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Abstract

In this dissertation, a method and a tool to enable design and verification of

computation demanding embedded vision-based systems is presented. Starting with an

executable specification in OpenCV, we provide subsequent refinements and verification

down to a system-on-chip prototype into an FPGA-Based smart camera. At each level of

abstraction, properties of image processing applications are used along with structure

composition to provide a generic architecture that can be automatically verified and

mapped to the lower abstraction level. The result is a framework that encapsulates the

computer vision library OpenCV at the highest level, integrates Accelera’s

System-C/TLM with UVM and QEMU-OS for virtual prototyping and verification and

mapping to a lower level, the last of which is the FPGA. This will relieve hardware

designers from time-consuming and error-prone manual implementations, thus allowing

them to focus on other steps of the design process. We also propose a novel streaming

interface, called Component Interconnect and Data Access (CIDA), for embedded video

designs, along with a formal model and a component composition mechanism to cluster

components in logical and operational groups that reduce resource usage and power

consumption.

This work was supported in part by the grant 1302596 from the

National Science Foundation (N.S.F.)
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I Introduction

I.1 Video and image processing

The use of cameras, and thus visual detection, has become a promising

alternative conventional range sensors due to their advantages in size, costs and accuracy.

Robotics, driving assistance systems, autonomous driving cars and unmanned aerial

systems (UAS) are few examples of critical areas of application. Progress in automotive is

leading to the use of cameras in high-end cars for driving assistance, lane departure

warning, autonomous cruise control and occupant pose analysis [1]. UAS are increasingly

used in surveillance [2], [3], precision agriculture [3], search and rescue [4], [3] and

communications relay [5], [3]. Many research efforts have also been devoted to building

systems for vision-aided flight control [6], tracking [7], terrain mapping [8], and navigation

[9]. Image processing can be described as a task which converts an input image into a

modified output image or a task that extract information from the features present in an

image. A typical set-up of an image processing system includes an image acquisition

device and the image processing unit.

I.1.1 Image acquisition

Video images are captured by CMOS or CCD (charge-coupled device) image

sensors. These are semiconductor devices comprising an array of light sensitive elements

which convert photon intensity into electric charge. In most cases the sensing element

responds to intensity only; color images are captured by passing the light through a

mosaic of red, green and blue filters before sampling, such that each element captures one

primary color only. The sensor produces a frame by spatially dividing a light sensitive

region into an ordered array of picture elements referred to as pixels, which are aligned to

a grid or lattice, with M rows and N columns. The size (M X N) of the image is defined

as the number of pixels per frame. A common size for video derived from analogue

sources is 720 x 576 whereas for digitally sourced video, it is typically a minimum of 640 x

480 in most applications.
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I.1.2 Image processing algorithms

There are several types of image processing algorithms depending on the end use

of the video stream. Algorithms range from low-level processing, whereby operations are

performed uniformly across a complete image or sequence, to high-level procedures such

as object tracking and identification. Low-level techniques are generally highly parallel,

repetitive and require high throughput, making them attractive for implementation in

hardware. Moreover, operations are generally a function of a localized contiguous

neighborhood of pixels from the input frame, which can be exploited in data reuse

schemes. Note that the serialization of video frames using raster-scanning means that

significant portions of the video stream may need to be stored, despite the data locality of

a particular algorithm. Examples of image processing algorithms include image

segmentation, noise elimination and morphological erosion and dilation. These operations

find applications in robot vision and machine vision. Image processing algorithms can be

classified in 4 categories which are applied to alter a pixel of a set of values to make an

image more suitable for subsequent operations:

• Point operations

• Global operations

• Neighborhood operations

• Temporal operations

These categories cover simple algorithm operations. Many higher-level

algorithms may be formed from combinations of operations from these five categories. An

important requirement of video processing is the real-time i.e. the processing should be

fast enough so that the result is meaningful for the user. For example, the processing in a

video-based autonomous car should be fast enough in detecting pedestrians so that the

car can be able to avoid them. Real-Time is the term used to describe a class of video

processing system in which the video signal is processed at the rate of video capture such

that the rate of generating output pixels matches the rate of receiving input pixels.

Real-time video processing is computationally demanding but often highly parallelizable,

making it amenable to hardware implementations.
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I.1.3 Image processing implementation

Image processing algorithms are usually written in high level languages such as

OpenCV, C++ and executed within software based processors such as General Purpose

Processors (GPP) and Digital signal processors (DSP). A GPP typically has a generic

instruction set that is not optimized for any particular application [10]. There are several

issues limiting their applicability in real-time processing systems. The main issue is due

to the fact that a GPP does not offer any type of specialized hardware support for specific

or repetitive operations found in digital processing algorithms. A DSP, on the other hand,

has a specialized instruction set with dedicated hardware support for operations

commonly used in digital signal processing algorithms [11]. As a consequence, this type of

implementation platform has a better throughput but lacks the flexibility of

programmable hardware processors such as Application Specific Integrated Circuits

(ASICs) and Field programmable gate arrays (FPGA). ASICs are fabricated and made

for special or dedicated applications. This means that their precise functions and

performance are considered and fully analyzed before fabrication. The consequence is

efficiency, reliability and high performance. However, changes in system requirements

which might be due to an oversight or a changing system demands results in a complete

replacement of the device because the architecture in ASICs cannot be altered. An FPGA

is a reconfigurable implementation platform which typically consists of logic blocks,

interconnects (routing), and I/O blocks [12]. An FPGA also offers the possibility of

exploiting parallelism, resulting in an increased performance compared to GPPs and

DSPs. Compared to ASIC, FPGA technology offers flexibility and rapid prototyping

capabilities in favor of faster time to market. A design concept can be tested and verified

in hardware without going through the long fabrication process of custom ASIC design.

You can then implement incremental changes and iterate on an FPGA design. For these

reasons, FPGA are used as alternative for video and image processing systems.

I.2 FPGA

Field programmable gate arrays (FPGA) are configurable integrated circuits

containing programmable logic that can be used to design digital circuits. Modern FPGAs

acting as true system-on-chip (SoC) devices with integrated memory, microprocessors,

digital signal processing (DSP) elements, high-speed transceivers, clock management, and
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numerous other features. The basic elements of FPGAs are configurable logic blocks

(CLB) connected together via a hierarchy of routing resources and programmable switch

matrices. Each CLB contains a relatively small amount of memory and some logic

resources that may be programmed to implement the desired function, with the memory

acting as a look-up table (LUT), RAM, or a shift register. When configured as a LUT it

may be used to replicate combinatorial and sequential logic, and CLBs may be chained

together to implement logic functions of any size. LUTs provide the main resource for

implementing logic functions. LUTs can also be configured as a Distributed RAM or as a

16-bit shift register [13]. The storage elements can be programmed as either a D-type

flip-flop or a level-sensitive latch in order to provide a means of synchronizing data to a

clock signal. Wide-function multiplexers effectively combine LUTs in order to permit

more complex logic operations. The carry chain, together with various dedicated

arithmetic logic gates, supports rapid and efficient implementations of mathematical

operations. To enable connections between logic elements themselves and between logic

elements and any other parts of the chip, the FPGA contains the interconnect. It is an

important feature that ultimately determines device performance. It is essentially a

network of interconnecting wires with switching matrices at crossover points comprised of

pass-transistors and multiplexers programmable routing resources take up a large

proportion [13]. Interconnects provide the mechanism for routing signals between logic

cells, memory blocks, DSP blocks and I/O pins inside the FPGA. Interconnects are

usually optimized for efficient signal transport based on the signal frequency and the

distance between the signal source and the sink to ensure predictability, signal integrity

and performance repeatability. In addition to these basic components, on-chip blocks of

memory are also provided. Many of the FPGA designs require some kind of fast memory

for temporary storage of intermediate results, data buffers and other. For this reason, the

chip contains embedded memory blocks. These are hardened SRAM memory units,

usually configurable for different memory sizes, data widths or single/dual port access.

The reconfigurability feature as well as hardware parallelism of the FPGAs offers

significant advantages in many applications. However, there are a number of challenges to

system development particularly in the field of video and image processing.
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I.3 FPGA for rapid prototyping of embedded video applications

Embedded video systems are usually composed of deeply integrated hardware

and software components to achieve complexity and performance. Low-level repetitive

computations on huge amounts of data are mapped into hardware, while complex

reasoning parts are maintained in software. There are several challenges to embedded

video system development in FPGAs. Some of these challenges include the design reuse,

design flow, resources usage and design verification. They will be discussed in the

following sections.

I.3.1 Design reuse

Design reuse is the use of a library of intellectual property (IP) cores to build a

desired circuit. The library implement functions of high complexity (e.g., a DCT or a

filter) and systems are built bottom-up by selecting designs from the library and

connecting them together. Bottom-up block-based design reuse has limited scalability due

to the design cost of integration. System-level interconnect and logic must be custom

designed for each implementation, the complexity of which grows exponentially with block

number. Functional and performance verification are difficult. These issues are addressed

by using a standardized communication architecture, such as Open Core Protocol (OCP)

[23], WISHBONE [8], AMBA [4]. Standardizing block interfaces precludes compatibility

issues; while the communication architecture implementation is itself a parameterized

circuit which can be reused. The block design process can be simplified as well by

isolating the interaction between blocks from their functionality. By using pre-designed

components, the main design task moves from designing components from scratch and

interconnecting them to simple integration of existing IPs. Unfortunately, this process

can be very difficult and integration burdens can quickly offset the benefit of IP-reuse.

IPs are available with various interfaces, which limit data exchange among interface with

different communication protocols and data access mechanism. Research in interface

synthesis has sought to automatically generate glue-logic between components with

different interfaces. The lack of formalism and standard in existing interfaces as well as

the infinite number of potential protocols and communication mechanism makes it

impossible for a single tool to target the general purpose case and provide a universal

synthesis methodology. Standard interfaces such as Avalon-streaming [1] from Altera,
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AXI4-Stream [25] from Xilinx among others, lack the formalism required to capture all

facets of the interface. They often lead to a poor timing, higher resource usage and higher

power consumption; the main reason being their general purpose orientation.

I.3.2 Design flow

Software design environments, such as OpenCV, are very popular in the software

community for the design of video-based systems. While those frameworks increase the

productivity by providing a rich set of library function for image and video manipulation

and machine learning, they are limited to target only general purpose processors. As a

consequence, there is a need to map applications captured in those framework onto

dedicated hardware/software architecture while performing verification tasks. Manual

translations would be time consuming, error-prone, and would require hardware design

skills not available in the image processing community, the bulk of which is made upon

software designers. In some systems the hardware part is fixed, but the increasing

demands on performance and quality requires more and more that the hardware fulfills

very special requirements and that it is precisely adjusted to the embedded software. As a

consequence, it is often no longer sufficient to use prefabricated hardware components.

Traditionally, hardware devices are implemented by low-level coding in hardware

description language (HDL). This approach is very remote from the high level

specification tool and can be a very tedious task and need special expertise for image

processing algorithms. An easier path is to use high level languages (HLL). These include

C/C++, Java, MATLAB [8]. many works have focused on synthesizing hardware from C.

De Micheli [14] summarized the major research contribution in the use of C/C++ for

hardware modeling and synthesis while Edwards [15] provided in detail, challenges to

hardware synthesis from C-based languages. It was observed that the approach generates

inefficient hardware due to difficulties in specifying or inferring concurrency, time, type

and communication in C and its variants. To these ends, modeling languages such as

SystemC [1] have been optimized to efficiently overcome some of these shortcomings (for

example, both handling concurrency through process-level parallelism) and are often

employed to capture the system behavior in the form of executable specifications. The

SystemC library has layers of increasing abstraction, enabling hardware to be modeled at

different levels. In addition, since systems are usually composed of deeply integrated
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hardware and software components to achieve complexity and performance, these

components must be designed together. This leads to hardware/software co-design. An

essential component of co-design methods is HW/SW co-simulation, which is necessary to

evaluate and compare different design alternatives. In a HW/SW co-simulation, hardware

and software parts of a system are simulated together. This provides an integrated way to

simulate the interactions between hardware and software. The main challenge in HW/SW

co-simulation is that hardware and software designers talk in different languages. They

use different abstraction levels, different models of computation, different programming

languages and different tools. These differences make it complicated to bring the design

processes together and to unify them in a single co-simulation framework.

I.3.3 Resources usage

The essential resources on FPGAs are arithmetic and logic resources, embedded

memory and logic cells. They are available in an optimized form but in limited amounts

[8]. It is necessary to have a balanced usage of these resources in an application in order

to avoid a shortage of one type of resource while having an excess of others. For instance,

an example temporal algorithm would be to detect motion by subtracting a frame from

the previous one. This would require frame buffering, and it is clear that whenever

processing is required that utilizes the temporal dimension of video data the storage

requirements increase rapidly. Alternatively, global operations involve high speed

processing, as multiple passes through the image data will usually be required; this will

increase the memory requirement and pose implementation challenges in timely

processing of the data. It is clear that on-chip memory is an important resource that can

quickly become scarce. This kind of temporal processing, where data sets are comprised

of elements that do not arrive in sequence but are distributed in time, is common in many

video applications but because of high data rates can often involve a significant

requirement for memory resources.

I.3.4 Verification

Video-based autonomous systems are used in critical areas such as unmanned

aerial systems (UAS) and autonomous vehicles with high safety standards, which can

only be provided by a sound verification process. As FPGA capabilities and design

7



complexities increase, verification and simulation also become more complex. Verification

of logic designs is at present carried out predominantly through RTL simulation, using

event-driven HDL simulators. It is the responsibility of the designer to produce

testbenches that correctly drive the simulation software and cover a sufficient range of

test cases to ensure the original specification is being met. Due to the fact that

testbenches are not synthesized the full extent of VHDL or Verilog instructions may be

used, which provides a considerable number of additional capabilities over HDL that is to

be synthesized, but designing the testbench and performing the simulation is still a

lengthy and complicated process.

I.4 Objective

It is therefore imperative to provide an automatic approach for the translation

process, while minimizing the resources involved and insuring correctness of design

through verification. This can be addressed by exploiting:

• High-level system modeling: to define concepts necessary for modeling embedded

vision-based systems through SystemC/TLM.

• Transformations: to develop necessary model to model transformation rules, in order

to allow subsequent refinements down to the hardware/software implementation.

• Verification and analysis: to develop methods to verify and analyze models, in order

to guarantee that the final implementation corresponds with the initial system

specification.

The objective of this dissertation is: to demonstrate the feasibility of a high-level

framework for the rapid design and verification of embedded vision-based systems. The

approach allows capturing computer vision application at a highest abstraction-level with

subsequent refinements and verification down to the hardware/software implementation.

I.5 Contributions

The contributions of this dissertation are as follows:

• A novel streaming interface, called Component Interconnect and Data Access

(CIDA), for embedded video designs, along with a formal model and a component

8



composition mechanism to cluster components in logical and operational groups

that reduce resource usage and power consumption.

• A design methodology for rapid prototyping of system-on-chip with emphasis of

embedded video applications. It leverages existing tools and provides a means to

facilitate their integration toward a semi-automatic mapping of software

specification to hardware/software implementations.

• A verification flow to perform Assertion-based and coverage validation on SoC

design at IP level.

These contributions will be discussed at a later stage together with the results

obtained by their use. Tests on the performance of the proposed solutions and

comparisons with other works are also discussed and were published.

I.6 Dissertation outline

The remainder of this dissertation is organized as follows. Chapter II presents an

interface methodology to address design reuse problems and a comparison with other

interfaces. In chapter III, our design methodology for rapid prototyping of embedded

video applications is presented and the verification flow is described in chapter IV. In

chapter V, memory synthesis approach is presented for resource optimization. Finally,

chapter VI presents conclusions drawn from this research, as well as possible future work.
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II Component Interconnect and Data Access Interface for Embedded

Vision Applications

Michael Mefenza, Franck Yonga and Christophe Bobda

Abstract— IP-based design is used to tackle complexity and reduce time-to-market in

Systems-on-Chip with high-performance requirements. Component integration, the main

part in this process, is a complicated and time-consuming task, largely due to interfacing

issues. Standard interfaces can help to reduce the integration efforts. However, existing

implementations use more resources than necessary and lack of a formalism to capture

and manipulate resource requirements and design constraints. In this paper, we propose a

novel interface, the Component Interconnect and Data Access (CIDA), and its

implementation, based on the interface automata formalism. CIDA can be used to

capture system-on-chip architecture, with primarily focus on video-processing

applications, which are mostly based on data streaming paradigm, with occasional direct

memory accesses. We introduce the notion of component-interface clustering for resource

reduction and provide a method to automatize this process. With real-life video

processing applications implemented in FPGA, we show that our approach can reduce the

resource usage (#slices) by an average of 20% and reduce power consumption by 5%

compared to implementation based on vendor interfaces.

Keywords— Interface Formalism, Computer Vision, Functional Verification, FPGA.

II.1 Introduction

Embedded vision applications are increasingly complex, in part because of the

huge amount of functionality required by customers, the huge amount of data delivered

by high-density sensors and complex computation to apply on those data in real-time.

With the well established component-based design approach, complexity can be tackled

and time-to-market of embedded vision applications reduced by using pre-designed and

pre-verified components to assemble large and complex systems. Using off-the-shelf

components, the main design task moves from designing components from scratch and
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interconnecting them to simple integration of existing IPs. Unfortunately, this process

can be very difficult and integration burdens can quickly offset the benefit of IP-reuse.

IPs are available with various interfaces, which limit data exchange among interface with

different communication protocols and data access mechanism. One way to address this

issue is to insert protocol transducers or wrappers between IPs with incompatible

protocols. The result is an increase in resource usage and design effort, with a negative

impact on time-to-market. Research in interface synthesis has sought to automatically

generate glue-logic between components with different interfaces. The lack of formalism

and standard in existing interfaces as well as the infinite number of potential protocols

and communication mechanism makes it impossible for a single tool to target the general

purpose case and provide a universal synthesis methodology. Standardization is the path

adopted by companies to address the interfacing issue. It forces IP designers to use a well

described and implemented interface, thus making the integration easier. However,

standard interfaces such as Avalon-streaming[1] from Altera, AXI4-Stream[25] from

Xilinx among others, lack the formalism required to capture all facets of the interface.

They often lead to a poor timing, higher resource usage and higher power consumption;

the main reason being their general purpose orientation.

To address these issues, we propose a novel streaming interface, called

Component Interconnect and Data Access (CIDA), for embedded video designs, along with

a formal model and a component composition mechanism to cluster components in logical

and operational groups that reduce resource usage and power consumption. Even though

CIDA can be used for the design of any Systems-on-Chip, design efforts were made for

the use in video processing applications, which usually require access to image data from

various sizes and various sources. Local access is performed to access local buffers,

neighbor processed data, and global memory data, all of which represent part of, or entire

images at different levels of the processing chain. With real-life video processing

applications, our approach was able to achieve a reduction of 20% in resource consumption

and 5% in power consumption with a considerable reduction in the overall design time.

The rest of the paper is organized as follows: Section II.2 introduces a

motivation example for a better understanding of the problem addressed in this work.

Related research regarding streaming interfaces and component-based design

methodology is discussed in section II.3. We present our proposed interface formalism in

section II.4, followed by its implementation in section II.5. Section II.6, section II.7 and
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section II.8 respectively presents system integration, resource optimization and functional

verification support, Experimental results with real-life applications implemented in

FPGAs are provided in section II.9. Finally, section II.10 concludes the paper.

II.2 Motivation example

Generally, interfaces are separated from the core functions, so the IP core can be

easily and quickly integrated into different system platforms utilizing different protocols,

by simply changing the interface logic wrapper without altering the core logic function.

Our main objective is to provide a formalized streaming interface with a means to

minimize logic resources and the total area by appropriately composing components using

that interface. The formalism is used to describe and manipulate the constraints under

which independently developed components can properly operate together. Furthermore,

it helps specifying resource optimization and verification objectives, thus simplifying the

use of external tools for optimization.

Consider the example of figure II.1 where 3 components with registered-input

and output, using the same interface with different component-logic. Because

component-based design sees the components as separated entities with separate

interface, the 3 components can be connected serially, as in figure II.1-a, thus using three

times the same interface. Clustering 2 of the 3 components (Figure II.1-b) leads to less

resource usage. The main reason is that the interface of a clustered group of components

usually uses less amount of resources than the separated implementation. Reducing

resource usage will lead to a reduction in power consumption and sometimes to an

improvement of the timing, as many of our experiments have confirmed. Figure II.1-b and

figure II.1-c show different clustering possibilities, all leading to different results. We

intend in this paper to study the impact of different configurations on the overall system.

II.3 Related Work

The bandwidth requirements of video processing applications can be achieved

using a stream processing model where applications data are organized as streams of data

which flow through a composition of producer/consumer components using a streaming

interface. A streaming interface description concentrates on the input/output behavior

abstracting it from the component’s internal structure.
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Figure II.1: Motivation example. In (a) the 3 components are connected serially while in

(b) and (c) they are clustered.

There are few streaming interfaces available for FPGA. Xilinx provides

AXI4-Stream [25] and Altera respectively the Avalon-streaming [1] for their FPGAs.

However, those interfaces use more resources than the user usually needs. Moreover, they

do not provide the formalism needed to capture interface properties and devise input for

synthesis and verification tools. Interface formalism provides a means to unambiguously

describe and manipulate constraints under which independently developed components

can work properly together. Streaming architectures can also be organized in structures

in which neighbors communicate directly through dedicated FIFOs [17] [24] [27]. The

work in [20] presents the SIMPPL model that uses asynchronous FIFOs to connect

different Computing Elements (CEs). FSL (Fast Simplex Link) [24] interface are

implemented as 32-bit x 16-deep FIFOs, which helps to decouple the timing of the FSL

master from the FSL slave. FERP (Full/Empty Register Pipe) [27] presents a similar

architecture as the FSL, but with additional information to coordinate multiple streams

of data. The use of FIFOs limits the model to streaming only, with no possibility of

global data access as required when entire pictures are stored in the main memory.

Furthermore, blind use of FIFOs increases resource usage between components that do

not require intermediate storage in their communication link. Several works have focused

on generating hardware/software interfaces [15] [12] [21] [11], other have provided BUS
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interconnect mechanism such as Open Core Protocol (OCP) [23], WISHBONE [8],

AMBA [4] for integration of customized peripherals. The goal is to convert peripheral

interface operations into packets that adhere a bus-specific protocol by inserting wrappers

in the peripheral. This introduces unnecessary cost in streaming-oriented architectures.

In contrast, we target direct communication models and use point-to-point interconnect

structure for all on-chip communications. [28] [13] propose a method to generate interface

circuits. The proposed solution produces flexible micro architectures from FSM

descriptions of the two interfaces to be connected. Knowledge of the protocols of both the

sender and the receiver is required. With the infinite number of available protocols and

communication paradigms, it is nearly impossible for a single tool to target the general

purpose case and provide a universal synthesis methodology.

Different formalisms exist for modeling interfaces, among which are relational

interfaces [22], Assume/Guarantee contract [18], Interface Automata [2], and I/O

automata [14]. [22] presents a theory of relational interfaces, that is, interfaces that

specify relations between inputs and outputs, which is not in the scope of our work, which

is IP reusability by a separation of concerns between interface and user-logic. In

Assume/Guarantee contracts [18], the assumptions made on the environment and the

guarantees provided by the system are modeled as separate sets of behaviors, whereas in

interface theories the two are merged into a single model, called an interface. I/O

automata and interface automata are formalisms that provide a single model for the input

and output actions of a component. The main difference between the two formalisms is

that I/O automata are required to be input-enabled, meaning they must be receptive at

every state to each possible input action while for interface automata, some inputs may

be illegal in particular states, i.e., the component is not prepared to service these inputs

in those states. We are using a formalism that bears syntactic similarities to Interface

Automata but significant differences arise as we use a lower level of abstraction. While

actions in Interface Automata models represent methods and procedure calls, our model

uses actions to describe the behavior of hardware signals.

Component-based design techniques are important for mastering design

complexity and enhancing re-usability. Components are designed independent from their

context of use and may be glued together through their interfaces. This view has led

some authors, e.g. [3], [16], [5] to consider a component as a black box and to concentrate

on the combination of components using a syntactic interface description of the
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components. However, none of these works have provided an implementation and

optimization mechanism aimed at reducing metrics such as resource usage and power.

We address the limitations of the previous works with a novel data access

interface that reduced IP interactions to the description of data source and destination.

The proposed formal model captured the properties of our interface and allows seamless

optimization through component clustering and functional verification.

II.4 Interface Model

In this section, we present an interface formalism based on Interface

Automata(IA) [2], which is used to model interaction between system components and

their environment. This interaction is performed by means of input and output actions.

Input actions describe the behavior that the component expects (or assumes) from the

environment. Output actions represent the behavior it communicates (or guarantees) to

the environment.

Definition 1 (Interface Automaton) An Interface

Automaton is a tuple S =< Q, q0, Qf , AI , AO, AH ,→> where:

• Q is a finite set of states with q0 ∈ Q being the initial state and Qf ⊆ Q being the

set of final states;

• AI , AOandAH are pairwise disjoint finite sets of input, output, and hidden actions,

respectively, A is the set of all actions i.e. A = AI ∪ AO ∪ AH ;

• →⊆ Q× A×Q is the transition relation that is required to be input deterministic

(i.e. (q, a, q1), (q, a, q2) ∈→ implies q1 = q2 for all a ∈ AI and q, q1, q2 ∈ Q).

An interface is a shared boundary across which two separate components of a system

exchange information. Interface automata are light-weight models that capture the

temporal behavior of an interface. The following examples of interface automata are

borrowed from [9]. The automaton (Fig. II.2-a) receives and transmits messages over a

lossy communication channel. The input actions msg, ack, and nack (resp., send, ok, and

fail) are depicted by incoming (resp., outgoing) arrows to the enclosing box, and question

(resp., exclamation) marks on edge labels. For the sake of optimization in image
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processing, we consider special cases of interface automata (input-only, output-only and

input-output).

Definition 2 (Input-only) An input-only interface is an interface that can only receive

streams or data information.

Input-only interfaces are used in components at the end of image processing chains such

as displays, storage or image transfer.

Definition 3 (Output-only) An output-only interface is an interface that can only

transmit streams or data information.

Output-only interfaces are used in components in front of image processing chains,

including cameras, storage and image collectors. Figure II.2-b presents an example of

output-only interface which can be used to generate messages for the interface of Fig.

II.2-a.

Definition 4 (Input-Output) An input-output interface is an interface that can receive

and transmit streams or data information.

Input-output interface can be used anywhere in an image processing chain, particularly

between two components. Figure II.2-a presents an example of input-output interface

that receives streams through its msg port and transmits them through its send port.

Figure II.2: Interface automata. The automaton is enclosed in a box, whose ports corre-

spond to the input and output actions. The names of the actions are appended with the

symbol ”?” (resp. ”!”, ”;”) to denote that the action is an input (resp. output, internal)

action. An arrow without source denotes the initial state of the automaton.
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Definition 5 (Compositionality) Let S and T be two IA, and let shared(S,T) =

AS ∩ AT be the set of shared actions. We say that S and T are composable whenever

shared(S,T) = (AI
S ∩ AO

T ) ∪ (AO
S ∩ AI

T ) .

The interpretation is that variables in shared(S, T ) are outputs of S which are connected

to inputs of T. Note that we allow shared(S, T ) to be empty, in which case serial

composition reduces to parallel composition (where no connections between the two

interfaces exist).

Definition 6 (Product of interfaces) Let S and T be composable IA. The product

S
⊗

T is the interface automata defined by:

• QS
⊗

T = QSXQT with q0
S
⊗

T = (q0
S, q

0
T );

• AI
S
⊗

T = AI
S ∪ AI

T − shared(S, T ), AO
S
⊗

T = AO
S ∪ AO

T − shared(S, T ), and

AH
S
⊗

T = AH
S ∪ AH

T ∪ shared(S, T )

• (qS, qT )
a−→ S

⊗
T (q,S, q

,
T ) if any of the following holds:

– a ∈ AS − shared(S, T ), qS
a−→ Sq,S, and qT = q,T

– a ∈ AT − shared(S, T ), qT
a−→ Tq,T , and qS = q,S

– a ∈ shared(S, T ), qS
a−→ Sq,S, and qT

a−→ Tq,T ,

There may be reachable states on S
⊗

T for which one of the components, say S, may

produce an output shared action that the other is not ready to accept (i.e. its

corresponding input is not available at the current state). Those states are called error

states. The composition of 2 IAs is defined as their product without the error states. To

describe and perform resource reduction through component clustering, a formalism must

be provided for the single components.

Definition 7 (Component) A component, C, is a tuple (U, I) where

• U is the core function of C.

• I =< Q, q0, Qf , AI , AO, AH ,→> is an interface through which C interacts with other

components, for instance, a messaging interface or a procedural interface.
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Components are executable units that read data and write data to ports. They are

composed of a core that represents the task’s functionality and an interface that

establishes data transmission on the input/output ports. The component model

(Definition 7) provides a framework for representing components and composing them.

The interface I of a component can be an input-only or an output-only or an

input-output, depending on where it is used in a system.

Definition 8 (Component clustering) A component, C = (U, I), can be composed

from a set of simpler components, C1(U1, I1), ..., Cn(Un, In), as follows:

• U is constructed from U1, ..., Un by connecting U1, ..., Un through their interfaces.

• I is derived from the composition of I1, ..., In.

The goal of component clustering it to combine a set of simpler components into a unique

component with equivalent core logic and an equivalent and resource optimized interface.

Using the above formalism, we propose a new streaming interface and a

component-composition mechanism to cluster components.

II.5 Component Interconnect and Data Access Interface

The need for a new interconnect mechanism was motivated by the desire to

allow designers of image processing IP to focus on the functions of their IPs and let the

data supply and collection mechanism be taken care of by the interconnect

implementation. Data needed by image processing IP can be local, usually small part of

images stored in buffer nearby, global with entire images stored in the main memory, or

direct, as computation result from neighbor modules. Furthermore, local, direct and

global data can be shared by several modules, which requires a coordination. The purpose

of CIDA is to provide a simple interface, which would be used by designers to specify the

source and destination of their data in a very abstract manner, regardless of the

implementation. The designer would then be freed from the implementation of the

orchestration and dataflow mechanism, which will be entirely handled in the interface.

We have therefore designed the Component Interconnect and Data Access (CIDA), that

fulfills the requirement of the interface model presented in section II.4 and provides a set

of common features that IP cores can use.
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CIDA features include a streaming interface for exchanging data among hardware and

DMA for exchanging data with global memories. CIDA can be parameterized to

efficiently accommodate different peripherals. To manage local, direct and remote data

access, we differentiate between the two main properties of CIDA: CIDA Streaming for

streaming-based design and CIDA-DMA for streaming design that incorporate global

memory access.

II.5.1 CIDA streaming:

CIDA-Streaming is based on a handshaking protocol with the different

configurations and the inputs, outputs and internal signals used to wrap a user logic

function as shown in Figure II.3. The data signals are made generic to handle different

data width during the streaming.

Figure II.3: CIDA streaming. On top, interface description; on bottom, interface au-

tomaton.

DI<N> represents the input data with width N, VI a valid data at the input, SI a

request for data at the output. DO<M> describes the output data with width M, VO a

valid data at the output, SO a request for input data, Wo data sent to User Logic with

width N and RESQO a request for data to the User Logic, active low. DISPO signals

valid data sent to the User Logic. WI is the data from User Logic, width N, DISPI a

valid data from User Logic, RESQI a request for data from User Logic, active low. The
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number of signals needed is very limited in the CIDA implementation. When used as

input-only, the interface is in state S1 until the User Logic is ready to receive data. The

User Logic sets RESQO low to signal it is ready to receive data, the interface sets SI low

and waits for a valid data. Upon reception of a valid data, the data are transmitted to

the User Logic and the interface returns to the state S1. In the output-only configuration,

the interface is in state S1 until it receives a request data. The interface transmits that

request to the User Logic and waits for a valid data. Upon reception of a valid data, the

data is sent out and the interface returns to the state S1. When used as input-output, the

interface is in state S1 until it receives a request for data. The interface transmits that

request to the User Logic and waits for a valid data. In order to produce a valid data, the

User Logic sets RESQO low to signal it is ready to receive data, the interface sets SI low

and waits for a valid data. Upon reception of a valid data at the input, the data are

transmitted to the User Logic, processed by the User Logic to produce a valid data at the

output. Upon receiving a valid data from the User Logic, the data is sent out and the

interface returns to the state S1. The User Logic can request as much data as it needs to

produce a valid output. Figure II.3 shows the states and transitions for each

configuration. To model the CIDA streaming as interface automaton

< Q, q0, Qf , AI , AO, AH ,→> defined in section II.4, we consider the three cases

input-only, output-only and input-output separately :

• Input-only : I = < Q, q0, Qf , AI , AO, AH ,→> with

– Q={S1, S2}, q0={S1}, Qf={S2},

– AI={VI, DI<N>, RESQO},

– AO={SI, wo, DISPO},

– AH={�},

– →= {S1
RESQO?−−−−−−−→ S2, S2

V I?−−−→ S1}.

• output-only : I = < Q, q0, Qf , AI , AO, AH ,→> with

– Q={S1, S2, S3}, q0={S1}, Qf={S3},

– AI={wi,DISPI, SO},

– AO={VO, DO<M>, RESQI},

– AH={�},

– →= {S1
SO?−−−→ S2, S2

RESQI!−−−−−−→ S3, S3
DISPI?−−−−−−→ S1}.

• Input-output : I = I =< Q, q0, Qf , AI , AO, AH ,→> with
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– Q={S1, S2, S3, S4}, q0={S1}, Qf={S3},

– AI={VI, DI<N>, RESQO, wi,DISPI, SO},

– AO={SI, wo, DISPO, VO, DO<M>, RESQI},

– AH={�},

– →= {S1
SO?−−−→ S2, S2

a−→ S3, S3
b−→ S1, S3

c−→ S4, S4
V I?−−−→ S3} where a = ’RESQI!’, b= ’DISPI?’ and c=

’RESQO?’.

II.5.2 CIDA DMA:

CIDA DMA is made of a streaming interface and a

memory-mapped interface. CIDA DMA is used to write incoming streams into a memory

frame buffer without processor intervention.

Figure II.4: CIDA DMA. On top, interface description; on bottom, interface automaton.

Reciprocally, images can be read from the frame buffer and streamed out. Figure II.6

shows an implementation of the DMA interface where incoming/outgoing streams are in

FIFOs for synchronization and a scheduler is used to coordinate memory reads/writes
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and prevent collisions. The scheduling policy is currently based on round robin, but more

complex scheduling mechanisms will be implemented in the future. Different

configurations are possible as shown in Figure II.4. The corresponding FSM of a

configuration is obtained by removing the missing streaming interface from the FSM in

figure II.4. DDI represents the DMA input data, DVI a valid DMA input data, DDO the

DMA output data, DVO a valid DMA output data. {REQ, ADDRESS, WDATA, RW,

RDY, RDATA} are memory-mapped signals, which go through a BUS to allow

interconnection between multiples DMA interfaces and multiple memories. DMA

operations (read/write) can be done in single word or in burst mode. We used FIFOs to

store streams for burst operations. Wr count is the number of elements in the Write

FIFO (Figure II.6) and rd count is the number of elements in the Read FIFO.

Writer active, respectively reader active, is used to initialize writing and reading frames

to and from memory. Reading and writing frame buffers can be done simultaneously, in

which case a scheduler is used to order single-word or burst read/write operations. Figure

II.4 shows the states and transitions for each configuration. The control logic contains

memory-mapped registers that can be used to reset or start/stop execution of DMA

operations from the software. It also contains a set of registers for configuring and

gathering the status of IPs. This relieves the designer from implementing

memory-mapped registers and bus interface in each IP which needs a configuration from

the software. To model the CIDA DMA as interface automaton, we use

< Q, q0, Qf , AI , AO, AH ,→> defined in section II.4 we consider the three cases input-only,

output-only and input-output separately :

• Input-only : I = < Q, q0, Qf , AI , AO, AH ,→> with

– Q={S1, S2, S3, S4, S5, S6, S7, S8, S9}, q0={1}, Qf={S3},

– AI={VI, DI<N>, RESQO, DDI, DVI, RDY, RDATA},

– AO={SI, wo, DISPO, REQ, ADDRESS, WDATA, RW},

– AH={writer active, reader active, wr count, rd count},

– →= {S1
a−→ S2, S2

a−→ S1, S2
b−→ S3, S3

V I?−−−→ S2}∪ →ctrl where a = ’witer active;’ and b =’RESQO?’.

.

• output-only : I = < Q, q0, Qf , AI , AO, AH ,→> with

– Q={S1, S4, S5, S6, S7, S8, S9, S10, S11, S12}, q0={S1}, Qf={S12},

– AI={wi,DISPI, SO, RDY, RDATA},
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– AO={VO, DO<M>, RESQI, DDO, DVO, REQ, ADDRESS, WDATA, RW},

– AH={writer active, reader active, wr count, rd count},

– →= {S1
a−→ S10, S10

a−→ S1, S10
SO?−−−→ S11, S11

b−→ S12, S12
c−→ S10}∪ →ctrl where a =

’reader active;’, b = ’RESQI!’ and c = ’DISPI?’.

.

• Input-output : I = I =< Q, q0, Qf , AI , AO, AH ,→> with

– Q={S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12}, q0={S1}, Qf={S3,S12},

– AI={VI, DI<N>, RESQO, wi,DISPI, SO, DDI, DVI, RDY, RDATA},

– AO={SI, wo, DISPO, VO, DO<M>, RESQI, DDO, DVO, REQ, ADDRESS, WDATA, RW},

– AH={writer active, reader active, wr count, rd count},

– →= {S1
a−→ S2, S2

a−→ S1, S2
b−→ S3, S3

V I?−−−→ S2, S1
d−→ S10, 10

d−→ S1, S10
SO?−−−→ S11, S11

e−→ S12, S12
c−→

S10}∪ →ctrl where a = ’writer active;’, b = ’RESQO?’, c = ’DISPI?’, d =

’reader active;’ and e =’RESQI!’.

.

where →ctrl= {S1
a−→ S4, S4

a−→ S1, S1
b−→ S7, S7

b−→ S1, S4
c−→ S5, S5

req!−−−→ S6, S6
rdy?−−−→ S4, S6

rdy?&b−−−−−→ S7,

S7
d−→ S8, S8

req!−−−→ S9, S9
rdy?−−−→ S7, S9

rdy?&a−−−−−→ S4} where a = ’writer active;’, b =’reader active;’,

c = ’wr count;’ and d = ’rd count;’.

II.6 System Integration with CIDA

Data management is one of the most important aspects of hardware/software

systems. The huge amount of image data collected must be supplied in real-time to

heterogeneous computing components that need to process them to avoid computation

delays. System designers usually handle this step manually, by defining communication

interfaces and protocols followed by low-level implementations. The complexity and

versatility of protocols and algorithms increase the challenges and limit the portability of

designs. To solve this issue, we provide, through CIDA, a mechanism which allows

algorithm development to be decoupled from data transfer handling. For each module in

the design, the user just needs to specify the source of data and result target. The system

takes care of the data transfer, buffer instantiation and scheduling of memory access for

shared memory components. Figure II.5 shows an abstract component composition using

CIDA-Interface modules. Incoming image data are temporally stored into an input buffer.
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A processing unit PU1 reads images from the input buffer, performs some processing and

copies the results to the memory. From there PU2 reads the processed image and

performs further computations. The result is sent to PU3 where it is mixed with stored

data in memory to produce the output. All components use CIDA at their boundary to

handle the data transfers and memory scheduling. This allows designers to focus on

implementing their components and let the system take care of data exchange.

Figure II.5: Organization of data access. Designer specify only the source and sink of

data using the CIDA interface. The system coordinates the data transfer and access to

share memories.

II.7 Resource Optimization

In this section, we present the algorithm used for component clustering, which

allows simpler components to be combined and produce more complex component with

reduced resource requirements. Understanding the composition of 2 CIDA interfaces is

key to understand this construction.

Consider the 2 input-output streaming interfaces I1 and I2 represented in figure II.7.

Their serial composition i.e. (SO1,DO1,VO1) will coincide with (SI2,DI2,VI2).

[I1]: I1 =< Q, q0, Qf , AI , AO, AH ,→> with

Q={1, 2, 3, 4}, q0={1}, Qf={3},

AI={VI1, DI1, RESQO1, wi1,DISPI1, SO1},

AO={SI1, wo1, DISPO1, VO1, DO1, RESQI1},

AH={�},

→= {1 SO1?−−−−→ 2, 2
RESQI1!−−−−−−−→ 3, 3

DISPI1?−−−−−−−→ 1, 3
RESQO1?−−−−−−−→ 4, 4

V I1?−−−−→ 3}.
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Figure II.6: System integration with CIDA; concrete FPGA-Implementation

[I2]: I1 =< Q, q0, Qf , AI , AO, AH ,→> with

Q={1, 2, 3, 4}, q0={1}, Qf={3},

AI={VO1, DO1, RESQO2, wi2,DISPI2, SO2},

AO={SO1, wo2, DISPO2, VO2, DO2, RESQI2},

AH={�},

→= {1 SO2?−−−−→ 2, 2
RESQI2!−−−−−−−→ 3, 3

DISPI2?−−−−−−−→ 1, 3
RESQO2?−−−−−−−→ 4, 4

V O1?−−−−→ 3}.

Shared(I1,I2) = {SO1, VO1, DO1}.
[I1
⊗

I2]: The product I1
⊗

I2 is obtained from definition 6 as follows:

• AI
I1

⊗
I2 = AI

I1 ∪ AI
I2 − shared(I1, I2) ={VI1, DI1, RESQO1, wi1,DISPI1,

RESQO2, wi2,DISPI2, SO2}

• AO
I1

⊗
I2 = AO

I1 ∪ AO
I2 − shared(I1, I2) = {SI1, wo1, DISPO1, RESQI1, wo2,

DISPO2, VO2, DO2, RESQI2 }

• AH
I1

⊗
I2 = AH

I1 ∪ AH
I2 ∪ shared((I1, I2) = {SO1, VO1, DO1}
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Figure II.7: Product of 2 CIDA interfaces.

Figure II.7 gives the result of the product I1
⊗

I2. There is no error state, thus the

composition of 2 CIDA interfaces is their product. From this example, we conclude that:

• The composition of 2 CIDA interfaces is their product.

• The composition of 2 CIDA interfaces serially connected is obtained by merging the

2 FSMs at the final state of the second one.

Based on the previous conclusions, we proposed the algorithm 1 for clustering

components. Lines 3-24 define the inputs, outputs and hidden actions of the resulting

component by looking at shared actions between 2 consecutive components. Lines 3-10

search for the inputs of component Ci that are outputs of the component Ci−1. These

inputs are hidden actions in the final component C(U,I). Lines 11-17 search for the

outputs of component Ci that are inputs of the component Ci−1. These outputs are

hidden actions in the final component C(U,I). Lines 25-35 identify serially connected

components and combine their FSMs by merging the 2 FSMs at the final state of the

second one as shown in Figure II.7. In Line 37, the user logics U1, ..., Un of all the

component are instantiated in the final component. We wrote a program to parse the

VHDL description of a set of components to obtain their input and output data and

28



FSMs. Our algorithm is then applied on those data to produce the VHDL description of

the final component.

II.8 Functional Verification Support

Verification is an integral part of the system-on-chip design process and

consumes up to 80% of the design efforts. A reduction of the verification time would

substantially reduce costs and improve system reliability. We provide support for

functional verification, which is the main approach currently used in the industry. We

have integrated Universal Verification Methodology (UVM) to allow designs specified in

RTL to be verified using the capabilities (random and constrained stimuli, coverage,

assertions) of the UVM environment. From a module described in CIDA, we

automatically extract information needed to generate drivers, monitors, assertion and

coverage metrics for the functional verification. The verification can then be performed

with signals generated in the UVM to feed designs in RTL. The results are gathered back

in UVM using the monitor. The generated assertion component then checks for bugs,

while the coverage module measures the quality of verification. Figure II.8 illustrates this

approach. From an RTL description of a hardware, a netlist extractor is used to gather

information on the component interface. In case of a CIDA interface, we automatically

generate assertions and coverage metric. Otherwise, the user can provide assertion and

metrics for coverage separately. Our framework then generates the components

(sequencer, driver, monitor, coverage and assertion evaluation) needed for the verification

within the UVM environment. The sequencer is used to generate the inputs for the

system and the driver mimics protocol of real-life communication components such as

UART, USB. The monitor gathers the output signals from the system under test which

are then evaluated for correctness by the assertion checker. The coverage checker is used

to measure the verification coverage, a measure of quality used in the industry. Because

the design under test is described in RTL and UVM is based on System-Verilog, we use

the SystemVerilog interface component to bridge the two descriptions. The Verification is

done in two phases:

• In a first phase, the UVM environment is generated. A parsing step produces all the

necessary information to generate a class packet in UVM. A packet is a data

container combining the inputs and the outputs of the DUT. The class packet in
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Algorithm 1 Component clustering

Input: list of Ordered components C1(U1, I1), ..., Cn(Un, In) With Ii =< Qi, q
0
i , Q

f
i , A

I
i , A

O
i , AH

i ,→i>. Ordered means the

data flows from C1 to Cn

Output: C(U,I): component resulting from the clustering.

q0 ← q0n

Q← q0

for i = n to 2 step -1 do

for x ∈ AI
i do

if x ∈ AO
i−1 then

AI ← x

else

AH ← x

end if

end for

for x ∈ AO
i do

if x ∈ AI
i−1 then

AO ← x

else

AH ← x

end if

end for

for x ∈ AO
1 and /∈ AH do

AO ← x

end for

for x ∈ AI
1 and /∈ AH do

AI ← x

end for

end for

Q← q ∈ Qn

→←→n

for i = n-1 to 1 step -1 do

if ∃x ∈ Ai+1 ∩Ai then

combine q0i and qfi+1 in Q

Q← q ∈ Qi and q 6= q0i and q 6= qfi

combine qfi and qfi+1 in Q

else

Q← q ∈ Qi

end if

→←→i

end for

U ← U1 ∪ ... ∪ Un

return C(U,I).
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Figure II.8: UVM verification envrionment

UVM is then used to generate the UVM components. The Sequencer generates

random and constrained packets. The Driver sends a packet to the DUT ports. The

monitor is responsible for receiving the DUT’s response to the stimulus packet from

the driver, collecting coverage and performing assertion checking. The coverage is

integrated into the environment using SystemVerilog coverage properties.

Assertions are implemented using SystemVerilog assertions.

• In the second phase, the UVM environment is compiled and simulation is done

using a simulation tool. During the simulation, Assertions are checked and coverage

is collected for the specified DUT. Checking typically consists of verifying that the

DUT Output meets the protocol specification.

Coverage metrics for CIDA are specified using SystemVerilog covergroup construct. Each

covergroup can include a set of coverage points, cross coverage between coverage points

and coverage options. A coverage point can be a variable or an expression. Each coverage
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point includes a set of bins associated with its sampled values or its value-transitions. A

sc logic signal should have only two possible values: 0 or 1. Therefore, the coverage of

sc logic signal such as VI is done with a bin [0:1]. A sc logic vector(m-1 downto 0) signal

should have only 2m values, the coverage of a sc logic vector signal such as DO<M> is

done with a bin [0:2m-1].

Assertion-Based Verification: Assertions for CIDA include the transitions between

different states, liveness, and progression of subsystems. They are expressed using

Temporal Logic [6].

Assertion-Based Verification is used to prove or discard some design properties or

assertions during the simulation. Assertions are implemented to execute protocol or

timing checking. They can be used to implement simple or complex property/sequence

checks for an interface or a protocol. Temporal Logic can be used for the specification of

assertions. It provides a means for reasoning about properties over time, for example the

behavior of a finite-state system. Temporal logic is an extension of conventional logic.

While conventional logic is useful for specifying combinational circuits, temporal logic is

used for the specification of sequential circuits representing processes.

Temporal Logic: While the traditional logic uses operators such as ∨,∧, =⇒ ,¬,

temporal logic introduces additional operators for dealing with temporal sequences. The

Operator ∇: The expression ∇A means that the assertion A will be true at some future

time, possibly the present time, but not necessarily remain true. The next Operator: The

expression B =⇒ next A means that if B is true at the present time, then A will be true

at the ”next” instant of time to be considered. As an example, if we consider a handshake

protocol where a slave grants data (grant) on the next clock cycle after it receives a

request (red) from a master, and the master sends an acknowledgment(ack) after

receiving the data. This can be expressed using temporal logic as follows: req next grant

=> ∇ ack. Using Temporal Logic, we can discuss the properties of CIDA including

liveness and progress of subsystems.

Liveness: Informally, an interface is alive if it eventually does something interesting, for

example an input-only interface that eventually requests an input and receives a valid

input. We define the liveness properties of CIDA interfaces as follows:

• Input-only : ¬RESQO =⇒ (∇V I ∧∇DISPO)
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• ouput-only : ¬SO =⇒ (∇DISPI ∧∇V O)

• Input-ouput : (i) ¬SO =⇒ (∇¬RESQO ∧∇DISPI ∧∇V O) and (ii)

¬RESQO =⇒ (∇V I ∧∇DISPO)

Progress of subsystems: In a subsystem S composed from connected components

C1, C2, ..., Cn, we say that there is progression in S if a data at the output of C1 reaches

the input of Cn going through all the intermediate components i.e.

V OC1 =⇒ (∇V OC2 ∧ ... ∧∇V OCn−1 ∧∇V ICn).

Progression is an important tool to verify that events such as an action generated in a

component C1 is properly received in a subsystem Cn, whose behavior depends on the

generated event.

As an example, consider figure II.9 that illustrates the structure of a processing chain for

a driving assistance [2].

Figure II.9: Processing chain for driving assistance proposed in [2].

For the subsystems (Average Brightness, Apply Threshold, Integral Image), the progress

of subsystems allows to check that when the valid minimum value is received by the

Average Brightness module, a valid output is eventually produced by the Integral Image

module.

II.9 Experimental Results

II.9.1 Interface comparison

Experimental Setup

Our target FPGA platform is the Zynq XC7Z020 CLG484-1 for Xilinx and

Cyclone II EP2C35F672C6 for Altera. Our goal is to compare CIDA Streaming,
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AXI4-Stream and Avalon Streaming; but also CIDA DMA, AXI Video Direct Memory

Access (AXI VDMA) and Scatter-Gather Direct Memory Access (SGDMA). The AXI

VDMA core is a soft Xilinx IP core for high-bandwidth direct memory access between

memory and AXI4-Stream-video type target peripherals. The SGDMA is available in

Altera SOPC Builder and allows to transfer between Avalon memory-mapped and

streaming interfaces.

Results

Table II.1 shows the results of the comparison. The used resources and the

bandwidth are obtained after synthesis and the power is obtained after implementation

using Xpower on Xilinx platform and PowerPlay on Altera platform. The advantages of

CIDA compared to existing interfaces are not only the usage of less resources and less

power as shown in Table II.1. CIDA DMA uses 2X less resources and power for almost

the same bandwidth than AXI VDMA. The comparison with Altera is difficult since

Altera and Xilinx use different logic unit element in their FPGAs, the relationship

between the 2 logic units needs to be established. However, from the power information

we can assume that CIDA DMA uses 2X less resources and power than SGDMA.

Interfaces Streaming DMA
Resources Timing PowerResourcesTimingPower

AXI4-Stream
1-8
2-11
3-11

673.85
Mhz

0.010
mW

1-4176
2-3887
3-5452
4-6

229.31
Mhz

35.15
mW

Avalon-ST 6-1 N.A. 0.010
mW

5-1029
6-1507
7-2548

N.A. 32.84
mW

CIDA
Streaming

1-34
2-2
3-35

1317.854
Mhz

0.001
mW

1-1646
2-1789
3-2484
4-1

173.04
Mhz

14.23
mW

Xilinx Altera

1-Slice Registers5-LC Combinational

2-Slice LUTs 6-LC Registers

3-LUT Flip Flop 7-Memory Bits

4-BRAM

Table II.1: Interface comparison CIDA VS AXI4-stream VS Avalon-ST.
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II.9.2 Resource Optimization

Experimental Setup

Our target FPGA platform is the Xilinx Zynq XC7Z020 CLG484-1 and the test

cases include a set of real-life computation-intensive programs: hand follower,

segmentation, Harris corner, and Xilinx Zynq base reference design, raytracer, and JPEG

encoder. Those test cases feature image processing algorithms where data are streamed

between the used IPs. The hand follower project identifies skin like colors (like hands) in

the image and uses mean shift to follow it while moving around. The steps within the

processing chain for this task are: grabbing images from the camera, convert Bayer to

RGB, convert RGB to HSV and filter the skin like colors, perform mean shift algorithm

to follow the skin colors (initial window in the middle of the screen), add the current

window as a red rectangle to the video stream, the results are put into memory and sent

to a display. The segmentation does the foreground/background segmentation. It stores

an initial image as reference background and defines a pixel as foreground if it has a

significant different color value compared to its corresponding background pixel. Two

CIDA DMA are used. One CIDA DMA reads the calculated foreground and stores it to

the memory where it is read for the display. The second CIDA DMA handles reading the

old background frame from the memory and storing the new background in the memory.

The central IPCore is the segmentation core which reads two image streams (old

background frame, current image) and gives back also two image streams (new

background frame, foreground). The input image is converted from Bayer pattern to RGB

after streamed from the camera and before entering the segmentation core. Harris corner

test case calculates the Harris corner points, a well known interest point descriptor. The

incoming image is converted into a RGB image. Then the discrete approximation of the

horizontal and vertical derivative is calculated, using 3x3 Sobel operators. Harris points

are then found as points where both the horizontal and vertical derivative are significantly

large. The results are put into memory and sent to a display. In this project we also make

use of the Serialization cores. Because the image grabber core outputs 80 bits data wide

while the Bayer to RGB converter needs 10 bits data wide. The Xilinx Zynq Base TRD

from [26] is an embedded video processing application designed to showcase various

features and capabilities of the Zynq Z-7020 AP SoC device for the embedded domain.

The Base TRD consists of two elements: The Zynq-7000 AP SoC Processing System (PS)
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and a video processing pipeline implemented in Programmable Logic (PL). The AP SoC

allows the user to implement a video processing algorithm that performs edge detection

on an image (Sobel filter) either as a software program running on the Zynq-7000 AP SoC

based PS or as a hardware accelerator inside the AP SoC based PL. The raytracer is a

working implementation of a tracing processor obtained from [10]. The JPEG encoder is

an implementation of the JPEG compression available on [9].

Results

The number of components to cluster affects the quality of our algorithm. The

tradeoff with the number of components to cluster is shown in Figure II.10 for the Harris

corner example. The resource usage is computed for different numbers of components

clustered. The Segmentation and hand follower test cases showed similar behavior as the

Harris corner example. In Figure II.10, the minimal resource usage is obtained when up

to 6 components are clustered. The number of components to cluster is assigned to be 6

in the subsequent experiments. Table II.2 shows the comparison of our proposed

component clustering algorithm compared to the flow without component clustering. The

first column lists the names of test cases. For each test case, the second and third

columns are the flip flop usage of the implementation result without and with component

clustering respectively; the fourth column is the comparison between the implementation

without and with component clustering. Similarly, the fifth to seventh columns are the

numbers and comparison of Slice usage; the eighth to tenth columns are the numbers and

comparison of maximum frequency. Overall, our component clustering flow can achieve

about an average of 40% reduction over the implementation without component

clustering. The algorithm performed poorly on the Xilinx Zynq base design because most

the IPs used in that design are encrypted i.e. it is not possible to access the user logic

core of these IPs. We were able to cluster only up to 3 components instead of 6 like in the

other test cases. Table II.3 shows the comparison of the power consumption. The Power

is evaluated using the Xilinx Xpower analyzer. We note a 5% average power reduction on

the test cases excluding Xilinx Zynq Base design.
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Figure II.10: Resource usage with different number of component clustered

II.10 Conclusions

In this paper, a streaming interface, called Component Interconnect and Data

Access (CIDA), based on interface automata formalism, for modeling video processing

architectures has been presented. The notions of interface composition and component

clustering were formalized and their applications to resource reduction were

demonstrated. CIDA has successfully been used to design several video applications such

as Harris corner, segmentation, hand follower and more. Further, the component

clustering is applied to solve the resource optimization problem on FPGA platforms. Our

experiments show the efficacy of the component clustering algorithm. Our future work

includes the use of CIDA for memory synthesis and optimization in video applications.
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Case study FF FF
(p)

CMP SLICE SLICE
(p)

CMP TIMING TIMING
(p)

CMP

Harris Corner 7,416 5,512 25.67% 2,648 1,567 40.82% 58.377
MHz

82.210
MHz

40.82%

Hand Follower 7,241 6,283 13.23% 2,105 1,776 15.62% 71.058
MHz

71.989
MHz

1.31%

Segmentation 10,799 7,602 29.60% 3,980 2,199 44.75% 72.606
MHz

78.027
MHz

7.46%

JPEG Encoder 6,617 6,125 7.43% 2,051 1,744 14.96% 101.491
MHz

106.202
MHz

4.64%

Ray Tracer 10,439 9,734 6.75 % 2,944 2,625 10.83% 77.597
MHz

79.434
MHz

2.36%

Xilinx Zynq Base 27,243 27,064 0.65 % 8,806 8,722 0.95% 70.822
MHz

75.769
MHz

6.98%

Table II.2: Resource reduction on all testcases.

Case study Power Power(p) CMP
Harris Corner 128 mW 120 mW 6.25%
Hand Follower 128 mW 123 mW 3.90%
Segmentation 135 mW 125 mW 7.40%

JPEG Encoder 112 mW 107 mW 4.46%
Ray Tracer 142 mW 137 mW 3.52%

Xilinx Zynq Base 393 mW 393 mW 0%

Table II.3: Power reduction on all testcases.
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III A Framework for Rapid Prototyping of Embedded Vision Applications

Michael Mefenza, Franck Yonga, Luca B Saldanha, Christophe Bobda and Senem

Velipassalar

Abstract— We present a framework for fast prototyping of embedded video

applications. Starting with a high-level executable specification written in OpenCV, we

apply semi-automatic refinements of the specification at various levels (TLM and RTL),

the lowest of which is a system-on-chip prototype in FPGA. The refinement leverages the

structure of image processing applications to map high-level representations to lower level

implementation with limited user intervention. Our framework integrates the computer

vision library OpenCV for software, SystemC/TLM for high-level hardware

representation, UVM and QEMU-OS for virtual prototyping and verification into a single

and uniform design and verification flow. With applications in the field of driving

assistance and object recognition, we prove the usability of our framework in producing

performance and correct design.

Keywords— Vision, Verification, SystemC, SoC, UVM, FPGA.

III.1 Introduction

Due to their advantages in size, cost, and programmability, computer

vision-based systems have become a promising alternative to conventional sensors such as

RADAR and LIDAR for gathering information on the surrounding environment.

Robotics, autonomous driving cars and unmanned aerial systems (UAS) are few examples

of application areas that can benefit from the use of computer vision. UAS are

increasingly used in surveillance, precision agriculture, search and rescue and

communications relay. Image processing applications are increasingly complex, in part

because of the huge amount of functionality required by customers and the huge amount

of data that high-density sensors can deliver. Besides the computational performance,

many systems require additional constraints such as SWAP (Size Weight and Power),

which can be satisfied only with a combination of hardware and software, where complex
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low-level repetitive computations on huge amounts of data is done in hardware, while

control dominated parts used for reasoning are kept in software. This path is followed by

the industry, which provides domain specific processors with hardware built-in

capabilities tailored for dedicated low-level image processing. Those processors perform

well only on algorithms that follow their implementation patterns. For more complex

application, a hardware/software system must be sought for real-time computation. The

design of hardware/software systems for embedded video applications is a difficult task

that requires hardware and software skills along with deep knowledge in image processing.

It usually involves a manual partitioning of the application followed by separate

implementation of software and hardware parts. While the software is implemented in

imperative languages such as C/C++, hardware parts require hardware description

languages such as Verilog or VHDL. The process is complicated, error prone and time

consuming for hardware designers, left alone software developers who build the bulk of

image processing community. As a consequence, there is a need to map software

applications onto dedicated hardware/software architecture for performance improvement.

In critical environments such as UAS and cars, verification must be performed to insure

the correctness of design and avoid run-time malfunction that can damage properties or

human life.

To address these issues, we propose a framework for rapid prototyping of

system-on-chip with emphasis of embedded video applications. The proposed framework

leverage existing tools and provide a means to facilitate their integration toward a

semi-automatic mapping of software specification to hardware/software implementations.

There are several tools involved in the design and evaluation of embedded vision

applications. At the highest level, computer vision libraries such as OpenCV are used by

to implement executable specifications and quickly prove concepts. Hardware/Software

partitioning is then done, mostly manually using profiling data of the executable.

Hardware functions are then implemented along with interconnect and memory

management components using VHDL or Verilog compilers. In many cases

SystemC/TLM is used to provide a high level system-on-chip representation that can be

quickly simulated and verified with tools such a UVM (Unified Verification Methodology)

or SCV (SystemC Verification). While each of these tools is used for a dedicated part of

the design, there is currently no glue that connects them to provide a unified design flow

with migration of specifications and data from one tool to another. Translation of designs
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is manually performed by designers with a considerable amount of recoding and errors.

Our main contribution in this work is to provide a seamless integration of all

tools and methods involved in the design and verification of system-on-chips for

vision-based applications. This is done by leveraging common structures of image

processing to provide configurable processing and data exchange components across all

levels of specification, along with a semi-automatic mapping and verification of high-level

specifications into hardware/software implementations. With driving assistance and

object recognition applications, we demonstrate the importance of our design framework.

The rest of the paper is organized as follow: In section III.2 relevant work in

high-level design and verification of video-based embedded systems is presented. In

section III.3 a conceptual view of the proposed methodology is presented. Section III.4 is

devoted to evaluate performance of the methodology. Finally, section III.5 concludes the

paper.

III.2 Related work

A review of embedded video processing systems in [14] shows that computation

in current systems is performed in software on a general purpose processor, sometimes

optimized for multimedia computation. The system in [6] uses several digital signal

processors on different PCI-boards, while the CITRIC [7] relies on the Intel XScale

PXA270 processor. FPGAs are used in systems such as [5] mostly as co-processor just for

accelerating a single function. In [5] a Xilinx Spartan-3E FPGA is used as a co-processor.

In [17], a hardware/software implementation on a Xilinx FPGA platform is presented for

a 3D facial pose tracking application; the most-computationally intensive part is

implemented in hardware while the remaining is implemented in the soft-core processors.

Various architectures use programmable DSPs with additional resources, such as special

graphics controllers and reconfigurable logic devices, as shown in [15]. These

implementations are done manually using low-level languages. This approach is tedious

and error-prone as we mentioned. In [20], Xilinx presents a limited library of

synthesizable OpenCV functions. However, native OpenCV functions must be manually

replaced by functions from the synthesizable library. This limitation is made to overcome

the handling of OpenCV dynamic memory allocation with non synthesizable objects such

as cv::Mat. Furthermore Xilinx OpenCV function library uses a streaming pixel approach
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rather than the native array pixels. As a result, random access is not supported for

images. Many OpenCV functions such as at () method and cvGet2D () have no

correspondence in the Xilinx library, which prevent interoperability and porting across

platforms. Functions are only provided for AXI4 Streaming Video, thus preventing its

usage for other FPGAs. Intel Integrated Performance Primitives (Intel IPP) [3] was

designed to optimized OpenCV on Intel processor featuring Streaming SIMD (Single

Instruction Multiple Data) Extensions (SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2,

and Intel AVX). There is no support for dedicated hardware acceleration beyond the

SIMD extension. Verification for embedded imaging systems is addressed in [19][1], which

present an automatic environment for the verification of the image signal processing IPs.

However, this work is limited to hardware accelerators. In [19], the verification

environment is based on Specman language while [1] uses reusable eVC and C-Model. In

[13], a specific application system with the co-simulation of SystemC and RTL is

presented. The co-simulation of SystemC TLM is used in a surveillance camera system

using a one-bit motion detection algorithm for portable applications. The host controller

interface (HCI) and the motion detection sensor (MDS) are implemented by SystemC

TLM. API program is implemented by C++ program and the other blocks of this system

are implemented by RTL HDL. To verify co-simulation, HCI, MDS, and API program are

operated at a PC workstation. Co-simulation is used to accelerate the simulation of the

system. In [18] video data and synchronization signals are generated as testbench for the

simulation of video processing IPs. However, simulation without emulation is limited

since it does not catch every error in the RTL systems, especially timing errors. The

scope in [16] is limited to algorithms by formally verifying complex loop transformations

like loop folding, loop distribution, typically applied in the design trajectory of data

dominated signal and data processing applications. Important part of the systems like

interfacing, communication and dataflow component, and memory are not addressed.

The presented related works do not address the high-level design and verification

of video-based embedded systems in tandem. Our goal in this work is to provide software

designers a mean to capture designs at high-level with subsequent refinements and

verification down to the hardware/software implementation and the emulation in the

FPGA.
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III.3 Proposed Design Approach

We propose the design environment of Figure III.1 which consists of the

following steps: system specification, high-level hardware/software partitioning, register

transfer implementation, and emulation. At each level, the corresponding abstract

representation of the target architecture is used with the required amount of details to

verify and refine the representation to the lower level.

Figure III.1: The Proposed Design Flow

System specification: The first step in system specification is to describe the

application, regardless of the target architectures. At this stage, only image processing

skills are required and applications are defined in executable form in C/C++ in the

OpenCV environment. The verification is done by means of simulation just to validate

the application. Synthetic videos or a webcam can be used to feed video to the

application, and a normal computer screen to visualize the results.

High-Level Hardware/Software Partitioning: Executable specification produced in

OpenCV in the first step is refined to hardware/software architecture. The partitioning is

done manually, either on the base of profiling information or user knowledge.
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SystemC/TLM is used to model the behavior of the entire system in a transactional way.

Transaction Level Modeling (TLM) is becoming increasingly popular in the industry as

the ultimate tool to capture and verify systems consisting of several software processes

and hardware components. To speed-up the simulation, details of the communication are

left out. Our framework integrates OpenCV and SystemC/TLM in the same environment

through a set of classes and functions to access image data from both end and allow

communications among tasks running in OpenCV and those described in SystemC.

Designs at this level reflect the final hardware/software implementation with SystemC

describing the hardware architecture as a set of blocks with abstract communication

among them and all reasoning on extracted features as software in OpenCV. Figure III.2

Figure III.2: SystemC/TLM abstract representation of the target platform at system-

level. Initiator (I) and Target (T) interfaces are automatically included at the boundary of

components of an abstract system-on-chip description. CIDA is used to handle data access

from hardware modules.

presents an abstract representation of a system-on-chip for the Xilinx Zynq-FPGA. The

ARM target processor running Linux-OS is modeled using QEMU, a generic and open

source hypervisor. QEMU is integrated into the OpenCV + SystemC/TLM environment

using TLMu [2], a TLM wrapper for QEMU that allows to communicate with the CPU

core using TLM2.0 sockets. A hardware accelerator implemented in SystemC is used after
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image capture to perform low-level segmentation on input images captured by a webcam.

The result is DMA into the system memory from where it can be further evaluated by the

processor. A second hardware accelerator is used at the output to improve the output

image stored by the processor in memory. At this level, integration of components into an

abstract system-on-chip architecture is done by implementing initiators (I) and targets

(T) as well as the communication logic. This step is simplified in our framework with

configurable interface modules to connect components as initiator or target. Data

exchange is performed according to the protocol of the target system. Currently, we

support simple bus communication protocol, but other paradigms like network-on-chip

can easily be included. The resulting system (OpenCV + SystemC/TLM + QEMU) is

then used to simulate the abstract SoC with software and OS at the transaction-level,

and inputs and output provided by the OpenCV. The video input used for simulation is

the same as in the first stage. As we will explain later, the refinement from high-level is

done by mapping high-level descriptions of image processing functions and structures to

their low level counterparts. Automatic extraction of hardware designs from sequential

code is increasingly and partially supported by vendor tools such as Xilinx Vivado,

Mentor HandelC and Synopsys SympohonyC. These tools can be used to generate and

map image processing functions available in software into hardware description, thus

enriching the framework. This part is however not in the scope of this work. To allow for

a seamless integration of hardware and software modules with a system-wide transparent

data exchange, we have designed a Component Interconnect for Data Access (CIDA).

CIDA is a portable interface module used for data exchange between software and

hardware components in a system-on-chip. A SystemC-TLM level, CIDA uses direct

memory access based on TLM-Socket to allow for communication among hardware and

software components on the chip. As shown in Figure III.2, users just need to understand

the CIDA-interface to be able to connect very complex representation. More explanation

on CIDA is provided in section III.3.

Register-Transfer Level: The abstract description of the previous step is further

refined into a final structure that can be synthesized by hardware compilers. The

refinement includes the pin and cycle accurate implementation of the communication

interface between software and hardware, a detailed description of the bus model, and a

detailed implementation of buffers and memory.

We leveraged the structure of image processing systems to provide a generic and
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configurable set of components that will allow for a smooth refinement from the TLM to

the RTL description. Our framework provides RTL implementations of image processing

components and functions available at the SystemC/TLM level, some of which are

described in more detail in section III.3.1. The SystemC/TLM description is

automatically mapped into an RTL implementation that can be synthesized, while the

software part is kept on the embedded processor. Also, the CIDA TLM implementation is

mapped to its RTL counterpart and used as in the previous step for component

integration and memory access management. Since all communications among software

and hardware tasks go through the CIDA, which is hardware module, it must be made

accessible from the software. The mapping automatically generates a driver, using the

properties of the implementation.

Emulation: The last step in the design process is the emulation of the system specified

in the previous level. For this step, we have designed a versatile FPGA-based smart

camera, the RazorCam to allow for testing in a real-life environments. Our platform

implements image processing directly inside the camera, instead of propagating the image

to a workstation for processing. Its compact size and performance facilitates the

integration in embedded environments like cars and UAS. The processing module consists

of: one Xilinx Zynq FPGA, a flash drive, connectors for an infrared camera, a digital

camera sensor, and an analog camera sensor. A TFT display can be connected to the

platform, so the user can check the results of its applications in real-time in the field.

System Integration with CIDA

Data management is one of the most important aspects in hardware/software

systems. The huge amount image data collected must be supplied in real-time to

heterogeneous computing components that need to process them to avoid computation

delays. System designers usually handle this step manually, by defining communication

interface and protocols followed by low-level implementations. The complexity and

versatility of protocols and algorithm increase the challenges and limit the portability of

designs. To solve this issue, we provide a mechanism which allows algorithm development

to be decoupled from data transfer handling. The resulting data access module called

Component Interconnect and Data Access (CIDA) is based on the interface model, whose

formalization fulfills the interface automata [2] [4] definition. Using this model, we can
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Figure III.3: Organization of data access. The designer specifies only the source and sink

of data using the CIDA interface. The system coordinates the data transfer and access to

share memories.

check for compatibility of component interaction protocols and devise the entire data

management infrastructure. For each module in the design, the user just needs specifying

the source of data and result target. The system takes care of the data transfer, buffer

instantiation and scheduling of memory access for shared memory components. Figure

III.3 shows an abstract component composition using CIDA-Interface modules. Incoming

image data are temporally stored into an input buffer. A processing unit PU1 reads image

from the input buffer, performs some processing and copy results in memory. From there

PU2 reads the processed image and performs further computations. The result is sent to

PU3 where it is mixed with stored data in memory to produce the output. All

components use CIDA at their boundary to handle the data transfer and memory

scheduling. This allows designers to focus on implementing their components and let the

system take care of data exchange. The example in Figure III.4 shows an automatic RTL

mapping of an abstract specification that uses CIDA for data access of hardware modules.

Data from DDR memory supplies the first module of a processing chain. Subsequent

computations are done in the chain and the last module copies the result back into the

DDR memory. The use of CIDA allows for the generation of the two input and output

buffer as well as temporary buffers among the module to meet the timing requirements. A

scheduler is automatically devised to arbitrate the transactions between CIDA interfaces

51



and memories.

Figure III.4: System integration with CIDA; abstract representation (left) and concrete

FPGA-Implementation (right)

III.3.1 Basic Hardware Modules

One of the main goals of our design environment is to reduce design time of

system-on-chip for video applications. Leveraging common computing structure of those

applications to provide a generic implementation of components commonly used along

with a way of binding them will reduce the design time. Many applications can simply be

composed and verified using templates available at various levels of hierarchy. We have

populated our design environment with generic components (functions, data access

managers, communication components) needed to build most image processing

applications. The functions are fully parameterizable according to the picture size, the

lighting conditions, applied threshold, etc. New and more complex functions can be used

to populate the framework. For each module a SystemC/TLM and an equivalent

RTL-version is available to allow a seamless mapping from SystemC/TLM descriptions

into RTL ones. This step is currently conducted by hand, but our future work will seek to

automate this process, with efficient design space exploration strategies. In the next

section, we provide a brief explanation of the modules currently available in our library.
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Buffers: Buffers are very important in image processing for temporally holding data

needed by components not having direct access to memories. In systems in which pixels

are delivered sequentially from image sensors, buffers can be used to capture

neighborhoods of incoming pixels to perform some low-level operations such as

convolution or simple filtering. Buffers can also be used to control timing or to multiplex

memory access between components. Our implementation provides a wide range of

buffers that can be configured for various purposes, including synchronization, temporary

data storage, and timing. The configuration defines the number, size and type ports, as

well as the buffer size.

Convolution Filters: Many low-level morphological operations in image processing

rely on convolution. Noise reduction, smoothing, edge detection, median, and averaging

all operate with convolution filters. Our framework provides a generic description of the

buffer, including the number of lines, the sliding window structure which captures the

neighborhood the current pixel and the pixel function to be applied in the convolution.

Minimum and Maximum Brightness: To calculate the image’s minimum

brightness, a generic module providing the lowest in a series of values is implemented. So,

mathematically speaking, this means calculating

brightnessmin = min(P ) (III.1)

where P is the set of all pixels generated by

P := {px,y | ∀x ∈ [0, imagewidth− 1] ,

∀y ∈ [0, imageheight− 1]}.
(III.2)

A buffer is used to store the image pixel. The computation is done either sequentially by

streaming all elements through the module to compute the minimum or maximum value.

Average Brightness: The general approach is to sum the values and then divide the

overall sum by the number of values. For the set of all pixels P , this means calculating

brightnessaverage =

∑
p∈P

p

|P |
. (III.3)
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Due to the complexity and cost of hardware implementation, the division is replaced by

subtracting the number of values from the overall sum whenever possible. If subtracted, a

separate counter is incremented to keep track of the number of performed subtractions.

The counter then holds the result of the division at the end of the computation.

Thresholding: Taking both minimal and average brightness from the last frame as

input, this module calculates and applies the current threshold. The result is an inverted

binary image corresponding to the original image and the threshold. The set B of all

binarized pixels is calculated by

B :=

p′x,y

∣∣∣∣ p′x,y = 0 ∀px,y < threshold

p′x,y = 1 ∀px,y ≥ threshold
, px,y ∈ P

 . (III.4)

For any value streaming through the module, the calculated threshold based on minimum

and average brightness is applied. Any value below the threshold is converted to 1, any

value above is converted to 0.

Integral Image: This module is responsible for converting the pixel stream from binary

pixels to the corresponding integral image. It calculates the set I using the equation:

I :=

{
p′x,y

∣∣∣∣ p′x,y =
∑

pm,n, m ∈ [0, x] , n ∈ [0, y] , p ∈ B
}
. (III.5)

It buffers one line of the image, which is initialized with zeroes. In addition, the sum of

original pixels left of the pixel under consideration is calculated. With these two sources,

the module calculates the integral image pixel by adding the processed pixel directly

above it to the sum of original pixels left of it (including its own value in the original

image). The result is buffered to form the basis of the subsequent line and then sent to

the output stream.

Sum of Environment: Although usually in fixed positions from the center of the

rectangular environment, the position of the coefficients might change due to the

environment overlapping the image borders. This module calculates the set S using

S := p′x,y

∣∣∣∣ p′x,y =
∑

pm,n,
m ∈ [max(0, x− envwidth),min(x + envwidth, envwidth)]

n ∈ [max(0, y − envheight),min(y + envheight, envheight]

p ∈ B

(III.6)
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The process is divided into several stages. In general, a number of lines are buffered as

required by the size of the mask. As a first step, the relative position of the coefficients is

calculated by checking for overlaps. Afterwards, the resulting positions are retrieved from

the buffer using Result = A−B − C +D

Camera Calibration: Camera calibration is an important part of image processing, in

particular in distance measurement and 3-D reconstruction. Because the projected image

in the camera does not have any linear relation with the real world, we need to transform

the image in order to remove these non-linearities by performing an inverse perspective

mapping. This mapping consists of removing the distortion of the camera lens, rotating

the image to reach a perfect horizontal level in relation to the ground and performing a

translation to adjust the scale. These operations can be expressed by the following

equation: 
u

v

1

 = KTR


x

y

z

1

 (III.7)

Where (u, v, 1)T and (x, y, z, 1)T denote respectively the image expressed in homogeneous

coordinates and the real world expressed also in homogeneous coordinates. K is the

camera intrinsic parameter matrix, T is the translation matrix and R is the rotation

matrix. Our framework implements perspective mapping of [11], which makes it easier to

deploy in systems where automatic calibration are required. To calibrate a car for driving

assistance for instance, a quadrilateral pattern can be used on the road with known

dimension. With the fixed position of the camera on the car, the calibration can be done

and intrinsic camera parameter extracted to compute the linearity in future images.

Figure III.5 shows the inverse perspective mapping for a camera setup that we used on a

RC self-driving car. Many more components such as Harris corner and segmentation

Figure III.5: Inverse perspective mapping. The Original image (left) and transformed

image (right)
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whose description will consume too much room are available in our framework. Figure

III.6 presents the compilation results of the previous described modules for the Xilinx

Zynq-FPGA.

Module Slices Flip Flops RAMB16s Max Freq.
Serializer 96 104 0 234.71 MHz
Minimum 37 49 0 245.27 MHz
Average 110 81 0 144.97 MHz

Threshold 44 59 0 221.02 MHz
Integral 210 244 2 177.97 MHz

Integral Sum 521 458 16 133.79 MHz
Deserializer 87 97 0 202.36 MHz

Sobel 263 965 0 198.33 MHz
Harris Corner 742 287 0 179.63 MHz

Figure III.6: Synthesis results for each implemented module. All modules are capable

of running well over 100 MHz. The Serializer and Deserializer modules are connected

to a 64-bit-wide CIDA for pixel-wise data communication. This way, each intermediate

module deals with single pixels on the bus, rather than having to redundantly deal with

the extraction / combination individually.

III.4 Case Studies

We used 3 case studies to demonstrate the capability of our framework. The first

case study is a complete driving assistance system, which was developed entirely in just in

a couple of days, including software/hardware partitioning. Our experiences from similar

projects show that without our framework, this project would have taken at least 3

months to complete. The remaining two projects are used to demonstrate the simulation

speed and the correctness of result across all levels of the design flow.

III.4.1 Driving Assistance System

The goal of this case study is to detect obstacles on the road and their distance

to the car, and provide warning to the driver in real-time. The method used is based on

optical flow computation, which can be estimated by matching points across images.

Given point (ux, uy) in image I1, the goal is to find the point (ux + σx, uy + σy) in image
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I2 that minimizes ε with :

ε(σx, σy) =
ux+wx∑

x=ux−wx

uy+wy∑
y=uy−wy

(I(x, y)− I(x+ σx, y + σy)) (III.8)

The procedure first finds features in an image and track them in subsequent images. The

version implemented in OpenCV consists of the following steps: 1) features detection, 2)

tracking, and 3) processing.

Feature Selection searches for feature points, mainly corners in images, usually based on

the Harris corner approach. This function computes the minimal eigenvalue for every

source image pixel and rejects the corners with eigenvalue below a predefined threshold.

Optical flow computes the optical flow vector between a point in two consecutive images,

the location of this point must be determined in the sequence of frames. This is done

with iterative Lucas-Kanade method with pyramids.

Processing : Prior to the depth estimation of obstacles, a camera calibration is needed to

transform the image in order to remove the non-linearity by performing an inverse

perspective mapping. Using the transformed image it becomes easy to make distance

measurements with the relation pixels/meter, which is well defined by the transformation.

Combined with the optical flow, we now have a method to detect obstacles as well as

their distance to the camera. The proposed algorithm was implemented in software (SW)

using OpenCV in our emulation platform. The implemented architecture consists of

reading images in Bayer-format from the camera, convert them into RGB and store them

into memory where they can be accessed and processed by the OpenCV algorithm

running on one of the embedded ARM processor present in a Zynq-FPGA. The system

works at 100 MHz. We profiled the algorithm using the Oprofile[10] profiler running on

the embedded ARM processor. The total run-time for the algorithm in SW only was 354

ms, 70% of which was devoted to compute the corners. Using this profiling information,

the partitioning was obvious. The Harris corner was moved into hardware and the rest

unchanged on software, leading to a 12X performance improvement of the system.

III.4.2 Line Segment Detection Using Weighted Mean Shift(LSWMS)

In this case study, a new algorithm for line segment detection using weighted

mean shift procedures [12] is prototyped. The processing chain consists of image

acquisition, color to gray conversion followed by a Sobel edge detection, and weighted
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Device utilization
Zynq 7z020clg484-1

Case study Slices Registers Slices LUTs BRAM
Driving A. SW 5347 (5%) 6080 (11%) 34 (24%)

Driving A. HW/SW 5601 (5%) 6930 (13%) 38 (27%)
LSWMS 4747 (4%) 5380 (10%) 34 (24%)

Segmentation 606 (0%) 11710 (22%) 7 (5%)

Table III.1: Resources utilization of our case studies in the emulation platform. The

overall percentage of utilization is less than 28% which gives enough resources for further

acceleration.

mean shift segment detection, all of which was instantiated from our framework and

verified across all design levels. Table III.2 and Figure III.7 show the results of the

computation at different levels of specification. The original image (left) is used as test

pattern across all design level. The pure software execution on a 1.2 GH dual-core

processor results in 0.27 second per frame (spf). The hardware/software partitioning at

TLM level is at 672 spf very closed to the RTL simulation at 770 spf. This is due mostly

to the QEMU simulator in which the hardware modules are represented in RTL-manner,

but only the transaction in TLM makes the difference. The emulation in FPGA with just

50MHz clock speed has a better performance (0.23 spf) than the high-level simulation. As

shown in Figure III.7, the results of the segmentation are the same across all levels, with

a much faster emulation in FPGA.

Timing information
Case study OpenCV SystemC-TLM SystemC-RTL FPGA

LSWMS 0.27s 672s 770s 0.23s
Segmentation 0.02s 0.27s 2.7s 0.01s

Table III.2: Duration in seconds for processing a frame at different levels.

III.4.3 Segmentation

Segmentation is at the center of many computer vision applications. The

segmentation of Kim and Chalidabhongse [9] is used and implemented entirely in

hardware. Table III.2 and Figure III.8 illustrate the results at various level of the design

flow. The simulation of the hardware/software system at TLM performs at 0.01 spf on a

dual core 1.2 GHz processor, while the emulation in FPGA results in 0.01 spf on a 50MHz
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Figure III.7: Line segment detection using weighted mean shift. From left to right we have

the input image, the output of the OpenCV algorithm (initial specification) running on a

workstation, the output of the SystemC SoC prototype and the output of the emulation

into FPGA.

clock system. The simulation at RTL-level is 10 times faster than the RTL, in this case

due to the lower complexity of the segmentation. Once again the computations at all

levels produce the same results. The two previous examples were implemented and

verified in less than a day by an undergraduate student with limited experience in

hardware design.

III.5 Conclusion

In this paper, we presented a framework to facilitate the design of

system-on-chip solutions for video processing application. By leveraging structures of

video processing applications and populating our framework at various level of design

hierarchy with basic components, we showed that it was possible to considerably reduce

design time for very complex systems. We provided the necessary glue (CIDA) to connect

a software for image processing designs (OpenCV) with a system-on-chip specification

tool (SystemC), and verification and emulation frameworks (QEMU, UVM). The result is

a framework that can considerably reduce time-to-market not only of video-based
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Figure III.8: Segmentation implementation. From left to right we have the input image,

the output of the OpenCV algorithm running on a PC station, the output of the SystemC

SoC prototype and the output of the emulation into FPGA.

hardware/software systems, but systems-on-chip in general. Our future work will provide

formalism for CIDA along with design space exploration for optimal buffer and data

access synthesis from a formal specified design.
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IV Automatic UVM Environment Generation for Assertion-based and

Functional Verification of SystemC Designs

Michael Mefenza, Franck Yonga and Christophe Bobda

Abstract— This paper presents an approach for reducing testbench implementation

effort of SystemC designs, thus allowing an early verification success. We propose an

automatic Universal Verification Methodology (UVM) environment that enables

assertions-based, coverage driven and functional verification of SystemC models. The aim

of this verification environment is to ease and speed up the verification of SystemC IPs by

automatically producing a complete and working UVM testbench with all

sub-environments constructed and blocks connected. Our experimentation shows that the

proposed environment can rapidly be integrated to a SystemC design while improving its

coverage and assertion-based verification.

Keywords— UVM, Verification, SystemC/TLM.

IV.1 Introduction

SystemC [1] is widely used for system level modeling of systems-on-chips. It is a

C++ library that provides additional constructs to capture concurrency, time, and

hardware data types, thus allowing the language to be used for system architecture

modeling, hardware/software co-design with early integration of hardware and software.

After the SystemC model of a circuit is developed, test data are generated for simulation

of the model and the simulation results are observed to verify the functionality of the

model. The general practice is to simulate a model with a very large amount of test data

given by a designer. The generation of this test data is a very time-consuming and a

labor-intensive task Simulation is very time consuming and does not usually captures

run-time behavioral properties of systems as functional coverage and assertion checking

do. Code coverage is mostly used to check how far verification has reached the functions

of the design, while assertion check is used to prove or discard some design properties.

Assertion-Based Verification (ABV) has proven to enhance design quality and verification
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time tremendously [2]. While simulation, even though slow, is well supported in SystemC,

implementing coverage and assertions in SystemC is an error prone process due to the

limited assertion capabilities of the class library. This is especially true for IP-integration,

the complex interfaces and protocols, implemented in IPs require advanced assertions not

directly supported in SystemC. This limitation can be overcome by using a SystemC

extension such as SCV (SystemC Verification) or by integrating an independent function

verification environment such as the universal verification methodology (UVM) [3]. SCV

provides constructs for test-pattern generation, randomization, input constraints and

automatic result evaluation, but lacks a framework for assertion-based verification. UVM

is a framework that facilitates testbench generation and provides key features for

functional coverage and assertion-based verification through SystemVerilog support. A

combination of SystemC and UVM would provide a solid framework for efficient design

specification with seamless and efficient verification, leading to reduced time-to-market of

electronic systems. While the integration of UVM with SystemC is covered by Electronic

Design automation (EDA) tools, verification engineers are required to design, identify how

to connect, connect manually UVM components for a SystemC model. Some works have

tried to adapt UVM to SystemC by re-implementing UVM concepts in SystemC. [4] and

[5] introduce the System Verification Methodology (SVM) Library as an advanced TLM

library for SystemC, which is based on a SystemC implementation of a limited Open

Verification Methodology (OVM) subset. However, OVM was enhanced to the Universal

Verification Methodology (UVM) with many improvements compared to OVM such as

more control over the simulation phases. Verification engineers are still required to design,

connect manually verification components and these works are not available and have not

been tested on several designs as UVM; that makes a potential comparison difficult.

In this paper, we present an automatic UVM-Verification environment

generation system that exploits the hierarchy information in a SystemC model,

automatically produces a UVM testbench with coverage and assertions, and relieves the

modeler of the time-consuming task of test data development. The system creates a

Design Under Test (DUT)-specific UVM template testbench for SystemC DUT. Our

approach intends to be generic and covers all kinds of SystemC DUT. Our

experimentation shows that the proposed environment can easily and rapidly be

integrated to a SystemC design while improving its coverage and assertion-based

verification.
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The rest of the paper is organized as follows: In section IV.2, relevant works in

the verification of SystemC-based designs are presented. A conceptual view of the

proposed UVM environment is presented in section IV.3. Section IV.4 presents the model

adopted for the integration of UVM capabilities into SystemC/TLM designs. In section

IV.5, the verification flow is explained. The evaluation of the proposed environment on

several SystemC designs is done in section IV.6. Finally, section IV.7 concludes the paper.

IV.2 Related work

This section presents related work in the verification of SystemC-based designs.

These works can be classified as coverage-driven verification and assertion-based

verification.

Regarding ABV in SystemC, [6] presents the implementation of a SystemC

assertion library, but the assertion library exists only for bit and sc logic signal types.

The SystemC Verification library (SCV)[7] was introduced, in order to support

constrained-random stimuli techniques for RTL verification. Some works have extended

the SCV library by improving or providing missing features for assertions in the SystemC

language [8] [9]. The system in [8] extends the SystemC library with Assertion Based

Verification (ABV) using SystemVerilog language. To do so, constructs, with the same

syntax and semantics of SVA, are translated into external SystemC modules connected to

the original design. However, this work supports only a partial subset of SVA.

Some works have tried to extend coverage in the SCV library. In [10], the Design

Under Test (DUT), is simulated as usual in the verification environment and a Value

Change Dump (VCD) file is generated. The VCD and a Coverage Input File (CIF) are

passed to a coverage calculation module. CIF defines coverage groups using a syntax

similar to the SystemVerilog language. In their approach, the generation of the test bench

and the ability to stop the simulation only after reaching certain coverage is not possible

because the coverage is done after simulation. Several simulation runs could be necessary

to achieve a specific coverage. In [11], [12] and [13], the SystemC SCV library is extended

to achieve functional coverage. However, the proposed approach does not include all

features of SystemVerilog coverage such as cross coverage or illegal bins.

Other works have tried to adapt UVM to SystemC by re-implementing UVM

concepts in SystemC. [4] and [5] introduce the System Verification Methodology (SVM)
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Library as an advanced TLM library for SystemC, which is based on a SystemC

implementation of a limited Open Verification Methodology (OVM) subset. However,

OVM was enhanced to the Universal Verification Methodology (UVM) with many

improvements compared to OVM such as more control over the simulation phases.

Although verification extensions for standard SystemC are meaningful, a library

offering efficient and interoperable components for testbench development, like in UVM,

is a suitable alternative to facilitate the verification of SystemC designs. Our goal in this

work is to provide an approach for using UVM testbenches to ease the verification of

SystemC/TLM designs using assertions and coverage.

IV.3 Proposed UVM environment for SystemC/TLM designs

In order to test the design model, the test must drive a stimulus into the design

under test, and examine the results of that stimulus. The stimulus and checking can be

done at the boundaries of a design, or it can examine the internals of design. This is

referred to as black box versus white box testing. A white box test relies on the internal

structure of the logic. Any changes to the device may affect the test; it tends not to run

on a design in multiple abstraction levels, since the internal workings of different

abstraction level may be different. In the black box case, the test is limited to examining

the input and output signals, and determining if the model is working correctly based

only on information gathered from the outputs; therefore, it may run on a block that is

designed as a behavioral or gate-level model without modifications. It is re-usable as the

scope of the design changes. In this work, we introduce the integration of UVM

capabilities into SystemC/TLM based on a black-box approach. We present the

automatic generation of the UVM verification environment, which supports functional

coverage and assertion evaluation. As show in Figure IV.1, from a SystemC description of

a hardware, a SystemC parser is used to gather information on the component interface.

The user can provide assertion and metrics for coverage separately. Our framework

(environment generator) then generates the components (sequencer, driver, monitor,

coverage and assertion metrics for the functional verification) needed for the verification

and connects all the blocks together to build the UVM environment. The verification can

then be performed with signals generated in the UVM to feed designs in SystemC. The

results are gathered back in UVM using the monitor. The generated assertion component
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Figure IV.1: UVM testbench generation for a SystemC design. Using a SystemC specifi-

cation, coverage and assertions, we generate all the necessary components in UVM. If not

specified, coverage metrics are automatically generated.

then checks for bugs, while the coverage module measures the quality of verification.

Figure IV.2 illustrates this approach. The sequencer is used to generate the inputs for the

system and the driver mimics protocol of real-life communication components such as

UART, USB. The monitor gathers the output signals from the system under test which

are then evaluated for correctness by the assertion checker. The coverage checker is used

to measure the verification coverage, a measure of quality used in the industry. Because

the design under test is described in SystemC and UVM is based on SystemVerilog, we

use the UVM Connect (UVMC) component to bridge the two descriptions. The UVM

environment is encapsulated with SystemC/TLM module such that it is possible to drive

the module with either sequences from the UVM environment or sequences from

SystemC. This allows to verify the module either independently or as part of

system-on-chip specified in SystemC. The proposed environment reduces steps in the

testbench, creation while providing high quality of the verification by using a combination

of coverage and assertions. UVM will automatically generate a testbench based on

random stimulus to drive the DUT. The UVM environment can be configured to stop

after a certain number of sequences or to stop after a percentage of coverage has been

reached. This is useful depending on the verification test plan. The DUT encapsulated

with the UVM environment can also be configured to be driven by a SystemC testbench.

In that case, the UVM stimuli are ignored and UVM is only used for coverage and

assertion-based verification. Our framework generates the complete UVM architecture,

including the components explained in details the following sections.
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Figure IV.2: Verification environment. It is automatically encapsulated on top of the

SystemC DUT.

IV.4 Generated components

IV.4.1 Packet classes

The UVM environment has to drive input ports of a design and observe output

ports. A SystemC parser is used to retrieve the netlist (inputs and outputs) of the DUT.

SystemC provides structures, such as sc in and sc out, to identify inputs and outputs.

The netlist is used to generate one class Packet in SystemC and one class packet in UVM.

A packet is a data container combining the inputs and the outputs of the DUT. The class

packet in UVM is used to generate sequences in the UVM environment. Sequence item

represents data for the stimulus of the DUT. The stimulus can represent a command, a

bus transaction, or a protocol implemented inside the DUT. A sequence item may be

randomized to generate different stimuli. UVM provides constructs to generate random

and constrained packets. The class Packet in SystemC is used to drive input ports of the

DUT and observe output ports of the DUT. The communication between a packet in

SystemC and a packet in UVM is done using UVM Connect (UVMC) presented in

section IV.4.4. Figure IV.3 shows an example of DUT in SystemC, It is an

implementation of the Sobel convolution using a streaming data interface to receive his
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inputs and send out his outputs. The streaming data interface is a handshaking protocol

that we implemented for streaming data between hardware accelerators. In that protocol,

the input data (stream in data) is received when stream in stop is false and

stream in valid is true; when stream out stop is false and stream out valid is true, the

output data (stream out data) is sent. Stream out valid and stream out stop cannot be

true at the same time. For the Sobel implementation, the input data must be less than

256 and the rst must be set at least for 3 clock cycles. All these properties are used later

in the paper to derive the necessary coverage and assertion metrics. From this example,

we extracted the netlist and produced the different classes as presented in Figure IV.4.

Figure IV.3: Example of SystemC DUT. Sobel implementation with a streaming data

interface.

A similar procedure is applied in case of Transaction Level Modeling (TLM) IP. In TLM,

there are 2 types of sockets: initiator and target. An initiator socket generates a

transaction and sends it to a target socket. A transaction is characterized by the type of

transaction (read or write), the address, a pointer to the data to be transferred and the

phase of the transaction. Figure IV.5 shows the structure of a packet used to generate the

transactions for driving (in case of a target socket) or monitoring (in case of an initiator

socket) a TLM IP. The field cmd specify the TLM command encodings

(TLM READ COMMAND, TLM WRITE COMAND). The field phase specifies the

TLM phase delimiters such as BEGIN REQ, END REQ ,TLM OK RESPONSE.
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Figure IV.4: Generated packet classes. On the left is the side structure of packet in

SystemC for the DUT of Figure IV.3.On the right side is the structure of packet in UVM

for the DUT of Figure IV.3.

IV.4.2 Sequencer

The sequencer is responsible for the generation of sequences and the

coordination between sequences and the driver. A sequence implements the procedure to

create sequence items. It is a set of packets with specific values for each field of a packet.

Figure IV.6 shows sequences used in the proposed example. It presents the generation of

random and constrained packets. The stream in data is constrained to be less than 256 as

specified in section IV.4.1. The sequencer sends a packet or transaction to the driver. The

driver implements the function seq item port.get next item to indicate to the sequencer

when it needs a new packet or transaction. It also implements the function

Figure IV.5: Generated packet classes for a TLM DUT. On the left is the side structure

of packet in SystemC, on the right side is the structure of packet in UVM.
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Figure IV.6: Sequences Generation. Randomize() is used to generate random values.

Stream in data is constrained to be less than 256 for the Sobel implementation.

seq item port.item done to signal when it has finished to process a packet or a

transaction. This mechanism, similar to a blocking transport interface, allows the

synchronization between the sequencer and the driver.

IV.4.3 Driver

This module drives a packet or a transaction to the DUT ports. It receives

sequence items and sends them to the DUT. The driver implements a function

uvm blocking put port to send a packet through UVM Connect (UVMC) to the SystemC

side of the environment. We used a blocking port as a means for synchronization and this

provides enough time to the DUT to process the packet.

IV.4.4 UVMC

UVM Connect (UVMC)[14] from Mentor Graphics is an open-source

UVM-based library that provides the communication between SystemC Components and

SystemVerilog UVM Components using TLM connectivity between them. It also provides

a means for accessing and controlling UVM simulation from SystemC. In the proposed

environment, the communication from UVM to SystemC is done using tlm blocking put if

interface. This interface passes a packet from the driver to the SystemC/TLM hardware.

tlm analysis port is used for the communication from SystemC to UVM. It sends a packet
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from SystemC/TLM hardware to the monitor. The use of TLM connectivity between

UVM and SystemC provides a rapid simulation.

IV.4.5 Monitor

This module receives transactions and signals and makes them available to other

components. The communication between the monitor and the coverage module is done

using a simple uvm analysis port function. The analysis port is used to perform

non-blocking broadcasts (from one entity to several entities) of transactions from a

component to its subscribers. An analysis port can be connected to more than one

component. A subscriber component provides an implementation of uvm analysis imp

port. An uvm analysis imp receives all transactions broadcasted by a uvm analysis port

and implements the analysis interface such as coverage collection. The monitor

instantiates the assertions checker and maps it to the received transactions and signals.

IV.4.6 Coverage Checker

The coverage is integrated into the environment using SystemVerilog coverage

properties. The SystemVerilog functional coverage constructs allow coverage of variables

and expressions, as well as cross coverage between them. In SystemVerilog, the

covergroup construct is used to specify a coverage model. Each covergroup can include a

set of coverage points, cross coverage between coverage points and coverage options [15].

A coverage point can be a variable or an expression. Each coverage point includes a set of

bins associated with its sampled values or its value-transitions. The bins can be explicitly

defined by the user or automatically created during the generation of the UVM

verification environment. The coverage model is implemented in a class coverage,

subscriber component for the class monitor. We give to users the possibility to specify an

external coverage input file to be used to generate the class coverage. SystemVerilog

syntax must be used to define the coverage inside the file. The coverage input file is

included inside the class coverage during the generation of the UVM environment. Figure

IV.7 shows an example of class coverage for the DUT in section IV.4.1.A sc logic variable

should have only two possible values: 0 or 1. Therefore, the coverage of a sc logic signals

such as rst and clk is done with a bin [0:1].
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Figure IV.7: Coverage implementation in our environment. It shows the bins or set of

values that we want to cover for each signal.

IV.4.7 Assertions Checker

Assertions are integrated into the environment using SystemVerilog assertions

and are implemented to execute protocol or timing checking. They can be used to

implement simple to-complex property/sequence checks for an interface or a protocol.

The purpose of an assertion is to specify and check a set of properties that are expected

to hold true in a given component. SystemVerilog provides two types of assertions:

immediate and concurrent[16]:

• Immediate Assertions: are statements that include a conditional expression to be

tested and a set of statements to be executed depending on the result of the

expression evaluation.

• Concurrent Assertions: provide the means to specify sequential properties and to

evaluate them at discrete points in time such as clock edges.

Figure IV.8 shows assertions implemented for the DUT in section IV.4.1. This figure

presents two concurrent assertions evaluated at the negative clock edge. The first

assertion specify the property that if the reset is set, it must be set for at least 3 clock

cycles. The first assertion specify the property that Stream out stop and Stream out valid

cannot be true at the same time in the streaming protocol as specified in section IV.4.1.
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Figure IV.8: Assertion implementation in our environment. Rst must be set for at least

3 clock cycles. Stream out stop and Stream out valid cannot be true at the same time.

These are 2 properties of the protocol implemented in the DUT.

IV.5 Verification Flow

The Verification is done in two phases:

• In a first phase, the UVM components are automatically generated from the DUT

interface and a uvm env class is used to instantiate and connect them to build the

UVM environment.

• In the second phase, the UVM environment is compiled and simulated with an

UVM simulator tool. During the simulation, Assertions are checked and coverage is

collected for the specified DUT. Checking typically consists of verifying that the

DUT Output meets the protocol specification.

The proposed environment can be used to verify new revisions or simple variations of

SystemC models without needing to undo everything and redo them back again as long as

the interface of the model is not changed. This environment can also be used to prove

functional equivalence between an abstracted SystemC IP (the golden model) and the

corresponding RTL implementation. Because the functional validation effort of high-level

models (such as SystemC) compared to validation of RTL models is reduced,

Systems-on-Chips design flow starts from a high-level specification. Once High-level
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models are verified, these models are refined into corresponding RTL implementations.

Equivalence checking is used to guarantee the refinement correctness. We present a

methodology based on simulation which relies on UVM to automate as much as possible

the equivalence verification process between an abstracted SystemC IP (the golden

model) and the corresponding RTL implementation by using:

• Output comparison. The same input stimulus should generate the same output for

both implementations.

• Observability of assertions and coverage. The principle is that if a SystemC

specification and the corresponding RTL implementation have the same interface,

they should activate the same assertions and coverage points for the same input

stimulus.

Given a SystemC specification S and its RTL implementation R, by applying a stimulus

ai on S and R, we denote S(ai), Scov(ai), Sabv(ai) respectively as the output, set of excised

coverage points, set of excised assertions of the stimuli on the SystemC implementation;

R(ai), Rcov(ai), Rabv(ai) respectively as the output, set of excised coverage points, set of

excised assertions of the stimuli on the RTL implementation. We define functional

consistency as:

Definition 9 (functional consistency) Given a SystemC specification S and its RTL

implementation R, S and R are functionally consistent iff ∀ a set of stimulus ST = {ai,
1 <= i <= n}, ∀ai ∈ ST , S(ai) = R(ai), Scov(ai) = Rcov(ai) and Sabv(ai) = Rabv(ai)

This is true for designs with same interface (protocol) after refinement; the internals can

differ. Figure IV.9 illustrates this approach; the same UVM environment drives a

SystemC IP and the corresponding RTL implementation. Their outputs are collected

inside the monitor and result comparison is performed by the scoreboard while the

observability of assertions and coverage are done by the checkers.

IV.6 Experimental Evaluation

In order to assess the proposed verification framework, we used SystemC cores

provided by Opencores [17]. All experiments have been conducted on an Intel Celeron 2.4

GHz machine with 2 GB RAM running Linux. The generated environment was compiled
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Figure IV.9: Functional consistency checking using the Proposed UVM environment.

and simulated using ModelSim from Mentor Graphics. Table IV.1 shows the number of

lines in the DUT, the time (in seconds) to create the environment for the DUT, the CPU

simulation time (in seconds) for the DUT, the coverage reached and the number of failed

assertions for both UVM and SystemC testbenches. The UVM testbench has been

configured to end after 3000 sequences. The SystemVerilog covergroups for the coverage

were automatically derived from the DUT inputs and outputs and implemented using

automatic bins in SystemVerilog. We derived the assertions to be checked by looking at

the specification of the protocol implemented in the DUT and how it was implemented.

RISC CPU is the SystemC implementation of a RISC CPU by Martin Wang. It includes

several modules connected together such instruction cache, instruction fetch, instruction

decoder and arithmetic logic unit. The UVM environment can be connected to any block.

It can also act as a monitor (record inputs and outputs) when the DUT is driven by other

blocks in the architecture. For the test, the environment was connected to the instruction

fetch module.

SC DUT Size Tgen Tsim UVM testbench

Coverage(%)
Failed
assertions

MD5 649 1 34 79 1

DES 4444 1 67 93 3

RNG 309 1 31 96 none

RISC CPU 3019 1 54 80 one

FIR 652 1 38 79 none

USB 8873 1 98 80 5

Table IV.1: Experimental evaluation of the proposed environment. Size is the number of

lines in the DUT, Tgen is the time (in seconds) to create the environment for the DUT,

Tsim is the CPU simulation time (in seconds) for the DUT.
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We can observe that the generation of the UVM environment is fast and practically does

not scale with the size of the DUT. The results obtained from the statement coverage and

assertions during simulation of the models confirm that the proposed UVM environment

fully exercises the functionality of the models.

IV.7 Conclusion

An automatic Universal Verification Methodology (UVM) environment that

enables assertions-based, coverage-driven, functional verification of SystemC models has

been presented. The proposed environment is based on UVM-connect for the

communication between SystemC designs and UVM. This environment speeds up the

verification of SystemC IPs, both at module level and system level by automatically

producing a complete and working UVM testbench, with all sub-environments

constructed and blocks connected in the right way. Our approach can help verification

engineers to leverage the time and effort for UVM testbench generation (manually design

and connect UVM components for a specific model). Our experimentation showed that

the proposed UVM environment fully exercises the functionality of SystemC models.
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V Interface Based Memory Synthesis Of Image Processing Applications In

FPGA

Michael Mefenza and Christophe Bobda

Abstract— Image processing applications are computationally intensive and data

intensive and rely on memory elements (buffer, window, line buffer, shift register, and

frame buffer) to store data flow dependencies between computing components in FPGA.

Due to the limited availability of these resources, optimization of memory allocation and

the implementation of efficient memory architectures are important issues. We present an

interface, the Component Interconnect and Data Access (CIDA), and its implementation,

based on interface automata formalism. We used that interface for modeling image

processing applications and generating common memory elements. Based on the proposed

model and information about the FPGA architecture, we also present an optimization

model to achieve allocation memory requirements to embedded memories (Block RAM

and Distributed RAM). Allocation results from realistic video systems on Xilinx Zynq

FPGAs verify the correctness of the model and show that the proposed approach achieves

appreciable reduction in block RAM usage.

Keywords— Interface, Vision, Memory synthesis, FPGA.

V.1 Introduction

Most image processing applications perform three kinds of operations: point

operations such as GST (Gray Scale Transformation), window operations such as edge

detectors, and some complicated perpendicular transforms such as DFT (Discrete Fourier

Transform) [3]. In all these operations, the data flow dependencies require data to be

stored in memory elements. In FPGA, these memory elements are logical memories

implemented by allocating them to embedded memories to eliminate the overheads

associated with data fetches to external memories. Typically the design bottleneck will be

the memory resources and memory data transfers from/to off-chip memories. Ineffective

use of the memory hierarchy requires extra transfers of data and program and can
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significantly increase both execution time and resource consumption. The standard

method of allocating row buffers to memory involves declaring arrays which are

implemented by directly instantiating one block RAM or several per array. This approach

also means one port is used for writing and the other for read. This leads to inefficient

use of memories. Memory hierarchy must be taken into consideration to minimize the

overall system cost. Hence, there is a need for efficient implementation of memory

elements and efficient allocation to available FPGA memory types (Block RAM,

distributed RAM) in designs. One major advantage of efficient resource usage is reduced

power consumption. Existing works on memory optimization for real-time video

processing systems are only focused on window-based memory architecture [3] [4] [7] [6].

Several studies were carried on memory mapping which consists of selecting memory

components from a library and/or selecting where the memory components are placed

and the way in which they are connected to the hardware logic. However, only Block

RAMs are considered as available memory [1] [7] [6] [14]. Work in[8] presents a mapping

algorithm using Block RAM and Distributed RAM, however only window-based memory

is considered; the memory access dependencies on different sources is not considered along

with port mapping. Moreover, none of these works propose a model to computing the

memory requirement of a processing chain. To address these issues, we present an

interface model for modeling image processing chains and generating memory elements.

Based on that model, we evaluate the memory requirement and present an approach that

allocates efficiently it to a given FPGA architecture. We propose an architecture for

memory elements including windows, buffers and shift registers. By taking information

about the FPGA architecture our optimization model allocates memory elements to the

available FPGA on-chip memories. The on-chip memories organized as Block RAMs and

distributed RAMs. Distributed RAMs are built from the logic resources and are ideal for

small memories. The Block RAMs are more suited to larger on-chip memory storage

requirements. The main contributions of this paper are to present an interface model to

evaluate memory requirements for image processing applications and to extend previous

works for efficient usage of FPGA memory resources. The allocation considers both Block

RAMs and Distributed RAM. With real-life video processing applications, we demonstrate

the importance of our approach.

The rest of this paper is organized as follows: Section 2 present related work on

memory optimization for real-time video processing systems. In Section 3 the proposed
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interface and optimization model are presented. Section 4 discusses experimental results

of the approach and Section 5 concludes the paper.

V.2 Related work

This section discusses related work on memory hierarchy and memory

optimization for image processing applications.

Regarding memory architecture for image processing applications, Work [3]

presents a parameterized memory structure for window operations with emphasis on data

reuse but do not address the memory allocation optimization. Lawal et al. also present a

memory structure for window operations and optimization model targeting only block

RAM [6] and both block RAM and distributed RAM [7]. The proposed memory

architecture targets only window applications and the optimization model focus only on

reducing the number of block RAM used. In contrary, we present an architecture for most

image processing applications based on window, buffer and shift registers.

Work [11] considers on-chip memories for memory mapping. In [5], the same

technique is improved for dual-ported on-chip memories. In both cases, the framework

considers only one type of physical bank and does not handle both single and dual ported

at the same time. Work [8] presents a model to optimize the mapping a memory

requirement to a set of embedded memories (Block RAM and Distributed RAM). Our

model derives its roots from this work. The main difference is that we consider the

memory access dependencies on different sources along with different types of sources and

port mapping.

We address the limitations of the previous works with an interface model to

evaluate memory requirements in image processing applications and to extend previous

works for efficient usage of FPGA memory resources during the allocation a given

memory requirement to FPGA embedded memories.

V.3 Architectural model

V.3.1 Image processing operations

An image is characterized by its resolution or size and by the width of a pixel.

For VGA images, the resolution is 640 x 480. For RGB color images, the width of a pixel
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is generally 24 bits, 8 bits for each color. In this paper, we denote w x h, the image

resolution and p the width of a pixel. Image processing operations can be classified as:

Low-Level Operations Low-level operations transform image data to image data.

This means that such operators deal directly with image matrix data at the pixel level.

These operations can be classified into point, neighborhood and global operations. Point

operations are the simplest of the low-level operations since a given input pixel is

transformed into an output pixel. Such operations include arithmetic operations, logical

operations, table lookups, and threshold operations. Local neighborhood transformation

from an input pixel to an output pixel depends on a neighborhood of the input pixel.

Such operations include two-dimensional spatial convolution and filtering, smoothing,

sharpening, image enhancement. Finally, global operations build upon neighborhood

operations in which a single output pixel depends on every pixel in the input image. A

prominent example of such an operation is the discrete Fourier transform which depends

on the entire image. These operations are quite data intensive as well.

Intermediate-Level Operations Intermediate-level operations transform image data

to a slightly more abstract form of information by extracting certain attributes or features

of interest from an image. The transformations involved lead to a reduction in the

amount of data from input to output. Intermediate operations primarily include

segmenting an image into regions/objects of interest, extracting edges, lines, contours, or

other image attributes of interest such as statistical features.

High-Level Operations High-level operations interpret the abstract data from the

intermediate-level, performing high level knowledge-based scene analysis on a reduced

amount of data. Such operations include classification/recognition of objects or a control

decision based on some extracted features. They are less data intensive and more

inherently sequential rather than parallel.

In all these operations, the data flow dependencies require data to be stored in

memory elements.
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V.3.2 Image processing memory elements

These memory structures allow the user to have the temporal and spatial data

contexts required by an application to work on the current pixel. They include:

Shift Register Shift registers are one of the simplest and most commonly used memory

structures in DSP processing. The idea behind a shift register is to provide a

one-dimensional temporary data buffer to store the incoming samples from a streaming

interface. The duration for which a sample is stored in the shift register is determined by

the algorithm being implemented.

Buffers They are used for synchronization between to processing elements working at a

different speed or with a different data width (Packing and Unpacking data). They can

be implemented using FIFO (different speed) or using a FSM (different width and same

speed). A line buffer is a multi-dimensional shift register capable of storing several lines

of pixel data. Typically, line buffers are implemented as block RAMs to avoid the

communication latency to off-chip DRAM memories. Also, a line buffer requires

simultaneous read and write access, which takes full advantage of the dual-port nature of

block RAMs. Although a memory window is a subset of a line buffer, a line buffer cannot

be used directly in most video and image processing algorithms. A frame buffer stores a

complete frame.

Memory Windows In video and image processing, a memory window is defined as a

neighborhood of N pixels centered on pixel P. The memory window can also be viewed as

a collection of shift registers, which forms a 2-dimensional data storage element. This

kind of memory is usually implemented as flip-flops for these reasons: It has fewer data

elements. Only the pixels required to compute some characteristic of P are stored. An

example of this is the 3 x 3 memory windows used in edge detection. All pixels in the

neighborhood must be simultaneously available when computing the value of P.

V.3.3 Image processing applications

We model image processing applications as set of components and sources

connected together. A component is a processing element composed of a core that

represents the task’s functionality and an interface that establishes data transmission on
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the input/output ports. A source is a memory element that store and forward a pixel, a

group of pixel or a frame using the same interface model as the components. Figure V.1

show an example of processing application with four components A, B, C and D and five

sources S1 to S5.

Figure V.1: Model of an image processing application. A, B, C and D are components;

S1 to S5 are memory sources.

Interface and component model An interface is a shared boundary across which two

separate components of system exchange information. We present the Component

Interconnect and Data Access (CIDA) interface, that fulfills the requirement of the

interface model presented in [2] and provides a set of common features that IP cores can

use. The interface formalism models the interaction that a system component carries out

with its environment. This interaction is performed by means of input and output

actions. Input actions describe the behavior that the component expects (or assumes)

from the environment. Output actions represent the behavior it communicates (or

guarantees) to the environment. Formally, an Interface Automaton is a tuple

S =< Q, q0, Qf , AI , AO, AH ,→> where Q is a finite set of states with q0 ∈ Q being the

initial state and Qf ⊆ Q being the set of final states; AI , AOandAH are pair wise disjoint

finite sets of input, output, and hidden actions, respectively, A is the set of all actions i.e.

A = AI ∪ AO ∪ AH ; →⊆ Q× A×Q is the transition relation that is required to be input

deterministic (i.e. (q, a, q1), (q, a, q2) ∈→ implies q1 = q2 for all a ∈ AI and q, q1, q2 ∈ Q).

CIDA is used to model interaction between system components and their environment.

This interaction is performed by means of input and output actions. Input actions

describe the behavior that the component expects (or assumes) from the environment.

Output actions represent the behavior it communicates (or guarantees) to the
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environment. CIDA features include a streaming interface for exchanging data among

hardware and DMA for exchanging data with global memories. CIDA can be

parameterized to efficiently accommodate different peripherals. To manage local, direct

and remote data access, we differentiate between the two main properties of CIDA: CIDA

Streaming for streaming-based design and CIDA-DMA for streaming design that

incorporate global memory access. CIDA-Streaming is based on a handshaking protocol

with the different configurations and the inputs, outputs and internal signals used to

wrap a user logic function as shown in Figure V.2. The data signals are made generic to

handle different data width during the streaming. CIDA DMA is made of a streaming

Figure V.2: CIDA streaming. On top, interface description; on bottom, interface au-

tomaton.

interface and a memory-mapped interface. CIDA DMA is used to write incoming streams

into a memory frame buffer without processor intervention. Reciprocally, images can be

read from the frame buffer and streamed out. A control logic containing memory-mapped

registers, is used to reset or start/stop execution of DMA operations from the software. It

also contains a set of registers for configuring and gathering the status of IPs. This

relieves the designer from implementing memory-mapped registers and bus interface in

each IP which needs a configuration from the software. Using the previous interface

model, we define a component C as a tuple (U, I) where

• U is the core function of C.

• I is an interface through which C interacts with other components, for instance, a

messaging interface or a procedural interface.
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Components are executable units that read data and write data to ports. They are

composed of a core that represents the task’s functionality and an interface that

establishes data transmission on the input/output ports. The component model provides

a framework for representing components and composing them. A component is

characterized by his input data width Ic and his output data width Oc. Ic and Oc are

multiple of p i.e. a component processes a pixel or a set of pixels and output a pixel or a

set of pixels.

Memory Source model this paper will focus on the following memory elements: shift

registers, buffers and windows.

Shift Registers : are characterized by a width wi (size of a word) and a length li

(number of words). A shift register can have a fixed or a variable length; we will consider

fixed length to able to evaluate the memory requirements. They can be captured with the

CIDA interface and implemented with simple dual-port RAM (1 read port, 1 write port)

using either Distributed RAM or a Block RAM in FPGA.

Buffers: are characterized by a width wi (size of a word at the input), a width wo (size

of a word at the output) and a depth d (number of words). Buffers can be can be

captured with the CIDA interface and can be customized to utilize block RAM,

distributed RAM or built-in FIFO resources available in some FPGA families to create

high-performance, area-optimized FPGA designs.

Windows: A N x M memory window uses N-1 line buffers. Line buffers can be captured

with the CIDA interface and implemented using Simple Dual-port RAM and True

dual-port RAM. The Simple Dual-port RAM provides two ports, A and B, write access to

the memory is allowed via port A, and read access is allowed via port B.

V.3.4 Embedded Memories

In FPGA, memory elements can be implemented using Block RAM and

Distributed RAM. RAM can be implemented as shift registers, FIFO, single-port RAM,

single dual port RAM and true dual port RAM. Their availability depends on the target

FPGA. For this work, we will use Zynq XC7z02- 0CLG484-1 as FPGA platform. The

Zynq XC7z020CLG484-1 contains 140 Dual-port 36 Kb block RAM with port widths of

up to 72 bits wide. Each 36 Kb Block RAM can be configured as two 18 kb Block RAMs.

Each block RAM has two completely independent ports that share nothing but the stored
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data. Each port can be configured as 32K x 1, 16K x 2, 8K x 4, 4K x9 (or 8), 2K x 18 (or

16), 1K x 36 (or 32), or 512 x 72 (or 64). The two ports can have different aspect ratios

without any constraints. Each block RAM can be divided into two completely

independent 18 Kb block RAMs that can each be configured to any aspect ratio from 16K

x 1 to 512 x 36. Block RAM can be used as Programmable FIFO logic, single-port RAM,

single dual-port RAM and true-dual port RAM. Distributed RAMs are built from the

logic resources (CLBs) and are ideal for register files closely integrated with logic. CLBs

are organized into four slices where each slice consists of two Look-Up Tables (LUTs), for

a total of Eight LUTs per CLB for random logic implementation or distributed memory.

Memory LUTs are configurable as 64x1 or 32x2 bit RAM or shift register (SRL) [13]. The

Zynq XC7z020CLG484-1 contains 13300 slices and only Between 25-50% of all slices can

also use their LUTs as distributed 64-bit RAM or as 32-bit shift registers (SRL32) or as

two SRL16s [13]. By cascading the memory of each LUT larger and wider memories can

be achieved. Distributed RAM can be used as FIFO, single-port RAM, single dual-port

RAM and true-dual port RAM. Table V.1 gives the total available embedded memories

for Zynq XC7z020CLG484-1.

Memory RAM size Number Total size(Kb)
Block RAM 36 Kb 140 5040

Distributed RAM 64 b 6650 415

Table V.1: Total available emebedded memories for Zynq XC7z020CLG484-1.

V.3.5 Memory synthesis problem

Memory synthesis is the process of mapping various logical data structures used

in the design to some appropriate physical instances. As described in section V.3, source

memories are realized by combining one or more embedded memories together. The

objective of Memory synthesis is to find the set of combinations that yields the minimum

cost subject to achieving the desired image processing. If the memory object does not

completely occupy the Block RAM there will be unused memory area. The memory

mapping algorithm used in this paper is based on work [8]. The main difference is that we

consider the memory access dependencies on different sources along with different types

of sources and port mapping. To find the optimal use of the Block RAM, The following

notations and variables are used in the formulation:
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• M is the set of all the available Block RAM Mk and K is the number of Block

RAMs. M = {Mk|k = 1, 2, .., K}

• SMk
is the size of the Block RAM Mk and is specified by the FPGA. For Xilinx

Zynq, SMk
is 36 kbits. The memory objects allocated to the Block RAM determine

the depth DMk
and width WMk

of Mk.

• W is the set of all possible widths Wn for Block RAMs on the FPGA. 1, 2, 4, 8, 9,

16, 18, 32, 36, 64 and 72 are allowed on Xilinx Zynq FPGA.

W = {Wn|n = 1, 2, .., N}

• R is the set of all memory objects Ri to be allocated and I is the number of memory

objects. R = {Ri|i = 1, 2, .., I}. The size SRi
of memory object Ri is defined as the

product of the depth DRi
and the data width WRi

of the memory object Ri.

SRi
= DRi

∗WRi
. Pi defines the number of ports of Ri; Pi=1 for single-port and

simple dual-port; Pi=2 for true dual-port.

• Ci,j defines the relation between the memory accesses of Ri and Rj. A value of 0 or

1 on Ci,j means no simultaneous memory access or simultaneous memory access

respectively.

• If WRi
is not a member of W , Ri is partitioned into rj partitions such that the

width, wr, of each partition is a member of W where j = 1, 2, , J and J is the

number of partitions in object Ri.

• Memory object Ri may be allocated to as many Block RAMs as required.
K∑
k=1

Di,kWRi
≤ SRi

where Di,k is the part of depth DRi
allocated a Mk.

• For all Ri in R and a Mk in M, the sum of the allocations may not be more than the

size of the Block RAM.
I∑

i=1

Di,kWRi
≤ SMk

• Our goal is to use a minimum number of Block RAMs by allocating memory

requirements below a certain threshold to CLBs. The threshold is chosen such that

power consumption by the CLBs implementing the memory does not exceed the

power consumed by Block RAM. The power was used as a measure to compare

Distributed RAM and Block RAM because it can be estimated from vendors tools

whereas the area, in term of gate counts, cannot. We allocated Ri to Block RAM
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when the power consumption by CLB allocation is not larger than that by Block

RAM. To evaluate the threshold, we estimated the power consumption for different

widths and depths of a single-port RAM and a dual-port RAM. We used Xilinx

Coregen to generate the memories and the power was estimated using Xilinx Power

Estimator (XPE). Tables V.3 and V.4 shows the results of the evaluation. We

observed that when the memory size is less than or equal to 8192 bits, power

consumption by CLB allocation is not larger than that by block RAM. CLBs are

also used as logic to implement IP cores and therefore their usage as distributed

RAM should be limited to allow enough resources for other cores. By computing

the slices estimation for RAM with different widths and depths, we can see that

implementing 8192 bits of distributed RAM required up to 82 slices which is an

acceptable number.

Table V.2: Power estimation for RAM with different widths and depths

Width x
depth

Block
RAM
(mW)

Dist.
RAM
(mW)

8 x 32 10,09 0,64
8 x 64 10,16 0,76
8 x 128 10,18 1,37
8 x 256 10,25 2,26
8 x 512 10,27 4,12
8 x 1024 9,92 7,43
8 x 2048 9,5 16,13
8 x 4096 18,85 31,44
8 x 8192 36,77 60,67
16 x 64 10,54 1,44
32 x 64 14 5,77
16 x 128 10,6 2,57
32 x 128 14,19 8,31
16 x 256 10,65 4,16
32 x 256 14,31 12,34
16 x 512 10,7 7,98
32 x 512 13,42 19,55
16 x 1024 10,38 15,06
32 x 1024 22,79 30,38

Table V.3: Single-port RAM

Width x
depth

Block
RAM
(mW)

Dist.
RAM
(mW)

8 x 32 11,35 0,92
8 x 64 11,41 1,09
8 x 128 11,45 1,81
8 x 256 11,54 3,35
8 x 512 11,56 5,43
8 x 1024 11,61 10,48
8 x 2048 10,87 21,07
8 x 4096 20,92 40,56
8 x 8192 39,98 79,7
16 x 64 14,88 2,17
32 x 64 27,89 6,7
16 x 128 15,1 3,56
32 x 128 27,9 9,72
16 x 256 15,15 6,43
32 x 256 28,12 14,78
16 x 512 15,33 11,16
32 x 512 28,3 26,43
16 x 1024 15,56 22,19
32 x 1024 28,48 46,59

Table V.4: Dual-port RAM

• The unused memory space in Mk is defined as UMk. UMk = SMk −
I∑

i=1

Di,kWRi
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• The objective function of the algorithm is to minimize the sum of all UMk.

Minimize
∑
UMk Subject to the previous constraints. This will also minimize the

number of Block RAMs used.

The above Integer Linear Programming (ILP) formulation does not capture the complete

cost of the resultant design as it does not account for the cost of the address decoding

logic which it is not the focus of this paper. Since, Block RAMs are of a fixed size and

fixed number of ports, we present an efficient linear time algorithm to perform the

mapping. The proposed allocation is presented in algorithm 2. In step 1, the algorithm

ensures that memory objects are conform to the allowable port width in the considered

FPGA. In step 2, the algorithm creates global memory objects by grouping memory

objects with same width, same number of ports and no simultaneous memory access.

Steps 3-16 ensure that the algorithm iterates through all the memory objects starting

with the first. In step 5, the GMO is allocated to Distributed RAM when its size is such

that the power for the allocation in Distributed RAM is less than the one in Block RAM.

In step 8, the GMO are allocated to a complete Block RAM when the number of ports of

the GMO is 2 which is the number of the Block RAM. In step 10, the algorithm allocates

a GMO to one port of a Block RAM while optimal use of unallocated memory space in

the Block RAM through the second port is implemented in step 11.

V.4 Experimental results

Table V.5 shows the details of the various benchmarks used to evaluate the

performance of the proposed solution.

The hand follower project identifies skin like colors (like hands) in the image and

uses mean shift to follow it while moving around. The steps within the processing chain

for this task are: grabbing images from the camera, convert Bayer to RGB, convert RGB

to HSV and filter the skin like colors, perform mean shift algorithm to follow the skin

colors (initial window in the middle of the screen), add the current window as a red

rectangle to the video stream, the results are put into memory and sent to a display.

The segmentation, shown in figure V.3, does the foreground/

background segmentation. It stores an initial image as reference background and defines a

pixel as foreground if it has a significant different color value compared to its

corresponding background pixel. Two CIDA DMA are used. One CIDA DMA reads the
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calculated foreground and stores it to the memory where it is read for the display. The

second CIDA DMA handles reading the old background frame from the memory and

storing the new background in the memory. The central IPCore is the segmentation core

which reads two image streams (old background frame, current image) and gives back

also two image streams (new background frame, foreground). The input image is

converted from Bayer pattern to RGB after streamed from the camera and before

entering the segmentation core.

Figure V.3: Segmentation implementation.

Harris corner test case, shown in figure V.4, calculates the Harris corner points,

a well known interest point descriptor. The incoming image is converted into a RGB

image. Then the discrete approximation of the horizontal and vertical derivative is

calculated, using 3x3 Sobel operators. Harris points are then found as points where both

the horizontal and vertical derivative are significantly large. The results are put into

memory and sent to a display.

Figure V.4: Harris corner implementation.

The JPEG encoder is an implementation of the JPEG compression available on

[9].

Table V.5 compares the result of the default mapping in Xilinx tools with the

result of the proposed mapping algorithm. The results show a reduction in the number of

used block-RAMs most of the time and even more reduction when distributed RAM is

considered. This is because small memory requirements were implemented using CLBs
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rather than block-RAMs. There was no improvement for the Harris corner test case

because most of the memory objects were bigger than the size of a Block RAM.

Design default our mapping our mapping
mapping w/o dist. RAM w dist. RAM
BRAM BRAM CMP BRAM Dist. RAM CMP

Harris Corner 35 35 0% 33 4 5.71%
Hand Follower 41 39 4.87% 37 5 9.75%
Segmentation 37 35 5.40% 32 5 13.51%

JPEG Encoder 11 7 36.36% 6 1 45.45%

Table V.5: Experimental evaluation.

V.5 Conclusion

In this paper, we presented a streaming interface, called Component

Interconnect and Data Access (CIDA), based on interface automata formalism, for

modeling image processing chains and memory elements. An optimization model for the

allocation of the memory elements to embedded memories in FPGA is also presented.

The proposed approach considers both block RAM and distributed RAMs as possible

candidates for implementing logical memory on an FPGA during memory allocation.

CIDA has successfully been used to design several video applications such as Harris

corner, segmentation, hand follower and more. Our experiments show the efficacy of the

proposed allocation algorithm.
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Algorithm 2 Memory allocation algorithm

Input: R[R1, ..., RI ]: set of I memory objects.

M[M1, ...,MK ]: set of K Block RAMs.

St: memory size up to which the power for the allocation in Distributed RAM is less

than the power for the allocation in Block RAM.

Output: MA[MA1, ...,MAK ]: set of K Allocated Block RAMs

Configure memory objects (R) such that WRi
∈ W

Create global memory objects (GMO) by grouping memory objects with same Width,

same number of ports and Ci,j = 0.

Starting with the first GMO and the first Block RAM

if size (GMO) < St then

Allocate GMO to Distributed RAM

else

if port (GMO)==2 then

Allocate GMO to Block RAM

else

Allocate GMO to Block RAM via port A

If Block RAM is not fully used find maximum use of remaining memory via port B

using another GMO satisfying the constraints port (GMO)==1 and size(GMO) <

St

end if

end if

Select the next GMO when the current has been fully allocated

Select the next Block RAM when all the memory space has been optimally used

Return the set of allocated Block RAMs after allocating all GMOs
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VI Conclusions

VI.1 Summary

The complexity of video-based embedded systems is currently high and is

expected to rise even further in the future as consumers and applications demand more

functionality and performance. There are several challenges to embedded video system

development in FPGAs. Some of these challenges include the design reuse, design flow,

resources usage and design verification.

In this dissertation, we presented a novel interface, the Component Interconnect

and Data Access (CIDA), and its implementation, based on interface automata formalism.

CIDA can be used to capture system-on-chip architecture, with primarily focus on

video-processing applications, which are mostly based on data streaming paradigm, with

occasional direct memory accesses. We introduced the notion of component-interface

clustering for resource reduction and provided a method to automatize this process. With

real-life video processing applications implemented in FPGA, we showed that our

approach can reduce the resource usage (#slices) by an average of 20% and reduce power

consumption by 5% compared to implementation based on vendor interfaces. We used

that interface for modeling image processing applications and generating common memory

elements. Based on the proposed model and information about the FPGA architecture,

we also presented an optimization model to achieve allocation memory requirements to

embedded memories (Block RAM and Distributed RAM). Allocation results from realistic

video systems on Xilinx Zynq FPGAs verified the correctness of the model and showed

that the proposed approach achieves appreciable reduction in block RAM usage.

A framework for fast prototyping of embedded video applications using the

proposed interface was also presented. Starting with a high-level executable specification

written in OpenCV, we apply semi-automatic refinements of the specification at various

levels (TLM and RTL), the lowest of which is a system-on-chip prototype in FPGA. The

refinement leverages the structure of image processing applications to map high-level

representations to lower level implementation with limited user intervention. Our

framework integrates the computer vision library OpenCV for software, SystemC/TLM

for high-level hardware representation, UVM and QEMU-OS for virtual prototyping and
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verification into a single and uniform design and verification flow. With applications in

the field of driving assistance and object recognition, we proved the usability of our

framework in producing performance and correct design. The verification is done at IP

level using an automatic Universal Verification Methodology (UVM) environment that

enables assertions-based, coverage driven and functional verification of SystemC models

based on CIDA. Our experimentation showed that the proposed environment can rapidly

be integrated to a SystemC design while improving its coverage and assertion-based

verification.

VI.2 Future Work

Future works should focus on investigating the use of design space exploration in

the proposed SystemC/OpenCV environment for optimal partitioning into

hardware/software from a specified design. Another extension could be the integration of

the proposed verification environment into a complete hardware/software system on chip

modeled with SystemC. Such integration will allow an investigation of UVM capabilities

in verification of hardware and software components.
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