198 research outputs found

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Modeling Cyber-Physical Production Systems with SystemC-AMS

    Get PDF
    The heterogeneous nature of SystemC-AMS makes it a perfect candidate solution to support Cyber-Physical Production Systems (CPPSs), i.e., systems that are characterized by a tight interaction of the cyber part with the surrounding physical world and with manufacturing production processes. Nonetheless, the support for the modeling of physical and mechanical dynamics typical of production machinery goes far beyond the initial application scenario of SystemC-AMS, thus limiting its effectiveness and adoption in the production and manufacturing context. This paper starts with an analysis of the current adoption of SystemC-AMS to highlight the open points that still limit its effectiveness, with the goal of pinpointing current issues and to propose solutions that could improve its effectiveness, and make SystemC-AMS an essential resource also in the new Industry 4.0 scenario

    Hardware/Software Codesign

    Get PDF
    The current state of the art technology in integrated circuits allows the incorporation of multiple processor cores and memory arrays, in addition to application specific hardware, on a single substrate. As silicon technology has become more advanced, allowing the implementation of more complex designs, systems have begun to incorporate considerable amounts of embedded software [3]. Thus it becomes increasingly necessary for the system designers to have knowledge on both hardware and software to make efficient design tradeoffs. This is where hardware/software codesign comes into existence

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. MĂ€rz 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen UniversitĂ€t Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform fĂŒr den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur KnĂŒpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und AnsĂ€tze einem breiten Publikum aus Wissenschaft und Wirtschaft zu prĂ€sentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjĂ€hriges Bestehen hat ihn zu einer festen GrĂ¶ĂŸe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium fĂŒr Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu prĂ€sentieren. Vertreter der Projekte Generische Plattform fĂŒr SystemzuverlĂ€ssigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwĂ€rtigen Arbeiten vor. Dies bereichert denWorkshop durch zusĂ€tzliche Themenschwerpunkte und bietet eine wertvolle ErgĂ€nzung zu den BeitrĂ€gen der Autoren. [... aus dem Vorwort

    Knowledge Representation in Engineering 4.0

    Get PDF
    This dissertation was developed in the context of the BMBF and EU/ECSEL funded projects GENIAL! and Arrowhead Tools. In these projects the chair examines methods of specifications and cooperations in the automotive value chain from OEM-Tier1-Tier2. Goal of the projects is to improve communication and collaborative planning, especially in early development stages. Besides SysML, the use of agreed vocabularies and on- tologies for modeling requirements, overall context, variants, and many other items, is targeted. This thesis proposes a web database, where data from the collaborative requirements elicitation is combined with an ontology-based approach that uses reasoning capabilities. For this purpose, state-of-the-art ontologies have been investigated and integrated that entail domains like hardware/software, roadmapping, IoT, context, innovation and oth- ers. New ontologies have been designed like a HW / SW allocation ontology and a domain-specific "eFuse ontology" as well as some prototypes. The result is a modular ontology suite and the GENIAL! Basic Ontology that allows us to model automotive and microelectronic functions, components, properties and dependencies based on the ISO26262 standard among these elements. Furthermore, context knowledge that influences design decisions such as future trends in legislation, society, environment, etc. is included. These knowledge bases are integrated in a novel tool that allows for collabo- rative innovation planning and requirements communication along the automotive value chain. To start off the work of the project, an architecture and prototype tool was developed. Designing ontologies and knowing how to use them proved to be a non-trivial task, requiring a lot of context and background knowledge. Some of this background knowledge has been selected for presentation and was utilized either in designing models or for later immersion. Examples are basic foundations like design guidelines for ontologies, ontology categories and a continuum of expressiveness of languages and advanced content like multi-level theory, foundational ontologies and reasoning. Finally, at the end, we demonstrate the overall framework, and show the ontology with reasoning, database and APPEL/SysMD (AGILA ProPErty and Dependency Descrip- tion Language / System MarkDown) and constraints of the hardware / software knowledge base. There, by example, we explore and solve roadmap constraints that are coupled with a car model through a constraint solver.Diese Dissertation wurde im Kontext des von BMBF und EU / ECSEL gefördertem Projektes GENIAL! und Arrowhead Tools entwickelt. In diesen Projekten untersucht der Lehrstuhl Methoden zur Spezifikationen und Kooperation in der Automotive Wertschöp- fungskette, von OEM zu Tier1 und Tier2. Ziel der Arbeit ist es die Kommunikation und gemeinsame Planung, speziell in den frĂŒhen Entwicklungsphasen zu verbessern. Neben SysML ist die Benutzung von vereinbarten Vokabularen und Ontologien in der Modellierung von Requirements, des Gesamtkontextes, Varianten und vielen anderen Elementen angezielt. Ontologien sind dabei eine Möglichkeit, um das Vermeiden von MissverstĂ€ndnissen und Fehlplanungen zu unterstĂŒtzen. Dieser Ansatz schlĂ€gt eine Web- datenbank vor, wobei Ontologien das Teilen von Wissen und das logische Schlussfolgern von implizitem Wissen und Regeln unterstĂŒtzen. Diese Arbeit beschreibt Ontologien fĂŒr die DomĂ€ne des Engineering 4.0, oder spezifischer, fĂŒr die DomĂ€ne, die fĂŒr das deutsche Projekt GENIAL! benötigt wurde. Dies betrifft DomĂ€nen, wie Hardware und Software, Roadmapping, Kontext, Innovation, IoT und andere. Neue Ontologien wurden entworfen, wie beispielsweise die Hardware-Software Allokations-Ontologie und eine domĂ€nen-spezifische "eFuse Ontologie". Das Ergebnis war eine modulare Ontologie-Bibliothek mit der GENIAL! Basic Ontology, die es erlaubt, automotive und mikroelektronische Komponenten, Funktionen, Eigenschaften und deren AbhĂ€ngigkeiten basierend auf dem ISO26262 Standard zu entwerfen. Des weiteren ist Kontextwissen, welches Entwurfsentscheidungen beinflusst, inkludiert. Diese Wissensbasen sind in einem neuartigen Tool integriert, dass es ermöglicht, Roadmapwissen und Anforderungen durch die Automobil- Wertschöpfungskette hinweg auszutauschen. On tologien zu entwerfen und zu wissen, wie man diese benutzt, war dabei keine triviale Aufgabe und benötigte viel Hintergrund- und Kontextwissen. AusgewĂ€hlte Grundlagen hierfĂŒr sind Richtlinien, wie man Ontologien entwirft, Ontologiekategorien, sowie das Spektrum an Sprachen und Formen von Wissensrepresentationen. Des weiteren sind fort- geschrittene Methoden erlĂ€utert, z.B wie man mit Ontologien Schlußfolgerungen trifft. Am Schluss wird das Overall Framework demonstriert, und die Ontologie mit Reason- ing, Datenbank und APPEL/SysMD (AGILA ProPErty and Dependency Description Language / System MarkDown) und Constraints der Hardware / Software Wissensbasis gezeigt. Dabei werden exemplarisch Roadmap Constraints mit dem Automodell verbunden und durch den Constraint Solver gelöst und exploriert

    Harnessing Simulation Acceleration to Solve the Digital Design Verification Challenge.

    Full text link
    Today, design verification is by far the most resource and time-consuming activity of any new digital integrated circuit development. Within this area, the vast majority of the verification effort in industry relies on simulation platforms, which are implemented either in hardware or software. A "simulator" includes a model of each component of a design and has the capability of simulating its behavior under any input scenario provided by an engineer. Thus, simulators are deployed to evaluate the behavior of a design under as many input scenarios as possible and to identify and debug all incorrect functionality. Two features are critical in simulators for the validation effort to be effective: performance and checking/debugging capabilities. A wide range of simulator platforms are available today: on one end of the spectrum there are software-based simulators, providing a very rich software infrastructure for checking and debugging the design's functionality, but executing only at 1-10 simulation cycles per second (while actual chips operate at GHz speeds). At the other end of the spectrum, there are hardware-based platforms, such as accelerators, emulators and even prototype silicon chips, providing higher performances by 4 to 9 orders of magnitude, at the cost of very limited or non-existent checking/debugging capabilities. As a result, today, simulation-based validation is crippled: one can either have satisfactory performance on hardware-accelerated platforms or critical infrastructures for checking/debugging on software simulators, but not both. This dissertation brings together these two ends of the spectrum by presenting solutions that offer high-performance simulation with effective checking and debugging capabilities. Specifically, it addresses the performance challenge of software simulators by leveraging inexpensive off-the-shelf graphics processors as massively parallel execution substrates, and then exposing the parallelism inherent in the design model to that architecture. For hardware-based platforms, the dissertation provides solutions that offer enhanced checking and debugging capabilities by abstracting the relevant data to be logged during simulation so to minimize the cost of collection, transfer and processing. Altogether, the contribution of this dissertation has the potential to solve the challenge of digital design verification by enabling effective high-performance simulation-based validation.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99781/1/dchatt_1.pd

    Design and Verification Environment for High-Performance Video-Based Embedded Systems

    Get PDF
    In this dissertation, a method and a tool to enable design and verification of computation demanding embedded vision-based systems is presented. Starting with an executable specification in OpenCV, we provide subsequent refinements and verification down to a system-on-chip prototype into an FPGA-Based smart camera. At each level of abstraction, properties of image processing applications are used along with structure composition to provide a generic architecture that can be automatically verified and mapped to the lower abstraction level. The result is a framework that encapsulates the computer vision library OpenCV at the highest level, integrates Accelera\u27s System-C/TLM with UVM and QEMU-OS for virtual prototyping and verification and mapping to a lower level, the last of which is the FPGA. This will relieve hardware designers from time-consuming and error-prone manual implementations, thus allowing them to focus on other steps of the design process. We also propose a novel streaming interface, called Component Interconnect and Data Access (CIDA), for embedded video designs, along with a formal model and a component composition mechanism to cluster components in logical and operational groups that reduce resource usage and power consumption
    • 

    corecore