31 research outputs found

    EFN-SMOTE: An effective oversampling technique for credit card fraud detection by utilizing noise filtering and fuzzy c-means clustering

    Get PDF
    Credit card fraud poses a significant challenge for both consumers and organizations worldwide, particularly with the increasing reliance on credit cards for financial transactions. Therefore, it is crucial to establish effective mechanisms to detect credit card fraud. However, the uneven distribution of instances between the two classes in the credit card dataset hinders traditional machine learning techniques, as they tend to prioritize the majority class, leading to inaccurate fraud pre- dictions. To address this issue, this paper focuses on the use of the Elbow Fuzzy Noise Filtering SMOTE (EFN-SMOTE) technique, an oversampling approach, to handle unbalanced data. EFN-SMOTE partitions the dataset into multiple clusters using the Elbow method, applies noise filtering to each cluster, and then employs SMOTE to synthesize new minority instances based on the nearest majority instance to each minority instance, thereby improving the model’s ability to perceive the decision boundary. EFN-SMOTE’s performance was evaluated using an Artificial Neural Network model with four hidden layers, resulting in significant improvements in classification performance, achieving an accuracy of 0.999, precision of 0.998, sensitivity of 0.999, specificity of 0.998, F-measure of 0.999, and G-Mean of 0.999

    Can Continual Learning Improve Long-Tailed Recognition? Toward a Unified Framework

    Full text link
    The Long-Tailed Recognition (LTR) problem emerges in the context of learning from highly imbalanced datasets, in which the number of samples among different classes is heavily skewed. LTR methods aim to accurately learn a dataset comprising both a larger Head set and a smaller Tail set. We propose a theorem where under the assumption of strong convexity of the loss function, the weights of a learner trained on the full dataset are within an upper bound of the weights of the same learner trained strictly on the Head. Next, we assert that by treating the learning of the Head and Tail as two separate and sequential steps, Continual Learning (CL) methods can effectively update the weights of the learner to learn the Tail without forgetting the Head. First, we validate our theoretical findings with various experiments on the toy MNIST-LT dataset. We then evaluate the efficacy of several CL strategies on multiple imbalanced variations of two standard LTR benchmarks (CIFAR100-LT and CIFAR10-LT), and show that standard CL methods achieve strong performance gains in comparison to baselines and approach solutions that have been tailor-made for LTR. We also assess the applicability of CL techniques on real-world data by exploring CL on the naturally imbalanced Caltech256 dataset and demonstrate its superiority over state-of-the-art classifiers. Our work not only unifies LTR and CL but also paves the way for leveraging advances in CL methods to tackle the LTR challenge more effectively

    Fuzzy Time Series Forecasting Model Based on Automatic Clustering Techniques and Generalized Fuzzy Logical Relationship

    Get PDF
    In view of techniques for constructing high-order fuzzy time series models, there are three types which are based on advanced algorithms, computational method, and grouping the fuzzy logical relationships. The last type of models is easy to be understood by the decision maker who does not know anything about fuzzy set theory or advanced algorithms. To deal with forecasting problems, this paper presented novel high-order fuzz time series models denoted as GTS (M, N) based on generalized fuzzy logical relationships and automatic clustering. This paper issued the concept of generalized fuzzy logical relationship and an operation for combining the generalized relationships. Then, the procedure of the proposed model was implemented on forecasting enrollment data at the University of Alabama. To show the considerable outperforming results, the proposed approach was also applied to forecasting the Shanghai Stock Exchange Composite Index. Finally, the effects of parameters M and N, the number of order, and concerned principal fuzzy logical relationships, on the forecasting results were also discussed

    Automatic Construction of Multi-faceted User Profiles using Text Clustering and its Application to Expert Recommendation and Filtering Problems

    Full text link
    In the information age we are living in today, not only are we interested in accessing multimedia objects such as documents, videos, etc. but also in searching for professional experts, people or celebrities, possibly for professional needs or just for fun. Information access systems need to be able to extract and exploit various sources of information (usually in text format) about such individuals, and to represent them in a suitable way usually in the form of a profile. In this article, we tackle the problems of profile-based expert recommendation and document filtering from a machine learning perspective by clustering expert textual sources to build profiles and capture the different hidden topics in which the experts are interested. The experts will then be represented by means of multi-faceted profiles. Our experiments show that this is a valid technique to improve the performance of expert finding and document filtering

    Proceedings of the 2008 Oxford University Computing Laboratory student conference.

    Get PDF
    This conference serves two purposes. First, the event is a useful pedagogical exercise for all participants, from the conference committee and referees, to the presenters and the audience. For some presenters, the conference may be the first time their work has been subjected to peer-review. For others, the conference is a testing ground for announcing work, which will be later presented at international conferences, workshops, and symposia. This leads to the conference's second purpose: an opportunity to expose the latest-and-greatest research findings within the laboratory. The fourteen abstracts within these proceedings were selected by the programme and conference committee after a round of peer-reviewing, by both students and staff within this department

    On the vehicle sideslip angle estimation: a literature review of methods, models and innovations

    Get PDF
    Typical active safety systems controlling the dynamics of passenger cars rely on real-time monitoring of the vehicle sideslip angle (VSA), together with other signals like wheel angular velocities, steering angle, lateral acceleration, and the rate of rotation about the vertical axis, known as the yaw rate. The VSA (aka attitude or “drifting” angle) is defined as the angle between the vehicle longitudinal axis and the direction of travel, taking the centre of gravity as a reference. It is basically a measure of the misalignment between vehicle orientation and trajectory therefore it is a vital piece of information enabling directional stability assessment, in transients following emergency manoeuvres for instance. As explained in the introduction the VSA is not measured directly for impracticality and it is estimated on the basis of available measurements like wheel velocities, linear and angular accelerations etc. This work is intended to provide a comprehensive literature review on the VSA estimation problem. Two main estimation methods have been categorised, i.e. Observer-based and Neural Network-based, focusing on the most effective and innovative approaches. As the first method normally relies on a vehicle model, a review of the vehicle models has been included. Advantages and limitations of each technique have been highlighted and discussed

    Manifold Learning Side-Channel Attacks against Masked Cryptographic Implementations

    Get PDF
    Masking, as a common countermeasure, has been widely utilized to protect cryptographic implementations against power side-channel attacks. It significantly enhances the difficulty of attacks, as the sensitive intermediate values are randomly partitioned into multiple parts and executed on different times. The adversary must amalgamate information across diverse time samples before launching an attack, which is generally accomplished by feature extraction (e.g., Points-Of-Interest (POIs) combination and dimensionality reduction). However, traditional POIs combination methods, machine learning and deep learning techniques are often too time consuming, and necessitate a significant amount of computational resources. In this paper, we undertake the first study on manifold learning and their applications against masked cryptographic implementations. The leaked information, which manifests as the manifold of high-dimensional power traces, is mapped into a low-dimensional space and achieves feature extraction through manifold learning techniques like ISOMAP, Locally Linear Embedding (LLE), and Laplacian Eigenmaps (LE). Moreover, to reduce the complexity, we further construct explicit polynomial mappings for manifold learning to facilitate the dimensionality reduction. Compared to the classical machine learning and deep learning techniques, our schemes built from manifold learning techniques are faster, unsupervised, and only require very simple parameter tuning. Their effectiveness has been fully validated by our detailed experiments
    corecore