
21 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling Cyber-Physical Production Systems with SystemC-AMS / Fraccaroli, Enrico; Vinco, Sara. - In: IEEE
TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - ELETTRONICO. - (2022), pp. 1-13.
[10.1109/TC.2022.3226567]

Original

Modeling Cyber-Physical Production Systems with SystemC-AMS

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2022.3226567

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973763 since: 2022-12-12T10:31:36Z

IEEE

1

Modeling Cyber-Physical Production Systems
with SystemC-AMS

Enrico Fraccaroli, Member, IEEE, Sara Vinco, Member, IEEE,

Abstract—The heterogeneous nature of SystemC-AMS makes it a perfect candidate solution to support Cyber-Physical Production
Systems (CPPSs), i.e., systems that are characterized by a tight interaction of the cyber part with the surrounding physical world and
with manufacturing production processes. Nonetheless, the support for the modeling of physical and mechanical dynamics typical of
production machinery goes far beyond the initial application scenario of SystemC-AMS, thus limiting its effectiveness and adoption in
the production and manufacturing context. This paper starts with an analysis of the current adoption of SystemC-AMS to highlight the
open points that still limit its effectiveness, with the goal of pinpointing current issues and to propose solutions that could improve its
effectiveness, and make SystemC-AMS an essential resource also in the new Industry 4.0 scenario.

Index Terms—SystemC-AMS, SystemC simulation kernel, cyber-physical production system, digital twin, non linear systems,
mechanical models, schedulability, DAE solver, multi-discipline.

F

1 INTRODUCTION

INITIALLY designed for modeling and simulating inter-
acting mixed analog and digital functional subsystems,

the Analog and Mixed-Signal (AMS) extension of Sys-
temC, SystemC-AMS, has been adopted over time in sev-
eral heterogeneous domains, including extra-functional and
continuous-time ones. Table 1 reports some recent works
that use SystemC-AMS in non-standard contexts, ranging
from power and mechanical simulation to biological mod-
eling: this proves that the impact of SystemC-AMS went far
beyond the initial expectations.

The features that made SystemC-AMS a winning solu-
tion in such heterogeneous contexts are: its support for mul-
tiple Models of Computation (MoCs), that ensures flexibility
to heterogeneous domains, and its adaptability to different
abstraction levels, thus covering from system level (with the
data-flow paradigm) down to digital and analog Hardware
(HW) descriptions and signal flow constructs. Additionally,
SystemC-AMS has a user-friendly C++-based syntax, sup-
ported by the standardization of predefined primitives. This
allows a non-experienced user to model descriptions in
domains such as frequency analysis and linear circuits. Such
features made SystemC-AMS one of the reference languages
for the development of virtual platforms, where it is used for
implementing systems integrating the Software (SW) under
development with accurate models of the HW and with
physical components composing the underlying platform
and environment [1], [2].

These aspects make SystemC-AMS a promising candi-
date in the context of Cyber-Physical Production Systems
(CPPSs), i.e., systems where the cyber part (including SW,
HW and electronic parts) is tightly interwoven with me-
chanical parts, mechatronic subsystems (i.e., sensors and

• E. Fraccaroli is with the Department of Computer Science, University of
Verona, Verona, Verona 37129, Italy. E-mail: enrico.fraccaroli@univr.it.

• S. Vinco is with the Department of Control and Computer Engineering,
Politecnico di Torino, Torino 10129, Italy. E-mail: sara.vinco@polito.it.

Table 1: SystemC-AMS extra-functional application do-
mains.

DOMAIN APPLICATION REFERENCES

MECHANICAL

MEMS and accelerometers [3], [4]
Fluidic systems [5]
Sensors [6], [7]
Automotive [8], [9]

ELECTRICAL

MEMS and accelerometers [3], [4]
Sensors [6], [7]
Circuit equivalent model [10], [11], [12]

POWER
Direct current domain [10], [13], [14], [15]
Alternating current domain [14]

THERMAL Circuit-equivalent models [11], [13]
OTHERS Chemical and biological [16], [17]

actuators) and with the dynamics of the surrounding envi-
ronment [18], [19]. In this scenario, a SystemC-based infras-
tructure would allow a holistic implementation of the differ-
ent aspects of the CPPS, through the adoption of SystemC
for the cyber part, SystemC-TLM for communication and
early SW development, and SystemC-AMS for the dynamic,
mechanic and physical subset of the system. The adoption
of a common infrastructure would ease integration issues
and allow the effective modeling of feedback loops between
the different parts of the system (e.g., production machinery
evolution and control SW). This solution would lead de
facto to the construction of a SystemC-based simulatable
model of the CPPS, thus allowing its validation and eval-
uation in varying application scenarios and configurations.

Even if the modeling of production machinery and of
mechanical components goes well beyond its initial scope,
SystemC-AMS could thus play an important role and be
extremely useful in the construction of simulatable models
where the heterogeneous nature of SystemC-AMS would
find its maximum expression. Nonetheless, SystemC-AMS

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

2

currently is one step back w.r.t. its competitors, as its adop-
tion in the context of CPPS and digital twin development is
mostly limited to the cyber part, with ad-hoc cosimulations
built to support the production and manufacturing subsys-
tem [20].

This work analyses the current status of SystemC-AMS
from the perspective of CPPS development. The analysis is based
both on a detailed study of the SystemC-AMS simulation
kernel and on a number of case studies that will highlight
different aspects of the problem.The adoption of SystemC
and SystemC-AMS is widespread and well established for
modeling of the cyber part. Thus, the focus of this paper
is mostly on the physical and mechanical subset of a CPPS:
such domains go beyond the initial scope of SystemC-AMS,
and thus their support still hides several limitations. The
highlighted issues span across different levels of seriousness
and affect different aspects of SystemC-AMS, ranging from
scheduler-related and solver-related issues, caused by con-
straints on the schedulability or solvability of the systems, to
issues related to the current implementation of the standard
and possible extensions. The analysis starts from case stud-
ies and solutions proposed at state-of-the-art to make a point
on CPPS support. Our goal is thus not to provide novel
solutions per se, but to rather provide the reader with an
analysis of the current issues of SystemC-AMS in the CPPS
perspective, corresponding possible viable solutions (either
available in the literature or proposed by this work), and
draw a picture of the possible future evolution of SystemC-
AMS.

The paper is organized as follows. Section 2 explains
what CPPSs are and recaps the main features of SystemC-
AMS, in terms of supported MoCs and of simulation infras-
tructure. Section 3 presents a set of reference case studies,
either developed by the authors or taken from the literature.
Section 4 provides a more thorough description of the adop-
tion of SystemC-AMS in heterogeneous systems. Section 5
can be considered the core of this work, as it focuses on
the discussion of the issues posed by the CPPS context and
highlighted by the case studies, to propose currently avail-
able solutions and possible future improvements. Finally,
Section 6 draws our conclusions.

2 BACKGROUND

This section offers an explanation of what CPPSs are, and
an introduction to the SystemC-AMS language and to its
organization and simulation kernel.

2.1 Cyber-Physical Production System

Cyber-Physical Systems (CPSs) are systems of collaborating
computational entities which are in intensive connection
with the surrounding physical world and its on-going
processes. They provide and use, at the same time, data-
accessing and data-processing services [21]. Cyber-Physical
Production Systems (CPPSs) apply this concept to the man-
ufacturing context, so that the physical aspects being mod-
eled include also mechanical, mechatronic and production
processes with complex dynamics that must be monitored,
controlled and influenced both adaptively and intelligently.
Thus, The main feature of CPPSs is its multi-disciplinary

nature, in a sense that they require to bridge mechanics, elec-
tronics, engineering, control and computation [22]. Their
inherently complex nature, affects also the development
and simulation frameworks, that must span across multiple
domains and consider them not separately but rather jointly,
as their integration, interaction and inter-dependency are
crucial.

As highlighted by the survey in [22], this complex
design process can be effectively supported only by multi-
discipline modelling and simulation frameworks that span
across multiple domains. They must provide designers sup-
port for validating, evaluating and optimizing their design
in a single modeling environment. On the one hand, such
framework must be cross-multi-discipline, including sup-
port for different physical domains, modeling strategies
and time models, i.e., continuous-time (e.g., dynamics of
physical components) and discrete-time (for digital com-
puting components). On the other hand, the frameworks
must be capable of handling different time rates: different
physical domains are indeed characterized by different time
constants (e.g., nanoseconds for digital components, mil-
liseconds for power, seconds for temperature [13]), and the
simultaneous presence of such multiple time scales must be
handled with care, not to make the simulation too slow and
heavy.

2.2 SystemC-AMS
SystemC has been introduced in the early 2000s to answer
to the need of HW-SW co-design imposed by embedded
systems: on one hand, it reproduces the typical behaviors
and constructs of HW description languages; on the other,
the adoption of C++ as base language eases the integration
of SW as complex as operating systems [23].

2.2.1 Models of Computation (MoC)
The evolution of technology made systems tightly con-
nected to the environment and “smart”, i.e., capable of
sensing, actuating and reacting to the evolving conditions
surrounding the system itself. This required the definition of
its AMS extension, targeting interacting mixed analog and
digital functional subsystems.

SystemC-AMS provides different MoCs to cover a wide
variety of domains (Figure 1):

• Timed Data-Flow (TDF) models data processing systems:
processes are activated with a precise frequency, elab-
orate input tokens and produce output tokens. This
allows to schedule processes statically, by considering
their activation time step and producer-consumer de-
pendencies.

• Linear Signal Flow (LSF) supports the modeling of con-
tinuous time behaviors through a library of pre-defined
primitive modules (e.g., integration, or delay), each
associated with a linear equation.

• Electrical Linear Network (ELN) models electrical net-
works through the instantiation of predefined linear
primitives, e.g., resistors or capacitors, where each
primitive is associated with an electrical equation.

The characteristics of the three MoCs are deepened in Sec-
tion 4, where their adoption is exemplified on examples and
discussed in detail.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

3

SystemC-AMS Simulation Kernel
Synchronization layer

Linear DAE SolverScheduler

SystemC-AMS Models of Computation

Timed
Data Flow

(TDF)

Linear
Signal Flow

(LSF)

Electrical
Linear Network

(ELN)

Models Characteristics

Non Conservative Conservative

Discrete Time
Static Non Linear

Continuous Time
Dynamic Linear

Figure 1: SystemC-AMS simulation kernel and supported
MoCs.

2.2.2 SystemC scheduler extension for AMS simulation

The SystemC language uses an event-based architecture,
where a centralized scheduler controls the execution of pro-
cesses based on events, i.e., synchronizations, time notifica-
tions or signal value changes. The SystemC-AMS simulation
kernel enriches the standard SystemC kernel with three
additional blocks (Figure 1).

A TDF scheduler groups all TDF modules in clusters of
interconnected modules, and builds a static schedule of
each cluster depending on time step, activation rate and
dependencies of the modules.

A linear Differential-Algebraic Equation (DAE) solver is
used to handle ELN and LSF descriptions: it analyzes the
ELN and LSF instantiated primitives to derive the underly-
ing equations, that are solved to determine system state at
any simulation time. The solver uses lightweight numerical
methods, i.e., backward Euler and trapezoidal methods,
combined with optimization techniques, e.g., Lower-Upper
(LU) decomposition and Woodbury formulas, to speed up
matrix factorization, to provide a reasonable level of ac-
curacy and guarantee at the same time good simulation
performance [24], [25].

Finally, a synchronization layer uses the activation time
step of each module, primitive and cluster to insert the
execution of SystemC-AMS items in the standard SystemC
simulation flow. The synchronization layer stores the static
schedule of a cluster of components (i.e., modules or prim-
itives) built by the TDF scheduler as a list of pointers to the
cluster components:

• cluster activation period is determined by the module
with largest time step;

• the other modules are then listed by reflecting their
producer-consumer dependencies, and they may be
replicated a number of times, depending on their acti-
vation time step: if a module is activated multiple times
in a cluster period (i.e., the cluster period is a multiple
of its time step), one activation entry is listed for any
time that the module should be activated.

Models Dependencies

Generator
Model

Aerodynamic
Model Gear Box

Model

Delay

Delay

Gear Box Generator

Wind

Power

ωW

TE ωE

ωM

ωW
ωM ωE

Figure 2: Structure of the wind turbine model (ω is angular
speeds, T is torque, subscript W stays for wind, M for
mechanical and E for electrical).

This ensures a lightweight modeling of the static schedule,
as the activation list allows the scheduler to simply activate
all cluster modules in the correct order at simulation time
with no additional runtime scheduling overhead.

Recently, SystemC-AMS has been extended with the
design environment COSIDE, developed by COSEDA [26],
with the goal of easing the adoption of SystemC-AMS
and of speeding up the modeling of analog and mixed-
signal hardware and software systems. COSIDE includes
support for modeling and verification, through libraries
of predefined components, automatic code generation, a
graphical interface, and Universal Verification Methodology
(UVM) test-bench generation and assertion-based mixed-
signal verification support.

3 REFERENCE CASE STUDIES

This section introduces a set of case studies that required
a non-conventional modeling approach, both developed by
the authors or taken from the literature. The choice fell on
those case studies that better highlighted the potentialities
and the limitations and open issues of SystemC-AMS.

3.1 Wind turbine

The first case study is a wind turbine, part of a more
complex CPPS reproducing an electrical energy system, that
includes also houses (demanding power), a battery (feeding
the system when wind power production can not provide
enough energy), and a connection to the grid, to occasionally
buy or sell power. Such case study requires covering very
heterogeneous domains: as depicted in Figure 2, the wind
turbine model includes environmental quantities (i.e., the
wind activating the blades), mechanical and aerodynamic
equations (to convert to mechanical power, modeled by
the gear box), and electric power generation (encapsulated
by the generator). The model of the wind turbine used in
this work is based on [27], that reports in full detail the
underlying equations.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

4

Digital
Board

DAC OpAmp

ADC TIA Mirror

DAC OpAmp OpAmp

OpAmp
ELN TDF ELN

ROTATIONAL

Figure 3: Structure of the pico-projector, with MoCs used to
build the non-linear Operational Amplifier (OpAmp) and
presence of conservative non-electrical domains.

3.2 Digital Pico-Projector
The second case study is a pico-projector1, a Micro-
Opto-Electro-Mechanical System (MOEMS) implemented
by combining Micro-Electro-Mechanical System (MEMS)
and micro-optics technologies. The pico-projector modu-
lates three laser sources, whose light converges into a single
beam deflected by a micro-mirror. The mirror is moved
by drivers, in accordance to the decisions taken by a dig-
ital board (Figure 3). The signals provided by the digital
board are transmitted to the circuitry controlling the mirror
through a pair of two-stage OpAmps. The main issue of this
component is caused by the presence of non-linear behav-
iors of the following components: the two-stage OpAmps,
the micro-mirror, and the TransImpedance Amplifier (TIA).
Another issue is the heterogeneity of the domains involved:
digital for the board, rotational (linear and acceleration) for
the mirror, and electrical for the other blocks. Let us look
at the amplifier on top of Figure 3, that exemplifies how its
behaviour has been achieved by combining together differ-
ent MoCs, to circumvent some of the language limitations.
The component is interfacing with the Digital-to-Analog
Converter (DAC) and the subsequent OpAmp through an
electrical interface written in ELN, while the internal non-
linear behaviour is implemented by using a TDF module.

3.3 Direct Current (DC) Motor
A DC motor is a typical component of a CPPS, and it
is characterized by a high degree of heterogeneity, caused
by the simultaneous presence of electrical and rotational
kinematic modeling. An example of DC motor implemented
in SystemC-AMS has been proposed in [8]: the case study
includes an electro-mechanical subsystem with a DC motor
that manipulates throttle position, an Electronic Control
Unit (ECU) that determines the required throttle position
given the current state of the vehicle, and a control board.
The focus here is restricted to the DC motor subsystem:
Figure 4 exemplifies its structure and highlights at the same
time the heterogeneity of domains involved.

3.4 Diode
Diodes are key components of a variety of systems, ranging
from circuits to photovoltaic modules, sensors and electro-
mechanical components. The most critical characteristic of

1. Design provided by STMicroelectronics in the context of SMAC
(SMArt systems Codesign) European Project (FP7-ICT-2011-7-288827).

Armature
and Circuit
Elements

(ELN)

Electro-
mechanical
Converter

(TDF)

Mechanical
Behavior

(LSF)

Vs

i

Vb

Tm

ωm

ΘL

Vs(t)=R·i(t)+L· d i(t)
dt +Vb(t)

Tm(t)=N ·KT ·i(t)

ωm(t)=
1

N
·ωL(t)

Vb(t)=
1

N
·Kb ·ΘL

Figure 4: Structure of the DC motor, with the corresponding
partitioning into SystemC-AMS MoCs.

TDF resistance
calculation

Linear Electrical
Circuit

TDF controlled
resistor

p n

Figure 5: Structure of the diode, the piece-wise linear be-
haviour is given by the control structure which changes the
resistor value.

diodes is their well-known non-linear behaviour (character-
ized by a very steep exponential current-voltage curve), that
collides with the limitations of SystemC-AMS. Linearized
or Piecewise Linear (PWL) implementations proposed in
the literature provide appreciable accuracy only with very
small time steps (in the order of nanoseconds), that heavily
affect the simulation speed of the surrounding system. A
solution to the SystemC-AMS implementation of diodes has
been proposed by [28], and its structure can be summarized
by the simplified circuit of Figure 5. The diode is divided
into two parts, implemented in ELN and TDF. The electrical
part contains a TDF-controlled resistor and two inductors
that connect the two pins of the resistor to the output pins
(i.e., p and n). The TDF part instead controls the resistor
value based on the potential drop between the the two pins
of the controlled resistor. The issues related to the diode’s
behaviour are more thoroughly discussed later on in the
paper.

4 MULTI-DOMAIN MODELING WITH SYSTEMC-
AMS
SystemC-AMS does not formalize how to adopt its MoCs
in domains other than the functional one or the electrical
one. As a consequence, works in the literature going beyond
such domains focus on the specific challenges given by the
target application scenario. This section tries to recap the
main solutions adopted and to provide a uniform view of

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

5

the modeling strategies given the kind of description. The
main dimensions that have to be considered to identify the
kind of description are:

• The level of abstraction, which includes time manage-
ment (i.e., discrete time or continuous time) and the
level of detail of the description (e.g., based on equa-
tions or on transfer functions).

• The adherence to conservation laws, specifically the at-
tention that has to be devoted to conservation laws
is a direct consequence of the lack of definition of
conservative domains other than the electrical one.

The electric domain has indeed a devoted abstraction
level, ELN, that directly applies conservation laws: when-
ever the designer is describing an electric network, he can
choose between a more abstract model, based, e.g., on
equations that must explicit conservation laws, or mapping
directly onto ELN constructs, that implicitly apply Kirch-
hoff’s conservation laws. For any other kind of conservative
description, the designer has to explicit also those depen-
dencies that originate by the intrinsic conservation laws
of the domain of interest. This is a limitation of SystemC-
AMS w.r.t. other AMS languages like Verilog-AMS [29].
Verilog-AMS is a standard modeling language, primarily
used to design analog circuits, which allows defining nets
of different disciplines. A discipline associates potential and
flow natures (e.g., voltage, current, force, position, velocity,
etc.) for conservative system. Verilog-AMS bases the ana-
log behaviour of conservative systems on the generalized
Kirchhoff’s Potential and Flow Laws (KPL and KFL).

4.1 Discrete time models
This class of models represents component evolution as
a function, a polynomial, an algebraic model or even a
waveform of values over time. This kind of models is
not restricted to functionality description (e.g., standard
Register-Transfer Level (RTL) models of digital HW), but
it rather includes abstracted non-functional models (e.g.,
Peukert’s model, reproducing battery dynamics through
equations) [5], [10] and discretized or linearized implemen-
tations of non-linear models (e.g., obtained via model order
reduction or through abstraction [7], [30]). This solution has
been adopted for the pico-projector case study, where the
non-linear and PWL behaviors of the OpAmp components
have been implemented as a set of equations controlled
by conditions. It is important to remember that a discrete
time model must incorporate all necessary equations, as
conservation laws do not apply.

Discrete time models perfectly fit the TDF MoC. Fig-
ure 6 exemplifies this for the aerodynamic model of the
wind turbine: the model is described as equations (top)
that determine the rotor torque depending on the angular
velocity of the rotor, blade radius and the characteristics
of the wind turbine. The model is encapsulated into the
processing() function, that is repeatedly executed over
time at any activation of the component (lines 10–15). The
initialize() method allows to set the activation time
step of the current module, thus tuning how often the
function shall be executed (lines 6–9). It is important to note
that the IEEE 1666.1-2016 standard extended TDF with the
possibility to dynamically change time step and data rate of

λ =
ωM ·R
v

γ =
λ

1 − λ · c1
Cp = c2 ·

(
c3
γ

− c4

)
· e

c5
γ

Tw =
Π
2 · Cp · ρ ·R2 · v3

ωM

ωM Rotor Angular Velocity
R Blades Radius
v Wind Speed
λ Tip Speed Ratio
Cp Power Coefficient
ρ Air Density

Tw Rotor Torque
ci Turbine-Specific Coeff.

1 SCA_TDF_MODULE (aerodynamic) {
2 sca_tdf::sca_out<double> Tw;
3 sca_tdf::sca_in<double> v;
4 sca_tdf::sc_in<double> Wm;
5 ...
6 };
7 void aerodynamic::initialize() {
8 Tw.set_timestep(1, sc_core::SC_MS);
9 ro = 1.225;

10 }
11 void aerodynamic::processing(){
12 lambda = varWm * radius / wind.read();
13 gamma = lambda/(1-0.035*lambda);
14 Cp = 0.5*(116/gamma-5)*exp(-21/gamma);
15 Tw.write(
16 (PI / 2) * Cp * ro * pow(radius,2)
17 * pow(v.read(), 3) / Wm.read()
18);
19 }

Figure 6: Aerodynamic model of the wind turbine (top) and
corresponding SystemC-AMS TDF code (bottom).

processes, to handle more efficiently sporadically changing
signals and behaviors where frequencies, time steps and
data rates change over time. However, the driver function
adjusting dynamically the time step must be written by the
designer, and it strictly depends on both the desired level
of accuracy and the kind of component (e.g., accurate to
the clock cycle for RTL models, while models of physical
phenomena like temperature or power consumption might
update in the order of the tens of milliseconds).

4.2 Dynamic systems

Dynamic systems represent a physical system that evolves
over time by preserving a certain notion of memory, i.e.,
output values depend both on inputs and on system status
in the previous time instants. Dynamic systems are modeled
in different ways, ranging from differential and algebraic
systems of equations to transfer functions. SystemC-AMS
restricts the scope to linear dynamic models: it provides
specific LSF constructs for linear elements, e.g. gains and in-
tegrators, transfer functions in the frequency domain (used
for mechanical, chemical and fluidic systems [5], [16]) and
state-space equations (that allow the modeling of MEMS,
power models and mixed-technology systems [7], [31]).
Such constructs can be mapped onto the corresponding LSF
primitives, that are instantiated and connected in a way that
reproduces signal propagation.

As an example, Figure 7 shows the equations deriving
the angle θ between the wind turbine rotor and the gen-

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

6

Θ =

∫
(ωE − ωM)

ωM =

∫
massmodel(TM , TW)

ωE =

∫
massmodel(TE , TM)

k
∫

k
∫

- k
∫ωM

ωE

Θ

1 sca_lsf::sca_integ
2 Wm("Wm", 1.0, 2.10001),
3 Wg("Wg", 1.0, 2.2192116114),
4 Theta("Theta", 1.0, 1.000268);
5 sca_lsf::sca_sub SubW("subW");
6 ...
7 Wm.x(...);
8 Wm.y(idtWm);
9 Wg.x(...);

10 Wg.y(idtWg);
11 SubW.x1(idtWg);
12 SubW.x2(idtWm);
13 SubW.y(sumW);
14 Theta.x(sumW);
15 Theta.y(thetaSig);

Figure 7: Equations to derive the angle θ between the wind
turbine rotor and the generator rotor from their angular
velocities and their mass model (left) and corresponding
LSF model (described in the block diagram notation, right,
and as SystemC-AMS code, bottom).

erator rotor from their angular velocities. The difference
between the angular speed of the turbine rotor and of the
generator rotor is mapped onto a sca_lsf::sca_sub prim-
itive (round primitive), while the integrators are mapped
onto sca_lsf::sca_integ primitives (square primitives).

As shown in the previous section, the pico-projector
presents a non-linear behaviour inside its operational am-
plifiers. Part of their internal behaviour is implemented
in the frequency domain with Laplace transfer functions.
In SystemC-AMS Laplace transfer functions are imple-
mented by using the primitives sca_lsf::sca_ltf_nd
and sca_lsf::sca_ltf_zp, which are the numerator-
denominator form and the zeros-poles form respectively.

4.3 Circuit models
The ELN MoC describes the electrical domain by provid-
ing a set of predefined circuit elements. A circuit model
can thus be straightforwardly implemented by connecting
such primitives: each primitive will define one (or more)
circuit equations, that will be enriched by the application of
Kirchhoff’s conservation laws. Note that this modeling style
has been used over time to describe also circuit-equivalent
models, i.e., models that emulate the behavior of a non
electrical component through an equivalent electrical circuit.
This approach applies to a wide range of domains, including
power simulation [10], thermal simulation [11], fluidic
systems [5] and MEMS [4], but requires deep knowledge
of both domains.

An example is provided in Figure 8, that shows a circuit
equivalent model of the battery [32] included in the energy
system case study. The circuit is implemented by mapping
its elements to ELN primitives: e.g., voltage source VOC

VOC = VB +RB · IB

VOC Open Circuit Voltage
R Internal Resistance
VB Battery Voltage
IB Current Demand

RB

−
+

Voc

IB

+

VB

–

n1

1 SC_MODULE (battery){
2 sca_tdf::sca_in<double> I;
3 sca_tdf::sca_out<double> SOC;
4 sca_eln::sca_vsource Voc;
5 sca_eln::sca_r Rb;
6 sca_eln::sca_node n1;
7 ...
8 SC_CTOR (battery) :
9 Voc("Voc"),

10 Rb("Rb") {
11 Voc.p(n1);
12 Rb.n(n1);
13 ...
14 }
15 };

Figure 8: Circuit model of a battery (left) and correspond-
ing implementation in SystemC-AMS (right), by mapping
circuit elements to ELN primitives.

is instantiated as an ELN sca_eln::sca_vsource object
(lines 9-10), and resistor RB as a sca_eln::sca_r object
(lines 11-12).

4.4 Mapping complex models to modeling styles

To determine the correct implementation of a component, it
is necessary to understand its characteristics in terms of time
management, presence of conservation laws and kind of
constructs adopted (e.g., integrative, state space equations).
This allows to easily map the component model onto one of
the three aforementioned modeling styles, and to adopt the
suitable SystemC-AMS MoC for its implementation. Note
that a model may contain a mix of such modeling styles,
e.g., combine circuit elements with signal flow elements or
equations. In this scenario, the model must be divided in
sub-blocks, each mapped to separate SystemC-AMS mod-
ules following the corresponding modeling style.

A clear example is given by the DC motor presented
in Section 3.3. Figure 4 clearly exemplifies its heteroge-
neous nature: the armature circuit of the DC motor and
the corresponding circuit elements are mapped to ELN, the
mechanical behavior is implemented as LSF primitives, and
TDF is used for connection and to implement the electro-
mechanical converter behavior. This process has been ap-
plied also to the simulatable model of the energy system,
as clear from the former subsections, and to the pico-
projector (Figure 3): the amplifier has been implemented
by combining together ELN for interfacing with the DAC
and the subsequent OpAmp, while the internal non-linear
behaviour is implemented by using TDF.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

7

5 ISSUES AND POSSIBLE FUTURE IMPROVEMENTS

This Section discusses the main issues we encountered when
modeling the non-standard systems in SystemC-AMS, with
a focus on the example case studies listed in Section 3. The
issues can be organized in five classes, depending on the
affected part of SystemC-AMS and on the seriousness and
impact on the standard:

A. scheduler-related issues, caused by constraints on the
schedulability of systems;

B. solver related issues, attributed to the current linear DAE
solver;

C. MoC-related issues, that are specific of each MoC;
D. implementation issues, caused by the current implemen-

tation of the SystemC-AMS simulation kernel;
E. extensions that would improve the effectiveness of

SystemC-AMS.

5.1 Schedulability issues
Section 2.2 explained that the basic concept of SystemC-
AMS scheduler is the construction of islands (called clus-
ters) of interconnected modules and primitives that can
be scheduled statically to ensure effective insertion in the
SystemC simulation cycle, thus speeding up simulation. The
assumption is that no cyclic dependency occurs, and that it
is always possible to determine a sequence of activations
of the modules and primitives, possibly allowing different
activation rates and thus a certain degree of buffering.
However, this synchronization strategy may encounter a
number of schedulability issues.

5.1.1 Enhanced support for schedulability analysis
The most typical one is caused by cyclic dependencies, typical
of TDF modules. Cyclic dependencies are quite easy to
find: the wind turbine presented in Section 3.1 hides cyclic
dependencies between its main components, that mutually
influence each other as an effect of the drive-train dynamics
(as highlighted by the arrows in Figure 2); the DC motor
includes a cyclic dependency between its electrical part and
its mechanical part. Most of such dependencies are easy
to solve by adding a delay (i.e., set_delay() function in
TDF, or sca_lsf::sca_delay primitive of LSF) [8], [33].
However, when the SystemC-AMS system becomes large,
with heterogeneous models working at different time steps
and rates, the source of error is often difficult to identify.
SystemC-AMS discovers such issues only at runtime, when
the synchronization layer tries to build the schedule of
the components: a schedulability error aborts simulation,
and is notified together with a list of the chained modules
and primitives that created the issue. This may be very
difficult to debug, above all when clusters and execution
chains include a large number of items: the reported list is
indeed often not complete, thus reducing the visibility of the
possible sources of error.

A different kind of synchronization issues is generated
by the integration with the SystemC scheduler: TDF clusters
may indeed generate causality issues, when events generated
by TDF are in the past with respect to the current advance
of time determined by the SystemC kernel. An interesting
analysis on this issue has been proposed by [34].

A B C D10 ns 20 ns

30 ns

5 ns

Figure 9: An example of a graphical representation that
could help debugging in the presence of scheduling prob-
lems. The annotation above edges represents the rate of each
output port. This example shows how this representation
can help pinpoint the schedulability issue.

Both these classes of issues may be solved by providing
support for enhanced static schedulability analysis. As an ex-
ample, the work in [35] proposes a static analysis of TDF
modules, that identifies schedulability issues both in the
TDF and the continuous time parts and proposes possible
solutions for their scheduling. [34] instead proposes a pre-
simulation symbolic analysis to identify schedulability is-
sues, implemented by mapping SystemC-AMS constructs
on Petri nets. Providing tools like the aforementioned ones,
and even integrating them in the COSIDE framework,
would allow the user to quickly identify the sources of er-
rors and to construct a feasible schedule with minor updates
to the system.

The dynamic scheduler poses new problems from the
point of view of error detection and schedulability analysis
in general. The scheduler has some trouble conveying in
a human-friendly way the necessary information for pin-
pointing the issue: the current debugging features simply
list the modules and primitives that are part of a cluster
that generates schedulability issues, with no additional in-
formation about the time steps or the rates that generate the
issues. One way the scheduler might help the user would be
to provide a graphical representation of the current sched-
ule, like the one in Figure 9. Specifically, SystemC-AMS
should provide a graphical representation of the relations
between the processes annotated with their time step, and
for each class, it should provide the list of activation chain.
An hypothetical representation in shown in Figure 9. This
graphical representation could contain other information
useful for finding the scheduling problem, the example of
Figure 9 shows only the output ports rates, which some-
times might be enough. Tools and algorithms like dot from
the graphviz library might be used to generate the directed
graphs for the graphical representation.

5.1.2 Supporting dynamic systems
Some schedulability issues are however impossible to solve
by simply adding explicit delays or carefully looking at
module settings. This is the case of dynamic systems, that are
widely adopted for the modeling of mechanical and phys-
ical components. Dynamic systems are modeled through
systems of equations (both algebraic and differential) that
must be evaluated simultaneously, rather than sequentially.
This creates dependency loops that can not simply be bro-
ken with a delay: at any time step, it is indeed necessary
to re-evaluate the system of equations a number of times,
until convergence is reached. Advanced dynamic system
simulators, like Simulink stateflow, are equipped with alge-
braic loop solvers, that requires no user intervention [36].

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

8

ϕDS = IDS + IDR

ϕQS = IQS + IQR

IDS = ϕQS

IQS = ϕDS

ϕDR = IDS + IDR

ϕQR = IQS + IQR

dϕDR

dt
= ϕQR · ωE + IDR

dϕQR

dt
= ϕDR · ωE + IQR

TE = ϕQR · IDR + ϕDR · IQR

ωE Angular Velocity
ϕ Magnetic Flux
TE Electrical Torque
DS Stator Direct
QS Stator Quadrature
DR Rotor Direct
QR Rotor Quadrature

Figure 10: Equations of the wind turbine generator causing
cyclic dependency.

SystemC-AMS does not provide support for this kind of
scenarios: any simulation time step executes modules and
primitives exactly once, with no notion of stability and
convergence. This prevents the construction of complex
physical models.

An example is provided by the wind turbine, whose
generator falls in this category. The generator is described
by the set of equations in Figure 10, that clearly contains
a cyclic dependency between magnetix fluxes (for sake of
readability, all constants and negative signs are removed,
the original equations can be found in [27]). It is clear
that the cyclic dependencies can not simply broken with a
delay, as they are intrinsic of the model: the only solution
to implement such model in SystemC-AMS was thus to
solve symbolically the set of equations with a symbolic solver
capable of dealing with systems of linear equations [37].

However, the adoption of a symbolic solver is far from
trivial for a non experienced user. The possible solutions
to cover dynamic systems with SystemC-AMS in a more
organic way are two: the extension to other models of
computation (like the bond graph and the block diagram
formalisms [3], that do support algebraic loops but have
never been formalized in SystemC-AMS), or an extension of
the solver to manage algebraic loops, as done by competitor
tools. Such solutions would ease the modeling of dynamic
systems, making the presence of unbreakable algebraic
loops transparent to the user.

5.2 Solver issues

The current implementation of the SystemC-AMS DAE
solver is based on a combination of implicit backward
Euler and trapezoidal methods, extended with optimization
techniques (e.g., Lower-Upper decomposition and Wood-
bury formulas) [24], [25]. The choice of such light-weighted
methods determines a good compromise between accuracy
and simulation speed, when compared with simulators sup-
ported by more complex solvers (e.g., HotSpot, based on 4-
th order Runge-Kutta [11], and Simulink, supported by a
library of solvers of increasing complexity [14]). However,
this choice has severe limitations when modeling physical
and dynamic systems: such systems are often stiff and

Figure 11: Example of SystemC-AMS solver instability on a
marginally stable physical system (modified from [24]).

marginally stable, and thus become numerically unstable for
simpler numerical methods (unless the step size is extremely
small, e.g., 1ms in case of the wind turbine) [24].

A clear example of this issue is the crane proposed
in [24], whose position is tracked in Figure 11: the authors
clearly prove that the SystemC-AMS solver (dotted) never
reaches stability, while the adoption of a higher order nu-
merical solver, like 4-th order Runge-Kutta (dashed), allows
to quickly stabilize the system to the setpoint (solid), even if
no code modification has been applied.

These examples highlight that, when moving to physi-
cal and dynamic systems, it becomes necessary to extend
SystemC-AMS with additional higher-order solvers. Such
solvers should be transparent to the user, i.e., the user
should be able to seamlessly choose the solver at compi-
lation time, to both cover a wider range of models and to
provide different accuracy-simulation speed trade offs.

5.3 MoC related issues

Some issues are intrinsic of each MoC, even if they are
tightly connected to characteristics of the scheduling man-
agement or of the solver adopted by SystemC-AMS. For this
reason, they are treated separately in this section.

5.3.1 TDF issues

The Annex 2 of the SystemC-AMS standard extended TDF
with the possibility of varying the time step at run time.
This feature is extremely useful when modeling control
systems (that constitute a relevant portion of production
equipment), as it allows to modulate the granularity of
simulation and to avoid over- or under-sampling. How-
ever, the driver function adjusting dynamically the time
step must be written by the designer [38]. This might be
very challenging, as detecting the correct time step requires
detailed knowledge of time evolution and of the case study
of interest. On one hand, changing the time step too often
impacts on simulation time, as it requires to recompute the
schedule of clusters and to reinitialize the underlying solver
matrices. On the other, leaving the time step unchanged may
lead to signal oversampling, thus wasting computation time
without generating meaningful data for the simulation, or
undersampling, with the effect of missing potential crucial
events. Additionally, note that any modification of the time

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

9

∣∣∣∣dfindt

∣∣∣∣

tsnext

diffmax

tsmax

Figure 12: Graphical representation of the linear equation
proposed in [38] to compute the time step tsnext: the x
coordinate corresponds to the difference value of the input
signal with respect to the time dfIN

dt (maximum difference
in amplitude diffmax), the y coordinate corresponds to the
time step over time (maximum time step tsmax).

1 void change_attributes() {
2 double dy = in_val - in_prev;
3 double dx = t_val - t_prev;
4 double ts_next;
5 double diff_max = amp_max / ts_max;
6 if (dx == 0.0)
7 ts_next = ts_min;
8 else
9 ts_next = ts_max * (1 - (fabs(dy / dx) / diff_max));

10 // Check that ts_next is inside the boundaries.
11 ts_next = std::min(ts_max, std::max(ts_min, ts_next));
12 // Set the maximum sampling period between two
13 // consecutive samples.
14 set_max_timestep(ts_next, sc_core::SC_SEC);
15 }
16 void processing() {
17 // Reading and writing port values ...
18 change_attributes();
19 }

Listing 1: Time step controller implementation as proposed
in [38]. The values of diff max, ts max and ts min and the
linear relationship in line 9 stricly depend on the system being
modeled.

step introduces a non negligible overhead, due to the nec-
essary re-initialization (or refactorization) of the underlying
solver matrices [25].

The work presented in [38] provides a possible imple-
mentation of the time step controller, which computes the
new maximum time step so that if the change of the input
signal with respect to time dfIN

dt is increasing, the time step
is decreased to ensure that all the variations of the signal
will be sufficiently sampled. This behavior corresponds to
a linear equation used to estimate the time step over time,
as depicted in Figure 12. The corresponding code is shown
in Listing 1. The critical aspects lie in the values chosen
to define the relationship between time step and value
difference over time (i.e., the angular coefficient of the linear
equation), and the maximum allowed thresholds for time
and value variations allowed in the model. All such values
strictly depend on the system being modeled, and thus can
not be generalized.

An example of a possible positive impact of a sound
implementation of dynamic time step is threshold crossing
detection, i.e., the capability of detecting the exact time stamp
at which an input signal crosses a threshold value [38]. Note
that this feature is crucial to support non-linear and piece-

wise linear constructs, and is supported by all other AMS
languages (i.e., Verilog AMS and VHDL-AMS). Threshold
crossing can be implemented with a careful management of
the dynamic time step feature: when the input signal ap-
proaches the threshold, the time step must become smaller,
so to determine much more exactly the crossing instant (e.g.,
in [38] the time step varies between 1.3ms and 0.1ms to
accurately detect threshold crossing of a simple sinusoidal
signal). Leaving such a crucial feature in the hands of the
user is dangerous, and the effectiveness of SystemC-AMS
would improve by embedding time step adjustment in the
synchronization layer.

5.3.2 LSF issues
The LSF MoC has two main issues that become particularly
critical in presence of physical and mechanical components.
The first problem is tied to the initialization of the integra-
tive constructs (i.e., the sca_lsf::sca_integ primitive).
Integration converges over time only if the correct initial
condition is set, thus requiring an effort from the designer to
determine the correct value (default is 0). From Figure 7 it is
possible to see that this may require up to ten digit precision:
any minor modification (e.g., stopping at the ninth digit)
would cause a divergence and stuck the integrator construct
at NaN, with very little tracing support. This issue happens
also in other simulation environments (e.g., Simulink), as
it is intrinsic of the integrative problem. However, other
simulators provide solvers for initial value problems of
ordinary differential equations, that suggest a correct initial
condition with no effort from the designer. Additionally, the
fixed time step strategy of SystemC-AMS and the adoption
of simple solvers to numerically solve the integral make the
problem even more critical, and leave far less debugging
information to the designer.

This problem could be partially diminished by dynam-
ically adjusting the time step during the simulation, so that
finer ticks could help detecting when the divergence occurs.
If the change in the monitored signal with respect to time is
increasing, then the next time step should be of decreasing
size to ensure that all the variations of the signal will be
sufficiently sampled. While, when the rate of change of the
signal is lower, the simulation time step could be increased,
resulting in a lower number of simulation points that should
be computed. This can lead to very effective results in terms
of simulation speed and accuracy, as it allows avoiding over-
sampling and in some cases also divergence. However, as
mentioned in Section 5.3.1, the management of the dynamic
time step is currently left entirely to the designer, thus result-
ing extremely challenging, and a very detailed knowledge
of the case study is required.

5.3.3 ELN issues
The primitives defined for the ELN MoC suffer from severe
limitations, that make its adoption in realistic industrial case
studies complex.

The current implementation of ELN does not support
non-linear components, e.g., diodes and transistors. To over-
come this limitations, different solutions have been pro-
posed in the literature to describe non-supported models,
like diodes and ideal switches [39], [40], [41]. However,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

10

Figure 13: Diode characteristic curve (left) and SystemC-
AMS implementation proposed by [40] (right).

these solutions are custom implementations, that in some
cases modify critical parts of the SystemC-AMS infrastruc-
ture, like the construction of the underlying system matrices
or the adoption of multiple solvers. As such, these solu-
tions are subject to errors and to inefficient computation. A
clear discussion of the problem is provided by [40], that
presents the modeling of an energy harvester, including a
diode. The behaviour of the diode is briefly explained in
Section 3.4 and its general structure is depicted in Figure 5.
The paper of Caluwaerts et al. [40] explores different im-
plementations of the diode, and identifies the one based on
a controlled switch as the most promising one. Figure 13
shows more in details how the switch is implemented
inside an instance of a TDF component, through a TDF-
controlled sca_rswitch. However, the authors highlight
that the instantaneous switching provided by the SystemC-
AMS primitive disturbs the state vector of the circuit. To
solve this issue, they had to introduce an artificial capacitor,
to maintain voltage evolution within reasonable levels. This
proves that extending ELN support to non-linear (or at least
piecewise-linear) elements would be crucial to enhance the
effectiveness of SystemC-AMS, and that it can not be simply
left to the intuition of the users.

Another major limitation of the ELN level is that it sup-
ports the Direct Current domain, while it does not support
the Alternate Current (AC) domain, that is nonetheless crucial
for modeling large scale production and energy systems
(that may even operate in tri-phase). Sinusoidal curves
are indeed supported only as sources of non-conservative
data (e.g., the sin_src LSF block), thus not applying the
conservation laws and the typical AC behaviors, e.g., the
phase that may occur between current and voltage curves
(that determines a possibly significant waste of power). To
overcome this limitation, the authors of [14] introduced
two possible ways to model AC curves in SystemC-AMS.
Once again, this is little more than a custom solution, that
should be engineered and introduced in the SystemC-AMS
environment to ensure correct and efficient computation.

5.4 Implementation issues

Two issues linked to system management and scheduling
are not caused by the standard per se, but rather by an ineffi-
cient memory usage in the Proof of Concept implementation
of SystemC-AMS.

5.4.1 Construction of static schedules
As mentioned earlier in the paper, the SystemC-AMS sched-
uler heavily relies on the construction of static schedules,
that are saved as activation lists reflecting the static order of
execution of each component. Such an activation list has a
maximum size, that can not be exceeded without incurring
in memory blocking errors (e.g., end of stack size). If system
size is limited, and modules work at the same time step (or
with few variations), everything works fine, and actually
this implementation of the scheduler is one of the reasons
for the fast simulation of SystemC-AMS.

However, in some scenarios, it is necessary to integrate
modules working at very different time scales: a valid
example is the work in [13], that runs TDF modules with
time steps that vary from 100ns to 1s, reflecting the dynamic
properties of the different system components (i.e., battery
chemical reactions are far slower than a processor clock
rate), thus implying a difference of 7 orders of magnitude.

A
1s

B
1ms

C
1ms

D
100ns

D
100ns

B
1ms

C
1ms

D
100ns

D
100ns

10 activations

1000
activations

Figure 14: Example of scheduling issue: if the modules in the
system execute at heterogeneous time rates, the activation
list constructed by the TDF scheduler may be very long,
despite of its periodicity. A more compact representation,
making explicit the relationship between time steps, would
impact on run time but allow the simulation of larger
systems.

The top of Figure 14 abstracts the problem by showing
the corresponding activation list: cluster schedule would
contain one module working at 1s (A), followed by 1000
entries to the modules working at 1ms (B and C), each
interleaved with the 10 entries to the module working at
100ns (D). This quickly leads to a crash of the synchro-
nization layer. Nonetheless, the decoupling at different time
steps is a key advantage of SystemC-AMS, and it would
be even more relevant in the context of plant or machin-
ery modeling, as different system components evolve at
very different speeds (e.g., fine grain mechanical models
versus gross grain models of the energy subsystem or of
thermal evolution). It might thus be necessary to re-think
the SystemC-AMS scheduler, e.g., by allowing a dynamic
reconstruction of the static schedule from activation queues

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

11

of smaller periods (e.g., a list of all modules that must be
activated every 1ms, points to an entry summing up the
10 activation of the modules working at 100ns, as shown
on the bottom of Figure 14). This solution would increase
scheduling overhead at run time, but it would allow the
simulation of larger systems with more realistic features.

5.4.2 Primitive instantiation at initialization time
Another issue ascribable to the current implementation of
SystemC-AMS occurs at initialization time, during the con-
struction of the matrices used by the solver to determine
system state over time. The initialization of system matrices
makes an intensive use of recursive calls over LSF and
ELN primitives (e.g., to initialize system matrices), thus
making computation unfeasible for large systems, due to
stack overflows. To overcome this issue, artificially increas-
ing stack size is only a palliative. The impact is heavy on
descriptions that require a large number of primitives, as in
the case of the thermal simulator proposed in [11], where
the maximum achieved granularity of the thermal model
is determined by the memory limitations of the SystemC-
AMS solver for the instantiation of resistor and capacitor
ELN primitives, and not by flaws or intrinsic limitations of
the model itself. Thus, the future versions of the SystemC-
AMS library should bear in mind memory usage as a con-
straint, and re-design synchronization algorithms to avoid
extensive use of recursive calls.

5.5 Further extensions
The last two issues are rather nice-to-have features, that
would ease the job of the designer and enhance SystemC-
AMS simulation.

5.5.1 Multi-discipline systems
Section 4.3 clarified that the only conservative domain sup-
ported by SystemC-AMS is the electrical one: any other
kind of conservative description must be either reduced
to the electrical domain (e.g., through a circuit equivalent
model, or by relying on the analogies between domains),
or implemented as equations that explicit also the intrinsic
conservation laws of the domain of interest.

Nonetheless, it is easy to notice that the majority of
designs cited in Section 4 contains components belonging
to different disciplines: the wind turbine and the DC mo-
tor include mechanical equations, while the pico-projector
uses rotational and rotational acceleration constructs to
allow the evaluation of its control SW removing the rip-
ple effect. Let us now focus on the mirror component
of the pico-projector. It is an excellent example of multi-
discipline component since it was originally implemented
in Verilog-AMS by combining together the electrical
and the rotational_omega disciplines. Specifically, ro-
tational omega uses the angular acceleration as potential
nature, and the angular force as flow nature. Internally, the
mirror is divided into two stages: the first stage is electrical
and receives the signals from the two OpAmps compo-
nents; then, the electrical part is connected to the electro-
mechanical one, implemented by using the two rotational
disciplines.

A viable solution for extending SystemC-AMS to non-
electrical domains components could be the adoption of the
bond graph MoC [42]. A bond graph represents the energy
flow between generalized elements, defined by their effort
(voltage for the electrical domain) and flow (current) [43].
The physical quantity represented by effort and flow, and
the corresponding unit measure, strictly depend on the
modeled domain, as outlined in Table 22. Bonds between
elements define causality constraints, and allow to com-
pute system state by propagating equations and relations
between quantities. The bond graph MoC is adopted by
a number of simulators, including Simulink and Modelica,
thanks to its effective support for multiple domains; addi-
tionally, the analysis of the bonds allows to easily detect
model flaws, e.g., algebraic loops or ill-posed models.

Table 2: Bond graph effort and flow elements for different
domains (with unit measure)

DOMAIN EFFORT FLOW

ELECTROMAGNETIC Current (A) Voltage (V)
MECHANICAL LINEAR Velocity (m/s) Force (N)

MECH. ANGULAR Angular velocity (rad/s) Torque (N ·m)
HYDRAULIC Volume flow rate (m3/s) Pressure (Pa)

A preliminary implementation of bond graphs in
SystemC-AMS has been proposed over a decade ago, to-
gether with an analysis of how the SystemC-AMS simula-
tion infrastructure should be extended to include a bond
graph solver [42]. The increasing relevance of non-electrical
conservative domains for plant modeling makes bond graph
an even more crucial solution: thus, its definition could
contribute to an effective extension of SystemC-AMS in the
direction of modeling physical and dynamic systems.

5.5.2 SystemC-AMS parallelization
Many works in the literature proposed approaches to par-
allelize SystemC by exploiting the intrinsic parallelism of
RTL, and at times also of TLM, to achieve faster simulation
through the adoption of parallel schedulers or by moving
event-driveness to separate threads [44]. The work in [45]
highlighted a common limitation of all such approaches:
their integration inside of the SystemC kernel would be
impossible, as they do not follow its semantics and APIs,
or even completely remove the kernel for the sake of faster
simulation.

The structure of SystemC-AMS offers additional ways
to achieve parallelization, without distorting the building
blocks of SystemC. At this point, it is clear that SystemC-
AMS simulation relies on system partitioning into clus-
ters of highly interconnected modules and primitives. Such
clusters have few dependencies on each other, and their
producer-consumer dependencies are clearly defined by
the TDF semantics, that does not allow contention (e.g.,
multiple writers). Thus, it would be possible to foresee a

2. To effectively support multiple domains, the elements are extended
to generalized displacement (charge for the electrical domain), gener-
alized momentum (flux), resistance (resistance), inertance (inductance)
and compliance (capacitance).

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

12

parallel extension of the SystemC kernel, where clusters are
executed independently, reducing synchronization only at
the borders. Despite of being a promising development of
the standard, this direction has not been explored yet.

6 CONCLUSION

The paper started from the analysis of the current state of
the art and from a set of heterogeneous case studies to make
a point on the current status of SystemC-AMS with respect
to the modeling of CPPSs. The analysis highlighted issues
with different levels of severity: some have to be considered
to allow an effective modeling of physical and mechani-
cal behaviors (e.g., solver extension, support for dynamic
systems and non-linear behaviors), while others are nice-to-
have, that would ease the modeling from the perspective
of a non-expert user or extend the expressiveness of the
language (e.g., multi-domain support, improved memory
usage). The discussion in the paper provided pointers to
current custom solutions and possible future developments
and improvements. The issues discussed in this work can
help prioritizing which issues should be addressed first for
improving SystemC-AMS, to make it an effective resource
also in the Industry 4.0 automation scenario.

REFERENCES

[1] K. Kang, S. Park, B. Bae, J. Choi, S. Lee, B. Lee, and J.-B. Lee,
“Seamless SoC Verification Using Virtual Platforms: An Industrial
Case Study,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, mar 2019, pp. 1204–1205.

[2] S. Vinco, V. Guarnieri, and F. Fummi, “Code manipulation for vir-
tual platform integration,” IEEE Transactions on Computers, vol. 65,
no. 9, pp. 2694–2708, sep 2015.

[3] F. Cenni, O. Guillaume, M. Diaz-Nava, and T. Maehne, “SystemC-
AMS/MDVP-based modeling for the virtual prototyping of
MEMS applications,” in 2015 Symposium on Design, Test, Integration
and Packaging of MEMS/MOEMS (DTIP). IEEE, apr 2015, pp. 1–6.

[4] S. Vinco, M. Lora, and M. Zwolinski, “Conservative behavioural
modelling in systemc-AMS,” in Proceedings of 2015 IEEE Forum on
Specification & Design Languages FDL. IEEE, 2015, pp. 1–8.

[5] V. Fernandez, E. Wilpert, H. Isidoro, C. B. Aoun, and F. Pêcheux,
“SystemC-MDVP modelling of pressure driven microfluidic sys-
tems,” in 2014 3rd Mediterranean Conference on Embedded Computing
(MECO). IEEE, jun 2014, pp. 10–13.

[6] E. Markert, M. Dienel, G. Herrmann, and U. Heinkel, “SystemC-
AMS assisted design of an inertial navigation system,” IEEE
Sensors Journal, vol. 7, no. 5, pp. 770–777, may 2007.

[7] B. Vernay, A. Krust, G. Schropfer, F. Pêcheux, and M.-M. Louerat,
“SystemC-AMS simulation of a biaxial accelerometer based on
MEMS model order reduction,” in 2015 Symposium on Design, Test,
Integration and Packaging of MEMS/MOEMS (DTIP). IEEE, apr
2015, pp. 1–6.

[8] X. Pan, C. Zivkovic, and C. Grimm, “Virtual prototyping of het-
erogeneous automotive applications: Matlab, SystemC, or both?”
in Proceedings of the 24th Asia and South Pacific Design Automation
Conference. ACM, jan 2019, pp. 544–549.

[9] B. Fernandez-Mesa, L. Andrade, and F. Perrot, “Electronic system
level design of heterogeneous systems: a motor speed control
system case study,” in 2019 17th IEEE International New Circuits
and Systems Conference (NEWCAS). IEEE, jun 2019, pp. 1–4.

[10] S. Vinco, A. Sassone, F. Fummi, E. Macii, and M. Poncino, “An
open-source framework for formal specification and simulation of
electrical energy systems,” in Proceedings of the 2014 international
symposium on Low power electronics and design - ISLPED ’14. ACM
Press, 2014, pp. 287–290.

[11] Y. Chen, S. Vinco, E. Macii, and M. Poncino, “SystemC-AMS
thermal modeling for the co-simulation of functional and extra-
functional properties,” ACM Transactions on Design Automation of
Electronic Systems, vol. 24, no. 1, pp. 1–26, jan 2018.

[12] V. Tran, P. Tisserand, F. Pêcheux, and A. Pinna, “Towards the
simulatable specification of a highly customisable SystemC AMS
alternator model in its multi-domain environment,” in 2016 13th
International Conference on Synthesis, Modeling, Analysis and Simu-
lation Methods and Applications to Circuit Design (SMACD). IEEE,
jun 2016, pp. 1–4.

[13] S. Vinco, Y. Chen, F. Fummi, E. Macii, and M. Poncino, “A layered
methodology for the simulation of extra-functional properties in
smart systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 10, pp. 1702–1715, oct
2017.

[14] Y. Chen, S. Vinco, D. J. Pagliari, P. Montuschi, E. Macii, and
M. Poncino, “Modeling and simulation of cyber-physical electrical
energy systems with SystemC-AMS,” IEEE Transactions on Sustain-
able Computing, 2020.

[15] M. Radpour and S. M. Sayedi, “A SystemC model of energy
harvesting CMOS digital pixel sensor,” in 2016 4th International
Conference on Robotics and Mechatronics (ICROM). IEEE, oct 2016,
pp. 192–195.

[16] F. Cenni, E. Simeu, and S. Mir, “Macro-modeling of analog blocks
for SystemC-AMS simulation: A chemical sensor case-study,” in
2009 17th IFIP International Conference on Very Large Scale Integration
(VLSI-SoC). IEEE, oct 2009, pp. 211–214.

[17] F. Pêcheux, M. Madec, and C. Lallement, “Is SystemC-AMS an
appropriate “promoter” for the modeling and simulation of bio-
compatible systems?” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. IEEE, may 2010, pp. 1791–
1794.

[18] B. Vogel-Heuser, S. Wildermann, and J. Teich, “Towards the co-
evolution of industrial products and its production systems by
combining models from development and hardware/software
deployment in cyber-physical systems,” Production Engineering,
vol. 11, no. 6, pp. 687–694, oct 2017.

[19] S. J. Oks, M. Jalowski, A. Fritzsche, and K. M. Möslein, “Cyber-
physical modeling and simulation: A reference architecture for
designing demonstrators for industrial cyber-physical systems,”
Procedia CIRP, vol. 84, pp. 257–264, 2019.

[20] M. Barnasconi, “SystemC and digital twin:
good match or not?” SystemC Evolution Day,
https://www.accellera.org/news/events/systemc-evolution-
day-2019, 2019.

[21] L. Monostori, “Cyber-physical production systems: Roots, expec-
tations and r&d challenges,” Procedia CIRP, vol. 17, pp. 9–13, 2014.

[22] P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard,
T. Tomiyama, and S. Achiche, “Design, modelling, simulation and
integration of cyber physical systems: Methods and applications,”
Computers in Industry, vol. 82, pp. 273–289, 2016.

[23] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder,
“RTOS modeling in SystemC for real-time embedded SW simu-
lation: A POSIX model,” Design Automation for Embedded Systems,
vol. 10, no. 4, pp. 209–227, dec 2005.

[24] P. A. Hartmann, P. Reinkemeier, A. Rettberg, and W. Nebel, “Mod-
elling control systems in SystemC AMS - benefits and limitations,”
in 2009 IEEE International SOC Conference (SOCC). IEEE, sep 2009,
pp. 263–266.

[25] C. Reuther and K. Einwich, “A SystemC AMS extension for
controlled modules and dynamic step sizes,” in Proceedings of 2012
IEEE Forum on Specification & Design Languages FDL, Sep. 2012, pp.
90–97.

[26] COSEDA Technologies, “COSIDE - the design environment for
heterogeneous systems,” https://www.coseda-tech.com, 2020.

[27] J. Martinez, “Modelling and control of wind turbines,” Imperial
College London, 2007.

[28] K. Caluwaerts and D. Galayko, Heterogeneous and Non-linear Mod-
eling in SystemC-AMS. Springer Netherlands, 2009, pp. 113–128.

[29] R. Narayanan, N. Abbasi, M. Zaki, G. Al Sammane, and S. Tahar,
“On the simulation performance of contemporary ams hardware
description languages,” in 2008 International Conference on Micro-
electronics, 2008, pp. 361–364.

[30] T. Machne, Z. Wang, B. Vernay, L. Andrade, C. B. Aoun, J.-
P. Chaput, M.-M. Louerat, F. Pêcheux, A. Krust, G. Schropfer,
M. Barnasconi, K. Einwich, F. Cenni, and O. Guillaume, “UVM-
SystemC-AMS based framework for the correct by construction
design of MEMS in their real heterogeneous application context,”
in 2014 21st IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE, dec 2014, pp. 862–865.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

13

[31] C. Zhao and T. J. Kazmierski, “An extension to SystemC-A to
support mixed-technology systems with distributed components,”
in 2011 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, mar 2011, pp. 1–6.

[32] Y. Chen, E. Macii, and M. Poncino, “A circuit-equivalent battery
model accounting for the dependency on load frequency,” in 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, mar 2017, pp. 1177–1182.

[33] A. Vachoux, C. Grimm, and K. Einwich, “Extending SystemC to
support mixed discrete-continuous system modeling and simula-
tion,” in 2005 IEEE International Symposium on Circuits and Systems.
IEEE, 2005.

[34] L. Andrade, T. Maehne, A. Vachoux, C. Ben Aoun, F. Pêcheux, and
M. Louerat, “Pre-simulation symbolic analysis of synchronization
issues between discrete event and timed data flow models of com-
putation,” in 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE Conference Publications, March 2015,
pp. 1671–1676.

[35] D. Genius, R. Porto, L. Apvrille, and F. Pêcheux, “A tool for
high-level modeling of analog/mixed signal embedded systems,”
in Proceedings of the 7th International Conference on Model-Driven
Engineering and Software Development. SCITEPRESS - Science and
Technology Publications, 2019, pp. 435–442.

[36] The MathWorks, Inc., “Algebraic loop concepts,”
https://it.mathworks.com/help/simulink/ug/algebraic-
loops.html, 2020.

[37] C. Bauer, A. Frink, and R. Kreckel, “Introduction to the GiNaC
framework for symbolic computation within the C++ program-
ming language,” Journal of Symbolic Computation, vol. 33, no. 1, pp.
1–12, 2002.

[38] L. L. Andrade Porras, T. Maehne, M.-M. Louërat, and F. Pêcheux,
“Time Step Control and Threshold Crossing Detection in SystemC
AMS 2.0,” in Huitième colloque du GDR SOC-SIP du CNRS, Lyon,
France, Jun. 2013, p. 3.

[39] F. Cenni, S. Scotti, and E. Simeu, “SystemC AMS behavioral mod-
eling of a CMOS video sensor,” in 2011 IEEE/IFIP 19th International
Conference on VLSI and System-on-Chip. IEEE, oct 2011, pp. 380–
385.

[40] K. Caluwaerts, D. Galayko, and P. Basset, “SystemC-AMS hetero-
geneous modeling of a capacitive harvester of vibration energy,”
in 2008 IEEE International Behavioral Modeling and Simulation Work-
shop. IEEE, sep 2008, pp. 142–147.

[41] L. Gil and M. Radetzki, “SystemC AMS power electronic modeling
with ideal instantaneous switches,” in Proceedings of 2014 IEEE
Forum on Specification & Design Languages FDL, vol. 978-2-9530504-
9-3. IEEE, oct 2014, pp. 1–8.

[42] T. Maehne, A. Vachoux, and Y. Leblebici, “Development of a bond
graph based model of computation for SystemC-AMS,” in 2008
Ph.D. Research in Microelectronics and Electronics. IEEE, jun 2008,
pp. 77–80.

[43] S. Bliudze, S. Furic, J. Sifakis, and A. Viel, “Rigorous design of
cyber-physical systems,” Software & Systems Modeling, vol. 18,
no. 3, pp. 1613–1636, dec 2017.

[44] B. Haetzer and M. Radetzki, “A comparison of parallel systemc
simulation approaches at RTL,” in Proceedings of 2014 IEEE Forum
on Specification & Design Languages FDL. IEEE, oct 2014.

[45] R. Domer, “Seven obstacles in the way of standard-compliant par-
allel SystemC simulation,” IEEE Embedded Systems Letters, vol. 8,
no. 4, pp. 81–84, dec 2016.

Enrico Fraccaroli is a postdoctoral research
fellow at the Department of Computer Science
of the University of Verona since May 2019. He
received his Ph.D. degree in computer science
from the University of Verona, Italy, in May 2019.
His research interests are the development of
new methodologies for the efficient simulation
and functional safety evaluation of embedded
platforms composed of analog, digital and net-
work components.

Sara Vinco is Assistant Professor with tenure
track at the Department of Control and Com-
puter Engineering of Politecnico di Torino (Italy)
since 2017. She received the Ph.D. degree in
computer science from the University of Verona
(Italy) in 2013. Her current research interests
include energy efficient electronic design au-
tomation and techniques for the simulation and
validation of cyber-physical production systems.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3226567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 12,2022 at 10:29:54 UTC from IEEE Xplore. Restrictions apply.

