374 research outputs found

    Closed-Loop Behavior of an Autonomous Helicopter Equipped with a Robotic Arm for Aerial Manipulation Tasks

    Get PDF
    This paper is devoted to the control of aerial robots interacting physically with objects in the environment and with other aerial robots. The paper presents a controller for the particular case of a small‐scaled autonomous helicopter equipped with a robotic arm for aerial manipulation. Two types of influences are imposed on the helicopter from a manipulator: coherent and non ‐ coherent influence. In the former case, the forces and torques imposed on the helicopter by the manipulator change with frequencies close to those of the helicopter movement. The paper shows that even small interaction forces imposed on the fuselage periodically in proper phase could yield to low frequency instabilities and oscillations, so called phase circle

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    A New Classification and Aerial Manipulation Q-PRR Design

    Get PDF
    International audienceThis paper presents a new designation and classification of system with UAV and robot manipulator where a new nomenclature is recognized as being the first contribution in the bibliography of design and systems. Several papers deal a problem of manipulation with a different unmanned aerial vehicle, robot arms and also with different naming of their systems, where the difficulty for locate and finding items and a good paper with its title or even by keywords, multirotor equipped with n-DoF robotic arm is the expression among the most widely used to describe that system. Aerial manipulation formula is presented and proved with a large example in the literature

    On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review

    Get PDF
    Over the last decade, there has been an increased interest in developing aerial robotic platforms that exhibit grasping and perching capabilities not only within the research community but also in companies across different industry sectors. Aerial robots range from standard multicopter vehicles/drones, to autonomous helicopters, and fixed-wing or hybrid devices. Such devices rely on a range of different solutions for achieving grasping and perching. These solutions can be classified as: 1) simple gripper systems, 2) arm-gripper systems, 3) tethered gripping mechanisms, 4) reconfigurable robot frames, 5) adhesion solutions, and 6) embedment solutions. Grasping and perching are two crucial capabilities that allow aerial robots to interact with the environment and execute a plethora of complex tasks, facilitating new applications that range from autonomous package delivery and search and rescue to autonomous inspection of dangerous or remote environments. In this review paper, we present the state-of-the-art in aerial grasping and perching mechanisms and we provide a comprehensive comparison of their characteristics. Furthermore, we analyze these mechanisms by comparing the advantages and disadvantages of the proposed technologies and we summarize the significant achievements in these two research topics. Finally, we conclude the review by suggesting a series of potential future research directions that we believe that are promising

    The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance

    Get PDF
    This article summarizes new aerial robotic manipulation technologies and methods—aerial robotic manipulators with dual arms and multidirectional thrusters—developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M). Our report deals with the control systems, including the control of the interaction forces and the compliance the teleoperation, which uses passivity to tackle the tradeoff between stability and performance the perception methods for localization, mapping, and inspection the planning methods, including a new control-aware approach for aerial manipulation. Finally, we describe a novel industrial platform with multidirectional thrusters and a new arm design to increase the robustness in industrial contact inspections. In addition, the lessons learned in applying the platform to outdoor aerial manipulation for I&M are pointed out

    Behavioral control of unmanned aerial vehicle manipulator systems

    Get PDF
    In this paper a behavioral control framework is developed to control an unmanned aerial vehicle-manipulator (UAVM) system, composed by a multirotor aerial vehicle equipped with a robotic arm. The goal is to ensure vehicle-arm coordination and manage complex multi-task missions, where different behaviors must be encompassed in a clear and meaningful way. In detail, a control scheme, based on the null space-based behavioral paradigm, is proposed to handle the coordination between the arm and vehicle motion. To this aim, a set of basic functionalities (elementary behaviors) are designed and combined in a given priority order, in order to attain more complex tasks (compound behaviors). A supervisor is in charge of switching between the compound behaviors according to the mission needs and the sensory feedback. The method is validated on a real testbed, consisting of a multirotor aircraft with an attached 6 Degree of Freedoms manipulator, developed within the EU-funded project ARCAS (Aerial Robotics Cooperative Assembly System). At the the best of authors’ knowledge, this is the first time that an UAVM system is experimentally tested in the execution of complex multi-task missions. The results show that, by properly designing a set of compound behaviors and a supervisor, vehicle-arm coordination in complex missions can be effectively managed

    Design of an Anthropomorphic, Compliant, and Lightweight Dual Arm for Aerial Manipulation

    Get PDF
    This paper presents an anthropomorphic, compliant and lightweight dual arm manipulator designed and developed for aerial manipulation applications with multi-rotor platforms. Each arm provides four degrees of freedom in a human-like kinematic configuration for end effector positioning: shoulder pitch, roll and yaw, and elbow pitch. The dual arm, weighting 1.3 kg in total, employs smart servo actuators and a customized and carefully designed aluminum frame structure manufactured by laser cut. The proposed design reduces the manufacturing cost as no computer numerical control machined part is used. Mechanical joint compliance is provided in all the joints, introducing a compact spring-lever transmission mechanism between the servo shaft and the links, integrating a potentiometer for measuring the deflection of the joints. The servo actuators are partially or fully isolated against impacts and overloads thanks to the ange bearings attached to the frame structure that support the rotation of the links and the deflection of the joints. This simple mechanism increases the robustness of the arms and safety in the physical interactions between the aerial robot and the environment. The developed manipulator has been validated through different experiments in fixed base test-bench and in outdoor flight tests.Unión Europea H2020-ICT-2014- 644271Ministerio de Economía y Competitividad DPI2015-71524-RMinisterio de Economía y Competitividad DPI2017-89790-

    Robust Control of An Aerial Manipulator Based on A Variable Inertia Parameters Model

    Full text link
    Aerial manipulator, which is composed of an UAV (Unmanned Aerial Vehicle) and a multi-link manipulator and can perform aerial manipulation, has shown great potential of applications. However, dynamic coupling between the UAV and the manipulator makes it difficult to control the aerial manipulator with high performance. In this paper, system modeling and control problem of the aerial manipulator are studied. Firstly, an UAV dynamic model is proposed with consideration of the dynamic coupling from an attached manipulator, which is treated as disturbance for the UAV. In the dynamic model, the disturbance is affected by the variable inertia parameters of the aerial manipulator system. Then, based on the proposed dynamic model, a disturbance compensation robust HH_{\infty} controller is designed to stabilize flight of the UAV while the manipulator is in operation. Finally, experiments are conducted and the experimental results demonstrate the feasibility and validity of the proposed control scheme

    Modelling and control of aerial manipulators

    Get PDF
    Hace unos años, dentro de la robótica aérea, surgió la manipulación aérea como campo de investigación. Desde su nacimiento, su impacto ha ido incrementándose poco a poco debido, sobretodo, al gran número de aplicaciones que podrían llevarse a cabo con este tipo de sistemas. Un manipulador aéreo puede definirse como una plataforma aérea la cual ha sido equipada con uno o varios brazos robóticos. Este nuevo concepto ha abierto un mundo de posibilidades para este tipo de robots aéreos. Además, gracias a la posibilidad de este tipo de robots aéreos de interactuar con su entorno, podrían llevar a cabo inspecciones de estructuras civiles o incluso, tareas de ensamblaje de estructuras y todo ello, por supuesto, de forma autónoma. Esta tesis se centra en el estudio e implementación de sistemas de manipulación aérea y, en particular, en el diseño de estrategias de control para la plataforma aérea. Este estudio comienza con el cáculo de las ecuaciones que representan la dinámica del sistema, y que nos permite analizar su comportamiento y la influencia del movimiento de los brazos robóticos en la estabilidad de la plataforma.El análisis de estas ecuaciones nos permite diseñar de esquemas de control tales como los basados en Backstepping. Pero el objetivo de esta tesis no es solo el diseño sino también la implementación de estas técnicas de control en sistemas de manipulación aérea reales y con capacidad de llevar a cabo tareas de manipulación en escenarios al aire libre. La principales contribuciones de esta tesis son el cálculo de los modelos dinámicos para cada uno de los tipos de manipuladores aéreos estudiados he implementados durante el desarrollo de la tesis. Además del uso de estas modelos para la diseño de una estrategia de control adaptable a cada una de las plataformas. También se ha diseñado un mecanismo “compliant” que ha sido integrado en un manipulador parallevar a cabo tareas de inspección estructuras por contacto, además de un control de fuerza-posición. Cada manipulador aéreo implementado durante esta tesis, excepto el en caso del helicóptero, va unido a un estudio de las especificaciones hardware necesarias para la realización de una validación del sistema mediante experimentos de vuelo en escenarios al aire libre, y en el caso de los manipuladores aéreos para inspección de estructuras, en un puente real. Cada experimento realizado ha sido analizado en detalle para corregir errores, además de para adaptar o agregar cualquier modificación estructural o de hardware necesaria
    corecore