation during touch on/above screen e.g. pan, zoom, fore/background Mayer et al. [104],
rotate; Rogers et al. [131],
occlusion-aware Xiao et al. [168]
Uls [131]
finger parts on touch on screen e.g. different modes foreground TapSense, Harrison
et al. [60]
hand parts (palm) on touch on screen e.g. mode switch foreground PalmTouch, Le et
al. [96]
mid-air finger in between touches  above screen e.g. mode switch, foreground Air+Touch, Chen et
movement Zoom al. [27]
typing gesture during touch on screen e.g. font settings fore/background Alvina et al. [3]
finger movement
stylus movement independent of above/around e.g. drawing, foreground MagPen, Hwang et
touch device gestures al. [76]
device movement during touch on screen, device e.g. mode switch, fore/background Hinckley and
zoom, touch context Song [70]
arm/wrist before/during touch  above/on screen e.g. rotation, fore/background Expressy,
movement scrolling, gaming, Wilkinson et
mode switch al. [163]
device movement before/during/ on screen, device font adaptation fore/background TapScript, Buschek

and orientation;
keystroke duration,
pressure, finger
placement (offsets)

between touches

et al. [P8]

Table 3.4: Overview of touch behaviour information (first column) utilised for “rich” and expressive
mobile touch interaction in related work and in TapScript [P8] (last row).

As the table shows, many projects are motivated by using the additional information in the fore-
ground, that is, as dimensions intentionally controlled by the user (also see Section 2.4). Some
discuss both foreground and background perspectives (e.g. see Hinckley et al. [67, 70]) and others
focus on the background (e.g. see the use of grip changes by Mohd Noor et al. [108, 109, 110]). Re-
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lated, motivations for both foreground and background use can also be found in research on inferring
specific information from touch input (see Table 3.3).

Our perspective on expressiveness in TapScript [P8] originated from the idea of revealing background
behaviour information to the users by influencing the output of the foreground interaction in which
said information is assessed. This view differs from using information either in foreground or back-
ground. It is also different from most projects that consider both foreground/background in that we
focus on adapting output (message fonts in TapScript) — in contrast to adapting the GUI or input
interpretation (e.g. cf. Hinckley et al. [67, 70]).

Foreground and background uses then intersect: Once behaviour aspects affect output, users may
start to intentionally control them, thus bringing them to the foreground. We indeed observed this
in TapScript [P8]: For example, a participant reported that the font’s tilt communicated lying on the
couch (background), whereas they later on intentionally controlled the tilt to highlight words like
italic markup (foreground). Related work on gesture keyboards later examined such control aspects
more directly, supporting our interest in this view: Alvina et al. [3] found that users could intentionally
vary previously “uncontrolled” background aspects of their interaction when these were revealed in
the foreground output. In particular, users controlled gesture features such as speed and inflation to
modify font properties. In what could be regarded as a foreground alternative, Alvina et al. also
studied shortcut gestures [2] which included controlling font properties.

Based on such work as well as our own experiences with TapScript [P8], we regard the assessment
and use of the “background in the foreground” as an interesting direction for further exploration of
expressive interaction via behaviour-aware Uls, for mobile touch devices and beyond. In particular,
one may investigate in detail the conditions, evolution, and (long-term) consequences of transitioning
from uncontrolled background influences to controlled dimensions of the foreground interaction’s
output in “expressive” behaviour-aware Uls.

3.2.3 Behaviour Awareness Across Applications and Devices

The presented application areas may benefit from sharing behaviour information and models between
them, as also discussed in the author’s essay [P2]. The projects contributing to this thesis motivate
such a vision of transferring and (re)using behaviour information and models. In particular, we used
touch offset patterns and models across applications: 1) They help to improve touch accuracy [P4,
P6, P9, P10], 2) they can be used to distinguish people based on targeting [P1, P6] and typing [P1,
P5, P7], and 3) they allow us to personalise output (fonts) [P8]. Instead of collecting data and training
models per application, future systems might thus share such data and models. As an example from
the literature, Lochtefeld et al. [98] used touch data collected during device unlocking to infer hand
posture. This information could then be used to adapt Uls in other apps on this device in this session.

We did not explicitly examine such cross-application transfer. Reflecting on our work, it seems likely
that models require different settings and schemes per application. For instance, TapScript’s offset
model [P8] needed to reflect current finger placement to dynamically adapt the font. It was thus up-
dated based on a short history of recent touches. In contrast, correcting touches to improve accuracy
usually benefits from larger training sets [P10, 159]. More generally, the (re)use of behaviour infor-
mation across behaviour-aware Uls thus requires careful further investigation. We return to this in
the conclusion (Section 4).
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Moreover, behaviour information and models might be shared across devices. We contribute the first
study of cross-device transfer of personal mobile touch behaviour information for touch targeting
models on smartphones [P10]. We represent devices implicitly by how they influence the modelled
behaviour. Thus, to reuse behaviour information, we require no knowledge about devices themselves,
such as physical properties or internal algorithms. We can instead directly refer to behaviour differ-
ences between these devices, even if these are observed for other users. While our study is limited
to different smartphones, future work could investigate this and similar approaches for transferring
touch behaviour models between phones, tablets, and smartwatches.

Summary: Applications

Regarding applications of behaviour-aware mobile touch Uls, our research contributes: 1) a per-
spective motivating the use of behaviour information across different areas, in particular beyond
security; 2) an exploration of three application areas for behaviour-aware Uls with different
“characters”; 3) reflections on using touch behaviour information across applications and a con-
cept for transferring offset models across devices.

3.3 Methods and Tools for Behaviour-Aware Mobile Touch Uls

Several projects contributing to this thesis resulted in the creation of frameworks and tools. Here, we
discuss them in the light of related work.

3.3.1 Collecting Mobile Touch Typing Data in the Wild

We regard studying user (input) behaviour as an important first step to develop and create behaviour-
aware user interfaces. To facilitate this for our context, we contribute a concept and tool to collect
mobile touch typing data in the wild in a privacy-respecting manner [P5].

More concretely, we provide an Android keyboard app, ResearchIME, that records typing touches. To
avoid logging readable private text, we introduce a sampling-based filter. In particular, our study [P5]
used a random n-gram filter: It logs text-revealing information for n subsequent touches with a small
chance (we used 10 % and n = 3) and a minimum gap between subsequent loggings. Text-revealing
data for the remaining keyboard touches is not logged (“redacted”).

To position this concept in the literature, Table 3.5 presents an overview of the main related log-
ging methods for typing data. The list is limited to methods which 1) could also be used for mobile
typing beyond the lab, and 2) offer an inherent degree of privacy protection. Note that other varia-
tions, methods and tools exist, for example for generally developing further loggers (e.g. the AWARE
framework [48]).

Our sampling concept and tool differs from related work in two key aspects: First, it collects and
retains both temporal touch features (and touch order) as well as spatial ones. This is motivated by
our literature survey on the required and desirable touch typing information in related research (see
related work in our paper on ResearchIME [P5]), and our prior investigation [P7] on the benefits of
combining those features in typing biometrics (also see Section 3.1.3). Second, our concept and tool
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Logging Method /  Description Pro Contra

Example Ref.

Experience ESM app on participants’ own no interference with private typing; limited to given text; in Android:

Sampling Method devices that prompts several typing information in varying real ~ no access to spatial touch features
(ESM), Reyal et transcription tasks per day world contexts over several days (e.g. exact x,y); does not observe

al. [130] users’ own “natural” typing

Custom app and
tasks, Kumar et
al. [92]

Custom keyboard
and tasks, Alotaibi
etal. [1]

Typing game, Henze
et al. [64]

Common words,
Dowland and
Furnell [40]

Dummy characters,
Evans and
Wobbrock [45]

Shuffling, Draffin et
al. [41]

logging typing (and swiping) for
given tasks in a modified web
browser app

logging typing for given tasks in a
modified keyboard app

logging typing in a game app with
a modified keyboard

logging full information for the top
200 common English words

key logger replaces all characters
with a fixed dummy (“m”)

text obfuscated by removing touch
timestamps and shuffling the data

no interference with private
browsing; “full” information
within the custom browser

no interference with private typing;
access to spatial features; typing
across apps

no interference with private typing;
access to spatial features;
potentially large amount of data
(game as motivation)

full data for whole words; some
degree of text obfuscation

no text can be reconstructed; full
temporal/order information

no text can be reconstructed;
locations and keys logged for all
touches

limited to one browser and given
tasks; in Android: no access to
spatial touch features; does not
observe users’ own “natural”
typing

limited to given tasks; does not
observe users’ own “natural”
typing

limited to the game; does not
observe users’ own “natural”
typing

might reveal private text; bias by
chosen words; language-specific;
problems with (chat) slang / colloq.
language

no character/key-specific
information

neither temporal nor sequence
(order) information

Table 3.5: Overview of main related methods which have been — or could be — used for collecting mobile
touch typing data beyond the lab with (a degree of) privacy protection.

enable the collection of these features from users’ own free text typing (i.e. “natural” behaviour) — in
contrast to transcribing given text or typing in given (‘“‘artificial”’) tasks.

As a main limitation, our logging approach replaces users’ usual keyboard app in order to get access
to all typing features across all apps (also see our discussion in the paper [P5]).

3.3.2 Modelling Touch Targeting Behaviour

Our TouchML [P4] toolkit implements linear and non-linear offset models used in our research [P4,
P6, P9, P10, 160], as well as visualisations and metrics to evaluate them. It is the first open-source
implementation of these models tailored to the mobile touch and HCI context (libraries with general
regression models are of course widely available). We hope to facilitate more widespread use of
(touch) offset modelling, as an extension to other models (e.g. Fitts’ Law models [167]). Recent
related work on mobile stylus input called for further exploration of “the diverse and complex nature
of accuracy” [4]. In targeting analyses, offset models help to assess underlying spatial patterns in
detail. Our comparison of finger and stylus tapping behaviour [P9] presents one example of consid-
ering such patterns to analyse and compare input methods. Besides such analytical use, the toolkit
also facilitates building applications using offset models (in Python, JavaScript, Android).
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The toolkit is not limited to touch; these models can be applied to any 2D targeting data, for example
distant pointing [59, 155]. The models could also accommodate targeting in 3D, which might be
interesting, for example, for pointing in virtual reality (cf. [105]). Beyond the published research
projects, it is worth mentioning that we successfully employed the toolkit as teaching material to
support several student theses and research projects, as well as practical workshops and lectures (at
LMU Munich! and Munich University of Applied Sciences?). It was also used in another published
research project combining touch and Kinect data to understand and address parallax effects on public
displays [84].

Related to TouchML [P4], we modelled targeting behaviour to estimate touch locations for GUI lay-
outs, for example to evaluate their biometric value [P6] or to predict potential usability issues [21].
While this concept is not part of the toolkit, TouchML’s offset models can be used to implement it.

3.3.3 Building Behaviour-Aware Mobile Touch GUIs

Our ProbUl [P3] framework contributes and implements a concept for facilitating the creation of
behaviour-aware mobile touch GUIs. In particular, it facilitates building GUIs with probabilistic
“expectations” about input behaviour. These are used to inform feedback and adaptation, based on
the user’s current behaviour.

To position ProbUI in the literature, we recall its core contribution — it conceptually and practically
integrates three key areas into one framework: 1) declarative definition of input behaviour (touch
gestures), 2) probabilistic modelling of said behaviour, and 3) probabilistic reasoning based on those
models during interaction. In more detail, Table 3.6 lists influences as well as similarities and dif-
ferences of ProbUI compared to other related frameworks from those three areas. Bringing them
together, ProbUI combines the ease-of-use of declarative definition of input behaviour with the ben-
efits of probabilistic reasoning.

As a key step to enable this combination, ProbUI automatically maps the developers’ deterministic
behaviour declarations to probabilistic input models. This concept separates ProbUI from its most
closely related work: 1) declarative gesture languages (e.g. Proton [86, 87]), which do not yield
probabilistic models; and 2) probabilistic GUI frameworks (e.g. see the work by Schwarz et al. [138,
139, 140]), which focus on handling existing probabilistic input representations (e.g. provided by
external gesture recognisers [139]).

As a downside of enabling this combination, ProbUI is limited in depth in the specific areas: 1) It
provides no graphical editor and (currently) offers less expressive declarations (cf. Proton [86, 87]);
2) it supports less complex gestures than dedicated editors using demonstration and learning from
data (e.g. Gesture Coder / Studio [101, 102]); and 3) its probabilistic approach focuses on input
representation and does not inherently cover the whole GUI state (cf. Schwarz et al. [139, 140]).

Multiple probabilistic models per target also appear in FFitts’ Law by Bi et al. [14], with a similar
application to target selection in the Bayesian Touch Criterion by Bi and Zhai [15]. An equivalent
setup can be realised in ProbUI by attaching two “tap” behaviours per target with parameters as in the
related work. However, ProbUI is originally intended to deal with conceptually different behaviours

! http://www.medien.ifi.lmu.de/lehre/ss17/ath/
2 http://www.medien.ifi.lmu.de/lehre/ws1718/ups/
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Framework /
Reference

Description

Similarities to / influence on ProbUI

Main difference to ProbUI

GDL [85]

Midas [137]

Proton [86]

Proton++ [87]

Gesture Coder /
Studio [101, 102]

Gesture Script [99]

Grafiti [38]

Schwarz et al. [138]

Schwarz et al. [139]

Schwarz et al. [140]

declarative language for
(multi)touch gestures

declarative language for
(multi)touch gestures

declarative language for
(multi)touch gestures, similar
to regular expressions

extends Proton [86], e.g. with
directional expressions

GUI tool for developing
multitouch gesture
recognisers using
demonstration and a video
editing metaphor

GUI tool for developing
unistroke gesture recognisers
using demonstration
combined with a scripting
language

framework for gesture
management and GUI
integration

framework for prob. handling
uncertain input in GUIs

framework for prob. handling
uncertain input and GUI
states, while retaining
deterministic event handlers

architecture for generating
and fusing possibly suitable
GUI variations during
interaction in prob. GUIs

declaration of gestures; referencing
and connecting them in (boolean)
rules

same as above; general link of rules
and GUI elements

declarative language inspired by
regular expressions

symbols describe sequence of finger
movements

automatically deriving internal
recognition models from developers’
input

same as above; developer specifies
sequence of gesture parts

attaching gestures to specific GUI
targets; more than one gesture per
target

distributing input events to all GUI
targets; prob. mediation concept for
reaching decisions

same as above; motivation to reduce
“probabilistic details” that developers
need to think about

motivation to utilise input behaviour
probabilities to provide rich “live”
feedback during interaction

no probabilities; gestures not tied to
GUI targets

no probabilities

no probabilities; gestures not tied to
GUI targets

same as above; direction symbols
relative to finger, not GUI target

GUI, uses training data; programming
by demonstration

GUI, uses training data and
demonstration; procedural code
(“scripts”, not declarations)

gesture recognisers need to be coded
manually

assumes existing input prob., e.g.
from external recogniser

same as above; sampling-based
inference; prob. model inherently
includes GUI state

focus on handling prob. GUI states;
sampling-based inference

Table 3.6: Overview of related frameworks — which influenced ProbUI- for modelling, recognising, and
inference on (mobile) touch input behaviour.

(e.g. swipe left vs right), or execution styles (e.g. scroll with thumb vs index), and not components
of variability for one (e.g. absolute & relative tap precision in FFitts’ Law [14]). Finally, ProbUI is
related to adaptive touch keyboards, which also probabilistically model expected input (touches per
key, see e.g. [22, 57, 170]). ProbUI generalises this idea, embedding expectations about touch inputs
into general GUIs beyond the keyboard, and accounting for touch gestures, not exclusively taps.

Summary: Methods and Tools

To facilitate building and evaluating behaviour-aware mobile touch Uls, we contribute: 1) Re-
searchIME, a concept and tool to facilitate privacy-respectful collection of typing behaviour data
in the wild; 2) TouchML, a toolkit that provides offset models for analytic and constructive use,
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plus visualisations and metrics for evaluation; 3) ProbUI, a concept and implemented framework
for creating behaviour-aware mobile touch GUISs, in particular with probabilistic input expecta-
tions and related UI adaptations.

3.4 Limitations

Participants

Most participants were recruited via channels related to the university. They might not represent the
wider population in every aspect. Touch behaviour also varies across age groups [66, 153] and for
users with motor control disabilities [26, 111]. We highlighted individual behaviour in our analyses
(e.g. [P6]) and conceptual reflections [P2]. We believe that behaviour-aware mobile touch Uls have
the opportunity to address more specific user groups than the ones we have investigated so far.

User Studies

We mostly conducted lab studies (Table 1.2), since they allowed us to study specific factors under
controlled conditions in detail [P4, P6, P9, P10]. This comes with some limitations: First, we studied
targeting behaviour on provided smartphones — and in the case of typing with given passwords [P7].
It is possible that this influenced participants’ behaviour, compared to their usual devices and pass-
words. Results such as offset patterns thus might underestimate characteristics developed over long
term use. However, all our studies required repeated tasks (targeting [P4, P6, P9, P10], password
typing [P7]). This is a common way of simulating routine behaviour (see e.g. overview of input
repetitions for typing biometrics in the survey by Teh et al. [149]).

Second, lab studies typically assess behaviour at one point in time. However, consistency and change
in behaviour are relevant for behaviour-aware Uls. To address this, our lab studies involved two ses-
sions in different weeks (TAPS-I, TAPS-II, TAPS-STYLUS, PWD-TYPING). However, more extended
observation periods are desirable to capture long-term behaviour changes. Anecdotally, in additional
experiments related to the TAPS-I study we observed strong changes in targeting behaviour over the
course of two months for a user who only then started to use a smartphone in their daily live. More-
over, in TAPS-II [P6] and PWD-TYPING [P7], we showed that evaluations based on a single session
are overly optimistic. These observations and results motivate more long term data collection.

Finally, lab studies only involve a limited set of contexts. While we included different hand pos-
tures and mobility contexts (sitting, walking), everyday life presents a greater variety of interaction
situations (e.g. encumbrance [116, 118, 117], “juggling” objects [122], ambient temperature [136];
also see the recent overview by Sarsenbayeva et al. [135]). Hence, our results might not generalise
to all these situations. Nevertheless, for offset models, related work indicated that they can improve
accuracy even on a large scale with unknown contexts [63].

However, besides these lab studies, we also studied behaviour in the wild, in particular related to text
messaging and typing (TAPSCRIPT-CHAT, TYPING-WILD). Moreover, with our ResearchIME [P5]
concept and tool we facilitate further studies beyond the lab (see Section 3.3.1).
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User Experience

Our studies assessed user experience only to a very limited extent, that is, mostly regarding perception
of the study tasks and tools (e.g. [P5, P9]). In contrast, for example, we did not study how offset
corrections are experienced by users in mobile touch interactions in their daily lives. One practical
challenge here is integration into a mobile OS. A future study could employ experience sampling
methods to assess whether increased touch accuracy is actually (positively) experienced as such by
users in the wild. Complementary, perception of “failure cases” in everyday life is interesting as well,
in particular since offset models improve average accuracy, not necessarily every single touch.

Modelling

We used linear regression [P4, P10], also as part of a change point model [P1], Gaussian Pro-
cesses [P4, P6, P9], and Relevance Vector Machines [P6] to model touch targeting behaviour in
terms of offsets. We employed Hidden Markov Models to represent touch gestures in ProbUI [P3].
We also examined several classifiers and anomaly detectors in typing biometrics [P7]. While these
choices were motivated by related work (e.g. [13, 15, 63, 149, 160]), other models and variations
could be examined as well. As a main conceptual limitation, we only captured physical behaviour
aspects. We did not address cognitive models (cf. [83]). In particular in ProbUI [P3], for inferring
intended target and use of GUI widgets, it would be interesting to consider the user’s decision making
as well.

We set model parameters either by training on collected study data [P4, P6, P7, P9, P10], or — as part
of ProbUI’s contribution [P3] — based on strong assumptions tied to GUI target properties (location,
size) and developer input. We did not infer parameters during interaction, with the exception of the
Gaussian Process offset model in TapScript [P8]. However, here models adapted the font and did not
directly alter ongoing touch behaviour.

These limitations point to two extensions: 1) inferring parameters during interaction; and 2) examin-
ing feedback loops for live adaptations of behaviour-aware interfaces. Promising inference methods
for the former include particle filtering (e.g. [25, 131]), Markov Chain Monte Carlo (e.g. [139]), and
approximate Bayesian computation (e.g. [83]). For the second direction, related work [103, 140, 165]
and our observations with adaptive widgets in ProbUI [P3] highlight the importance of (visual) feed-
back, also considering uncertainty. On the other hand, there are known cases where visual adaptation
is undesirable (see section 3.2.2). Thus, live inference and model updating along with appropriate
feedback present important research directions for behaviour-aware (mobile touch) interfaces.

Devices and Hardware

Our projects employed off-the-shelf devices and thus did not explore custom hardware prototypes.
Hence, we did not investigate novel form factors, sensors, and so on. On the other hand, this focus
highlights the potential of closely examining input behaviour for common devices, namely unmodi-
fied smartphones. Moreover, our TapScript field study [P8] in particular benefited from running on
users’ own commodity devices, since our prototype was thus better integrated into people’s usual
daily messaging. Finally, focusing on off-the-shelf devices supports fast adoption of research results.
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In future work, we plan to consider further sensing for behaviour-aware interfaces on mobile touch
devices. In particular, recent related research shows two promising directions: 1) extending touch-
screens by utilising the full capacitive array of sensor data, for example for “pre-touch sensing” [67];
and 2) adding additional touch sensors on the back and sides of the device, for example to assess
(tablet) grip location [28] and posture [171], to anticipate future touches [108], and to recognise
cognitive errors [109].
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Variety, within the limits of satisfactory constraints, may be a desirable
end in itself, among other reasons, because it permits us to attach value to
the search as well as its outcome [...].

Herbert A. Simon, The Sciences of the Artificial, 1996

4.1 Reflection

We conclude with a critical reflection, starting with the question: Why are behaviour-aware mobile
touch Uls interesting and worth investigating? A high-level answer involves information: If input be-
haviour were precise and constant, it would not be very informative to observe its details — we would
already know what to expect in advance. In such a world, designers and developers might perfectly
well “hardcode” expectations directly into the UI. We are clearly not living in such a boring world: In
our studies, we observed rich user-specific and context-specific variations in input behaviour, even for
such a seemingly trivial task as tapping a touchscreen button. Thus, behaviour-aware mobile touch
interfaces offer the opportunity to gather non-trivial information, in particular related to user and
context. This opportunity fundamentally motivates our interest in behaviour-aware Uls and related
models and inference.

However, gathering information alone says little about the value of such Uls for the users. There may
be other ways to obtain such information. Why would someone care about having a behaviour-aware
mobile touch inferface? In a sense, this behaviour information comes for free: Users need to perform
input behaviour “anyway”, for their main task. Thus, inferring information from said behaviour may,
for example, save users’ time and reduce distraction, compared to asking them to provide this infor-
mation explicitly (e.g. implicit vs explicit authentication). Phrasing this more abstractly (and taking
on an information transmission perspective on HCI [74]), “throughput” might be increased not exclu-
sively by investigating new or refined interaction techniques and devices, but also by utilising more
of the information that is already contained in input actions. To address the question of usefulness
further, we need to consider more specifically how Uls can utilise input behaviour information. To do
so0, our thesis research explored three application directions. In particular, we showed that behaviour-
aware mobile touch Uls can 1) improve touch accuracy, 2) support (implicit) user identification and
authentication, and 3) render keyboards and messaging more personal and expressive.

Together, our projects on touch offsets also demonstrate that (the same) input behaviour information
and models can be used across applications and devices. We return to our essay [P2] to illustrate
potential benefits with an example: To improve a system’s usability/security trade-off, we typically
focus on security-related Uls; behaviour information either 1) adds a security layer (e.g. “hardening”
passwords [P7] / patterns [37]), or 2) replaces explicit action (e.g. implicit continuous authentica-
tion [35]), albeit potentially adding an enrolment phase. In contrast, transfer of behaviour informa-
tion and models across behaviour-aware Uls promises to impact on a system’s usability and security
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in a broader view: The system could exploit information collected in security-related interactions to
improve usability in others. For instance, a device might detect hand postures during unlock (e.g.
via touches for PINs/patterns) to adapt the UI (cf. Lochtefeld et al. [98]); for example, keyboard (cf.
ContextType [54]), homescreen, and specific widgets (e.g. ProbUI [P3]).

More generally, transfer of behaviour information and models seems particularly relevant with respect
to visions of ubiquitous computing environments [132, 161] in which users move between — and
interact with — a multitude of interconnected devices as they move through their day. In conclusion,
we envision comprehensive behaviour awareness, which separates the loci of behaviour assessment
and consideration via transfer and reuse of behaviour information'.

Finally, which role might behaviour-aware Uls play in future HCI research and practice? In this
regard, we highlight their use for embedding expectations about user input. We have alluded to a
view of “expectations” at several points in this thesis already; now we conclude by extracting the
underlying perspective as an outlook.

Expectations about user behaviour arise, for example, from user research or data and experiences
with previous systems. Good design will likely reflect these expectations (e.g. to address the needs
of a specific target group). We envision that the locus of these expectations (further) shifts from
developers and designers to both humans and artefacts: With behaviour-aware Uls, they can give their
expectations a representation embedded into the artefact itself. Instead of anticipating behaviour only
at design time, the artefact itself then also actively shapes and utilises expectations during use.

This might align with a similar shift at an earlier step, as described in Simon’s seminal Sciences of the
Artificial [146]: Computational optimisation shifts parts of the (“low-level”) decision making from
designers to an (interactive) computational system (also see e.g. [121, 124]). Behaviour awareness
further shifts the use of expectations to the system, namely after it has been deployed to the user.

User behaviour models linked to UI adaptations and (re)actions have been paramount in visions of
intelligent user interfaces for many years (see e.g. [18, 24, 158]). A related panel at the CHI *17 con-
ference asked: “To what extent should a machine try to understand a person in real time versus simply
embodying the understanding of its human designers?” [46] In this context, behaviour-aware Uls cast
as embedded expectations set a focus on anticipating and reacting to input behaviour characteristics
during use. In our view, this promises to better account for diverse individuals and changing contexts,
which might be difficult to comprehensively anticipate and address in a static design up front. We also
see such embedded expectations about user input as a way of integrating computational intelligence
into HCI in a more collaborative role, that is, without replacing user input like in a full-on agent view.

It is worth looking beyond HCI to find that this focus on expectations about input fits well to Pre-
dictive Processing [30], which states that perception starts with predicting one’s own expected sensor
inputs. Learning from comparison with actual sensations refines an internal world model, which in-
forms future actions. One may draw parallels to behaviour-aware Uls as conceived in this thesis:
They model expected input characteristics (e.g. touch offsets, Section 3.1.2), they conduct inference
via comparisons with actual interactions (Section 3.1.3), and they have the capability to react accord-
ingly (e.g. adaptation in ProbUI [P3]). These components are also highlighted in our overview in

1" As a concrete outlook, these ideas significantly contributed to two granted projects, leading to further investigations by

a new research group in Munich: The Biometrics++ project is funded by the Bavarian State Ministry of Education,
Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B). The Ubihave project is supported by
the Deutsche Forschungsgemeinschaft (DFG), Grant No. AL 1899/2-1.
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Figure 3.1. Is this analogy more than a philosophical sidenote? Yes — this view provides a perspective
on perception (i.e. for Uls: input handling) and may guide us in embedding expectations into Uls.
We see it as a focus on input behaviour, on (generative) models which enable Uls to “imagine” it, on
considering uncertainty and continuous input — to name three key aspects (cf. [30]).

This thesis demonstrates ideas for taking up this view in HCI, most prominently combined in the
framing and concepts of ProbUI [P3]. We believe that these ideas are relevant on a broader scale: For
example, Uls which are behaviour-aware in this Predictive Processing view fit well to concepts and
perspectives in the emerging focus area and practical toolbox of “Computational Interaction” [124].
For example, they might be particularly interesting with regard to Ul optimisation [121], since they
bring along embedded usage simulations (see e.g. our touch interaction simulation in [P6]). Looking
beyond this thesis, we plan to explore behaviour-aware Uls further, guided by this perspective.

4.2 Future Work

Looking ahead, we outline several concrete ideas for continuing the work of this thesis.

Simulating touch targeting behaviour: We used inverse offset models to predict likely touch locations
for given targets and thus GUIs. We employed this to estimate biometric value of touch GUIs [P6]
and also explored applications for identifying usability issues with mobile websites [21]. This could
be examined and evaluated in more detail. Simulating touch behaviour might then prove useful as a
component in computational optimisation of touch GUIs, for example regarding layouts [121, 152].

Keyboard use in the wild: As a fairly direct next step, we plan to continue with the ResearchIME [P5]
project. The tool offers several study opportunities (also see the paper [P5]), including: 1) a large-
scale and/or long-term deployment to analyse typing behaviour, biometrics, and keyboard use in the
wild on a larger sample; 2) a study on novel keyboard designs or modifications to analyse influ-
ences on user behaviour and performance (e.g. a second row of word suggestions or swapping keys,
cf. [16]); 3) a study with new (and/or gradually changing) keyboard layouts to analyse learning curves
and possibly inform learning strategies and models with everyday typing data (cf. [82]).

Utilising touch beyond points: Beyond touch as 2D points, we plan to utilise richer touch(screen)
data, such as capacitive images. Recent related work already shows interesting ideas for using this
information (e.g. [67, 104]). This data could serve as input to offset models (cf. [160]). Since full
capacitive data provides more information than a 2D point, this might improve inference with these
models — and inference on touch behaviour in general. We showed the value of spatial touch features
for user identification [P7, P6]; considering the full capacitive array might further improve on this
(e.g. in keystroke biometrics). Moreover, we could adapt ProbUI [P3] to use such data as its input
instead of touch points. This promises to further facilitate recognition of different touch behaviour
variations (e.g. hand postures) and subsequent GUI adaptations. In addition, full capacitive data
allows for new kinds of touch interactions and variations (e.g. angle, approach; see [67, 104, 131]).
This renders ProbUI’s concepts for building GUI elements which react to multiple touch behaviours
all the more relevant. Finally, this additional information might be used for expressive interaction:
For example, TapScript [P8] could consider the typing finger’s angle for font adaptations as well.

Transfer and reuse across applications and devices: As outlined in this thesis, behaviour awareness
need not be limited to a single view, app, or device. We plan to investigate this further, for example,
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by studying transfer methods for concrete cross-application cases (e.g. from unlock interaction to
homescreen or keyboard, cf. [98]), also beyond the touchscreen (e.g. detecting context during device
pick-up). Other device combinations can be considered as well (e.g. smartwatches [27], rings [31],
other wearables). One result could be a matrix of promising combinations of behaviour information
sources and targets. This is planned as one part of the mentioned project (Biometrics++).

User experience, concerns, and views: Beyond TapScript [P8] and ProbUI [P3], and general feedback
throughout our studies, we have not yet investigated user experience and views of behaviour-aware
Uls in detail (also see Section 3.4). Important aspects for future work include: 1) perceived impact
of behaviour awareness — for example, regarding touch correction and GUI adaptations; 2) user
concerns about (re)using behaviour information across applications and devices; 3) transparency
and awareness — for example, how to communicate to users which behaviour data is assessed and
(re)used? The latter aspects in particular are also investigated in the Biometrics++ project (see [106]).

Feedback loops: As mentioned in Section 3.2.2 and Section 3.4, opportunities for further work in-
clude investigations of the co-adaptation of user and behaviour-aware Uls, which use live adaptations
and updates of input interpretation and GUI. For example, we could study how visualising the cor-
rected touch location affects the user’s future targeting behaviour — thus changing the pattern under-
lying the correction, possibly requiring model updates. In general, it is interesting to study if and
under which conditions such loops result in improving or deteriorating user performance.

Specific user groups: Since they assess and utilise (individual) variations in input behaviour,
behaviour-aware Uls seem particularly interesting for addressing specific user groups (see Sec-
tion 3.4), for example senior users or people with motor control disabilities. We see two main as-
pects for future investigations: 1) recognising such user groups based on input behaviour (e.g. age
detection based on touch input [36, 66, 153]); and 2) adapting the UI and/or content for them.

Behaviour awareness beyond physical aspects: Considering behaviour details need not be limited to
physical aspects. Future work on behaviour-aware Uls might further include models of cognitive as-
pects [83], for example to estimate the utility of certain input behaviours in certain situations (also see
Section 3.4). This presents a way of extending inference, for instance, in our ProbUI [P3] framework.

Behaviour awarenes beyond mobile touch interaction: Conceptually, the notion of behaviour-aware
Uls is not limited to mobile touch interfaces. More concretely, several aspects of this research could
be investigated in other contexts as well: Analysing, modelling and predicting offset patterns might
be useful for other input modalities. For instance, future work could further investigate offset patterns
for distant pointing on a wall or for mid-air pointing in 3D Uls (e.g. in AR and VR environments),
as started in recent related work [105]. Moreover, ProbUI’s concepts are not limited to touch and
its “bounding behaviours” could be extended to enable GUI elements to expect and react to other
modalities. For example, this might include moving, rotating or shaking a device (cf. the Resonant
Bits concept [10]), gaze input (cf. smooth pursuit interfaces [44]), or even sound and speech. Finally,
utilising details of input behaviour could increase expressiveness in other modalities than touch, such
as mid-air gestures (cf. [25]).
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Examples for behaviour-awareness in mobile touch Uls from our research: a) Using
a touch targeting model (visualised as arrows) to correct a user’s touch location to
improve accuracy; b) these ProbUI sliders adapt their shape to match the thumb’s
movement arc (top), including feedback about uncertainty (bottom, uncertain slider
selection); c) this ProbUI contact list flips its button/name alignments depending on
the finger trajectory, thus adapting to left vs right hand use; d) the TapScript keyboard
and chat app personalise fonts based on several aspects related to input behaviour. . .

Information flow and adaptation schemes in behaviour-aware mobile touch Uls. This
figure presents a visual summary highlighting aspects and concepts discussed in this
thesis. Note that not all possible information flows are depicted here (e.g. does not
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