331 research outputs found

    Deep Learning Systems for Advanced Driving Assistance

    Full text link
    Next generation cars embed intelligent assessment of car driving safety through innovative solutions often based on usage of artificial intelligence. The safety driving monitoring can be carried out using several methodologies widely treated in scientific literature. In this context, the author proposes an innovative approach that uses ad-hoc bio-sensing system suitable to reconstruct the physio-based attentional status of the car driver. To reconstruct the car driver physiological status, the author proposed the use of a bio-sensing probe consisting of a coupled LEDs at Near infrared (NiR) spectrum with a photodetector. This probe placed over the monitored subject allows to detect a physiological signal called PhotoPlethysmoGraphy (PPG). The PPG signal formation is regulated by the change in oxygenated and non-oxygenated hemoglobin concentration in the monitored subject bloodstream which will be directly connected to cardiac activity in turn regulated by the Autonomic Nervous System (ANS) that characterizes the subject's attention level. This so designed car driver drowsiness monitoring will be combined with further driving safety assessment based on correlated intelligent driving scenario understanding

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Human-vehicle collaborative driving to improve transportation safety

    Get PDF
    This dissertation proposes a collaborative driving framework which is based on the assessments of both internal and external risks involved in vehicle driving. The internal risk analysis includes driver drowsiness detection, driver distraction detection, and driver intention recognition which help us better understand the human driver's behavior. Steering wheel data and facial expression are used to detect the drowsiness. Images from a camera observing the driver are used to detect various types of driver distraction by using the deep learning approach. Hidden Markov Models (HMM) is implemented to recognize the driver's intention using the vehicle's laneposition, control and state data. For the external risk analysis, the co-pilot utilizes a Collision Avoidance System (CAS) to estimate the collision probability between the ego vehicle and other vehicles. Based on these two risk analyses, a novel collaborative driving scheme is proposed by fusing the control inputs from the human driver and the co-pilot to obtain the final control input for the vehicle under different circumstances. The proposed collaborative driving framework is validated in an Intelligent Transportation System (ITS) testbed which enables both autonomous and manual driving capabilities

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

    Get PDF
    In response to the growing urban population, smart cities are designed to improve people\u27s quality of life by implementing cutting-edge technologies. The concept of a smart city refers to an effort to enhance a city\u27s residents\u27 economic and environmental well-being via implementing a centralized management system. With the use of sensors and actuators, smart cities can collect massive amounts of data, which can improve people\u27s quality of life and design cities\u27 services. Although smart cities contain vast amounts of data, only a percentage is used due to the noise and variety of the data sources. Information and communication technology (ICT) and the Internet of Things (IoT) play a far more prominent role in developing smart cities when it comes to making choices, designing policies, and executing different methods. Smart city applications have made great strides thanks to recent advances in artificial intelligence (AI), especially machine learning (ML) and deep learning (DL). The applications of ML and DL have significantly increased the accuracy aspect of decision-making in smart cities, especially in analyzing the captured data using IoT-based devices and sensors. Smart cities employ algorithms that use unlabeled and labeled data to manage resources and deliver individualized services effectively. It has instantaneous practical use in many crucial areas, including smart health, smart environment, smart transportation system, energy management, and smart water distribution system in a smart city. Hence, ML and DL have become hot research topics in AI techniques in recent years and are proving to be accurate optimization techniques in smart cities. In addition, artificial intelligence algorithms enable the processing massive datasets and identify patterns and characteristics that would otherwise go unnoticed. Despite these advantages, researchers\u27 skepticism of AI\u27s sometimes mysterious inner workings has prevented it from being widely used for smart cities. This thesis\u27s primary intent is to explore the value of employing diverse AI and ML techniques in developing smart city-centric domains and investigate the efficacy of these proposed approaches in four different aspects of the smart city such as smart energy, smart transportation system, smart water distribution system and smart environment. In addition, we use these machine learning approaches to make a data analytics and visualization unit module for the smart city testbed. Internet-of-Things-based machine learning approaches in diverse aspects have repeatedly demonstrated greater accuracy, sensitivity, cost-effectiveness, and productivity, used in the built-in Virginia Commonwealth University\u27s real-time testbed

    Systems engineering approaches to safety in transport systems

    Get PDF
    openDuring driving, driver behavior monitoring may provide useful information to prevent road traffic accidents caused by driver distraction. It has been shown that 90% of road traffic accidents are due to human error and in 75% of these cases human error is the only cause. Car manufacturers have been interested in driver monitoring research for several years, aiming to enhance the general knowledge of driver behavior and to evaluate the functional state as it may drastically influence driving safety by distraction, fatigue, mental workload and attention. Fatigue and sleepiness at the wheel are well known risk factors for traffic accidents. The Human Factor (HF) plays a fundamental role in modern transport systems. Drivers and transport operators control a vehicle towards its destination in according to their own sense, physical condition, experience and ability, and safety strongly relies on the HF which has to take the right decisions. On the other hand, we are experiencing a gradual shift towards increasingly autonomous vehicles where HF still constitutes an important component, but may in fact become the "weakest link of the chain", requiring strong and effective training feedback. The studies that investigate the possibility to use biometrical or biophysical signals as data sources to evaluate the interaction between human brain activity and an electronic machine relate to the Human Machine Interface (HMI) framework. The HMI can acquire human signals to analyse the specific embedded structures and recognize the behavior of the subject during his/her interaction with the machine or with virtual interfaces as PCs or other communication systems. Based on my previous experience related to planning and monitoring of hazardous material transport, this work aims to create control models focused on driver behavior and changes of his/her physiological parameters. Three case studies have been considered using the interaction between an EEG system and external device, such as driving simulators or electronical components. A case study relates to the detection of the driver's behavior during a test driver. Another case study relates to the detection of driver's arm movements according to the data from the EEG during a driver test. The third case is the setting up of a Brain Computer Interface (BCI) model able to detect head movements in human participants by EEG signal and to control an electronic component according to the electrical brain activity due to head turning movements. Some videos showing the experimental results are available at https://www.youtube.com/channel/UCj55jjBwMTptBd2wcQMT2tg.openXXXIV CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Ingegneria dei sistemiZero, Enric

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system
    • …
    corecore