

Edinburgh Research Explorer

High Speed Cycle-Approximate Simulation of Embedded Cache-
Incoherent and Coherent Chip-Multiprocessors

Citation for published version:
Thompson, C, Gould, M & Topham, N 2018, 'High Speed Cycle-Approximate Simulation of Embedded
Cache-Incoherent and Coherent Chip-Multiprocessors', International journal of parallel programming, vol.
46, no. 6, pp. 1247–1282. https://doi.org/10.1007/s10766-018-0566-x

Digital Object Identifier (DOI):
10.1007/s10766-018-0566-x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
International journal of parallel programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322480924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10766-018-0566-x
https://doi.org/10.1007/s10766-018-0566-x
https://www.research.ed.ac.uk/en/publications/83d057da-7b1e-43b8-9f2e-c0c947de3065

Int J Parallel Prog
https://doi.org/10.1007/s10766-018-0566-x

High Speed Cycle-Approximate Simulation
of Embedded Cache-Incoherent and Coherent
Chip-Multiprocessors

Christopher Thompson1 · Miles Gould1 ·
Nigel Topham1

Received: 1 May 2015 / Accepted: 8 March 2018
© The Author(s) 2018

Abstract The increasing density of silicon processes, coupled with the develop-
ment of ever more energy and space efficient embedded core designs, has led to
multi-processor system-on-chip (MPSoC) designs becoming increasingly attractive
for use in embedded systems. Unfortunately this increase in core count gives rise to an
explosion in design spacepossibilities, especiallywhenheterogeneous designs are con-
sidered. To address this problem, new techniques in simulation are required to increase
the simulation performance of these systems, while maintaining the accuracy needed
to make good design decisions, and to verify the performance characteristics for real-
time systems. We present a new high-speed, near cycle-accurate simulator, addressing
an important but neglected category of multicore systems: deeply-embedded cache-
incoherent MPSoCs. We take advantage of the unique properties of these systems to
relax synchronisation constraints and increase the parallelism of the simulation. In
doing so we achieve performance not possible using previous simulation techniques,
without compromising the accuracy of the results. Quantitative performance results are
presented across a large range of simulated MPSoC designs, comprising 1–64 cores,
on average we simulate at 5.7 MIPS, with simulation speeds reaching 377 MIPS in
the best case. Comparing against FPGA implementations we demonstrate that the
simulator manages this with an average timing error of only 2.1%. Applying some of

B Christopher Thompson
mm0zct@gmail.com

Miles Gould
miles@assyrian.org.uk

Nigel Topham
npt@staffmail.ed.ac.uk

1 Institute for Computing Systems Architecture, University of Edinburgh, Edinburgh,
United Kingdom

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0566-x&domain=pdf
http://orcid.org/0000-0002-9519-5378
http://orcid.org/0000-0002-0222-760X
http://orcid.org/0000-0002-6310-0602

Int J Parallel Prog

these techniques to coherent simulation enables even coherent 64-core designs to be
simulated accurately at up to 2.2 MIPS.

Keywords Simulation · Incoherent · Embedded · Coherency · Parallel · Multicore ·
Interconnect and Network-on-Chip · MPSoC · CMP

1 Introduction

When designing a system on chip (SoC) for any system it is important to evaluate
performance characteristics, but when designing for a high volume deeply embedded
system it can be especially important to minimise the area (and as such cost) of the
silicon needed for the chip, along with the power requirements. This usually means
tuning the performance to only just meet the worst case performance requirements,
and no more.

In order to find this optimal configuration many iterations of software development
and system configurations are required, typically using slow cycle by cycle simulators,
perhaps with the use of faster functional only simulators to aid software development.
Unfortunately evaluating the performance of new software, and finding the most cost
effective system, requires a slow cycle accurate simulation of every likely SoC config-
uration, and using a typical single threaded cycle accurate simulation does not allow
fast turnaround for a programmer doing performance optimisations.

Hardware prototypes implemented in field programmable gate arrays (FPGAs) are
a good platform for running and evaluating performance of software on a prospective
hardware design, but require significant upfront synthesis time to generate a new
design configuration. Thismeans they aremore useful for evaluating different software
options, on a fixed hardware platform, rather than rapidly testing multiple hardware
options.

The size constraints of FPGAs also mean that larger multi-processor SoC (MPSoC)
designs are unlikely to be feasible, and must be tested in simulation. Expanding on
these problems, FPGA development boards themselves are very expensive, so it is
preferable for software developers to work in simulation, with the ubiquitous general-
purpose computing power of compute clusters and server farms.

Many embedded systems use multiple processor cores without hardware cache-
coherence. For example TI’s automotive MPSoC family, Jacinto6 ECO also known as
DRA72x, contains six mostly-incoherent processors: a single high-powered ARM
A15, four low-power ARM M4 cores, and a single TI C66x DSP [1]. Provid-
ing hardware coherence adds an unnecessary hardware development expense, in
implementation and verification, and more significantly in silicon area and system
power consumption. It also adds complications when reasoning about worst-case
execution time and performance for hard real-time systems. As transistor counts
increase multicore embedded systems are becoming more common, and so cache-
incoherent MPSoCs are becoming an increasingly important simulation target; yet
recent advances in simulation technology have largely been applied to cache-coherent
targets.

123

Int J Parallel Prog

Traditional cycle-accurate simulators take a cycle-by-cycle approach to the process,
modelling the pipeline of each core and interconnecting buses in a single thread. This
is the easiest way to ensure timing-accurate functional behaviour, deterministic simu-
lation, and correct evaluation of memory interleavings between cores. Functional-first
simulators perform a high-speed functional evaluation of behaviour and then recon-
struct timing data using a timing model. This approach yields greater simulation speed
and can be easily parallelized, but it is difficult to extend accurately to the case of cache-
coherentMPSoCs, in which timing influences the behaviour of cores. The problem has
been tackled before [2] but this implementation requires an FPGA to process the tim-
ing model, and significant communication between the timing model and functional
simulation. However, in the cache-incoherent case the timing interactions between
cores are limited to cache misses, cache flushes and cache-bypassing memory opera-
tions, making accurate parallel functional-first simulation possible while maintaining
high simulation speeds.

In this paper we present a novel approach to simulating these embedded systems,
where decoupling the simulation of the cores and interconnect is exploited while still
maintaining cycle-accurate timing behaviour. This results in accurate performance
modelling at simulation speeds up to 378 MIPS, or 117MHz, with an average speed
of 5.7 MIPS and 10.1 MHz across a large design-space of over 22,000 design points.
We also demonstrate that by applying many of these optimisations to a coherent
simulation it is still possible to achieve state-of-the-art simulation speeds formanycore
chip multi-processors (CMPs) without sacrificing accuracy.

The key contributions presented are:

– Leveraging incoherence to increase parallelism in the simulation.
– Efficient NoC simulation through packet tracking and cache friendly data struc-
tures.

– Significantly faster than state-of-the-art simulation without sacrificing accuracy
for incoherent systems.

– Better than state-of-the-art simulation rates for coherent systems at the simulation
accuracy provided.

1.1 A Note on Terminology

When discussing cycle-accurate and cycle-approximate simulators, caremust be taken
with the terms. In our discussion cycle-approximate refers to results which aim for
cycle accuracy, but for fundamental reasons due to the technical approach cannot
absolutely achieve it. Cycle-accurate should be used to refer to simulations which can
produce true cycle-accurate results, or which are only incorrect due to engineering
effort (e.g. pipeline edge cases that are not modelled due to human effort, rather
than simulation cost). Unfortunately other papers claim cycle-accuracy when they are
in fact cycle-approximate. Our simulator could be described as near-cycle-accurate,
since we are more accurate than most “cycle-accurate” papers, and the only cache-
incoherent circumstance where we violate cycle-accuracy is very rare, and could be
mitigated with a change to the modelling of the core microarchitecture (we model
instruction fetch too late, so functional data dependency can violate true cache-miss

123

Int J Parallel Prog

timing). Modelling the instruction fetch more accurately, and ironing out any minor
differences in the pipeline model relative to the RTL, would allow us to claim true
cycle-accuracy for both incoherent and coherent simulation.

2 Cache-Incoherent Target Platform

The target platform for this multicore simulator is a custom NoC based MPSoC flow,
using the 3-stage variant of theEnCoreRISCmicroprocessor. The tool flow takes a high
levelMPSoC description and generates Verilog for FPGA and silicon implementation,
and equivalent configuration files for the simulator. The platform comprises clusters
of 1–8 processor cores, connected through a per-cluster arbiter to an ARM AMBA
AXI [3] based packet switched network, which connects cores to memory banks
and devices, such as the UART, real-time clock, and display controller. The design
options are summarised in Table 1 with an overview diagram in Fig. 1. The complexity
parameter influences the number of switches and number of layers in the switching
network before adding cores and peripherals, extra switches are added if the configured
complexity does not provide enough connectivity.

The interconnect comprises five independent channels, implemented as in the AXI
standard: three frommaster to slave for sending read requests, write requests, andwrite
data, and two return channels for read data and write-complete acknowledgement. By
using dedicated channels for each category it is simple to avoid both deadlock and
issues with bandwidth sharing between the different channels.

Table 1 MPSoC design
configurations

Design parameter Possible configurations

Core architecture ARC700 32-bit RISC

Pipeline 3-stage in-order

D-Cache size 4 KB

D-Cache associativity Direct mapped, 2-Way

I-Cache size 4 KB

I-Cache associativity Direct mapped, 2-Way

Cache line size 32 Bytes

Interconnect protocol AMBA AXI

Interconnect topology 32-bit wide omega network

Coherency protocol None–Cache-Incoherent

Cores per cluster 1–8

Clusters 1–8

Block RAMs 1, 2, 4, 8

Total block RAM size 512 KB

Complexity 1, 2, 4, 8, 16

Fifo depth 2, 16

Core freq (MHz) 12.5, 25, 50

NoC freq (MHz) 12.5, 25, 50, 100

123

Int J Parallel Prog

Fig. 1 Overview of the target
architecture

On the core, each cache has a unified output port, so read request, write request and
write data must be time multiplexed out onto the AXI interface. The write request will
issue before the associated data, but read requests are statically arbitrated with lower
priority than write requests and above data, so are inserted in a cycle between write
requests and the trailing write data. Since there is also an instruction cache with its
own output port, it is statically arbitrated as higher priority than the data cache port,
before being separated onto the discrete AXI channels.

The cluster level 8-way arbitration is implemented on a per channel basis (for the
three outgoing channels) consisting of a three layer deep tree of two-way arbiters.
Each arbiter contains a synchronous flip-flop to perform arbitration, which is toggled
when the Ready line is asserted from the next arbiter, and a packet is ready to be sent
from the previous. There are no other registers in the arbiters, just one final output
register for the cluster, so the whole three level tree functions as a single cycle eight-
way arbiter, with the correct arbiters being toggled due to the backpropagation of
the ready signal through the arbiter network. The arbiters can also be configured to
toggle arbitration only on “Last” packets, for multicycle data write-backs. With this
enabled, data will arrive at the memory controller in a contiguous series of packets,
rather than interleaved with data from other cores. Depending on the implementation
of the memory controller, the performance difference can be significant, and a simple
memory controller may not support interleaved data packets.

The rest of the switches in the system are two input two output, statically routed
omega switches. The routes for different memory regions are stored in a small lookup
table at the core/cluster level, and encoded into the AXI slave address signals, while
the slave to master routing is performed by evaluating the route bit-string in reverse.
Each output from the omega switch is essentially another two input arbiter, this time
with the address bit check combined with the valid packet signal, and uses the same
arbiter module as the cluster arbiter. Each switch can either be configured as registered
or combinatorial, so portions of the network propagate in a single cycle.

Since there are five channels in theAXI standard implemented, even a simple two by
two omega network (supporting up to four slaves, and four masters/clusters) requires
20 switches.

123

Int J Parallel Prog

The cores are a modern ultra-low-power, silicon optimised three-stage RISC archi-
tecture, implementing the ARCompact instruction set. Implementation in a Xilinx
Virtex-6 XC6VLX240T (aML605 evaluation board) can be achieved at 75MHz, with
65nm LP implementation expected to hit 250MHz. While it is possible to synthesize
an FPGA design with 12 cores, as used for accuracy comparisons in Sect. 6, the Uni-
versity of Edinburgh has recently fabricated at chip at 65nm with 32 cores in a similar
configuration, for use in the transceiver of a new wireless network technology [4].

3 Motivation and Innovation

Simulation of this MPSoC was one of the driving factors for developing the simula-
tor, to help with performance estimations and software development before the chip
development completed. It is likely that there aremany similar cases where a simulator
such as this would be extremely beneficial.

It was realised when designing the simulator that the out of core traffic could
be modelled much more efficiently than traditional coherent simulators. A timing
accurate simulator for a coherent systemmust ensure that every single memory access
happens in the correct order. This means that every memory access simulated must
result in the simulation thread synchronising with a global clock reference, to ensure
that all memory operations that should happen before it have taken place. This tight
synchronisation causes problems with simulation performance, as each simulation
thread can not do much work without synchronising; the Slacksim paper [5] discusses
this well. With a cache incoherent system a correct program must already assume that
cachedmemory operationswill not be immediately available to another processor core,
and cannot guarantee visibility until a cache flush operation. A well behaved program
should also not assume that it is running on an incoherent system, as events may cause
cache lines to be flushed before the programmer is expecting it, such as interrupts. This
means that all cached memory accesses should be free of data races between cores,
and these memory operations can be performed as soon as possible in the independent
core threads. Now a significant synchronisation problem has been removed, and only
modelling the timing side effects remains. To do this requires the communication of
cache miss events to a separate thread to model the NoC interconnect, which takes
care of the timing impact on the out of core traffic. For memory accesses which will
cause data races or require synchronisation (i.e. cache bypassing operations and cache
line flushes) the core thread is synchronised to the interconnect thread, and the timing
model completes its operation before continuing core simulation. In doing so, timing
correct behaviour ismaintained,with significantly less synchronisation than traditional
coherent simulators.

4 Simulator Implementation

The simulator used in the this paper is based on the ArcSim [6,7] simulator, devel-
oped at The University of Edinburgh. ArcSim is a high speed simulator designed to
simulate the ARCompact RISC ISA for both functional simulation and cycle accurate
simulation. ArcSim is compatible with the ARC600, ARC700 and ARCv2 ISAs, pro-

123

Int J Parallel Prog

viding cycle accurate models for both 3, 5 and 7 stage interlocked in-order pipeline
micro-architectures, with the 3 and 5 stage models developed around the EnCore
microprocessor. ArcSim uses an asynchronous dynamic binary translator (DBT), or
just in time compiler (JIT), to accelerate simulation by translating target instruction
sequences into native code, while also supporting the inclusion of code to model the
core micro-architectural state changes for the instruction sequence. This can result in
simulation speeds of up to 1000 MIPS, or 100 MIPS in cycle accurate mode. Arc-
Sim supports full system simulation, along with syscall emulation to enable user-land
application simulation, or a hybrid simulation mode where a bare metal environment
can run in full system simulation mode with IO devices and full control of the MMU,
but system calls are still trapped to the host to allow file access and console IO support.

Multicore simulation has previously been developed in ArcSim, with the work
presented in SAMOS 2011 [7] demonstrating functional simulation support for over
1024 cores at speeds in excess of 10,000 MIPS. The work presented here advances
this previous work on ArcSim by implementing a decoupled interconnect model for
multicore architectures.

When operating in cycle-accurate modeArcsim reconstructs updates to the pipeline
model after executing each target instruction (both in fully interpretive and JIT-
compiled modes), and the core model simulation is explained in detail in the paper by
Böhm et al. [6].

To parallelise themulticore simulationwhile providing cycle-accurate modelling of
the shared NoC interconnect a similar approach to the FaCSim [8] and FAST [2,9,10]
simulators is used, making use of lock-free asynchronous producer-consumer circular
buffers to decouple simulation of the cores from the interconnect.

These relatively large buffers provide significant slack for the core simulation
threads to execute ahead of the interconnect model, which means the interconnect
model is rarely waiting for work to process, and helps to cover the time when the
thread simulating a particular core is scheduled off by the host operating system.
This increases the efficiency of the simulation when the host system has fewer phys-
ical cores than the target being simulated, and is enabled by exploiting the reduced
synchronisation required for incoherent programs.

Unlike either FacSim or FAST, which decouple the functional simulation and the
core timing model, Arcsim [6] models the core micro-architecture interleaved in the
same thread as the functional core simulation. Each core is simulated in its own thread,
which means that the core timing model is as parallelised as the functional simulation,
helping maintain performance when larger multicore designs are simulated. Because
the NoC architecture is cache incoherent, the coremodel can safely include the caches,
meaning only cache misses and explicit cache-bypassing instructions must be com-
municated to the interconnect model. This reduction in communication allows the use
of smaller communication buffers when compared to other decoupled simulators such
as FAST, COTSon [11] and FaCSim, allowing larger target systems to be modelled
on smaller hosts systems.

Figure 2 shows a simplified view of the memory components of the core simulation
kernel, highlightingwhere asynchronous and synchronous communication is required,
and the presence of both instruction and data caches in the core simulation.

123

Int J Parallel Prog

s imu l a t e i n s t r u c t i o n (){
update i cache () ;
. . .
i f (memory op)

perform memory operation () ;
}

update i cache (){
i f (! i cache−> i s h i t (pc)){

i n t e r c onne c t i queue−>push f e t ch (pc) ;
}

}

perform memory operation (){
i f (i s bypa s s){

i f (i s r e a d){
i n t e r connec t d queue . push read (addr) ;
while (! i n t e r connec t d queue . empty ()){ o s y e i l d () ; }
r data = inte rconnec t−>g e t r e ad va l u e (c o r e i d) ;

} else {
i n t e r connec t d queue . push wr i te (addr , w data) ;
while (! i n t e r connec t d queue . empty ()){ o s y e i l d () ; }

}
} else {

i f (i s r e a d){
r data = mem−>read (addr) ;

} else {
m−>wr i t e (addr , w data) ;

}
i f (! d cache−> i s h i t (addr){

i f (d cache−> i s d i r t y (addr){
i n t e r connec t d queue . push writeback (addr) ;

}
i n t e r connec t d queue . push f e t ch (addr) ;

}
}

}

Fig. 2 Simplified processor simulation instruction implementation, demonstrating communication to the
interconnect thread

Embedded cores, such as the ones used here, are often simple in-order interlocked
pipelines, which stall on memory events such as cache misses. This allows the time
passed for a processor core to be accurately described as the the sum of cycles spent
internally, plus the cycles spent waiting for IO requests. This is the second property
of the embedded cores leveraged to decouple the simulation to this extent, and is
in some ways analogous to the QuantumKeeper in SystemC TLM2.0 [12]. Features
such as victim caches and store buffers can still be accurately modelled so long as the
interconnect model is aware of them. For example, a store buffer of depth N would
mean that the interconnect can process up to N cache write-miss events in parallel
before adding time to the core’s IO-time offset, while a write-back buffer would be
modelled in the interconnect itself.

The simulator is designed tomake full use ofmodernmulticore processors, similarly
to FAST running parallel functional simulations. One host thread is used per simulated

123

Int J Parallel Prog

Fig. 3 Overview of the
incoherent simulation, threads
are identified by dashed
boundary boxes

core, another thread for the interconnect, and additional threads for the functional
simulationof IOdevices such as display and sounddevices. The simulator also supports
parallel JIT worker threads to improve the performance of the core simulation. When
running the interconnect thread, the simulator will use at least N +1 host cores where
N is the number of target cores being simulated. The core and interconnect simulation
threads are shown in Fig. 3, with dashed box boundaries representing operating system
threads and dashed circles representing asynchronous lock-free queues. Other threads
such as virtual displays and JIT compilation threads are omitted for clarity.

4.1 Details of the NoC Interconnect

Based on the AXI protocol the NoC is implemented with five identically implemented
channels, as described in Sect. 2. The design flow takes a list of ‘master’ nodes,
‘slave’ nodes, a design metric termed the ‘complexity’ of the network, and other
configuration parameters. The complexity controls the width and depth of the omega
network generated; then extra switches are added if nodes cannot be connected, and
redundant switches are pruned. Omega networks use a multi-layer switch topology
like the butterfly, comprising two input and two output switches. Unlike a traditional
butterfly network, the presented network’s source and destination nodes are not the
same: there are explicit ‘master’ ports for cores and DMA-capable devices, and ‘slave’
ports for memory-mapped device and RAM interfaces. The tools then generate for the
simulator an ordered list of these switches,with outputs and inputs explicitly connected
with named ‘wires’, along with details of the master and slave connections and routing
information based on memory addresses.

Additional complexity is introduced because not all switches are registered. They
canoptionally be configuredwithFIFObuffers, or they can act entirely combinatorially
from one registered switch or input to the next registered switch or output in a single

123

Int J Parallel Prog

cycle. In this mode they behave somewhat like an N × N crossbar, but with internal
collisions. The simulator correctly handles these combinatorial switches while still
modelling them in a modular per-switch fashion.

4.2 Modeling the NoC Interconnect

The interconnect model has two key roles in the simulation: not only must it model
traffic and keep track of time spent in IO for each core, it must ensure timing-correct
ordering of memory operations. Because the target platform is cache-incoherent, only
cache-bypassing instructions must be committed in timing order to ensure timing-
accurate behaviour. Because of this, cache transfers are modelled without actual data,
and memory operations are committed by the core simulation thread. This is also how
FaCSim operates, but because it only simulates a single core it does not need to worry
about memory orderings. Cache miss operations are logged in the circular buffers by
the core simulation and the core can continue simulation, but for cache-bypassing
operations the core must wait until the buffer is flushed empty signalling the operation
has been completed by the interconnect thread. This impacts performance somewhat;
but it is required unless an alternative mechanism of ensuring correctness is employed
in the functional simulation, such as checkpointing and roll-back as implemented in
FAST [9].

Rather than compute routing tables like the hardware, the simulator uses the routing
tables from the NoC description to perform master to slave routing, and constructs the
return routing bit-string dynamically as it passes through the network. Routing tables
are shared between the switches on each channel for the same logical switch node.

Since Arcsim already provides extremely fast cycle-accurate simulation of the core
micro-architecture, it was a challenge to model the interconnect and memory con-
trollers at sufficient speed to avoid bottlenecking the whole system. To achieve this
extensive use of packet counting and fast forwarding is used to ensure as little work
as necessary is performed while processing the interconnect.

For example, each cycle the interconnect model checks to see if each core has an
active transaction, and if not when the next transaction is due (by checking the pending
transactions in the buffer). If there are no active transactions then the interconnect can
directly skip ahead to the cycle of the next pending event. Also for each network
channel packets are counted in and out, and only the switches on channels which are
active are processed. A summary diagram of the main interconnect loop is provided
in Fig. 4 demonstrating where various optimisations are performed, and how phases
of computation are interleaved.

To compute a single cycle of the network the simulator iterates over all switches
(in active channels) three times, marked as phases 1, 2 and 3 in the diagram. First
all switches check their inputs for an incoming packet, flagging themselves as active
if they take in data or still have data in a FIFO. Because the switches are correctly
ordered in source→destination dependency order the combinatorial switches can sim-
ply propagate the packets here to their output: this is the same memory location as
their destination’s input, so they can be computed in a modular fashion rather than as a
monolithic N ×N switch. In the case where all switches are registered, packets can be

123

Int J Parallel Prog

Fig. 4 Overview of the
interconnect simulation loop
identifying work-saving
optimisations

consumed at this point; but when combinatorial switches are present they are left to be
cleared up in phase three. The second phase is for registered switches to output their
data packet onto the wire, depending on their internal state machine which is mod-
elled as part of the switch micro-architecture. Finally the third phase is run in reverse
direction, from destination to source, to track back and clear up the packets left when
combinatorial switches are enabled. In this phase packet collisions are detected and
the internal switch state machines and arbiters updated. The simulation also updates
traffic counters on switches which successfully transferred a packet. The overhead of
simulating combinatorial switches is a reduction in simulator performance of approxi-
mately 30% for a benchmark with moderate traffic, because of the extra book-keeping
involved. It was disabled for this work, since all the designs tested used registered
switches with FIFOs of depth 2 or 16 depending on the design. The output phase of
connected devices is run between phase one and two, and the input phase between the
second and third phases of the network.

Unlike FAST, this simulator does not have to model the data for all memory oper-
ations, only the information relevant to timing: the address, time, and size of cache
misses. The exception is single transfer un-cached accesses which are processed in
the micro-architecturally-accurate model of the memory controller or device model,
ensuring the correct memory operation interleaving and behaviour on locked memory
regions when atomic accesses are used.

123

Int J Parallel Prog

4.3 Simulation Challenges

A potentially problematic feature of the functional-first simulation technique used in
the simulator is that instruction-cachemiss events are only realised after the completed
execution of the previous instruction. Thismeans that the eventmay only be discovered
after the simulation of another memory event in a previous instruction, which it should
have preceded. To solve this problem two buffers are implemented between the core
and interconnect simulation components, one for each of the two pipeline stages which
can generate memory events. When the interconnect reads off events from a core’s
buffers it waits until one of the following conditions is met before proceeding:

– There is an I-cache event, but no data events. It can continue because the data
memory port cannot produce events which happen before this.

– There are entries in both buffers. It executes them according to their timestamps—
potentially simultaneously in the same fashion as the core supports.

– There is a data entry and the core model has advanced beyond the point where an
instruction cache event can over-take it, determined by the latency of the slowest
instruction.

– There are no events but the core model has advanced beyond the point where any
event could be generated for this cycle.

– There is a data event and the data buffer is flagged as containing a cache bypassing
operation,which is preventing the core simulation from continuing. This is the only
condition under which the core is allowed to violate the ordering of instruction and
data memory events, because the simulation cannot continue without running the
memory operation through the interconnect or potentially violating the ordering
of data memory operations from different cores.

The violation in the final clause is an extremely rare event. The I-cache event is
still modelled and its latency accounted for, just at slightly the wrong time. It is also
possible to write code such that this never happens, if it is extremely important that
the platform is simulated accurately.

Because the simulator’s correctness relies on a correctly written target application,
which does not have accidental cached read/write data sharing, a second mode of
simulation is provided which moves the data cache model to the interconnect. This
mode fullymodels the data in the caches, and the correct interleaving of data cache line
reads and write backs in the memory controllers. It is almost completely functionally
true to the target system, while still maintaining significant parallelism, but loses the
performance benefits of the mode primarily discussed in this paper, falling back to
performance of 1–2 MIPS for small scale MPSoCs. This mode is used for debugging
target applications which exhibit signs of accidental data sharing, and for coherent
simulation modes.

5 Performance Evaluation

Unfortunately there is no standard parallel benchmark suite for cache incoherent archi-
tectures, so various multiprogrammed workloads were composed using Coremark and
a subset of the EEMBC [13] suite. The benchmarks used were restricted by the target

123

Int J Parallel Prog

Table 2 Composition of
multi-benchmark workloads

Workload Contained benchmarks

1_0 imgdisp

1_1 fbital

1_2 conven

1_3 autcor

2_0 coremark, imgdisp

2_1 autcor, conven

2_2 fft, vinterb

2_3 viterb, imgdisp

3_0 conven(2), imgdisp

3_1 conven, coremark, cache_thrash

3_2 coremark, fbital, imgdisp

3_3 coremark, fbital(2)

4_0 conven(4)

4_1 autcor, conven, coremark(2)

4_2 autcor, fbital(2), imgdisp

4_3 autcor, fbital, fft, imgdisp

6_0 coremark(5), fft

6_1 autcor, fbital, viterb(2), cache_thrash(2)

6_2 conven, coremark(2), fbital, fft, viterb

6_3 autcor, conven, coremark, fft, imgdisp, cache_thrash

platform simulated, due to limited on-boardmemory and the capabilities of the current
runtime only the following benchmarks could be run: Coremark, AutoCor, Conven,
Fbital, FFT and Viterb. In addition to these standard benchmarks we also ran two
memory bandwidth heavy in-house benchmarks: a panning image display benchmark
‘imgdisp’, and a synthetic cache-thrashing benchmark. The image display benchmark
features both bad cache performance, due to its working set and access patterns, and
extensive uncached IO to the display controller, which is treated in the simulation
as a synchronising event, making it a good indicator of simulator performance for
workloads which feature communication and are IO heavy. Between the EEMBC
and Coremark benchmarks there are a wide range of runtime behaviours, and with
in-house memory intensive benchmarks cover the spectrum of compute and memory
intensive workloads, while still exposing enough code complexity to challenge the
core micro-architectural model.

Statically scheduled parallel workloads for 1–64 tasks were composed by randomly
selecting benchmarks from this set. The benchmarks used in the 1–6 task workloads
also used for accuracy comparisons can be found in Table 2.

To give a clearer measure of how performance varies with the benchmark behaviour
1, 3, 6 and 12 thread single benchmark workloads were also composed for the EEMBC
suite and Coremark benchmarks. These benchmarks were run on appropriately con-
figured 1-, 3-, 6- and 12-core MPSoC designs and simulated on a dual socket, 6-core

123

Int J Parallel Prog

Simulator performance with JIT

Benchmark[Cores]

A
gg

re
ga

te
 P

er
fo

rm
an

ce
 (

M
IP

S
)

0
10

0
20

0
30

0
40

0

1 core
3 cores
6 cores
12 cores

Direct
2−Way

AutCor Conven CoreMark FBital FFT Viterbi

1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12

Fig. 5 Simulator performance across the EEMBC and Coremark benchmarks for 1-,3-,6- and 12-core
designs. Solid bars indicate 4KB direct-mapped simulated I and D caches, striped bars indicate 2-way set
associative variants of the adjacent design

Intel Xeon X5650 workstation, providing 12 cores at 2.6GHz. Performance results are
shown in Fig. 5, with solid bars representing 4KB direct-mapped caches, and striped
bars representing 4KB 2-way set associative caches.

The JIT worker threads were enabled for these experiments highlighting the best
case for simulation performance. The 2-way set associative results for Conven and
FBital demonstrate that extremely high simulation rates are possible for cache friendly
benchmarks, with simulation rates over 377 MIPS, but the graphs also highlight that
the simulator has two distinct interacting performance profiles. The core simulations
run at approximately 14 MIPS per core in interpretive simulation, or 50–100 MIPS
with the JIT enabled, and while the interconnect can keep up easily when there is
minimal work to do, it can only simulate a saturated medium sized interconnect at
around 1MHz. Testing with a 64 thread cache thrashing workload on a 64-core target,
resulting in 98.8% of each core’s time being spent waiting for IO and only 0.006%
of cycles able to be fast forwarded, gives a simulation rate of only 0.285MHz on a
1.8GHz 32-core server. However this still represents an aggregate simulation speed
of 18.25 core-MHz, and despite the effective CPI of 170 provided a still competitive
simulation rate of 0.107 MIPS.

By analysing the cache behaviour of the benchmarks in the simulations which
produced Fig. 5 we can see the relationship between interconnect traffic and simu-
lation performance. Figure 6 shows the breakdown of interconnect traffic across the
simulations in terms of cache miss events per thousand instructions executed, isolat-
ing synchronising cache-bypassing traffic, data cache misses, and instruction cache
misses. It can be seen comparing these two figures that good cache performance leads

123

Int J Parallel Prog

Interconnect Traffic

Benchmark[Cores]

C
ac

he
 M

is
se

s
pe

r
1k

 In
st

ru
ct

io
ns

0
2

4
6

8
10

Bypass
D$−Misses
I$−Misses

AutCor Conven CoreMark FBital FFT Viterbi

1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12

Fig. 6 Cache behaviour across the EEMBC and Coremark benchmarks for 1-,3-,6- and 12-core designs.
Bars are arranged in the same order as Fig. 5, grouped into 4KB direct-mapped and 2-way set associative
caches

to exceptional simulation performance, although evenwhen interconnect traffic causes
the simulation performance to drop, it is still significantly faster than the state of the
art.

Simulator performance statisticswere also collected from a large scale design-space
exploration on a shared cluster computing facility, comprising a mix of 8- and 12-core
nodes. The simulations involved the previously discussed generated workloads, of
which 64 different multiprogrammed workloads were produced comprising between
1 and 64 independent tasks. The designs were also randomly selected from a design
space of 12,000 designs, varying the number of cores from 1 to 64, divided between
1 and 8 clusters. The other design parameters are listed in Table 1. In total 20,204
design-benchmark combinations were simulated, which used 1008 different MPSoC
configurations from the total design space. For time-allocation on the compute cluster,
the number of host cores requested for a specific design/benchmark configuration was
the minimum of the number of cores in the design, and the number of tasks in the
workload, plus one for the interconnect. This was chosen because cores will shut down
once there are no tasks remaining to execute. The bare-metal runtime has an IO heavy
start-up phase which must be executed on all cores of the design, so simulation speed
can appear artificially limited by having to simulate many cores and an interconnect on
only a few allocated physical cores during this time. The average simulation required
5.3 active cores, or 6 host threads.

For the large scale cluster experiments the results are presented in two parts. Firstly,
Fig. 7a presents the performance in instruction throughput expressed in MIPS, as is
typical for instruction set simulators.Here you can see the instruction throughput rarely

123

Int J Parallel Prog

Simulator Performance Distribution (MIPS)

Performance (MIPS)

F
re

qu
en

cy

0
20

0
40

0
60

0
80

0
10

00

0.1 1 10 100

(a)

Simulator Performance Distribution (effective MHz)

Performance (MHz)

F
re

qu
en

cy

0
20

0
40

0
60

0
80

0
10

00

0.01 0.1 1 10 100

(b)

Fig. 7 Histograms of simulator performance from a large scale design space exploration, showing that
almost all of the 20,204 design/workload combinations have simulated performance over 1 MIPS, while
most perform significantly better than this

drops below 1 MIPS (5%), and on average achieves 5.7 MIPS aggregate across the
simulated cores. In the worst case there are almost no simulations which executed at
under 0.3MIPS (< 0.7%), and none below 0.08MIPS, while the best-case simulations
ran at an aggregate 45 MIPS.

Secondly, Fig. 7b presents the results as effective simulation rate of the whole
MPSoC in MHz, not aggregated per core. For example a design with a 2:1 core

123

Int J Parallel Prog

to interconnect clock ratio reported as 10 MHz, means that each core simulated at
10MHz, and the interconnect at 5MHz (since it only executes 1 cycle for every two the
cores execute). Similarly if the core to interconnect ratio was 1:2, 10 MHz means that
the cores simulated at 5 MHz each, while the interconnect ran at an effective 10 MHz.
On average simulation rates of 10.1MHzwere achieved, only 7.5 times slower than the
fastest design which can synthesize to a Virtex6 FPGA. The maximum performance
was 117 MHz: significantly faster than the FPGA implementation, and approaching
the 250MHz projected speed for 65nm silicon implementation. Unfortunately there is
a very shallow tail below 1MHz covering 8% of the simulations, which extends down
to 0.01MHz, indicating either pathological simulation conditions, or the simulation
host in the cluster was being shared with an application causing a high degree of
performance interference. The simulations were primarily run as a large design space
simulation experiment, rather than for performance metrics, so time was not spent
investigating the cause of the poor simulation performance of this tiny fraction of
experiments. Looking at Fig. 8 however helps to explain some of the behaviour. With
a maximum number of available host cores of 12, no simulations except a few with
a single active core execute at less than 0.5 MIPS. All 1.8% of the designs which
execute below 0.5MIPS are running on over-loaded hosts, while on average simulation
throughput was increasing with the number of target cores up to this point. This
indicates that the performance was probably lost to the overhead of the operating
system scheduler, and later work in this paper on a coherent simulation, employing
a user-space scheduler, does not suffer from this problem. As such the worst results
most likely could be redeemed through such a user-space scheduling system.

These figures for extremely stressed interconnect traffic do not present a realistic
view of the simulator performance, since most workloads make effective use of the
core’s private caches to reduce IO traffic; the simulations used to generate Fig. 7 report
an average IO/core cycles ratio of 7.4%, with a maximum of 93%. This is the reason
for the extremely large performance distribution seen in Fig. 7a, which is unusual for
a cycle-accurate simulator. The very lowest tails of the performance distribution are
likely caused by simulationswithmore cores than host threads, which executemultiple
instances of the panning image benchmark. Because this generates uncached IO to
the screen, the core-interconnect synchronisation is triggered frequently. While not a
problem in isolation, when the operating system cannot schedule all the threads to run
simultaneously, it will often send the thread simulating the core performing IO to sleep,
to let another core run. The interconnect thread will quickly process the single event
and then hang waiting for the core to continue, because it cannot proceed beyond the
current cycle time of the slowest core. With normal cache miss operations some of this
scheduling overhead is masked by using large circular buffers, which allow the cores
to execute sufficiently far ahead that the interconnect will not have to stall for long if
the core thread is scheduled to sleep. This pathological behaviour is addressed later in
Sect. 7 with the introduction of user-space scheduling, which provides significantly
lower context switch overheads and allows for finer control of the scheduling. Other
simulators also use user-space scheduling for the same reasons [14].

It is worth noting that while the simulator supports JIT compilation to accelerate
simulation of the individual cores, it was disabled for the large-scale performance and
accuracy results presented in Figs. 7 and 10. This is because there are a few cases

123

Int J Parallel Prog

Simulator Performance vs Active Target Cores

Number of active cores

S
im

ul
at

or
 P

er
fo

rm
an

ce
 (

M
IP

S
)

1 5 9 14 20 28 35 40 48 56 64

0.1

0.2

0.5

1

2

5

10

20

50
0

2
4

6
8

10

Average Simulator Performance vs Active Cores

Number of Active Cores

P
er

fo
rm

an
ce

 (
M

IP
S

)

1 5 9 14 20 28 35 40 48 56 64

0.5

(a)

(b)

Fig. 8 Simulation performance against number of active simulated cores. This is one less than the required
number of simulation threads; (a) shows the full distribution, with results less than 0.5 MIPS highlighted
with hollow circles; (b) shows the average simulation performance, highlighting the impact of simulations
with more threads than physical host cores

where the JIT compiled simulation model produces slightly different timing of events,
due to a microarchitectural detail that has been updated in the interpreted mode only.
This does not lead to a significant error in the simulated accuracy (< 1% difference
to interpreted with the 3-stage pipeline), but does lead to non-determinism, as events

123

Int J Parallel Prog

will be generated at slightly different times. Since the cluster-based simulations were
run primarily for purposes of design-space exploration rather than performance evalu-
ation of the simulator, it was decided that leaving the feature disabled was preferable.
Since the extra performance provided by using the JIT has the most impact when the
interconnect has little work and can fast-forward to keep up, its use would only stretch
out the upper tail in simulation performance towards 100 MIPS per core. It would not
significantly affect the body of the results, which are limited by the performance of
the interconnect model.

6 Accuracy Evaluation

To construct and verify the detailed microarchitectural switch and memory controller
models, detailed tracing output from the simulator was compared manually against
Verilog simulation, confirming that the interconnect switch and memory controller
implementations were indeed cycle accurate under a variety of test conditions. To
empirically measure accuracy of the whole simulator several designs were synthe-
sized to a Xilinx Virtex6 FPGA and test workloads were run on these platforms. The
run-times in cycles for each core were collected and the results compared with the
simulator, using the generated simulator configuration file.

To demonstrate how simulator accuracy varies with the different EEMBC bench-
marks, and when scaling up the core count, the simulated cycle counts from the
performance tests in Fig. 5 were compared with the same design running on the
FPGA. Once again solid bars represent direct mapped caches, and striped are 2-way
set associative, with each benchmark being run on 1-, 3-, 6- and 12-core designs. The
bar for 12-core 2-way set associative is absent because this design does not fit into the
available Virtex6 FPGA. The results, shown in Fig. 9 clearly demonstrate that the error
is most affected by the benchmark, rather than the hardware configuration. Another
feature which can be discerned using Figs. 5, 6 and 9 is that benchmarks with good
cache behaviour (almost no interconnect traffic) such as FBital can have poor simula-
tion accuracy, while thosewith poor simulation speed due to higher interconnect traffic
like AutCor have very little error, indicating that the core microarchitectural model is
more responsible for the error. The fact that error is most affected by benchmark and
not size of the design supports this.

Secondly, as shown inFig. 10, the randomlygeneratedmultiprogrammedworkloads
as described in Sect. 5 were run on a range of differentMPSoC configurations, listed in
Table 3, to evaluate error across different design options andmore interestingworkload
combinations. Each shaded region represents the results for one workload, with each
bar being the RMS error of the cores compared to the same core on the FPGA for a
given MPSoC design. The designs are listed in order in Table 3. Here the trend that
accuracy is determined by benchmark mostly continues, although more per-design
variation is demonstrated than in Fig. 9 due to the shift in execution time spent in the
interconnect and core respectively across the different designs.

The mean error from this larger experiment set is only 1.8%, with an RMS error of
2.1%, comparing well to the single core FaCSim, which achieves an average 7% error
relative to its reference platform, and GEM5, which was recently evaluated to provide

123

Int J Parallel Prog

Benchmark/Scaling Simulator Error vs FPGA Instance

Benchmark [Cores]

S
im

ul
at

io
n

E
rr

or
 (

%
)

0
1

2
3

4
5

1 core
3 cores
6 cores
12 cores

Direct
2−Way

AutCor Conven CoreMark FBital FFT Viterbi

1 3 6 12 1 3 6 . 1 3 6 12 1 3 6 . 1 3 6 12 1 3 6 . 1 3 6 12 1 3 6 . 1 3 6 12 1 3 6 . 1 3 6 12 1 3 6 .

Fig. 9 Error from performance graph Fig. 5. Cycle count error from 1-,3-,6- and 12-core simulations of
direct mapped and 2-way set associative configurations, for standard embedded benchmarks

Workload/Design Simulation Error vs FPGA Instance

S
im

ul
at

or
 E

rr
or

 (
%

)

0
1

2
3

4
5

Benchmark [Design]

1_0 1_1 1_2 1_3 2_0 2_1 2_2 2_3 3_0 3_1 3_2 3_3 4_0 4_1 4_2 4_3 6_0 6_1 6_2 6_3

Fig. 10 Cycle count error across the small scale design space in Table 3 for mixed benchmark workloads
detailed in Table 2

an average RMS error of 8.8% relative to a more complicated dual-core reference
platform [15]. The most similar simulation system, a parallelised SystemC simulator,
manages an average error of 6% [14] over a cycle accurate software model.

123

Int J Parallel Prog

Table 3 NoC configurations used for accuracy analysis

Design 1 2 3 4 5 6 7 8

Cores 1 2 2 2 2 2 2 2

Clusters 1 1 1 1 1 1 1 1

RAMs 1 1 1 1 1 1 1 1

Complexity 2 2 2 2 2 2 2 2

Fifo depth 2 2 2 2 2 2 2 16

Core freq (MHz) 12.5 12.5 12.5 12.5 12.5 25 50 12.5

NoC freq (MHz) 12.5 12.5 25 50 100 12.5 12.5 12.5

Design 9 10 11 12 13 14 15 16

Cores 2 2 2 2 2 2 2 4

Clusters 1 1 1 1 1 1 2 2

RAMs 1 1 1 2 4 8 1 1

Complexity 4 8 16 2 2 2 2 2

Fifo depth 2 2 2 2 2 2 2 2

Core freq (MHz) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

NoC freq (MHz) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

7 Cache-Coherent Simulation

7.1 Target Platform

Based on the same 3-stage core, we proposed a manycore architecture for coherency
protocol research. This is based on a more regularly structured mesh-tree hybrid archi-
tecture, with 16 nodes arranged in a 4 × 4 mesh. Each node contains an L2 cache, a
narrower binary tree network with bandwidth adapter, and a power of two number of
processor cores. Rather than the physically isolated channels of the AXI network, this
architecture uses a unified-bus packet based protocol, in order to reduce the number of
switches and wires required for the large scale design. Coherency is provided through
a centralised directory with a separate binary tree network. This network provides two
channels from the cores to the directory, requests and responses, and two channels
from the directory to the cores, a unicast request channel for messages which can
require multiple cycles to process or require a response (Exclusive invalidations), and
a multicast channel for messages which can be processed in a single cycle and do not
require a response. This means that the multicast network can never stall, reducing the
requirements for buffering and back-channel signalling. This is possible because the
coherency protocol uses silent invalidations for Shared state cache lines. The archi-
tecture is summarised on Table 4.

Because there is no physical implementation of this architecture, its purpose is
for more abstract design exploration, the switches and routers have a simpler micro-
architectural model to the previous cache-incoherent platform. However, the mesh
network does consist of significantly more complex 5× 5 routers with two arbitrated
virtual channels, and all network data is transferred through the network to provide

123

Int J Parallel Prog

Table 4 Manycore design configurations

Design parameter Possible configurations

Core architecture ARC700 32-bit RISC

Pipeline 3-stage in-order

D-Cache configuration 4 KB, direct mapped

I-Cache configuration 4 KB, direct mapped

Cache line size 64 Bytes

Data interconnect protocol Unified channel—packet based

Data interconnect topology 256-bit wide 4 × 4 mesh with two virtual channels

64-bit wide binary-trees from each node, no virtual channels

Both have one physical channel per direction

Coherency protocol MESI directory protocol with coarse vector sharer encoding

Coherency interconnect Single binary tree

Two physical channels per direction

Nodes 16

Cores per node 1, 2, 4, 8, 16, 32, 64

L2 Caches One per node, perfect caches

Core freq 800 MHz

NoC freq 800 MHz

full wire-level energy modelling. As such, while the switch models are slightly less
detailed, there is at least as much computational effort required to simulate the inter-
connect.

The coherent architecture and its simulator are discussed in greater depth in later
work [16], along with techniques for managing scalable cache-coherency, and simu-
lation and microarchitectural efficiency of synchronisation primitives.

7.2 Simulation Details

The greatest challenge to simulating coherent systems comes when there are more
target cores than host cores, and the host processor cores must be time-multiplexed
to process multiple target cores. Unlike with cache-incoherent systems, each memory
access must be synchronising for cycle accurate simulation, so buffering up events
in large queues cannot be used to mask the overhead of operating system context
switching. Figures 8a, b shows the performance impact of involving the operating
system scheduler to switch simulation threads, incurring a significant penalty even
with the large asynchronous buffers used to help mask the overhead. To address this
shortcomingwe implemented user-space scheduling, with cooperativemultithreading,
to perform low overhead context-switching between the simulated cores. Because the
core simulationmust nowcommunicate for allmemory accesses, not just cachemisses,
and all accesses are synchronising, the frequency of context switches is much higher
than with the incoherent simulation, fortunately the user-space approach provides

123

Int J Parallel Prog

Fig. 11 Overview of the
coherent simulation, threads are
identified by dashed boundary
boxes

s imu l a t e i n s t r u c t i o n (){
update i cache () ;
. . .
i f (memory op)

perform memory operation () ;
}

update i cache (){
i f (! i cache−> i s h i t (pc)){

i n t e r c onne c t i queue−>push f e t ch (pc) ;
}

}

perform memory operation (){
i f (i s r e a d){

i n t e r connec t d queue . push read (addr) ;
while (! i n t e r connec t d queue . empty ()){ coop ye i l d () ; }
r data = inte rconnec t−>g e t r e ad va l u e (c o r e i d) ;

} else {
i n t e r connec t d queue . push wr i te (addr , w data) ;
while (! i n t e r connec t d queue . empty ()){ coop ye i l d () ; }

}
}

}

Fig. 12 Simplified processor simulation instruction implementation, demonstrating coherent communica-
tion to the interconnect thread

sufficient performance. This change in simulator organisation can be seen in Fig. 11,
with the corresponding core simulation pseudo-code in Fig. 12, contrasting against
the original Figs. 2 and 3. The user-space scheduler is a simple round-robin scheduler
with the number of target cores divided equally between the allocated physical cores.
The simulations used in this paper use four threads for processing core simulations,

123

Int J Parallel Prog

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Coherent Simulation Performance

In
st

ru
ct

io
n

T
hr

ou
gh

pu
t (

M
IP

S
)

32 64 128 256 512 1024

Radix
LU
Ocean
FFT

Simulation Type / Cores

Fig. 13 Simulation performance of a large scale coherent manycore

Table 5 Benchmark
configurations

Benchmark Configuration

Radix 1,048,576 Keys

LU (contiguous) 512×512 Matrix

Ocean (contiguous) 258×258 Ocean

FFT 220 points

and one for interconnect simulation (although the interconnect simulation supports a
degree of parallelism, this was not used for these results).

7.3 Coherent Performance

Figure 13 shows the simulation throughput of this new coherent simulator while exe-
cuting the Splash2 [17] benchmarks listed in Table 5, while utilising five operating
system threads on the same 12-core workstation as used earlier. Despite the significant
increase in work required by the interconnect thread, and the significant increase in
the number of target cores simulated per host core (up to 256 cores per host processor
for the 1024-core instances) the simulation shows remarkable performance and per-
formance stability compared to using operating system scheduling, as seen in Fig. 8.
By combining the optimisation to interconnect simulation and core-interconnect syn-
chronisation, with high-performance user-space multithreading, it becomes possible
to simulate massively parallel systems at much greater rates than other cycle accurate
simulators such as GEM5, achieving the performance of Sniper without the accuracy
sacrifices nor the use of binary instrumented execution.

123

Int J Parallel Prog

8 Related Work

This section discusses some of the more relevant simulators and how they relate to the
work presented in this paper.

Many of the simulators used commercially and academically for cycle accurate or
approximate simulation are designed around single threaded discrete event simulation,
with SystemC based simulation, Simics, and Gem5 based simulations being the most
popular.

Because many of these are based on a functional (untimed) simulator we will
summarise them first. However the lack of timing synchronisation or performance
modelling, makes them unsuitable for micro-architectural research or design space
exploration when used standalone.

8.1 Functional Simulators

8.1.1 Simics

Simics [18] is an emulation based functional full system simulator supportingmultiple
ISAs, now owned by Intel. It has been used to provide the core functional simulation
to a number of cycle accurate simulators, and competes with TLM based SystemC
models in industry.

8.1.2 Parallel Embra

Parallel Embra [19], like ArcSim, is a fast functional simulator for shared-memory
multiprocessors, part of the Parallel SimOS complete machine simulator [20]. While
Parallel Embra shares its use of binary translation with ArcSim it lacks its scalability
and parallel JIT translation facility.

8.1.3 Mambo & MalSim

Another effort to parallelise a complete machine software simulator was undertaken
with Mambo [21]. It aims to produce a fast functional simulator by extending a binary
translation based emulation mode; published results include a speedup of up to 3.8 for
a 4-way parallel simulation. Similarly, the MalSim [22] parallel functional simulator
has only been evaluated for workloads comprising up to 16 threads.

8.2 Cycle Accurate Simulators

8.2.1 GEM5

GEM5 [23] is currently one of the most popular tools for single and multi-processor
system simulation, and design-space exploration. Based on the Gems [24] simulator,
but substituting Simics for M5 as the functional core simulator, the tool is fully open
source, making it especially attractive for academic research. It uses emulation based

123

Int J Parallel Prog

simulation to provide simulation models for multiple ISAs, while also supporting
a variety of micro-architectural models for each core type. The interconnect is also
modelled with a similar degree of configurability, with the most detailed interconnect
simulations provided by the Ruby Garnet models, while simpler and faster models
are supported with the Ruby Simple interconnect models and GEM5 Classic shared
bus based models. GEM5’s accuracy has been evaluated against a dual-core reference
platform [15] demonstrating up to 35% error, but across Splash2 and ALPBench it
achieved an RMS error of 8.8%. Unfortunately GEM5 suffers from relatively poor
simulation speed. Running on the same compute cluster as used in this work, the
ECDF [25], it provides simulation speeds of 0.06MIPS to 0.275MIPSwith an average
speed of 0.157 MIPS when simulating 4- to 16-core shared memory systems with the
simple Atomic core model and Ruby interconnect model. Its timing/control-flow only
based modelling means that effective wire level power modelling cannot be performed
accurately, and relaxed memory consistency models cannot be accurately modelled or
verified because the absence of data caching means that host memory consistency and
coherency is applied, regardless of that specified in the model’s coherency protocol.

8.2.2 ARMn

ARMn is a simulator designed to simulate multicore ARM systems [26], which con-
nects multiple cycle accurate processor elements based on Simit-ARM together with
a SystemC interconnect model. Out of the box it provides a simulation infrastructure
with a configurable interconnect model with full cycle accurate simulation. However it
only does so for a message passing API and does not model a shared memory system,
requiring programs to be written against a special message passing library. The sim-
ulations speeds achieved are also not particularly fast, with reported speeds of under
7K cycles/s for a 16 node torus coupled to a synthetic traffic generator, although a
simple four node bus can be simulated at a little over 400K cycles/s.

8.2.3 SimpleScalar

SimpleScalar [27] is another historically popular simulator, capable of functional down
to detailed cycle accurate simulation. It has been parallelised by Zhong et al. [28], but
SimpleScalar must run its own ISA, requiring its own compiler, and does not offer the
simulation performance of more modern simulators.

8.3 Loosely Timed and Flexible Simulators

8.3.1 SystemC

One of the biggest industry tools for device, processor, and full platform simulation
is the SystemC [29] modelling language, based around heavily templated C++ with
a main simulation kernel handling the event loop, and extensive signalling and trans-
action support. SystemC can be used to write cycle by cycle models, through loosely
timed transactional models, to purely functional simulation. SystemC is a powerful

123

Int J Parallel Prog

simulation tool because of its flexibility and the large library of models already avail-
able, but its performance in cycle accurate and even functional simulation is poor
compared to other dedicated simulators, partly due to the fact it runs in a single thread,
but also because of the modelling abstraction overheads..

8.3.2 SimFlex

SimFlex [30] uses Simics as its functional emulation core, but uses statistical sampling
of the application to avoid the overhead of simulating each instruction one by one with
a timing model. This enables good performance, but accuracy suffers because it does
not observe the entire application behaviour.

8.4 Parallel Relaxed System Simulators

8.4.1 BigSim

BigSim [31] is a modern multiprocessor simulator designed to deliver scalability and
performance estimates on current and future large scale super computers. Message
passing based applications developed withMPI or Charm++ are run on a systemmuch
smaller than the simulation target, but with as many threads as would be run on the real
target, capturing the messages passed through the API with timing information. The
timing estimations are made for code sequences but BigSim does not currently support
a cycle accurate simulation of the target platform processors. Timing estimates for the
interconnect are based on the latency of a message through the network topology of
the simulation target, under infinite bandwidth/zero congestion circumstances.

8.4.2 FastMP

FastMP [32] attempts to address the issue of simulation scalability for multicore
platforms. Their platform uses checkpoint based sampled execution to minimise the
simulation work required, and analyses the discrepancy between the CPI of each core
and the average CPI across all simulated cores to try and address errors in simulation
accuracy at runtime. Unfortunately FastMP can only simulate applications which do
not share data between threads.

8.4.3 Wisconsin Wind Tunnel

The Wisconsin Wind Tunnel (WWT) [33] is one of the earliest parallel simulators,
but unfortunately requires applications to use an explicit interface for shared memory.
Its direct execution simulation method also limits it to running on CM-5 machines,
making it impractical for modern use. WWT II is the evolution of the first generation
WWT, and in Mukherjee et al. [34] transition the WWT II methodology to other host
architectures. Unfortunately it still does not model anything other than the original
target memory system, and requires applications to be modified to explicitly allocate
shared memory blocks.

123

Int J Parallel Prog

8.4.4 Hornet

Hornet [35] is a scalable cycle-accurate simulator for on chip interconnects. The traf-
fic can be fed from simulation (such as the MIPS simulator that is integrated into
HORNET), from previously generated traces, or from instrumented natively execut-
ing code, such as with Pin [36]. HORNET is also integrated with a power model
based on ORION 2.0 [37] and thermal model using HotSpot 5.0 [38]. This simulator
is demonstrated to show good scalability up to 24 host cores, for 64- and 1024-core
mesh architectures, but unfortunately does not give any absolute performance figures
for comparison. The paper confirms that for accurate results the simulation feeding the
interconnect model must be run with the interconnect simulation providing feedback,
otherwise the interconnect injection rates could be much higher (since the cores do not
wait the correct delay before the next request, as they assume an ideal interconnect),
resulting in lower execution time. The paper also indicates that congestion modelling
is only significant in bandwidth heavy applications, with benchmarks that do not stress
the interconnect showingminimal errorwhen congestion is notmodelled. Benchmarks
that do produce a lot of interconnect traffic exhibit significant error if the congestion
is not modelled however.

Hornet does support a cycle-by-cycle execution mode, but has not been verified
against a target platform, which means it is only useful for reasoning about abstract
design-space exploration.

8.4.5 Marss

Marss [39] is a “cycle-accurate” multicore ×86 simulator based on QEMU [40] and
PTLsim [39], designed to model modern superscalar ×86 architectures. It supports
relatively complex interconnect architectures, but is limited to ×86 simulation, and is
also non deterministic. Being limited to ×86 means that it is not suitable for exper-
imentation with modifications to the ISA, such as adding new instructions. It is also
not one of the ISAs used by low power deeply embedded cores likely to be found in
a specialised manycore processor design, although it is used in the Xeon-Phi acceler-
ators [41]. By being non-deterministic Marss demonstrates that it is not performing a
true cycle-accurate simulation, and some event timings and relative orderings are being
decided by host execution order, rather than strict timing model order. This makes per-
forming experiments on features such as relaxedmemory consistencymodels difficult,
if not impossible.

8.4.6 SlackSim

Slacksim [5] is one of the early simulators exploring the relationship between syn-
chronisation granularity and accuracy. It is a parallelised cycle by cycle simulator
which simulates cores with caches in different threads, and allows for configurable
synchronisation slack between the components. The simplest form is to synchronise
with a barrier every N cycles, with synchronisation every cycle providing full cycle
accuracy, and increasing error as the synchronisation period, or quantum, is increased.
SlackSim also introduces a different form of relaxation, where the difference in cycle

123

Int J Parallel Prog

time between the slowest thread and fastest thread is maintained within a defined
slack. Similarly to relaxing the simulation period, relaxing the slack allows one to
trade off performance for accuracy. Like many of the simulators discussed, the accu-
racy of SlackSim has never been verified against existing hardware. The performance
of SlackSim is typically around 100 KIPS, while simulating a 4-way out-of-order
processor without a detailed interconnect simulation.

8.4.7 FaCSim

FacSim [8] is a single core simulator which decouples functional simulation from
micro-architectural and memory hierarchy simulation. Because there is only a single
simulated processor there is no need to simulate memory contention or coherence
traffic, and no potential for violation of memory orderings. This allows FaCSim to run
an unbounded, fast, functional only, simulation to generate the program instruction
stream and then feed it asynchronously to an optimised timing model of the processor
and memory hierarchy. The models are connected through a shared memory circular
buffer,making efficient use of a dual core host, and stall the functional simulationwhen
the buffer becomes full. The single core simulation also means that the interconnect
timing model can be extremely simple to calculate, as there is no opportunity for
contention between multiple memory requests, which would require a more detailed
simulation that a simple latency calculation based upon link distance and bandwidth.
FacSim provides simulation rates up to 4 MIPS and has been shown to produce only
a 6.8% root-mean-squared (RMS) timing error relative to reference hardware. This is
not as fast as modern just in time compiled (JIT) simulators which compile the core
timing model into the translated functional simulation, but is a good demonstration of
the strengths of decoupling simulation components to improve performance through
increased parallelism.

8.4.8 Graphite

Graphite [42] is a distributed multicore simulator that uses Pin [36] to instrument a
natively executable application. The interconnect and distributed shared caches are
simulated in parallel and can also be distributed across multiple nodes along with
the functional execution. Graphite allows the different timing and functional compo-
nents of the simulation to run asynchronously within a configurable bounded slack.
The three supplied methods of synchronisation are a lax barrier, which keeps all sim-
ulations components running close to lock-step, synchronising every N cycles, lax
peer-to-peer synchronisation, which puts cores which are too far ahead of the slowest
core to sleep briefly, similar to SlackSim, and lax synchronisation. The last method
uses timestampedmessages from the different components to estimate the global clock
locally, and never suspends simulation components for the sake of timing synchro-
nisation. In all methods events are processed in the order they are received, and not
reordered into correct timing order. As a result, although Graphite provides a scalable
reasonably performant multicore simulation infrastructure, the accuracy is not high
enough for some more subtle micro-architecture experiments. For example an inter-
connect which arbitrates on a per-flit basis rather than a per-packet basis will result

123

Int J Parallel Prog

in interleaved flits from multiple packets, depending on the design of the memory
controller this could be significantly worse, or better, for performance. By processing
events in arrival order rather than timing order, this detail would be lost to a Graphite
simulation.

8.4.9 Sniper

Sniper [43] is based on Graphite, with the Pin based functional simulation replaced by
an interval simulation technique. The authors claim that this should provide greater
accuracy for complex architectures than the in-order model which Graphite models.
Unfortunately their accuracy evaluation against a real world Intel Core-2 based system
resulted in, on average, 25% error. This poor accuracy provides strong evidence that
the cycle approximate techniques used by many of these multi-processor simulators
is insufficiently detailed for micro-architectural experimentation. It is also unsuitable
for performance profiling of systems which are extremely timing sensitive, such as
hard-realtime systems.

Sniper claims up to 2 MIPS performance when simulating a 16-core target on an 8-
core host, approximately twice that of Graphite. In part this may be due to differences
in interconnect complexity modelled, and performance of the host machine. Although
simulating quite different architectures, our presented simulator manages over 2MIPS
simulating a coherent 64-core target using only 5 host cores, without sacrificing cycle
accuracy.

8.4.10 Zsim

Another of the instrumentation based ×86 multicore simulators, Zsim at first glance
appears to be the holy grail of large scale manycore system simulation [44]. The paper
presents a simulator apparently capable of simulating up to 1024 cores, with perfor-
mance up to 1123MIPS using a simple coremodel with interconnect contention, while
demonstrating that relative to a 6-core system it can on average provide performance
accuracy of 10% error. It achieves this by running a period simulation between 1 and
10K cycles where core models are processed for all simulated cores, generating mem-
ory events into a shared memory data structure, then running a model of the memory
hierarchy to compute the timing effects, before returning for another period of core
simulation. If your end goal is simply to measure final figure performance on a given
benchmark and simulated system, then this might well be sufficient, and certainly
outperforms the other ×86 instrumentation based simulators such as Sniper. How-
ever unlike full cycle accurate simulators it does not accurately simulate functional
memory ordering within the 1–10K cycle simulation phases, and it assumes that core-
to-core interference events (such as coherence evictions) are rare. This assumption
breaks down with low associativity shared resources, such as lower cache levels or
directories, meaning the simulation will not be accurate to a designer trying to test the
limits of their directory associativity or sizing options. Non cycle-accurate memory
orderings can also severely distort spin-wait style timing statistics, such as the average
time spent waiting on a spin-lock, or at a barrier.

123

Int J Parallel Prog

8.4.11 HP COTSon

HP’s COTSon simulator [45] uses AMD’s SimNow™ for functional modeling and
suffers from some of the same problems as SimFlex [30] and Gems [24].

Monchiero et al. have presented a methodology to simulate shared-memory multi-
processors composed of hundreds of cores [11]. The basic idea is to use thread-level
parallelism in the software system and translate it into core-level parallelism in the
simulated world. The existing COTSon simulator is first augmented to identify and
separate the instruction streams belonging to the different software threads. Then, the
simulator dynamically maps each instruction flow to the corresponding core of the tar-
get multi-core architecture, taking into account the inherent thread synchronisation of
the running applications. This approach treats the functional simulator as a monolithic
block, thus requiring an intermediate step for de-interleaving instructions belonging
to different application threads. Monchiero reports this simulator performs at 1 MIPS
for a single core simulation, scaling down to 0.7 MIPS for 1024 cores.

8.5 FPGA Accelerated Simulation

The two main limitations to FPGA accelerated platforms such as FAST, RAMP Gold,
andProtoFlex, are the cost of anFPGAplatform toperform the simulation, and the limit
to the number of simulatable cores imposed by the limited resources of the FPGA. This
is unlike software simulation, where adding more cores may reduce performance, but
the amount of RAM required to simulate even 1024 cores is well within the constraints
of typical consumer hardware.

8.5.1 ProtoFlex

ProtoFlex [46] achieves reasonably high speed functional multicore simulation per-
formingmost of the simulation in FPGAs. Targeting the SPARCarchitecture ProtoFlex
uses a pipelined core simulation engine called BlueSPARC in FPGA to simulate up
to 16 instances of a SPARC processor model,with the aim to scale up in future by
adding more engines. ProtoFlex supports full system simulation by falling back to a
Simics based simulation when the FPGAmodel cannot simulate some part of the sim-
ulation. This reduction in simulation efficiency can be reduced by using a on-FPGA
embedded or soft processor to run the software fall-back model rather than require the
high-latency communication to the host computer. The 16-core simulation achieves
simulation rates up to 62 MIPS, and even the theoretical 100 MIPS throughput of
the BlueSPARC engine is significantly slower than modern JIT compiled software
simulators (typically several hundred MIPS per core, with results up to 1323 MIPS
per core achieved by the current state of the art [47]).

Being already in-FPGA allows for the memory trace to be easily fed into FACS
FPGA cachemodel, which is capable of modelling the CMP cachemodel at full speed,
except for very memory active periods of simulation, and this allows for high speed
“functional warming” of the cache state for a statistical sampling based cycle accurate
model.

123

Int J Parallel Prog

8.5.2 RAMP Gold

There are several RAMP projects which use FPGAs in various ways for simulation,
but the most recent and relevant is the RAMPGold [48] project. This uses an FPGA to
perform cycle accurate simulation of multicore and manycore CMP architectures, and
is able to simulate up to 64 cores on a relatively cheap Xilinx Virtex-5 FPGA. The two
main in-FPGAcomponents are a functionalmodel of the cores,which timemultiplexes
the multiple instances of the simulated core, sharing memory and cache resources
between the models, and a separate timing model. The timing model performs the
micro-architectural simulation for each of the simulated cores, and the timing model
of thememoryhierarchy (i.e. tags only, nodata). The timingmodel drives the functional
model’s scheduler so that threads are scheduled in the correct order, but because data
is only actually cached in a single cache shared by all models, RAMP Gold cannot
simulate memory constancy models which violate sequential consistency.

In functional-only mode, RAMP Gold achieves a throughput of up to 100 MIPS
when the number of target cores can cover the functional pipeline depth. Like RAMP
Gold when functional simulation is compared to the peak performance of software-
only simulation the performance of the FPGAarchitecture simulation is disappointing.
However the close to 50 MIPS [48] performance for a 64-core, cache coherent, cycle
accurate simulation is currently beyond the limits of software only simulation.

8.5.3 FAST

Another FPGA based simulation system, the FAST project [2,9,10], is one of the
fastest cycle accurate simulators that can really claim to be cycle accurate. It does
this by performing functional simulation of each core in a high speed functional only
simulator (QEMU [40]), and feeding the resulting instruction trace into a high speed
timing model, implemented in a FPGA. The FPGA model simulates the pipeline for
each core, along with the memory hierarchy, and contains the true memory state of the
system, or Oracle Memory as the authors refer to it, from which the software models
use cached regions to simulate ahead.

To enable full decoupling of the functional simulations and the timing model,
checkpointing snapshots are used, with speculative run-ahead and roll-back, to ensure
timing-accurate functional correctness from the functional simulation.

Unfortunately, like the other FPGA based simulators, FAST has not been demon-
strated above 64 cores, and total system simulation size is limited by the size of the
available FPGA.

8.6 GPGPU Simulation

One of the most interesting parallel simulators, is the CUDA based GPGPU simula-
tion of ARM multicore processors by Pinto et al. [49]. This simulator uses a Nvidia
GPU, running a Cuda kernel which implements the instruction set simulator, cache
model, and simple interconnect model. Despite executing the simulation in lockstep, it
provides simulation rates up to 1800MIPS for a 8192-core simulation. When adding a

123

Int J Parallel Prog

simple switch arbitrationmodel the simulation rate drops to approximately 1MIPS for
32-core simulation up to 50 MIPS for a 4096-core simulation, with single instruction
synchronisation.

Although it currently only supports a subset of theARM ISA and functional simula-
tion, a large NoC model is highly amenable to GPGPU acceleration. Communication
bottlenecks are too high to currently run the core simulation on the CPU and intercon-
nect on the GPU, but moving the whole simulation onto GPU architectures could be
a promising way forward for cycle accurate manycore simulators in the future.

9 Conclusion

Having demonstrated simulation speeds of up to 377MIPS, with an average execution
time error of only 2.1% relative to hardware reference implementations, the presented
simulator clearly provides a flexible, powerful tool for embedded systems develop-
ment. With unrivalled performance for software based, multicore, full system, cycle
accurate simulation the simulator is not only useful for application development (for
timing accurate functional behaviour, debugging, and performance evaluation) but
also large scale design space exploration. This was leveraged to perform over 20,000
simulations on a shared cluster service in under three weeks.

This was achieved through novel exploitation of the cache-incoherent nature of
embedded systems to decouple simulation componentswith significant slack, allowing
for efficient parallelism. The performance potential was only fully realisable through
the presented packet tracking and counting optimisation techniques, which, alongwith
the cache efficient interconnect model and cycle skipping techniques, allows the NoC
based interconnect simulation to keep upwith the high speed parallel core simulations.

We have also shown that by adding efficient user-space multi-threading these
same interconnect modelling optimisations can enable efficient high-speed simula-
tion, including detailed traffic and energy statistics collection, of very large scale
coherent systems with embedded processor cores. Examples might be found on a
high-compute-density parallel-accelerator or future data-centre processor, and such a
simulator would be invaluable in their design.

Our approach is generally applicable to other architectures, although extreme care
must be taken with modelling of speculative, superscalar, and simultaneous multi-
threading processors, which can continue execution while multiple memory requests
are pending. These will usually have to synchronizemore frequently with the intercon-
nectmodel, and as suchwould benefit from the userspace-context switching introduced
in the coherent simulation section.

There has been futher work with both the cache-incoherent and coherent simula-
tors, including techniques for optimising the simulation of synchronising workloads
onmulti andmanycore systems. Alongwith architectural andmicroarchitectural inno-
vations explored using the simulation infrastructure, there is also demonstration of the
sort of machine-learning prediction that can be enabled with the large datasets that
can be rapidly generated by such fast simulators. These can be found in the PhD thesis
which developed from this work [16].

123

Int J Parallel Prog

Acknowledgements This work has made use of the resources provided by the Edinburgh Compute and
Data Facility (ECDF) [25].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Texas Instruments: DRA72x Infotainment Applications Processor Silicon Revision 2.0 Datasheet.
http://www.ti.com/lit/ds/symlink/dra726.pdf (2017)

2. Chiou, D., Angepat, H., Patil, N., Sunwoo, D.: Accurate functional-first multicore simulators. IEEE
Comput. Archit. Lett. 8, 64–67 (2009)

3. ARM: AMBA AXI Protocol Specification, March (2004)
4. The University of Edinburgh, PASTA-2 Receives £1.2m Funding from EPSRC. http://www.icsa.

informatics.ed.ac.uk/compilers/news_20104010.html (2010)
5. Chen, J., Annavaram, M., Dubois, M.: SlackSim: a platform for parallel simulations of CMPs on

CMPs. SIGARCH Comput. Archit. News 37, 20–29 (2009)
6. Böhm, I., Franke, B., Topham, N.: Cycle-accurate performance modelling in an ultra-fast just-in-time

dynamic binary translation instruction set simulator. In: 2010 International Conference on Embedded
Computer Systems (SAMOS), pp. 1–10 (2010)

7. Almer, O., Bohm, I., vonKoch, T., Franke, B., Kyle, S., Seeker, V., Thompson, C., Topham,N.: Scalable
multi-core simulation using parallel dynamic binary translation. In: 2011 International Conference on
Embedded Computer Systems (SAMOS), pp. 190 –199 (2011)

8. Lee, J., Kim, J., Jang, C., Kim, S., Egger, B., Kim, K., Han, S.: Facsim: a fast and cycle-accurate
architecture simulator for embedded systems. In: Proceedings of the 2008 ACM SIGPLAN-SIGBED
conference on Languages, Compilers, and Tools for Embedded Systems, LCTES ’08, pp. 89–100.
ACM, New York, NY (2008)

9. Chiou, D., Sunwoo, D., Kim, J., Patil, N.A., Reinhart, W., Johnson, D.E., Keefe, J., Angepat, H.: Fpga-
accelerated simulation technologies (fast): fast, full-system, cycle-accurate simulators. In: Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pp. 249–
261. IEEE Computer Society, Washington, DC (2007)

10. Chiou, D., Sunwoo, D., Angepat, H., Kim, J., Patil, N., Reinhart, W., Johnson, D.: Parallelizing com-
puter system simulators. In: IPDPS 2008. IEEE International Symposium on Parallel and Distributed
Processing, pp. 1 –5 (2008)

11. Monchiero, M., Ahn, J.H., Falcón, A., Ortega, D., Faraboschi, P.: How to simulate 1000 cores.
SIGARCH Comput. Archit. News 37, 10–19 (2009)

12. Accellera: TLM-2.0 Reference Manual. http://www.accellera.org/downloads/standards/systemc
(2009)

13. T.E.M.B. Consortium: MultiBench 1.0 Multicore Benchmark Software (2010)
14. Mello, A., Maia, I., Greiner, A., Pecheux, F.: Parallel simulation of systemc tlm 2.0 compliant MPsoc

on SMP workstations. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp.
606–609 (2010)

15. Butko, A., Garibotti, R., Ost, L., Sassatelli, G.: Accuracy evaluation of GEM5 simulator system.
In: 2012 7th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), pp. 1 –7 (2012)

16. Thompson, C.: On the Simulation and Design of Manycore CMPs. PhD thesis, The University of
Edinburgh (2015)

17. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs: characterization
and methodological considerations. In: Proceedings of the 22nd annual Int’l Symposium on Computer
Architecture, ISCA ’95, pp. 24–36. ACM, New York, NY (1995)

18. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J., Larsson, F.,
Moestedt, A., Werner, B.: Simics: A full system simulation platform. Computer 35, 50–58 (2002)

19. Lantz, R.: Fast functional simulation with parallel Embra. In: Proceedings of the 4th AnnualWorkshop
on Modeling, Benchmarking and Simulation (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://www.ti.com/lit/ds/symlink/dra726.pdf
http://www.icsa.informatics.ed.ac.uk/compilers/news_20104010.html
http://www.icsa.informatics.ed.ac.uk/compilers/news_20104010.html
http://www.accellera.org/downloads/standards/systemc

Int J Parallel Prog

20. Lantz, R.: Parallel SimOS: Scalability and performance for large system simulation. www-cs.stanford.
edu (2007)

21. Wang,K., Zhang,Y.,Wang,H., Shen, X.: Parallelization of IBMMambo system simulator in functional
modes. ACM SIGOPS Oper. Syst. Rev. 42(1), 71–76 (2008)

22. Sui, X., Wu, J., Yin, W., Zhou, D., Gong, Z.: MALsim: A functional-level parallel simulation platform
for CMPs. In: 2nd International Conference on Computer Engineering and Technology (ICCET), vol.
2, p. V2. IEEE (2010)

23. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower, D.R.,
Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The
gem5 simulator. SIGARCH Comput. Archit. News 39, 1–7 (2011)

24. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore,
K.E., Hill,M.D.,Wood, D.A.:Multifacet’s general execution-drivenmultiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News 33, 92–99 (2005)

25. The edinburgh compute and data facility (ECDF): http://www.ecdf.ed.ac.uk (2015)
26. Zhu, X., Qin,W.,Malik, S.:Modeling operation andmicroarchitecture concurrency for communication

architectures with application to retargetable simulation. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 14, 707–716 (2006)

27. Burger, D., Austin, T.M.: The SimpleScalar tool set, version 2.0. SIGARCH Comput. Archit. News
25, 13–25 (1997)

28. Zhong, R., Zhu, Y., Chen, W., Lin, M., Wong, W.-F.: An inter-core communication enabled multi-core
simulator based on simplescalar. In: International Conference on Advanced Information Networking
and Applications Workshops, vol. 1, pp. 758–763 (2007)

29. Accellera: SystemC. http://www.accellera.org/downloads/standards/systemc (2015)
30. Hardavellas, N., Somogyi, S.,Wenisch, T.F.,Wunderlich, R.E., Chen, S., Kim, J., Falsafi, B., Hoe, J.C.,

Nowatzyk, A.G.: SimFlex: a fast, accurate, flexible full-system simulation framework for performance
evaluation of server architecture. SIGMETRICS Perform. Eval. Rev. 31, 31–34 (2004)

31. Zheng, G., Kakulapati, G., Kalé, L.V.: BigSim: A parallel simulator for performance prediction of
extremely large parallel machines. In: International Parallel and Distributed Processing Symposium,
vol. 1, p. 78 (2004)

32. Kanaujia, S., Papazian, I.E., Chamberlain, J., Baxter, J.: FastMP: amulti-core simulationmethodology.
In: Proceedings of the Workshop on Modeling, Benchmarking and Simulation (MoBS 2006), Boston,
MA (2006)

33. Reinhardt, S.K., Hill, M.D., Larus, J.R., Lebeck, A.R., Lewis, J.C., Wood, D.A.: The wisconsin wind
tunnel: virtual prototyping of parallel computers. In: Proceedings of the 1993 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’93, pp. 48–60.
ACM, New York, NY (1993)

34. Mukherjee, S.S., Reinhardt, S.K., Falsafi, B., Litzkow, M., Hill, M.D., Wood, D.A., Huss-Lederman,
S., Larus, J.R.:WisconsinWind Tunnel II: a fast, portable parallel architecture simulator. IEEEConcurr
8, 12–20 (2000)

35. Ren, P., Lis, M., Cho, M.H., Shim, K.S., Fletcher, C., Khan, O., Zheng, N., Devadas, S.: HORNET: a
cycle-level multicore simulator. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31, 890–903
(2012)

36. Luk, C.-K., Cohn, R.,Muth, R., Patil, H., Klauser, A., Lowney, G.,Wallace, S., Reddi, V.J., Hazelwood,
K.: Pin: building customized program analysis tools with dynamic instrumentation. In: Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’05, pp. 190–200. ACM, New York, NY (2005)

37. Kahng, A.B., Li, B., Peh, L.-S., Samadi, K.: ORION 2.0: a fast and accurate NoC power and areamodel
for early-stage design space exploration. In: Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’09, pp. 423–428. European Design and Automation Association, Leuven,
Belgium (2009)

38. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan, D.: Temperature-
aware microarchitecture: modeling and implementation. ACM Trans. Archit. Code Optim. 1, 94–125
(2004)

39. Patel, A., Afram, F., Chen, S., Ghose, K.: MARSS: A full system simulator for multicore x86 CPUs.
In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pp. 1050–1055 (2011)

40. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the 2005 USENIX
Annual Technical Conference, ATEC ’05, pp. 41–41. USENIX Association, Berkeley, CA (2005)

123

www-cs.stanford.edu
www-cs.stanford.edu
http://www.ecdf.ed.ac.uk
http://www.accellera.org/downloads/standards/systemc

Int J Parallel Prog

41. Intel Xeon Phi Product Family: http://intel.com/xeonphi (2015)
42. Miller, J., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C., Eastep, J., Agarwal, A.:

Graphite: a distributed parallel simulator for multicores. In: 2010 IEEE 16th International Symposium
on High Performance Computer Architecture (HPCA), pp. 1 –12 (2010)

43. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and
accurate parallel multi-core simulations. In: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC (2011)

44. Sanchez, D., Kozyrakis, C.: Zsim: fast and accurate microarchitectural simulation of thousand-core
systems. In: Proceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pp. 475–486. ACM, New York, NY (2013)

45. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., Ortega, D.: COTSon: infrastructure for full
system simulation. SIGOPS Oper. Syst. Rev. 43, 52–61 (2009)

46. Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Mai, K., Falsafi, B.: ProtoFlex: towards
scalable, full-system multiprocessor simulations using FPGAs. ACM Trans. Reconfigurable Technol.
Syst. 2, 15:1–15:32 (2009)

47. Spink, T., Wagstaff, H., Franke, B., Topham, N.: Efficient code generation in a region-based dynamic
binary translator. In: Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems, LCTES ’14, pp. 3–12. ACM, New York, NY (2014)

48. Tan, Z., Waterman, A., Avizienis, R., Lee, Y., Cook, H., Patterson, D., Asanović, K.: RAMP gold: an
FPGA-based architecture simulator formultiprocessors. In: Proceedings of the 47thDesignAutomation
Conference, DAC ’10, pp. 463–468. ACM, New York, NY (2010)

49. Pinto, C., Raghav, S.,Marongiu,A., Ruggiero,M.,Atienza,D., Benini, L.: GPGPU-accelerated parallel
and fast simulation of thousand-core platforms. In: 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 53–62 (2011)

123

http://intel.com/xeonphi

	High Speed Cycle-Approximate Simulation of Embedded Cache-Incoherent and Coherent Chip-Multiprocessors
	Abstract
	1 Introduction
	1.1 A Note on Terminology

	2 Cache-Incoherent Target Platform
	3 Motivation and Innovation
	4 Simulator Implementation
	4.1 Details of the NoC Interconnect
	4.2 Modeling the NoC Interconnect
	4.3 Simulation Challenges

	5 Performance Evaluation
	6 Accuracy Evaluation
	7 Cache-Coherent Simulation
	7.1 Target Platform
	7.2 Simulation Details
	7.3 Coherent Performance

	8 Related Work
	8.1 Functional Simulators
	8.1.1 Simics
	8.1.2 Parallel Embra
	8.1.3 Mambo & MalSim

	8.2 Cycle Accurate Simulators
	8.2.1 GEM5
	8.2.2 ARMn
	8.2.3 SimpleScalar

	8.3 Loosely Timed and Flexible Simulators
	8.3.1 SystemC
	8.3.2 SimFlex

	8.4 Parallel Relaxed System Simulators
	8.4.1 BigSim
	8.4.2 FastMP
	8.4.3 Wisconsin Wind Tunnel
	8.4.4 Hornet
	8.4.5 Marss
	8.4.6 SlackSim
	8.4.7 FaCSim
	8.4.8 Graphite
	8.4.9 Sniper
	8.4.10 Zsim
	8.4.11 HP COTSon

	8.5 FPGA Accelerated Simulation
	8.5.1 ProtoFlex
	8.5.2 RAMP Gold
	8.5.3 FAST

	8.6 GPGPU Simulation

	9 Conclusion
	Acknowledgements
	References

