2,041 research outputs found

    Advancing experimentation-as-a-service through urban IoT experiments

    Get PDF
    Smart cities are becoming a vibrant application domain for a number of science fields. As such, service providers and stakeholders are beginning to integrate co-creation aspects into current implementations to shape the future smart city solutions. In this context, holistic solutions are required to test such aspects in real city-scale Internet of Things (IoT) deployments, considering the complex city ecosystems. In this paper, we discuss OrganiCity's implementation of an experimentation-as-a-service (EaaS) framework, presenting a toolset that allows developing, deploying, and evaluating smart city solutions in a one-stop shop manner. This is the first time such an integrated toolset is offered in the context of a large-scale IoT infrastructure, which spans across multiple European cities. We discuss the design and implementation of the toolset, presenting our view on what EaaS should provide, and how it is implemented. We present initial feedback from 25 experimenter teams that have utilized this toolset in the OrganiCity project, along with a discussion on two detailed actual use cases to validate our approach. Learnings from all experiments are discussed as well as architectural considerations for platform scaling. Our feedback from experimenters indicates that EaaS is a viable and useful approach.The authors would like to thank the experimenter teams and volunteers who participated in OrganiCit

    From the Internet of Things to the social innovation and the economy of data

    Get PDF
    Historically, cities and their citizens have led the largest changes that have been taking place continuously, especially since the transition from an agricultural economy to an industrial one. This phenomenon is especially significant from the mid-eighteenth century and it will become more intense if the predictions that establish that, around the year 2050, approximately 70% of the world population will concentrate in some type of city finally come true. With these boundary conditions, it is evident that the achievement of more efficient and sustainable cities is an unavoidable objective for which politicians, managers and technicians must work in order to guarantee the quality of life of their citizens. Although this paradigm of sustainability and efficiency has always been present in the managers of cities, it has not been until very recently that technology has made available to the responsible parties a plethora of possibilities that, when properly employed, translate into significant savings. At the same time, the day-to-day improvement of the citizens is consolidating a new urban concept in which the different processes and systems that occur in it are continuously monitored in both time and space. This paper reviews the evolution of one of the pioneering examples of such cities, Santander, where an Internet of the Things infrastructure was deployed a decade ago. In this time, multiple technologies and services have been developed and deployed in smart city pilots. The paper discusses the key lessons learnt from the digitalization of the city and the new challenges that have arisen as we were paving the way for a smarter and more liveable city.This work has been funded by the Spanish Government (MINECO) under Grant Agreement No. RTI2018-093475-A-I00 FIERCE (Future Internet Enabled Resilient smart CitiEs) project

    Past, Present, Future: A Comprehensive Exploration of AI Use Cases in the UMBRELLA IoT Testbed

    Full text link
    UMBRELLA is a large-scale, open-access Internet of Things (IoT) ecosystem incorporating over 200 multi-sensor multi-wireless nodes, 20 collaborative robots, and edge-intelligence-enabled devices. This paper provides a guide to the implemented and prospective artificial intelligence (AI) capabilities of UMBRELLA in real-world IoT systems. Four existing UMBRELLA applications are presented in detail: 1) An automated streetlight monitoring for detecting issues and triggering maintenance alerts; 2) A Digital twin of building environments providing enhanced air quality sensing with reduced cost; 3) A large-scale Federated Learning framework for reducing communication overhead; and 4) An intrusion detection for containerised applications identifying malicious activities. Additionally, the potential of UMBRELLA is outlined for future smart city and multi-robot crowdsensing applications enhanced by semantic communications and multi-agent planning. Finally, to realise the above use-cases we discuss the need for a tailored MLOps platform to automate UMBRELLA model pipelines and establish trust.Comment: 6 pgaes, 4 figures. This work has been accepted by PerCom TrustSense workshop 202

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform

    Fostering IoT service replicability in interoperable urban ecosystems

    Get PDF
    Worldwide cities are involved in a digital transformation phase specially focused on sustainability and improving citizen's quality of life. However, such objectives are hard to achieve if the migration of the urban processes are not performed following a common approach. Under the paradigm of smart city, different Information and Communication Technologies (ICT) have been deployed over urban environments to enable such digital transformation. However, actual implementations differ from one city to another, and even between services within the same city. As a consequence, the deployment of urban services is hindered, since they need to be tailored to each city. In addition, the isolation of urban services obstructs its optimization, since it cannot harness contextual information coming from other services. All in all, it is necessary to implement tools and mechanisms that allow us to ensure that city solutions and their vertical services are interoperable. In order to tackle this issue, different initiatives have proposed architectures that homogenize the interaction with smart cities from different angles. However, so far the compliance with such architectures has not been assessed. Having this in mind, in this work we present a validation framework, developed under the umbrella of the SynchroniCity project, which aims to verify that interfaces and data exposed by cities are aligned with the adopted standards and data models. In this regard, the validation framework presented here is the technical enabler for the creation of an interoperability certi cate for smart cities. To assess the bene ts of the validation framework, we have used it to check the interoperability of 21 smart city deployments worldwide that adhered the SynchroniCity guidelines. Afterwards, during an open call a total number of 37 services have been deployed over such SynchroniCity instances, thus con rming the goodness of uniform and validated smart cities to foster service replicability.This work was supported in part by the European Union’s Horizon 2020 Programme [SynchroniCity (Delivering an IoT enabled Digital Single Market for Europe and Beyond)] under Grant 732240, and in part by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) through the project FIERCE: Future Internet Enabled Resilient smart CitiEs under Grant RTI2018-093475-AI00

    Experimentation Platforms as Bridges to Urban Sustainability

    Get PDF
    Despite immense efforts to realize diverse visions of the ‘smart city,’ municipalities still face manifold uncertainties of how governance and the tools of governance can best support public and regional value creation for achieving urban sustainability. To this end, Urban Living Labs have become a known enabling mechanism. In this paper, we extend the lab idea and formulate the concept of Urban Experimentation Platform that focuses on developing urban innovation ecosystems for urban sustainability. We use action design research and participant observation across multiple case studies enacting Urban Experimentation Platforms in order to investigate how the tie-in between governance and the local lab’s innovation process unfolds. Our analysis distills three facets that are instrumental in institutionalizing these platforms as resilient organizational models. With the help of the case studies, we illustrate the three facets, concerning issues of urban ecosystem governance, empowering co-creation, and qualifying local innovation. The facets reinforce the roles of digital instruments and digital capabilities for effective urban governance and platform management. We draw some conclusions for future research and formulate policy recommendations for implementing and operating Urban Experimentation Platforms

    Contribution to the Federation of the asynchronous SmartSantander service layer within the European Fed4FIRE context

    Get PDF
    This thesis is a contribution to the federation of asynchronous SmartSantander service layer within the European Fed4FIRE context. The thesis was developed in a Smart City background, and its main aims were both to gain knowledge of how Smart Cities, Testbeds and Federations of Testbeds are structured by working on a real deployed system, i.e. SmartSantander framework and Fed4FIRE federation, and to contribute with some of the components required for the integratio

    Organicity: Lessons from an Experimentation as a Service Model for Digital Civic Innovation

    Get PDF
    In the paradigm of the Smart City, cities are embracing new digital technologies and data innovation to redefine their relationship to citizens and enterprise. Increasingly, cities are developing visions, strategies, and related digital masterplans and action groups with which to coordinate these efforts. The European Horizon 2020 funded OrganiCity project explored a new model for providing access to all citizens to collaboratively develop and test their ideas for managing and improving the urban environment using data. The people centred and data driven approach of the OrganiCity project developed an Experimentation as a Service (EaaS) model across 13 cities and with 43 experiments. In this paper, we describe the 4 key service pillars that emerged through designing a platform to enable experimentation and the associated engagement practices required to facilitate testing in a city. The service pillars are: systematic experimentation, co-creation, federated ethics & privacy, and management of liability & Intellectual Property Rights. The EaaS approach provided a low-risk service blueprint for city authorities to democratically source, test and support scaling-up innovative solutions to their city challenges. Analysis of experimenter’s projects highlighted the importance of shared infrastructure for reducing the barrier to entry for accessing the digital tools, but more importantly highlighted the investment required, and value of, the human resources required to facilitate the process of experimentation
    • …
    corecore