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Abstract 

Driving a car is a complex, multifaceted and potentially risky activity requiring full 

mobilization of physiological and cognitive resources. Drowsiness leads to a decline in cognitive 

performance, being the cause of many driving accidents. In multiple European countries drowsy 

driving accounts for 10 to 30 % of all road accidents. A solution to this problem is the inclusion 

of Advanced Driver Assistance Systems in vehicles that can warn the driver if sleepiness is 

detected. 

In order to detect drowsiness, subjective, vehicle-based, behavioral (visual based), 

physiologic and hybrid methods are used. Hybrid methods consist in a fusion of the previous 

ones and are, arguably, the most promising approach to efficiently detect drowsiness as it 

combines the strengths of the different methods. However, the individual limitations of each 

still need to be overcome, as the intrusive conditions needed to properly acquire a physiologic 

signal, generally considered the more reliable to detect drowsiness. 

This thesis focus on detecting drowsiness using non-intrusive measures, as it is the most 

promising solution to use on a real life application. As such, one of the goals was to assess if 

the performance of a drowsiness detector based in non-intrusive behavioral measures was 

comparable to a detector based in a physiologic intrusive signal (EOG).  

Using the measures from a large validated dataset (SleepEye), acquired in an experimental 

field study in real traffic on real roads, and applying a supervised machine learning 

classification problem it was concluded that the extracted video features (head orientation, 

eyelid opening, pupil diameter and gaze direction) performance was similar to the obtained 

using only EOG. Specifically, the best results have an accuracy, with a total of 17 video features 

and for multiple classifiers, of roughly 84% for a binary problem categorization (‘awake’ vs 

‘drowsy’) and 73% for a three class problem (‘awake’ vs ‘medium’ vs ‘drowsy’). 

In view of the potential of a hybrid methodology, several experiments were done, using the 

same dataset, combining video (17 features) with ECG (16 features). The best accuracy result, 

similar for multiple classifiers, was close to 89 %. Again, the two class problem was better than 

the three class by around 10%. Other elaborated strategies as classifier combination, 

imbalanced data and sequential data approaches were also tested but no considerable 
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improvements were obtained, supporting that, likely, the obtained results are the limit of what 

is achievable with this dataset or with the selected features.  

Due to the restrictions of the first dataset, that is, only measures already extracted were 

available without direct access to the raw video source, an experimental work was developed 

to allow an enriched measure extraction from video. Specifically, the developed framework 

allows the extraction of additional drowsiness related measures by analyzing the drivers face 

with a standard camera that can be easily implemented in a real life application. However, 

further generalization of the algorithm to different light conditions and camera positioning still 

need to be researched.  

In summary, using a non-intrusive drowsiness detection system is the most promising 

direction to build a real life applicable solution. A solution that could be enhanced by taking 

advantage of different methods, i.e., a hybrid system.  

 

Keywords: Drowsiness detection, physiologic measures, behavioral measures, non- 

intrusive hybrid system, machine learning, computer vision. 
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Resumo 

Conduzir um carro é uma atividade complexa, multifacetada e potencialmente arriscada 

que requer a utilização de recursos fisiológicos e cognitivos na sua totalidade. A sonolência leva 

a um declínio no desempenho cognitivo, sendo a causa de muitos acidentes de viação. Em vários 

países europeus, a condução sonolenta é responsável por 10 a 30% de todos os acidentes 

rodoviários. Uma solução para este problema é a inclusão em veículos de sistemas de deteção 

de sonolência para alertar o motorista se esta for detetada. 

Para detetar a sonolência, são utilizados métodos subjetivos, métodos baseados em 

veículos, no comportamento dos condutores, fisiológicos e híbridos. Os métodos híbridos 

consistem numa fusão dos restantes e são, questionavelmente, a abordagem mais promissora 

para detetar eficientemente a sonolência, uma vez que combina as vantagens dos diferentes 

métodos. No entanto, as limitações individuais de cada um necessitam de ser superadas, como 

é o caso das condições intrusivas necessárias para adquirir adequadamente sinais fisiológicos, 

geralmente considerados os mais fidedignos para detetar sonolência. 

Esta tese foca-se na deteção de sonolência usando medidas não-intrusivas, visto ser a forma 

mais promissora para usar numa aplicação em condições reais. Como tal, um dos objetivos foi 

avaliar se o desempenho de um detetor de sonolência baseado em medidas comportamentais, 

não intrusivas, era comparável a um detetor baseado num sinal fisiológico (EOG), intrusivo. 

Usando as medidas de um dataset autenticado (SleepEye), adquirido num estudo de 

condução naturalista, e aplicando um problema supervisionado de classificação de machine 

learning, foi possível concluir que o desempenho usando medidas visuais (orientação da cabeça, 

abertura das pálpebras, diâmetro da pupila e direção do olhar) é semelhante ao obtido usando 

apenas o sinal de EOG. Concretamente, os melhores resultados, obtidos com um total de 17 

características de vídeo e para diferentes classificadores, tem uma precisão, 

aproximadamente, de 84% para uma divisão binária do problema ('acordado' vs 'sonolento') e 

73% para um problema de três classes ('acordado' vs 'médio' vs 'sonolento'). 

Tendo em conta a potencialidade de uma metodologia híbrida, foram realizados diversos 

testes, utilizando o mesmo conjunto de dados, combinando vídeo (17 características) com ECG 

(16 características). O melhor resultado, semelhante para vários classificadores, foi cerca de 
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89%. Novamente, a divisão binária do problema foi cerca de 10% melhor do que a divisão em 

três classes. Outras estratégias como combinação de classificadores, imbalancing approaches e 

de dados sequenciais foram também testadas, mas nenhuma melhoria considerável foi obtida, 

concluindo-se que, provavelmente, os resultados obtidos são o limite do que é alcançável com 

este conjunto de dados ou com as características selecionadas. 

Devido às restrições do primeiro dataset, ou seja, apenas medidas já extraídas estavam 

disponíveis, sem possibilidade de acesso direto aos videos originais, um trabalho experimental 

foi desenvolvido para permitir a extração de medidas adicionais indicadoras de sonolência. O 

framework desenvolvido permite a extração destas medidas, analisando a face dos motoristas 

com uma câmara standard que pode ser facilmente introduzida num veículo. Apesar de 

promissor, algumas limitações ainda estão presentes, nomeadamente, o algoritmo desenvolvido 

necessita de maior robustez face a diferentes condições de luminosidade e posicionamento da 

câmara. 

Em suma, usar um sistema de deteção de sonolência baseado em métodos de aquisição não 

intrusivos é a direção mais promissora para construir uma solução aplicável em condições reais. 

Uma solução que poderá beneficiar da combinação de diferentes métodos, ou seja, um sistema 

híbrido. 

 

Palavras-chave: Deteção de sonolência, medidas fisiológicas, comportamento condutor, 

sistema híbrido não intrusivo, machine learning, visão computacional. 
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Chapter 1  

Introduction 

1.1 Context and motivation 

Driving a car is a complex, multifaceted and potentially risky activity requiring full 

mobilization of physiological and cognitive resources to maintain performance over time. Any 

loss of these resources can have dramatic consequences, namely accidents [1]. 

Most people are aware of the dangers of driving while intoxicated, but many do not know 

that drowsiness also impairs judgment, performance and reaction times just like alcohol and 

drugs. Studies show that being awake for more than 20 hours results in an impairment equal to 

a blood alcohol concentration of 0.08%, the legal limit in the United States [2]. 

A report from U.S. National Highway Traffic Safety Administration (NHTSA) [3], stated that 

drowsy driving was reportedly involved in 2.3 to 2.5% of all fatal crashes nationwide from 2011 

through 2015. In 2015, 2.3% (824) of the fatalities that occurred on U.S. roadways are reported 

to have involved drowsy driving. Also, according to data from Australia, England, Finland, and 

other European nations, all of whom have more consistent crash reporting procedures than the 

U.S., drowsy driving represents 10 to 30 percent of all crashes [4]. 

In summary, the impact of drowsy driving in traffic accidents is of known severity and, as 

so, a problem that needs to be solved. 

Still, with the current investment being made in autonomous cars by every major car 

manufacture, thus planning a future of self-driven cars [5], the study of this problem could be 

considered unnecessary. 

However, the following analysis to the car automation process needs to be considered. Car 

automation can be grouped into six levels, where the first level (zero) describes a car with no 

autonomy and the last level (five), a fully autonomous car [6]. 

First, currently, there are broadly available only vehicles with level two of automation, 

that is, cars that have advanced driver assistance systems (ADAS), the vehicle can itself actually 

control both steering and braking/accelerating simultaneously under some restricted 

circumstances. 

Secondly, while level three and four automation systems, that is Automated Driving Systems 

(ADS) where the vehicle can itself perform all aspects of the driving task under some 

circumstances, are expected to be gradually introduced over the next few years, the driver 

may still need to take to control of the vehicle after a long period of non-driving. Indeed, driver 
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handover strategies is currently an area of big interest, in which, drowsiness plays a major role 

[7], only empathizing the critical necessity to further explore drowsy driving. 

Lastly, the level five of automation is only expected to be available, in the best scenario, 

at least after 2025 [6], meaning that the transition between manual and full autonomous driving 

will be slow and a substantial proportion of the population will still drive non full automated 

cars for a significant number of years. 

1.2 Challenges and goals 

Drowsiness is related to a natural physiological need, as so, it simply cannot be eliminated 

[8]. For this reason, the current developed works approach the problem by monitoring and 

alerting the driver when they are drowsy or in a distracted state [9].  

Multiple researches have already been done in this field, common techniques include 

monitoring the vehicle state, analyzing driver behavior or driver physiologic signals [10]. 

Vehicle monitoring correlation with driving drowsy has been shown [11], [12], and some 

cars manufacturers use this technique to evaluate driver drowsiness, as Volkswagen [13], 

Mercedes (MERCEDES Attention Assist™) [14] and Volvo (Driver Alert Control) [15]. However, 

vehicle-based measures are too dependent on road conditions [10].  

Driver behavior monitored by a camera provides efficient measures, yawning, blinking and 

head orientation are all good indicators of a driver’s fatigue level [16]. Based on this technique, 

car suppliers like Bosch [17] and NVidia [18] are developing driver drowsiness detection 

systems. Typically, these method’s disadvantages are the dependence on proper lighting 

conditions and high difficulty in analyzing some features when the driver uses some object as 

glasses [19]. 

A more efficient approach is analyzing driver physiologic features, as they have high 

accuracy and allow an early drowsiness detection (physiological signals start to change in 

earlier stages of drowsiness) [8]. The biggest limitation using physiological signals is that they 

are usually acquired using intrusive methods [19] and although some approaches have been 

made to acquire signal using non-intrusive systems, loss of signal quality is still significant [20]. 

CardioID Technologies [21], Plessey [22] and StopSleep UK [23] are examples of companies that 

develop non-intrusive solutions to detect driver drowsiness based on physiologic signals. 

In order to overcome the disadvantages of the different methods, some researches present 

as solution a fusion of different measurement types, creating a hybrid driver drowsiness 

detection system. Although the number of studies combining several types of measurement 

types is still reduced, current studies suggest that a combination of the three types of 

methods—behavioral, physiological and vehicle-based—is a promising avenue worth pursuing in 

the development of real-world, vehicle-mounted, driver drowsiness detection solution [8]. 

The overall challenge is ambitious: not only detecting, but also predicting, degradation in 

the driver’s operational state [20]. 

Considering all the above mentioned, the main purpose of this work is developing 

algorithms to create an accurate drowsiness detection system, with high relevance for methods 

that do not require intrusive acquisition systems, thus contemplating a valid introduction in a 

real world application. Combination of multiple drowsiness detection methods should also be 

assessed. Ultimately, the goal is leading to safer driving conditions and reduction in drowsy 

driving associated accidents.
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1.3 Contributions 

In summary, the developed work contributes to the driver drowsiness detection field in the 

following aspects: 

 

• Through a detailed literature analysis, present a clear explanation of the drowsiness 

concept and its causes, a review of state of the art methods for drowsiness detection both in 

scientific and commercial solutions, as well as, used experimental setups. 

 

• Compare, using a large and validated dataset, containing more than 40 hours of driving 

data collected under a naturalist driving study, the drowsiness detection performance between 

non-invasive behavioral measures and invasive physiologic signals, as the ECG and EOG. 

 

• Analyze a series of machine learning strategies that could be used to improve the 

overall drowsiness detection capability independently of the used features, but focusing on a 

multimodal approach, which is still not properly studied. 

 

• Developing an experimental procedure, to easily allow the extraction of a high amount 

of driver drowsiness related features using a standard camera.  

1.4 Thesis outline 

Besides the current chapter, this document has four chapters.  

The next chapter (Chapter 2) is a revision of the state of the art of driver drowsiness 

detection. Within this chapter, first, a clarification of the drowsiness concept and the causes 

that most contribute to a drowsy state is presented, followed by a revision of the main 

techniques used to detect drowsiness in scientific and commercial solutions. A summary of the 

main experimental setups used to conduct drowsiness detection studies and performance 

measures is also presented. 

The third chapter (Chapter 3) reports the developed work using a supervised machine 

learning approach to classify the driver drowsiness state. This includes extracted features, 

tested classifiers and several machine learning strategies that are used to improve the 

detection performance. 

The fourth chapter (Chapter 4) explains the exploratory framework developed in order to 

extract drowsiness related measures using a standard camera.  

Lastly, in the fifth chapter (Chapter 5), the project main conclusions and future work 

suggestions are discussed. 
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Chapter 2  

Literature review 

In this chapter, first a clarification of the drowsiness concept and its causes are addressed, 

followed by a review of state of the art methodologies for drowsiness detection, including 

commercial solutions. The experimental setups and typical evaluation methodologies are also 

discussed.  

2.1 Driver drowsiness 

Sleep is an active period in which a lot of essential processing, restoration, and 

strengthening occurs [24]. It is a ubiquitous biological imperative process that appears to be 

evolutionarily conserved across species [25]. 

This process takes place in repeating cycles, averaging 90 minutes, and in each cycle the 

body alternates between two distinct modes: rapid eye movement (REM) sleep, the last part 

of the sleep cycle where typically dreams occur, and non-REM sleep, which consists of three 

separate stages [10], [26]: 

 

Stage I: transition from awake to asleep; 

Stage II: light sleep; 

Stages III: deep sleep. 

 

These stages can be distinguished by measuring electrical activity in the brain with 

electroencephalography (EEG) or the eye movements via electrooculography (EOG) or muscle 

activity via electromyography (EMG). 

Drowsiness is a transitional state between wakefulness and sleep (stage I) in which the 

“sleep onset process” has already begun, albeit intermittently, and is likely to proceed to sleep 

[27], [28], [29]. During this phase a reduction in vigilance (alertness) and performance is often 

observed. 

In the context of the traffic safety and transportation field, the term drowsiness is often 

used interchangeably with sleepiness and fatigue, although having different meanings in 

research and clinical settings [4], [30], [31]. 
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Specifically, sleepiness is a more subjective concept than drowsiness. Usually it refers to 

the physiological drive to sleep, that is, it can be considered as a measure of a subject’s 

tendency at a particular time to doze or fall asleep, at least briefly [4], [27], [30]. 

Fatigue is a multidimensional construct that has been difficult for researchers to define 

[32], but typically is described as a global reduction in physical or mental arousal that results 

in a performance deficit and a reduced capacity of performing a task [30]. 

A person can be fatigued without being sleepy/drowsy, but a person cannot be sleepy 

without being fatigued [30]. It can be inferred that drowsiness/sleepiness is a consequence of 

fatigue [11]. Driver fatigue can be subcategorized into sleep-related (SR) and task-related (TR) 

fatigue based on the causal factors contributing to the fatigued state [32]. Figure 2.1, adapted 

from [32], illustrates this division, the types of fatigue, their causes, consequences and 

interactions. 

 

SR fatigue is mainly influenced by circadian rhythms, sleep deprivation and sleep 

restriction. 

Circadian rhythms are governed by an internal body clock that completes a cycle 

approximately every 24 h, circadian pacemaker is the name given to that clock. This internal 

clock is in the origin of sleepiness peaks at certain day times [8]. Moreover, a dysregulation of 

circadian rhythms results in increased drowsiness states, as it is the case when traveling to a 

different time zone. This happens because our circadian rhythms are slow to adjust and remain 

on their original biological schedule for several days, leading to sleepiness peaks during the 

middle of the afternoon or wakefulness peaks at late night. This experience is known as jet lag 

[33]. 

In relation to homeostatic factors, such as the duration of wakefulness and sleep 

deprivation, there is a correlation between the level of sleep deprivation and performance, 

that is, performance becomes worse the longer a person remains awake [34], [32]. 

Furthermore, drowsiness is affected by sleep quality or not obtaining adequate sleep (sleep 

restriction). Although the need for sleep varies among individuals, sleeping 8 h per 24-h period 

is common, and 7–9 h is needed to optimize performance. Experimental evidence shows that 

sleeping less than 4 consolidated hours per night impairs performance on vigilance tasks [8]. 

 

TR fatigue is caused by the driving task and driving environment. TR fatigue can be further 

subdivided into active or passive fatigue [32], [35], [36]. 

 

 

Figure 2.1 - Fatigue model. 
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Active fatigue is generally related to mental overload (high demand) driving conditions 

being the most common form of TR fatigue that drivers experience. Examples of high task 

demand situations include high density traffic, poor visibility, or the need to complete an 

auxiliary or secondary task (e.g. searching for an address) in addition to the driving task [35], 

[32]. 

Passive fatigue, in contrast, develops by experiencing underload conditions, for example, 

when the roadway is monotonous and there is little traffic. In this scenario, the driver is mainly 

monitoring the driving environment, that is, the driving task is predictable, which may lead to 

a reduction in effort exerted on the task [36], [32]. 

 

Despite the different causes of fatigue, independently of being sleep related or not, the 

perceptible signs are essentially the same. From a drivers perspective, the key signs of 

drowsiness are: trouble focusing, keeping eyes open or head up; yawning or rubbing the eyes 

repeatedly; daydreaming and wandering thoughts; drifting from lane; tailgating and missing 

signs or exits; feeling restless, irritable or aggressive and overall slower reaction time [2]. 

Furthermore, the traffic safety consequences are also equal, that is, an impaired performance 

at the wheel, with increased crashing risk, which can ultimately result in falling asleep at the 

wheel [32], [37].  

For these reasons, in this work, whose main objective is to generically detect drowsiness, 

no causal factors were taken into consideration. However, a distinction should be taken in 

account when designing a countermeasure system, as sleeping and/or caffeine can be 

considered the only effective countermeasure for drowsiness/sleepiness, but the 

countermeasure for task related fatigue could be other [32], [30], for example, the use of 

automation technologies. 

In addition, it should be noted that, in the following sections, no further distinction is made 

between fatigue, sleepiness and drowsiness. 

2.2 Drowsiness detection methods 

The main approaches for detecting driver drowsiness can be divided into four categories: 

subjective measures, vehicle-based measures, behavioral measures and physiological [8], [10], 

[38], [39]. A fifth category, hybrid methods, can also be considered, consisting in a combination 

of the methods of the previous categories. 

 

2.2.1 Subjective measures 

This type of measures is based on questionnaires which are performed either by the driver, 

that is, the driver assesses its own state of drowsiness, or by a supervisor evaluation. Some of 

the most used questionnaires include Karolinska Sleepiness Scale (KSS), Stanford Sleepiness 

Scale (SSS), Visual Analogue Scales (VAS) and Epworth Sleepiness Scale (ESS).

 

The Karolinska Sleepiness Scale is the most common used drowsiness scale [8], [40]. It is a 

9-point Likert scale, a typical self-report rating format where subjects rank a quality from high 

to low or best to worst [41]. Several studies have already focused in validating the KSS, showing, 

for example, that there is a relatively strong intra-individual correlation between the KSS and 

electroencephalographic measurements [42], [43]. KSS scores are presented next, in Table 2.1. 
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Table 2.1 - Karolinska Sleepiness Scale. 

Level Sleepiness description 

1 Extremely alert 

2 Very alert 

3 Alert 

4 Rather alert 

5 Neither alert nor sleepy 

6 Some signs of sleepiness 

7 Sleepy, but no difficulty remaining awake 

8 Sleepy, some effort to keep alert 

9 Extremely sleepy, fighting sleep 

 

The Stanford Sleepiness Scale (SSS) is similar to the KSS, it is a Likert scale, having seven 

states [40], [44]. On the original test, typically, subjects were asked to rate their alertness 

level every 2 hours throughout the day by choosing a single number associated with specific 

alertness description.  

 

Visual Analogue Scales (VAS) [8], [45] rating is performed by asking subjects to rate their 

“sleepiness” using a scale spread along a 100 mm wide line. Suggestions for sleep deprivation 

state range from “just about asleep” (left end) to “as wide awake as I can be” (right end). 

Subjects place a mark on the line expressing how sleepy they feel they are. Sleepiness level is 

measured by the distance in millimeters from one end of the scale to the mark placed on the 

line. The VAS is convenient since it can be rapidly administered as well as easily repeated. 

 

The Epworth Sleepiness Scale (ESS) [46] measures a person’s general level of daytime 

sleepiness, or their average sleep propensity in daily life. It is a simple questionnaire based on 

retrospective reports of the likelihood of dozing off or falling asleep in a variety of different 

situations. 

Other tests like the Maintenance of Wakefulness Test (MWT) and Multiple Sleep Latency 

Test (MSLT) may also be used to describe sleepiness levels [8]. 

A major drawback of this measurement type is the difficulty of implementation in real 

world driving conditions due to their subjective nature. Asking a driver to rate their arousal 

level may stimulate alertness, thus biasing the ratings. Variations in self-rated drowsiness can 

also be caused by stress or the use of drug substances [39]. In addition, the average estimates 

have to be interpreted with caution, as there are considerable individual differences in the 

relationship between subjective ratings [40]. 

 

2.2.2 Vehicle-based measures 

Vehicle-based measures, as the name suggests, are obtained by monitoring the vehicle, 

that is, a correlation between the driver’s alertness state and a series of vehicle parameters is 

made [47]. The two most commonly used vehicle-based measures for driver drowsiness 
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detection are: the steering wheel movement (SWM) and the standard deviation of lane position 

(SDLP) [48]. Other measures include monitor use of pedals (gas, break), usage of in-vehicle 

devices (switching radio, air conditioning) and cruising speed [15]. 

 

Steering wheel movement is measured using a steering angle sensor mounted on the 

steering column [10]. When drowsy, the number of micro-corrections on the steering wheel 

reduces compared to normal driving [11], [49]. To eliminate the effect of lane changes, the 

researchers consider only small steering wheel movements (between 0.5° and 5°), which are 

needed to adjust the lateral position within the lane [50]. 

 

Standard deviation of lane position is an established indicator of sleepiness related 

performance [12], [51]. SDLP consists in monitoring the car’s relative position within its lane 

with an externally-mounted camera. Specialized software is used to analyze the data acquired 

by the camera and compute the car’s position relative to the road’s middle lane [12]. Typically, 

a drowsy driver, or a driver who has fallen asleep will tend to leave the designated lane and 

crossing into a lane of opposing traffic or going off the road. 

 

However, vehicle-based measures have a set of limitations. They tend to be too dependent 

on the geometric characteristics of the road (road marking, climatic and lighting conditions), 

and to a lesser extent the kinetic characteristics of the vehicle [10]. These measures can also 

be influenced by other driver’s states that not drowsiness, as cognitive distraction and visual 

distraction (texting task) [52].  

Also, every driver has a different style of driving, there are drivers who can drive calmly 

because their long experience of driving and there are drivers who are still amateur and often 

drive reckless. 

Regardless, all these disadvantages could possibly be overcome by developing robust 

enough strategies to adapt to the behavior of the driver and car type in order to avoid false 

alarms [19]. The biggest constraint, is possibly, that with the development of automated driving 

functions, as conditionally automated driving which gives drivers the freedom to let go of the 

steering wheel, steering behavior will no longer be a feasible detection method [53]. 

 

 

2.2.3 Behavioral measures 

Behavioral measures consist in detecting driver visual features using a camera [19], [20]. 

Source of visual information can include facial expression, eye movement and head movement.  

Figure 2.2, adapted from [16], depicts the main behavioral measures. 
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Figure 2.2 - Scheme of most used behavioral measures. 

 

Regarding facial expression features, several have been proposed in order to detect 

drowsiness, as wrinkles, chin, nose, lip, nasolabial fold, lid tightener and yawn [20], [19], [54], 

[55], [56], [57]. For example, yawn, is a common fatigue symptom and happens to every human 

being, furthermore, it is relatively easy to detect (for example, frequency of yawns), as such, 

yawn is one of the most used fatigue indicators from facial expression related features [58], 

[59].  

 

Eye movement can be described by the eyelid and the gaze. Eyelid movement is often 

characterized by one measure, the Percentage of Eyelid Closure (PERCLOS). 

PERCLOS is a robust feature used in drowsiness detection and one of the most used [19], 

[59], [60], [61], [62], [63], [64], [65]. It is obtained by the proportion of time that the subject’s 

eyes are closed over a specific period of time, allowing a correlation between drowsiness and 

frequency of blinking (Figure 2.3, adapted from [66]). In subjects experiencing drowsiness, 

PERCLOS measurements will be higher than in alert drivers, as the eyes are closed for longer 

periods of time and more often than in alert drivers [67]. 

 

 

 

 
 

Figure 2.3 - Example of different states of eye opening. 

As mentioned PERCLOS is a strong drowsiness measure, however in most cases, proper 

lighting conditions are needed and use of glasses and sunglasses limit this feature accuracy. 

Also, it might happen that a driver who is trying to stay awake is able to fall asleep with his 

eyes open [20]. 

Examples of other eyelid related drowsiness measures are blink frequency and eye 

closure/opening speed, as Average Eye Closure Speed (AECS) [30], [68]. Eye closure/opening 

speed represents the amount of time needed to fully close the eyes or to fully open the eyes. 

A drowsy person will blink distinctly slower than an alert person [69]. 

 

The movement of a person's pupil (gaze) may have the potential to indicate one's intention 

and mental condition. For example, for a driver, the nominal gaze is frontal. Looking at other 
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directions for an extended period of time may indicate fatigue or inattention. In addition, when 

people are drowsy, their visual awareness cannot cover a wide enough area, concentrating on 

one direction. Hence, gaze (deliberate fixation) and saccade eye movement may contain 

information about the one's level of alertness [64], [70], [71], [72]. 

 

When a driver is sleepy, some of the muscles in the body begin to relax, leading to nodding. 

For example, when drowsy, a person´s head tend to lean forward due to its weight. However, 

then, it becomes difficult to breath and the head returns to its normal state, which results in 

nodding [71]. 

Head pose, estimation of the position and orientation of a driver’s head, is a strong 

indicator of a driver’s field of view and current focus of attention. It is intrinsically linked to 

visual gaze estimation. Intuitively, it might seem that looking at the driver’s eyes might provide 

a better estimate of gaze direction, but in the case of lane-change intent prediction, for 

example, head dynamics were shown to be a more reliable cue [73], [74]. 

 

Usually, the framework for computing behavioral measures, from the captured drivers 

video, includes using Viola–Jones algorithm, Connected Component Analysis, Cascade of 

Classifiers, Hough Transform or Gabor Filter to detect the face, eye or mouth [10], [63], [75], 

[76]. Features are then extracted using a feature extraction technique, most used techniques 

are geometric constraints, Wavelet Packet Decomposition (WPD), Gabor Wavelets (GW) or 

Discrete Wavelet Transform (DWT). Recently, some approaches using Convolutional Neural 

Networks (CNNs) to extract drowsiness-related features from the face region have also been 

developed as in [77] and [78] works. 

Having the interest features, some projects classify drowsiness state based on threshold 

levels, while other employ more elaborated classifiers, such as Support Vector Machine (SVM), 

fuzzy classifier, Bayesian Networks (BN), neural classifiers and Linear Discriminant Analysis 

(LDA) [10], [16], [58], [59], [60], [63], [64], [75], [79], [80]. 

Table 2.2, adapted from [10], summarizes some of the works using behavioral methods. 

 
Table 2.2 - List of previous works on driver drowsiness detection using behavioral measures. 

Source 
Drowsiness 

measure  

Detection 

techniques 

Feature 

Extraction 
Classification 

[80] 

Pupil, 

Head pose 

estimation 

Viola-Jones 

Algorithm 

 

Geometric 

constraints, 

Lucas–Kanade 

optical flow 

method 

SVM 

[63] Blink duration 

 

Viola-Jones 

algorithm, 

Neural network-

based eye 

detector 

Eye Horizontal 

Symmetry 
Threshold based 

[65] 
PERCLOS, 

Head pose 

Viola-Jones 

Algorithm 

Active 

Appearance Model 
Threshold based 
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Source 
Drowsiness 

measure  

Detection 

techniques 

Feature 

Extraction 
Classification 

[16] 

PERCLOS, AECS, 

Gaze, 

Facial Expression, 

Head pose 

 

SVM classifier 

(eye detection)  

Kalman filter  

Gabor wavelet 

Generalized 

regression neural 

networks 

 

BN 

[81] 

PERCLOS, AECS, 

Mouth opening 

 

Viola-Jones 

Algorithm 

Correlation 

coefficient 

template 

matching 

 

SVM 

[82] 
Head pose, 

Yawning 

Geometric 

method 

Steerable filters, 

Histogram of 

oriented 

gradients (HOG), 

Haar features  

 

SVM 

[75] PERCLOS 

SVM classifier 

Harr features and 

Adaboost 

classifier 

HOG, 

Maximum-

Likelihood 

algorithm 

Spectral 

Regression 

Threshold based 

[76] PERCLOS 

Haar-like features 

and Kalman filter 

 

Local binary 

pattern (LBP) 
SVM 

[83] 

 

Eye closure 

duration,  

Frequency of eye 

closure 

 

Hough Transform DWT Neural Classifier 

[84] PERCLOS Haar Algorithm Kalman filter SVM 

[85] Yawning 
Viola-Jones 

Algorithm 

Viola-Jones 

Algorithm 
SVM 

 

As stated, proper lightning conditions affect visual features detection performance, being 

challenging to get visual data which is independent from all types of illumination, for example, 

the contrast between day and night luminosity conditions  [19]. Normal cameras do not perform 

well at night [10], [69] and, in order to overcome this limitation, some researchers have tried 

active illumination using an infrared (IR) Light Emitting Diode (LED) [10], [69]. Although working 
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fairly well at night, LEDs are considered less robust during the day [10], [86]. The two most 

popular technologies for imaging sensors used in visible light cameras are CCD (Charge - 

Coupled Device) and CMOS (Complementary Metal - Oxide Semiconductor). Typically, CCD 

based cameras obtain images with higher resolution and lower noise level, on the other hand, 

CMOS based cameras are cheaper and more battery efficient [8]. Some works have also used 

depth cameras, for example, the Microsoft Kinect which captures 3D data combining a CMOS 

sensor with an IR laser to obtain image depth [87]. 

One of the major benefits of the visual measures is that they can be acquired non-

intrusively [72]. 

 

2.2.4 Physiological measures 

Physiological methods offer an objective, precise way to measure sleepiness. They are 

based upon the fact that physiological signals start to change in earlier stages of drowsiness, 

which could allow a potential driver drowsiness detection system some extra time to alert a 

drowsy driver and, thereby, preventing road accidents [8]. Electrocardiogram (ECG), 

electroencephalogram (EEG), electrooculogram (EOG), photoplethysmogram (PPG) and 

electrodermal activity (EDA) are physiological signals from where we can extract measures to 

detect drowsiness [20]. 

 

The ECG records the electric activity of the heart. This activity, more precisely the heart 

rate, is controlled by the balance between the two branches of the autonomic nervous system 

(ANS), the sympathetic nervous system and the parasympathetic nervous system. Wakefulness 

states are characterized by an increase in sympathetic activity and/or a decrease of para- 

sympathetic activity, while a decrease in mental workload/ a relaxation state, which can occur 

in sleepy drivers over prolonged monotonous driving, is characterized by an increase in 

parasympathetic activity and/or a decrease in sympathetic activity [20], [88], [89], [90]. 

ANS activity can be indirectly measured by the heart rate variability (HRV), a measure of 

the beat-to-beat (R-R Intervals, Figure 2.4, adapted from [91]). For example, an increased HRV 

indicates a higher parasympathetic activity, as the HR lowers resulting in more time between 

heartbeats, thus more variability. 

Conventional approaches to analyze HRV include time and frequency domain methods. 

 

 

 

 

 

 

 

 

Figure 2.4 - ECG waveform, with QRS complex identification example. The three waves of the QRS 

complex represent ventricular depolarization. 

 

Typical time domain HRV measures are the mean RR intervals, standard deviation of RR 

intervals (SDNN), root mean square of the differences between consecutive RR intervals 

(RMSSD), frequency of successive differences of RR intervals that spanned more than 50 ms 

(NN50) and percentage value of NN50 (pNN50) [89], [92], [90]. 
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Frequency domain analysis can be performed using power spectral density (PSD) of the RR 

interval series. RR series may be classified in three frequency bands: very low frequency (VLF) 

(0-0.04 Hz), low frequency (LF) (0.04-0.15 Hz), and high frequency (HF) (0.15-0.4 Hz) [89]. For 

example, LF and HF are reliable measures, respectively, of sympathetic and parasympathetic 

activity, thus when a driver progresses from an awake to a drowsy state there is a decrease in 

the LF/HF ratio [10], [88], [93], [94], [95]. 

 

To obtain these measures, first a pre-processing step needs to be applied to the ECG signal, 

as band pass filters, followed by algorithms for R-peak detection like Pan-Tompkins algorithm 

[96]. For the frequency domain analysis the signal domain conversion is done typically with 

Fast Fourier Transform (FFT) [97]. 

Even though the reliability and accuracy in detecting driver’s drowsiness based on ECG is 

high when compared to other methods, an important limitation of physiological signal 

measurement is its intrusive nature [19]. One possible way to overcome this problem is trying 

to use a non-intrusive system, however, it is less accurate compared to intrusive systems due 

to improper electrode contact [20]. 

 

Electroencephalogram (EEG) records electrical activity of the brain providing information 

represented by waves (frequency bands). It is a standard technique used in sleep studies [98]. 

The most relevant waves for drowsiness and sleepiness experiments are: alpha waves (8 – 

12 Hz), they play an important part in the transition from wakefulness to sleep, although they 

are not directly related to sleepiness itself, but to ‘relaxed wakefulness’, which leads to a 

reduced readiness to react to stimuli; beta waves (13 – 30 Hz) are associated with increased 

alertness, arousal and excitement; theta waves (4 – 7 Hz) are commonly regarded as a clear 

indicator of lack of attention and the onset of sleep and delta waves (< 4 Hz) which originate 

during deep sleep [15], [98].  

A schematization of the described waves is depicted next, in Figure 2.5, adapted from [99]. 

 

 

Figure 2.5 – Representation of the main EEG signal rhythms used from drowsiness detection. 

Variations in the EEG signal, such as increases in alpha and theta rhythms and reduction of 

beta waves, are interpreted as an indication of weariness and sleepiness [100]. To assess these 

changes, typically FFT or Wavelet Transform (WT) [101] are applied to the signal. In the same 

way as the ECG and other physiologic signals, to extract features from the signal, first, a pre-

processing step is required, as applying a band pass filter [102], [103]. 
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Although the EEG signal in most cases discriminates accurately between alert and drowsy 

states, there are occasions where the states are not clearly differentiable, being difficult to 

distinguish them. For example, during the transition from wakefulness to sleep, there may be 

several minutes where the EEG looks like that of wakefulness, but awareness of the 

environment is already lost [104].  

EEG signal acquisition also requires very specific conditions for being measured properly 

(intrusive methods). In a real-world driving scenario, the required acquisition system is of huge 

inconvenience, as it can hinder driving capabilities and potentially increase the chances of an 

accident happening [8]. 

 

The Electrooculogram (EOG) is a method used for measuring the potential difference 

between the front and back of the eye ball. The eye is a dipole with the positive cornea in the 

front and the negative retina in the back, this electric potential between cornea and retina 

lies in the range 0.4 - 1.0 mV. When the eyes are fixated straight ahead a steady baseline 

potential is measured by electrodes placed around the eyes. When moving the eyes a change 

in potential is detected as the poles come closer or farther away from the electrodes. The sign 

of the change depends on the direction of the movement [10], [72]. The EOG can therefore be 

used for detection of eye movements and blinks. In sleepiness studies, for instance, it can be 

used to differentiate rapid eye movements and non-rapid eye movements which are 

characteristic of an awake and drowsy state respectively [100]. 

 

Photoplethysmogram (PPG) is an optical obtained signal which measures volumetric 

changes in blood in peripheral circulation. It can be acquired by using a pulse oximeter that 

makes uses of low-intensity IR light which is proportional to the quantity of blood flowing 

through the blood vessels [9], [105]. PPG can be used to estimate, for example, heart and 

respiration rate. 

 

The Electrodermal activity refers to the phenomena of skin conductance. Specifically, it is 

based on the fact that the electrical characteristics of the skin (skin conductivity) mainly 

change due to the level of sweat produced by sweat glands. In turn, the level of activity of the 

sweat glands directly reflects the mental state of the person [106]. Although EDA can be 

influenced by multiple other factors that not drowsiness, for example, by stress, it has already 

been explored in some driver drowsiness related studies as a complement to other physiologic 

signals [107], [108]. 

 

As in behavioral methods, more recently, some deep learning approaches, for instance, 

using CNNs, have also been used to efficiently extract features from the physiologic signals 

[109], [110]. However, most of the developed approaches extract features using the previously 

described methods, which are then used to evaluate the driver state applying a model as 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), Linear Discriminant Analysis 

(LDA), Decision Trees or K-Nearest Neighbors algorithm (KNN). 

Table 2.3, adapted from [10], [92], reviews some of the approaches used to detect driver 

drowsiness based on physiologic measures. 
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Table 2.3 - List of previous works on driver drowsiness detection using physiological measures. 

Source Signal Preprocessing Feature Extraction Classification 

[90] ECG Band-pass filter FFT Neural Network 

[88] ECG 

Signal qualification 

block based on 

standard deviation 

of ECG amplitude 

Frequency domain HRV 

features 
LDA 

[101] EEG Band-pass filter DWT 
K-means 

clustering 

[102] EEG Band-pass filter FFT 
Fuzzy logic 

system 

[103] EEG Band-pass filter FFT  SVM 

[93] 
ECG and 

respiration 

Low-pass 

Butterworth filter, 

smoothing filters 

PSD using FFT for 

frequency HRV and 

respiration features 

SVM, Decision 

Trees, Naive 

Bayes 

[94] 

ECG, EEG 

and 

respiration 

Averaging and low-

pass filters 

PSD for frequency HRV, 

skin conductivity and 

respiration features 

LDA, Naive 

Bayes 

[111] 

ECG, EEG, 

EOG and 

respiration 

Second order 

Butterworth low-

pass filter 

Breathing variability 

features 
Threshold based 

[112] 
ECG, EEG 
and EOG None 

Frequency domain HRV 

features (FFT) 
BN 

[113] 
EOG and 

EMG 

Low-pass filter and 

visual inspection 
DWT ANN 

[114] 
EOG, EEG 

and EMG 

High-pass filter and 

thresholding 
Neighborhood search SVM 

[115] EEG 

Independent 

component analysis 

decomposition 

Power Spectrum Analysis 

using FFT 

Self-organizing 

Neural Fuzzy 

Inference 

Network 

[104] EEG and EMG 
Band-pass filter and 

visual inspection 
DWT ANN 

[116] EEG Low-pass filter FFT 
Mahalanobis 

distance 
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Source Signal Preprocessing Feature Extraction Classification 

[117] EEG Band-pass filter FFT 

Linear 

Regression 

Model 

[95] EEG and ECG None 

Mean power frequency 

EEG features and 

frequency domain HRV 

features (PSD) using FFT 

Threshold based 

 

It is important to take into account, that, although, in comparison, physiologic signals are 

one of the most reliable ways to detect drowsiness, they still have some limitations. For 

example, while EEG is excellent to distinguish between awake and sleep states, there might 

be some limitations when identifying the transitions state. Heart rate measures, as stated, 

generally have differences between alert and drowsy states, nonetheless heart rate is also 

affected by other factors.  

 

2.2.5 Hybrid methods 

As described over the previous sections, each measurement method has its strengths and 

weaknesses. Subjective measures are important as a support or ground truth but are not 

feasible for a real time monitoring system. 

Vehicle-based measures provide satisfactory results, however, they tend to be too 

dependent on the geometric characteristics of the road (road marking, climatic and lighting 

conditions), and to a lesser extent the kinetic characteristics of the vehicle [10]. These 

measures can also be influenced by other driver states that not drowsiness as visual distraction 

(texting task). 

Behavioral measures, although non-intrusive and easy to use, still have some drawbacks 

that must be considered in visual data acquisition from driver, as illumination and items used 

by driver such as glasses [19]. 

Physiologic measures generally provide the most accurate values and the biggest limitations 

is their intrusive nature. Although less intrusive measurements of some signal as the ECG have 

already been developed, signal quality is still lost, and for other methods as EEG and EOG, 

electrodes still need to be placed on the scalp or eye area in an intrusive manner [20]. 

A summary of advantages and limitations of each method is presented in Table 2.4 (adapted 

from [38]). 
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Table 2.4 – Comparison between different drowsiness measurement types. 

Measures Advantages Limitations 

Subjective  
Takes personal feeling 

into account 
Not feasible in real time 

Vehicle-based  Non-intrusive 

Interpersonal accuracy 

Dependent on external 

conditions 

Behavioral 
Non-intrusive 

Ease of use 

Lighting condition 

Background 
   

Physiological  Earlier detection  

Mostly intrusive 

Low signal quality in 

non-intrusive solutions 

 

To obtain the best possible results, a promising option is to use several of the referred 

methods, creating a hybrid system from visual, physiological and driving behavior measures. 

Although some works have already combined different drowsiness detection methods, there 

is still a big room to improvements [19]. An example of an hybrid drowsiness detection system 

is the work of [105] which included a system combining facial features, eye movement, and a 

physiologic signal, photoplethysmogram. Drowsiness analysis with driver’s facial data and 

steering wheel data was also performed by [118]. Vehicle-based and behavioral measures are 

also combined in [119]. Works as [1] have combined all the measurement types, using indicators 

such as heart rate variability, respiration rate, head and eyelid movements (blink duration, 

frequency and PERCLOS), time-to-lane-crossing, speed, steering wheel angle and position on 

the lane. 

The proposed thesis goal fits in hybrid system methods group, as it will focus on the fusion 

of information obtained by physiologic signals (ECG) and from behavioral measurements. 

2.3 Commercial solutions 

From the above mentioned measures used for driver drowsiness detection, several systems 

have already been developed and commercialized.  

Most systems use vehicle-based measures and/or behavioral measures. For example, Bosch 

[120], [121] develops solutions as a steering-angle sensor that is sold to car manufacturers. In 

addition, from driver’s steering behavior, the system algorithm evaluates approximately 70 

signals received via the vehicle’s Controller Area Network (CAN), among them the length of a 

trip, use of turn signals, and the time of day. The function calculates the driver’s level of 

fatigue. If that level exceeds a certain value, an icon such as a coffee cup flashes on the 

instrument panel to warn drivers that they need a rest. This solution is used for example in 

Volkswagen’s Passat alltrack [13]. 

Bosch is also developing a camera system, presented in Consumer Electronics Show (CES) 

2017 in Las Vegas [17], that will allow face recognition, intelligent personalization and driver 

drowsiness detection. 
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NVidia, a chip supplier to Audi, Mercedes, Tesla and others also presented at CES 2017, an 

artificial-intelligence tool (the Co-Pilot) that can learn the behaviors of individual drivers and 

determine when they are operating outside their norms [18]. The system will evaluate driver’s 

standard posture, head position, eye-blink rate, facial expression and steering style, among 

other indexes. Based on a vehicle’s capabilities, the driver will be warned or automatically 

driven to a safe spot when conditions warrant. 

 

Valeo, a French supplier of automotive technology, also developed a camera [122], [123] 

that analyses eyelid movement, pupil position, head angle and other key features processing 

them in real time by an embedded computer. This data is then combined with vehicle 

trajectory and tracking information to determine how alert or how distracted the driver is, 

sending a warning if necessary. 

 

MERCEDES Attention Assist™ [14] checks as many as 90 indexes, such as steering wheel angle 

and lane deviation and external factors as weather and road surface influences, for example, 

pothole avoidance that may be causing the irregular driving behavior. If the system determines 

drowsiness is the cause, it will send an audible and visible alert letting the driver know it’s 

time to take a break. 

 

Driver Alert Control (DAC) by Volvo is a camera-based vehicle system that detects ideal 

road trajectory and compares it to steering wheel movements. The system provides sound alert 

and visual notification on instrument cluster (Figure 2.6 from [124]) when drowsiness is 

detected. Notification is repeated if driver behavior does not improve. The system is designed 

to function on highways and is activated when the speed exceeds 65 km/h [15], [125]. 

 

 

 

Figure 2.6 - Driver Alert Control (DAC) warning signal. 

 

The brasillian division of Ford recently proposed the Safe Cap [126], made with special 

consideration for truck drivers. The Safe Cap includes an accelerometer and a gyroscope that 

measure drivers head movement. If drowsiness is detected light, sound and vibration warnings 

are activated to alert the driver. 

 

Some companies have also developed drowsiness solutions based on driver physiological 

methods. 

For example Plessey [22] uses a capacitive sensor that enables ECG signal acquisition 

without the need of skin contact (WARDEN™ system, Figure 2.7, adapted from [22]) .The system 

uses an array of sensors to detect changes in electric potential in the human body without 
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direct skin contact and returns an accurate R peak signal from the users ECG, this in turn can 

be used to calculate already mention features as heart rate variance (HRV). The WARDEN™ 

system can be easily and discretely incorporated inside vehicle seatbacks to access the 

necessary biometric signals and provide earlier warning of drowsiness comparatively to non-

physiological methods. 

 

 

Figure 2.7 - WARDEN™ capacitive system, capable of acquiring ECG without skin contact. 

 

Harken [127], a public-private European consortium, is developing a fatigue detector by 

monitoring cardiac and respiratory rhythms, using an embedded, nonintrusive, acquisition 

system in the seat cover and safety belt of a car. 

 

StopSleep UK [23] developed an anti-sleep ring, which using cutaneous sensors measures 

electrodermal activity, evaluating fatigue and alertness levels. As soon as levels of 

concentration start to decrease, StopSleep will send an alert to the driver (vibration and sound 

warnings). 

 

Wearvigo [128], produces a wearable, a smart headset, that tracks over 20 parameters, 

such as blinks related measures, blink rates, blink durations and drooping eyelids, by analyzing 

biosignal patterns. In addition, with an accelerometer and gyroscope, movements of the head 

are also measured, as head nods. 

 

CardioID Technologies, a Portuguese company, developed the cardiowheel (Figure 2.8) 

[129]. Cardiowheel is an Advanced Driver Assistance System that acquires the ECG from the 

driver’s hands to continuously detect drowsiness. This is done using a custom steering wheel 

cover equipped with special conductive elements, thus capturing the electrical impulses 

generated by the heart. In addition, from the measured ECG, it is possible to monitor the heart 

activity detecting multiple cardiac pathologies. Driver’s identity can also be extracted from 

the ECG signal.

http://harken.ibv.org/
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Figure 2.8 – Cardiowheel system developed by CardioID Technologies. 

2.4 Experimental setups 

Acquiring data to study driver drowsiness is a complex process. Pragmatically, this process 

can be performed in essentially four types of experimental setups: driving simulators, test 

tracks, road studies and naturalistic driving studies [130], each of whom presents advantages 

and disadvantages. A thorough description of the introduced topics is presented next. 

 

2.4.1 Platforms and settings 

Driving simulators are middle to high fidelity simulators that provide the driver with an at 

least somewhat genuine feeling of sitting in a real car. The environment is computer generated, 

and it is possible to log a host of variables [130].  

Tongji advanced driving simulator (Figure 2.9, adapted from [131]), is an example of one 

the most advanced simulators. It simulates a fully instrumented Renault 23 Megane III vehicle 

cab in a dome mounted on an 8 degree-of-freedom motion system 24 with an X-Y range of 20 

× 5 meters. An immersive 5 projector system provides a front 25 image view. 

 

 

 

Figure 2.9 - Tongji advanced driving simulator. 

The Swedish National Road and Transport Research Institute (VTI) also has several advanced 

driving simulators, being the newest the Sim IV. This simulator also has high realistic simulation 

capacities providing the driver a 210-degree forward field of vision, both longitudinal and 

lateral acceleration and can simulate a passenger car and a truck compartments. 

The NADS-1 advanced driving simulator from university of Iowa [132] and the TruckSIM from 

University of Leads driving simulator [133] are examples of other equally high realistic 

simulators. 
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Test track studies are performed in instrumented vehicles on a controlled environment, 

closed to public traffic, which can easily be adjusted to the desired needs [130]. Examples of 

drowsiness and also distraction related studies performed on test track include [134] and [135] 

works. 

 

Similarly to a test track study, an on-road study is often quite limited in time, the driven 

routes are pre-determined, and there may be an experimenter in the car. However, the study 

is conducted in real traffic [130]. 

For example, in the study performed by [136] fatigue level was evaluated in an expressway 

from Beijing to Qinhuangdao analyzing driver behavior and vehicle based measures. 

A large field study is the SleepEYE project, a collaborative project between Smart Eye, 

Volvo Cars and VTI which recorded vehicle, behavior and physiologic based measures. The 

project included 18 participants which conducted one alert and one sleepy driving session on 

a motorway [30]. 

 

Naturalistic data collection is also conducted in real traffic, but no experimenter is present 

in the car, and the studies are usually long-term, lasting for a month or more. The drivers have 

free choice of route and use the vehicles for their daily lives.  

A typical example of a naturalistic data study is the 100-Car Naturalistic Driving Study [137]. 

This study tracked 100 drivers across a period of one year, collecting data for each vehicle with 

a highly capable instrumentation system that included five channels of video and vehicle 

kinematics. The collected data includes approximately 2 000 000 vehicle miles and almost 43 

000 hours of data containing many extreme cases of driving behavior and performance, as 

severe fatigue, impairment, judgment error, risk taking, willingness to engage in secondary 

tasks, aggressive driving and traffic violations.  

Australian Naturalistic Driving Study also collected data from multiple driver and vehicle-

based parameters aiming to understand what people do when driving their cars in normal and 

safety-critical situations [138]. Likewise, the strategic highway research program, whose main 

objective is understanding driver performance and behavior in traffic safety, has retrieved 

roadway data that is been used to study issues as drivers inattention, rear-end crashes and 

safety on curves [139]. 

Car companies as Mercedes-Benz also tested their vehicle based fatigue detection system 

(Attention Assist system) in real work driving conditions, driving over two million kilometers 

and using more than one thousand drivers [140]. Ford in 2011 [141], made a dataset, obtained 

from naturalistic studies but also simulators, which was provided during a competition to 

develop a classifier to detect driver alertness.  

 

2.4.2 Benefits and limitations 

Each discussed experimental setup implies some advantages but also limitations. In 

particular, two key factors that must be considered are the setup validity and the degree of 

control [130]. 

The setup validity (ecological validity), refers to a question of generalization, that is, the 

possibility to generalize the results to be valid for situations in real life. Having a high degree 

of ecological validity implies to have high terms of realism of the setting for the driver, taking 



 

2.4 Experimental setups 23 

 

into account aspects as obtrusive/unobtrusive instrumentation, the scenarios realism and how 

well the collected data correspond to the research question asked.  

In most scientific work it is of great importance to have a high degree of control of the 

experimental setting in order to reduce the risk for confounded results. The control is not only 

related to the scenario used for driving, but also to the selection of the participants, their 

preparation before the study and how they are treated during and after the study. 

Control is often necessary for reliable repeatability within a reasonable time frame. With 

a high degree of control unusual scenarios, like a moose crossing the street, can be tested 

within a short time frame, but also rather more frequent scenarios, like a lead vehicle braking, 

can be reproduced any number of times under completely similar circumstances.  

Within traffic research, control is also crucial in order to minimize the consequences of 

dangerous events. In an uncontrolled setting a driver who falls asleep can kill both himself and 

others, while in a controlled study nobody will be harmed. For ethical reasons many studies 

can only be conducted when a high level of control over the possible consequences is 

guaranteed, and even though the external validity might be reduced, the only other alternative 

would be not to conduct the study at all.  

A high degree of external validity and a high degree of control over the study are often 

difficult to reconcile with each other. The relation between ecological validity and study 

control for the previous described experimental setup types, can be organized according to the 

following scheme, Figure 2.10, adapted from [130]. 

 

 

 

Figure 2.10 – Comparison of the relation between ecological validity and control for the different 
experimental setups.  

A setup as the simulator has a high degree of control, it is possible to control test 

conditions, dissuading and stimulating drowsiness. Reducing the need to change lanes and gear, 

ask drivers to drive at constant speed and not introducing environmental disturbances as cross 

winds are all examples of factors that stimulate drowsiness. However, in opposition, there is a 

lower degree of external validity (the drivers’ behavior will not be the same under simulated 

driving since there is not any risk involved). 

An experiment on a test track or on a road with an experimental vehicle will still provide a 

high degree of control of the participants, but a decrease in the control of events like 

interactions with other road users, animals, but also of the weather and road constructions. 

Naturalistic driving studies will have a low degree of control. For example, it is not possible 

to use electrodes to acquire physiologic signals, to use a subjective measure as the KSS and 
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there is no prior information about the participants state, as the number of hours slept. By 

contrast it has a high degree of external validity, as it depicts real life situations. 

Regardless of the experimental setting the quality of the results is highly dependent on the 

data quality. 

It is also worth mention that, although large databases have already been created acquiring 

data either in simulated or real world driving conditions, most of them are private.

2.5 Performance assessment 

An important step in any research is to evaluate the system performance. In drowsiness 

related studies, in most cases, a drowsiness label is set, that is, a ground truth measure that is 

then used to compare with the developed system predictions, thus evaluating the performance. 

However, as it was already briefly discussed, defining an accurate drowsiness ground truth 

label it is not a straightforward process and there is no uniformly agreed measure [142]. Some 

labels are obtained based on the time of drive, others according to the occurrences of crashes, 

namely in simulator studies, but the most common approach is obtaining the labels based in 

subjective ratings, as the previous discussed in section 2.2.1. 

Generally, labels based in subjective measures, are obtained either with the driver self-

reporting [143] or by a supervisor asking the driver his status [70]. Other strategies include 

experts review and rating fatigue in video segments [80]. The most used subjective measure is 

the KSS, previously mentioned, being used in several works as a drowsiness state label [19], 

[40], [60], [70], [94], [144], [145]. Other subjective scales like SSS and VAS are also used [40].  

When evaluating driver drowsiness, some researches classify driver sleepiness state as a 

binary problem [70], [81], [146], where the driver is either alert or drowsy, while others make 

a three level incremental division [62], [114], into alert, drowsy and very drowsy states. 

Predicted results are then compared against given labels using several measures. A 

prevailing measure is the accuracy [62], [64], [146], [114], [147], [148]. Accuracy expresses 

the percentage of samples correctly classified.  

To estimate the accuracy, the proportion of true positive and true negative in all evaluated 

cases needs to be calculated. For a binary drowsy driving problem, true positive (TP) expresses 

the number of drowsy states (given) that are correctly classified as drowsy, true negative (TN) 

the number of alert states (given) that are correctly classified as alert, false positive (FP) the 

number of alert states (given) that are incorrectly classified as drowsy and false negative (FN) 

the number of drowsy states (given) that are incorrectly classified as alert. Table 2.5, 

summarizes this explanation in a binary confusion matrix. 

 
Table 2.5 - Confusion matrix of a binary alert/drowsy problem. 

 Predicted 

Alert Drowsy 

Given 

Alert TN FP 

Drowsy FN TP 
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Mathematically, accuracy can then be stated as: 

 

 
Accuracy =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 × 100 % 

(2.1) 

 

And for a three class problem [92], 

 

 
Accuracy =  

∑ 𝑀𝑖,𝑖
3
𝑖=1

∑ ∑ 𝑀𝑖,𝑗
3
𝑗=1

3
𝑖=1

 × 100 % (2.2) 

 

Where M represents the confusion matrix M = [M i,j]3x3. More precisely, Mi,j is the number 

of samples predicted as i with true label j. Each label number (1,2,3) represents, respectively, 

for both i and j, the classes awake, medium and drowsy. 

Other measures also used include precision, specificity, sensitivity, F1-score and mean 

square error [81], [92], [149], [150], [151]. Precision measures the proportion of correctly 

classified drowsy states of all the drowsy states classification. 

 

 
Precision =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100 % (2.3) 

 

Specificity measures the proportion of alert states which are correctly identified as alert, 

that is, the classifiers ability to correctly identify alert states. 

 

 
Specificity =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 × 100 % (2.4) 

 

Sensitivity, or recall rate, measures the proportion of drowsy states that are correctly 

classified as drowsy, that is, the classifiers ability to correctly identify drowsy states. 

 

 
Sensitivity =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100 % (2.5) 

 

F1-score is a measure of a test’s accuracy. It is a weighted average of the precision and 

sensitivity. 

 
F1  =  2 × 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × Sensitivity

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Sensitivity
 (2.6) 

 

The mean square error (MSE) is a measure of the quality of an estimator, it measures the 

average of the squares of the errors. 

 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑌𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑌𝑖

𝑟𝑒𝑎𝑙)2

𝑛

𝑖=1

 (2.7) 

 

Where n is the total number of samples and Yi is the label (predicted or real) of sample i. 
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Chapter 3  

A framework for driver drowsiness 
monitoring 

This chapter focuses in presenting a set of machine learning methods used for classifying 

the driver state. Following the overall method overview, there is a detailed description of each 

of the applied steps and lastly a report and discussion of the obtained results.  

All the performed experiments of this chapter are based on the measures obtained from 

the SleepEye dataset [30]. 

3.1 Methods overview 

The overall workflow used in this section follows an approach similar to [92] work. Using 

the same dataset here used, the cited work focused on evaluating driver drowsiness using 

physiologic signals, considered a robust method to the driver drowsiness evaluation problem. 

As so, this work replicates the mentioned workflow, first using physiologic signals, particularly 

ECG, obtaining a baseline for performance comparison, and then developing a new approach 

using video signal. Thus, assessing the performance of the video signal, acquired non-

intrusively, both alone and in a hybrid approach with the ECG signal, a signal that has the 

potential to be acquired non-intrusively, to evaluate driver drowsiness. 

This approach corresponds to a standard supervised machine learning classification problem 

workflow. Classification implies that a categorical description of the problem is performed and 

supervised learning that the algorithms are trained using labeled data. 

Specifically, a binary and a three level multiclass problem divisions were considered, 

consistent with [92] approach to the problem. In the binary approach, the driver is treated as 

either “awake” or “drowsy”, for the multiclass problem an intermediate “medium” state is 

also contemplated. The class labels were obtained from the KSS provided with the dataset and 

according to the following scheme, Figure 3.1, as in [92] work. 
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Figure 3.1 – KSS rating and their corresponding states for 2-class and 3-class problems. 

On a practical level, the first step of the process is to perform feature extraction, that is, 

computing drowsiness related features from the available signals. Secondly, the data (the set 

of all observations, each characterized by the extracted features) is randomly split in training 

(70%) and test (30%) datasets. The training dataset is then used to train a machine learning 

classifier, with 10-fold cross validation determining the best hyperparameters. 

Lastly, the trained classifiers are evaluated in the test dataset using a performance 

measure, in particular, accuracy values and confusion matrixes, for a more detailed view, 

previously described in section 2.5 are used. For a better generalization of the results, the 

entire process is repeated 10 times (10-fold validation).  

In order to improve the performance, different strategies were tested as classifier 

combination methods, data imbalance and sequential data approaches. Throughout this 

chapter, a more detailed explanation of the described steps is presented. 

3.2 Feature engineering 

In the machine learning field, the process of deriving values from a raw input, for example 

an ECG signal, is defined as feature extraction. Those values, the features, intend to be 

informative, characterizing the dataset in a non-redundant way, thus, facilitating the learning 

process. Extracting meaningful features from the information sources is an essential step of 

any machine learning framework, which may involve further refinement, applying strategies as 

feature selection and transformation. Bellow, the extracted features and respective acquisition 

strategies are reviewed. 

 

3.2.1 Feature extraction 

As previously indicated, all the measures used in this experiment are obtained from the 

SleepEye dataset. This dataset contains physiologic data, ECG and EOG signals, and behavioral 

data, obtained by a SmartEye Pro 5.7 system [152], acquired in an experimental field study in 

real traffic on real roads. As already implied, a KSS label characterizing each driver drowsiness 

level is also available in the dataset. 

The features were extracted from the ECG and video signals in non-overlapping 2 minutes 

windows, the same window length used in [92] work. 

Regarding the ECG signals, a preprocessing similar to the described in [92] work was 

applied. A modified version [153], [154] of the Pan-Tompkins QRS detection algorithm [96] was 

used for R peak detection. As an example, Figure 3.2 illustrates detected R peaks for a 2 minute 

sample of an ECG signal.
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Figure 3.2 - ECG signal with detected R peaks marked in red circles. 

A detailed view of the Figure 3.2 ECG signal, is also shown next, in Figure 3.3. 

 

 

Figure 3.3 – Detailed view of detect R peaks in ECG signal.  

After R peak detection, time and frequency domain features were computed. Those 

features are summarized next, in Table 3.1.

 
Table 3.1 - Features extracted from the ECG. 

Nr Feature Description 

1 HR Heart rate 

2 SDNN Standard deviation of NN intervals (HRVi) 

3 SDSD Standard deviation of differences between adjacent NN intervals 

(HRVi −HRVi−1) 

4 RMSSD Square root of the mean of the sum squares of differences between 

adjacent NN intervals 

5 NN50  Number of pairs of successive NNs that differ by more than 50 

milliseconds 
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Nr Feature Description 

6 pNN50 NN50 divided by total number of NNs 

7 NN20 Number of pairs of successive NNs that differ by more than 20 

millisecond 

8 pNN20 NN20 divided by total number of NNs 

9 HF  Total energy in the high frequency band (0.15 to 0.4 Hz) 

10 LF  Total energy in the low frequency band (0.04 to 0.15 Hz) 

11 VLF  Total energy in the very low frequency band (0.003 to 0.04 Hz) 

12 TP  Total power in all bands (0.003 to 0.4 Hz) 

13 HFnu  HF normalized (HF divided by the difference between TP and VLF) 

14 LFnu  LF normalized (LF divided by the difference between TP and VLF) 

15 VLFnu  VLF normalized (VLF divided by TP) 

16 LF/HF  Ratio between LF and HF 

 

As for the behavioral data, only already extracted measures from the SmartEye Pro system 

were available, namely drivers head orientation, gaze direction, eyelid opening and pupil 

diameter. Following the same two minutes time window approach used in ECG feature 

extraction, drowsiness related features were computed from the available measures. Due to 

its more elaborated processing, the blink and fixation analysis methods, obtained, respectively, 

from the eyelid opening signal and gaze direction, are summarized next. 

For blink detection, a similar approach to [67] work was considered, with 4 points 

(t1,t2,t3,t4) characterizing a blink. To compute these points, first, the signal valleys (closed 

eyes) are located based on the signal first order difference and an adaptive threshold. Then, 

for each detected location, the signal is searched before and after the valley until it stops 

increasing within an established range, obtaining, respectively, the t1 and t4 point’s positions. 

Lastly, t2 is defined by the position where the signal is approximately 60% of the difference 

between t1 and the valley opening value. The analog process is performed for t3 using t4 point 

and valley values. 

An eye is denoted closed from point t2 to point t3 and the average eye opening/closing 

time is compute from point t1 to point t2/point t3 to point t4. An illustration of the blink 

detecting scheme is presented next, in Figure 3.4. 
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Figure 3.4 – Scheme of points (t1 to t4 points marked in red) characterizing an eye blink. 

 

An example of the detected blinks for a 2 minute eyelid opening signal is also shown next, 

in, Figure 3.5. 

 

 

Figure 3.5 – Detected eye blinks in eyelid opening signal. Each detected blink characterized for 4 
points, previously described, in red. 

 

Regarding the fixation detection, several algorithms have already been developed either 

based on spatial characteristics, as velocity, dispersion and area based methods, or on temporal 

characteristics, as duration sensitive and locally adaptive methods [155]. 

In this work, a simple velocity based algorithm (Velocity-Threshold Identification) was 

implemented. Using this method, fixations can be identified based on two main velocity 

distributions that can be found on eye movements: low velocities for fixations (< 100 deg/s) 

and high velocities for saccade eye movements (> 300 deg/s) [155]. 

The complete list of the features extracted from the video measures is summarized in Table 

3.2. 
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Table 3.2 - Features extracted from the available SmartEye measures. 

Group Nr Feature Description 

Eyelid 

distance 

1 Blink duration Average blink duration 

2 Median blink duration Median blink duration 

3 Blink frequency Number of blinks per time interval 

4 fracBlinks15 Fraction of blinks longer than 0.15 seconds 

5 Blink duration25 Average blink duration of 25% longest blinks 

6 
Blink opening/closing 

speed 
Average of blink opening and closing speed 

7 PERCLOS Percentage of eyelid closure over time 

    

Pupil diameter 

8 PupilD Average pupil diameter 

9 SPupilD Standard deviation of pupil diameter 

    

Yaw, pitch 

and roll head 

angles 

10 HP 
Average head pose of combined yaw, pitch and 

roll head angles 

11 SHP Standard deviation of combined head pose 

12 Nodding frequency Number of nods per time interval 

13 Nodding duration Average nodding duration 

 14 Total nodding duration Total nodding duration 

    

Yaw and pitch 

gaze angles 

15 Gaze Average of combined yaw and pitch gaze angles 

16 SGaze Standard deviation of combined gaze 

17 Total fixation Total duration of fixation time 

 

As already briefly mentioned, using the listed ECG and video features three different 

approaches were tested. A first approach using only the ECG features (16 features) in order to 

establish a baseline, comparing with the performance of [92] work. A second approach using 

only the video features (17 features) with the main goal of evaluating if non-invasive video 
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measurements could replace the EOG features, also in comparison with [92] work. The last 

strategy involved a multimodal procedure, combining the ECG and video features (33 features), 

aiming to obtain the best possible results.  

 

3.2.2 Window size sensitivity 

As denoted above, this work followed a similar approach to the [92] work in order to make 

valid comparisons, this included using the same data segmentation method. That is, the 

discretization process of the ECG and video signals into smaller segments from which the 

features are computed. 

The applied segmentation method, as previously explained, consists of a fixed size non-

overlapping window. Although multiple other segmentation methods could also be tried as the 

fixed-size Overlapping Sliding Window, Dynamic Windowing and Variable-size Sliding Window 

(VSW) [156], a key factor to evaluate using the same method is the impact of the chosen window 

size in the classifier accuracy.  

For example, an overly wide window can lead to information overload which causes the 

features to be mixed up with other information, while a small window could split an activity, 

both leading to suboptimal information decreasing the process performance [156], [157]. 

In order to evaluate the window size impact, a window sensitivity analysis is performed, 

comparing the algorithm performances using windows of different sizes.

3.3 Classifiers 

Along with the discriminative capacity of the extracted features to correctly characterize 

the dataset, a decisive factor determining the performance of the process is the classifier used. 

There is no uniform classification method for a certain application, each classifier has its 

strengths and weaknesses, but ultimately, the classifier performance depends on the data. As 

such, the best approach is to evaluate different models.  

In this work, five typical machine learning classifiers were used: Support Vector Machine 

(SVM), Random Forest (RF), Artificial Neural Networks (ANN), Gradient Boosting Tree (GBT) and 

K-Nearest Neighbors (KNN). The classifiers used are the same tested by [92], so that a valid 

comparison of the results could be performed, additionally the KNN classifier, already used in 

similar approaches, was also tested to evaluate if a different classifier could provide better 

results. A brief description of each classifier and respective trained hyperparameters is 

presented next.

 

3.3.1 Support Vector Machine 

Support vector machine is one of the most used machine learning algorithms for driver 

drowsiness detection [76], [80], [81], [103], [82]. SVMs revolve around the notion of a “margin”, 

that is, the distance between the separating hyperplane (decision boundary) and the samples 

(support vectors) [158]. In SVM training, using the support vectors, the margin is maximized 

and, thereby, the largest possible distance between the separating hyperplane and the 

instances on either side of it is obtained [158], [159]. An illustration, adapted from [160], for 

a two features SVM example is displayed next, in Figure 3.6. 
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Figure 3.6 – Example of a set of hyperplanes (H1,H2) and respective best separating hyperplane (H3) 
for a two features problem. 

Generally, the performance of SVM will depend on factors as the type of kernels used. In 

this work, the optimized hyperparameters are: the type of kernel, the kernel coefficient and 

the penalty parameter. 

 

3.3.2 Random Forest 

A decision tree (DT) is a hierarchical data structure that represents data through a divide 

and conquer strategy. That is, a decision tree uses a branching method that will recursively 

split the dataset into binary partitions. The key concept of the Random Forest classifier is to 

grow an ensemble of trees and letting them vote for the most popular class [161]. 

One of the biggest problems of decision trees, is that they are prone to overfitting, 

particularly when many features are considered leading to a large number of splits (deep trees). 

This algorithm uses techniques as bootstrap, that is, the classification trees are constructed 

simultaneously using random data samples from the dataset (forms new training sets 

independently), and random feature vectors generation, meaning that, the growth of each tree 

in the ensemble is based in different feature vectors, which limits the trees growth [162] [161]. 

With these techniques, the previously mentioned decision tree disadvantage is overcome, thus 

creating a much more robust model. 

An example of a random forest classifier architecture is shown next, in Figure 3.7, adapted 

from [92], [163]. 

 

Figure 3.7 – Example of random forest classifier architecture. 

In this work, the RF algorithm training was done by controlling the total number of trees. 

 

3.3.3 Artificial Neural Networks 

Artificial neural network architectures are motivated by models of our own brains and nerve 

cells. They are formed by a network of simple elements called neurons, interconnected and 
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arranged in a series of layers: the input layer (receives the features feed to the network), the 

output layer (the provided data classes) and, in between, the hidden layers [90].  

Each neuron is composed by a set of inputs (received from some other neuron or from an 

external source), a weight associated to each input and an activation function (for example, a 

step function). The neuron translates these inputs into a single output, which is then feed to 

another layer of neurons. The weights as well as the functions that compute the activation are 

obtained during the training stage, using techniques as backpropagation [90]. 

An illustration of a ANN architecture is shown next in Figure 3.8, adapted from [104]. 

 

 

 

Figure 3.8 – Example of ANN architecture with 5 inputs, 2 hidden layers with 10 nodes each and 3 
outputs. 

A neural network can be designed by selecting the architecture, activation function and 

learning rule. In this work, the number of neurons and hidden layers, activation function and 

learning rate were the trained hyperparameters. 

 

3.3.4 Gradient Boosting Tree 

Boosting is an ensemble technique in which the predictors are not made independently, 

but sequentially [164]. Similarly to the previous mentioned RF algorithm, the gradient boosting 

tree uses an ensemble of decisions trees. However, while RF involves a parallel ensemble of 

trees, GBT generates a sequence of trees where each tree is grown on the residuals of the 

previous trees [165]. Each weak classifier in the iterative process will try to complement the 

existing trees based on the reconstructed residual between the target function and the current 

ensemble prediction, minimizing the training error of the ensemble and optimizing a loss 

function [92]. Prediction is accomplished by weighting the ensemble outputs of all the trees 

[165]. 

Due to its sequential nature, GBT tends to be more susceptible to overfitting than RF, 

however, with the adequate training, it usually outperforms the RF. Figure 3.9 adapted from 

[92], [165], illustrates an example of a gradient boosted decision tree ensemble. 
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Figure 3.9 - Gradient boosted decision tree ensemble. 

 

The number of boosting stages and the loss functions were the GBT hyperparameters 

trained during this work in order to obtain the best performance. 

 

3.3.5 K-Nearest Neighbors 

Neighbors-based classification is a type of instance-based learning or non-generalizing 

learning, as it does not attempt to construct a general internal model, but simply stores 

instances of the training data. In order to assign a label to a query point, a simple majority 

vote of the K-nearest neighbors is computed, that is, the assigned label is given according to 

the data class which has the most representatives within the nearest neighbors of the point. 

To obtain the nearest neighbors, multiple search algorithms and metric distances can be used, 

as the Ball Tree and KD Tree search algorithms and the standard Euclidean distance, one of the 

most common metrics [166]. 

An illustration of K-nearest neighbor algorithm classification process is shown next, in 

Figure 3.10, adapted from [167]. 

 

Figure 3.10 – Example of KNN algorithm. The sample (circle) is classified according to the majority of 
classes in the selected neighborhood (K). 

 

For the KNN algorithm, the trained hyperparameters were the number of neighbors and the 

search function. 

 

3.3.6 Classifier combination 

There are several strategies that can be implemented in order to improve the results, one 

of those strategy is classifier combination. 

The basic idea behind classifier combination is that when making a decision, one should not 

rely only on a single classifier, but rather, classifiers need to participate in decision making by 

combining or fusing their individual opinions [168]. If the classification results of different 

classifiers can be fused in an efficient way, then the outcome of such classifier combinations 

can be superior to all the individual classifiers. In essence, a generalization of methods as the 

ones applied in GBT and RF with the decision trees. 

In order to combine classifiers, there are two main aspects that need to be considered first, 

the level of fusion and the combination strategy. 
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In general, information fusion can be achieved at two different levels: fusion prior to 

classification/matcher stage, that is, at the sensor and feature levels and fusion after 

classification/matcher [168], [169].  

Fusion levels after classification can be divided in fusion at score level, rank level and 

decision level. In score level fusion, each classifier provides an opinion on the possible 

decisions, where non-homogeneous metrics can be used, for example, one classifier provides 

its opinion in terms of distances while another in terms of a likelihood measure [169]. Rank 

level fusion is used when the output of each classifier is a subset of possible measures stored 

in decreasing order of confidence. In fusion at decision/abstract level each classifier makes 

the decision independently, being then combined [169]. 

Regarding the existing classifier combination strategies, based on the execution order of 

the combination, three approaches can be considered: sequential, parallel (Figure 3.11, 

adapted from [168]) and hybrid combination. 

 

 

Figure 3.11 - Parallel classifier combination. 

In sequential combination, the result of one classifier is used as input to another classifier. 

The execution order of the classifiers is important and if it is changed, the final result can be 

different [170]. Parallel combination consists of exploiting several classification algorithms by 

merging their results. The execution order of the classifiers is not important.  

Hybrid combination consists of combining the sequential and parallel techniques. Other 

strategies can also be considered as combination with looping criterion, that is, the 

combination result can be used by the classifiers and thus modify their outputs, and 

combination with interaction between classifiers [168]. 

In this work, the tested classifier combinations were mainly based on a parallel combination 

at decision level. Many method have already been developed for this approach [168] as the 

Bayesian combination [171], fuzzy integrals-based method [172], [173], methods using the 

Dempster–Shafer theory [174] and majority voting methods [175]. 

The majority voting is the most commonly used approach for decision level fusion due to 

its simple theoretical analysis [168], being the chosen method. More detailed, two variations 

of the major voting technique were tested: hard and soft voting. The first approach can be 

defined according to Equation (3.1): 

 

 
Ŷ = 𝑚𝑜𝑑𝑒{𝐶1(𝑥), 𝐶2(𝑥), … , 𝐶𝑛(𝑥)} (3.1) 

That is, the class label Ŷ is chosen via majority (plurality) voting of each classifier (C) (hard 

voting). A slightly different version can be obtained if the individual classifiers produce 

probability estimates (soft voting), Equation (3.2): 

 

 
Ŷ = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∑ 𝑤𝑗𝑝𝑖𝑗

𝑛
𝑗=1   (3.2) 
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Where Wj is the weight that can be attributed to the classifier j and pij is the probability of 

label i computed by classifier j. 

3.4 Imbalance approach 

Any dataset that exhibits an unequal distribution between its classes can be considered 

imbalanced [176]. 

From the SleepEye dataset, following the mentioned approach of feature extracting in non-

overlapping 2 minutes windows, there is simultaneous available from ECG and Video data 1209 

samples. For both 2 and 3 class dataset division, the classes’ proportions are imbalanced, more 

precisely the class distribution is the following, Figure 3.12. 

 

 

 

Figure 3.12 - Data proportion for 2 and 3-classes problem division. 

One of the biggest problems of having an imbalanced dataset is that classifiers tend to 

provide a severely imbalanced degree of accuracy, with the majority class having close to 100 

percent accuracy and the minority class having smaller accuracies.  

As in other typical cases, for example, cancerous/non-cancerous medical image 

classification, there are different misclassification costs [176], [177]. Regarding the current 

problem, the consequence of misclassifying a drowsy driver as awake is potentially higher than 

the opposite.  

Some of the most used techniques used to deal with imbalanced datasets include cost-

sensitive and sampling-based methods. Other popular methods include Kernel-Based and Active 

Learning Methods [176]. 

Cost-sensitive methods attempt to balance distributions by considering the costs associated 

with misclassifying examples [49], [50]. That is, a cost matrix is used to represent the cost 

associated with each misclassification. If any minority sample gets misclassified in majority 

class, then its cost will be higher than misclassification of a majority class sample. 

Sampling methods consists of the modification of an imbalanced dataset by some 

mechanism, typically oversampling of the minority class or undersampling of the majority class, 

in order to provide a balanced distribution. 

In this work, a cost-sensitive and a sampling method were applied. Regarding the cost-

sensitive method, cost matrix weights were computed inversely proportional to the class 

weights distribution. As for the sampling method technique, naive random oversampling 

method was used.

 

65,5%

34,5%

2-class problem

"awake" "drowsy"

48,0%

37,6%

14,4%

3-class problem

"awake" "medium" "drowsy"
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3.5 Models for sequential data 

As mentioned in [92] work, typically, drowsiness gradually increases over time, as so, 

predicting the driver state based on the features in the actual moment may be less accurate 

than predicting it looking at the pattern also in the moments before. Although [92] tried some 

simple approaches involving sequential data, that is, considering the sequential nature of the 

signals, a more detailed studied was needed. 

For this purpose, a technique based on hidden Markov models (HMMs) was used, a method 

most commonly used in speech and language technology fields that recently has started to be 

applied in driver behavior modeling [178]. 

The foundation of HMM is a stochastic Markov process that consists of a number of states 

with corresponding transitions. For example, as illustrated next, in Figure 3.13, adapted from 

[179]. 

 

 

Figure 3.13 – A markov chain with 5 states (S1 to S5) with selected state transitions. 

The HMM is always in one of those states, moving from one state to another according to a 

set of transition probabilities. State changes in the Markov process are hidden from the user 

[180], [179]. 

In this work, similar to [180] and [181] work, the overall workflow consisted of two main 

phases. First, training one HMM (with sets of sequences) for each considered data label, for 

example, drowsy and awake, and then, giving a new sequence, estimate which HMM presents 

the maximum likelihood. The training phase consists essentially in adjusting the HMM transition 

parameters, using methods as the Baum-Welch algorithm, and for the prediction phase, 

likelihood estimation is done applying the Viterbi algorithm [182]. 

Using the above mentioned framework, two approaches were considered to obtain data 

sequences. 

A first approach, consisted of computing the mentioned features in 3.2 on smaller windows, 

for example, 15 seconds windows. Adjacent windows with identical labels were then grouped 

together, thus obtaining several sets of sequential windows. 

For the second approach, no features were extracted, and a raw signal was used by dividing 

it in smaller sets of windows.

3.6 Subject-independent classification 

So far, the discussed approaches involved random splitting all the samples in training and 

test datasets which are used to train and evaluate the classifiers respectively. This implies 

that, it is likely to have samples of a specific subject in both the training and test datasets, 
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increasing the similarity between those two groups and, thus, the classifier will more easily 

achieve good performances.  

Although some intermediate scenarios can also be tested, controlling the number of 

samples from a certain subject used in the training and then testing the classifier in that 

subject, the scenario of a completely independent subject classification, is the ideal for a real 

life classification. Pre-training a classifier that can then be directly applied to detect 

drowsiness in an unseen driver. 

Idealizing this scenario of subject independent classification, an evaluation of the 

performance that could be achieved using a classifier trained in n-1 subjects and then tested 

in the n-th subject was also done. 

3.7 Results and discussion 

3.7.1 Classifiers and features comparison 

The results detailed in this section were obtained using the overall workflow described in 

section 3.1, Table 3.3, shown next, contains a collection of the average accuracies obtained 

with the previous described classifiers using different features (ECG, Video and ECG and Video) 

and different dataset categorizations (binary and multiclass). For comparison, the results 

obtained by [92] with the same dataset and similar methodology, here verified, using EOG 

features are also displayed next. 

 

 
Table 3.3 – Accuracy results (average and standard deviation) for combined classifiers using ECG and 
video features. 

Classifiers Nº Classes ECG EOG Video ECG + Video 

SVM 
2 72.1 ± 1.3 86.3 ± 1.3 84.4 ± 0.9 88.8 ± 1.9 

3 55.2 ± 2.9 73.4 ± 1.1 73.4 ± 1.3 78.0 ± 1.9 

      

RF 

2 72.0 ± 0.9 86.6 ± 1.4 86.4 ± 1.1 87.7 ± 1.4 

3 54.2 ± 1.2 75.6 ± 1.2 77.1 ± 1.5 78.8 ± 1.2 

      

ANN 

2 70.3 ± 1.4 84.5 ± 1.2 82.8 ± 1.1 87.7 ± 1.1 

3 53.8 ± 2.3 73.0 ± 1.4 73.3 ± 1.3 77.4 ± 1.7 

      

GBT 
2 72.2 ± 1.1 87.4 ± 0.8 86.6 ± 1.5 89.2 ± 0.9 

3 54.8 ± 2.4 75.8 ± 2.4 75.3 ± 1.2 76.9 ± 1.8 

      

KNN 

2 70.0 ± 1.8 81.8 ± 2.1 83.0 ± 2.0 86.4 ± 1.5 

3 51.8 ± 2.4 70.3 ± 1.8 71.6 ± 1.0 74.5 ± 1.6 

 

For each of the performed experiments, further detailed results are presented next, from 

Table 3.4 to Table 3.13. 
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Support Vector Machine 

 
Table 3.4 – Normalized confusion matrix using SVM classifier with 2 labels. 

Features 

   predicted 

   awake drowsy 

ECG 
 

given 
awake 88.8 ± 2.4 11.2 ± 2.4 

 

drowsy 60.8 ± 6.3 39.2 ± 6.3 

    predicted 

    awake drowsy 

Video 
 

given 
awake 87.7 ± 1.7 12.3 ± 1.7 

 

drowsy 22.1 ± 3.1 77.9 ± 3.1 

    predicted 

    awake drowsy 

ECG+Video 

 

given 

awake 92.0 ± 2.1 8.0 ± 2.1 

 drowsy 17.6 ± 3.6 82.4 ± 3.6 

 

 

 
Table 3.5 – Normalized confusion matrix using SVM classifier with 3 labels. 

Features 

 
  predicted 

 
  awake medium drowsy 

  

given 

awake 76.8 ± 6.2 22.4 ± 5.5 0.8 ± 0.8 

ECG  medium 53.6 ± 5.8 42.6 ± 5.5 3.8 ± 1.4 

   drowsy 49.6 ± 7.1 36.5 ± 6.9 13.8 ± 7.4 

 

  predicted 

  awake medium drowsy 

Video 
given 

awake 84.6 ± 3.0 14.4 ± 2.3 1.0 ± 1.3 

medium 22.8 ± 2.5 70.3 ± 3.9 6.8 ± 3.6 

 drowsy 15.3 ± 4.7 41.6 ± 8.3 43.2 ± 9.5 

 
  predicted 

 
  awake medium drowsy 

ECG+Video given 

awake 89.4 ± 2.9 10.0 ± 2.7 0.7 ± 0.4 

medium 21.5 ± 2.8 72.9 ± 3.8 5.6 ± 1.7 

drowsy 5.7 ± 4.3 41.3 ± 7.9 52.9 ± 8.1 
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Random Forest 

 
Table 3.6 – Normalized confusion matrix using RF classifier with 2 labels. 

Features 

   predicted 

   awake drowsy 

ECG 
 

given 
awake 87.8 ± 1.5 12.2 ± 1.5 

 

drowsy 59.3 ± 3.1 40.7 ± 3.1 

    predicted 

    awake drowsy 

Video 
 

given 
awake 89.7 ± 1.7 10.3 ± 1.7 

 

drowsy 19.9 ± 1.5 80.1 ± 1.5 

    predicted 

    awake drowsy 

ECG+Video 
 

given 
awake 91.2 ± 1.6 8.8 ± 1.6 

 drowsy 19.3 ± 2.6 80.7 ± 2.6 

 

 

 
Table 3.7 – Normalized confusion matrix using RF classifier with 3 labels. 

Features 

 
  predicted 

 
  awake medium drowsy 

  

given 

awake 72.6 ± 2.0 25.1 ± 1.8 2.3 ± 1.1 

ECG  medium 52.2 ± 3.2 44.4 ± 3.1 3.4 ± 1.7 

  drowsy 46.3 ± 5.3 36.5 ± 3.9 17.2 ± 4.2 

  
  predicted 

  
  awake medium drowsy 

Video 

 

given 

awake 90.0 ± 3.2 9.5 ± 3.2 0.5 ± 0.6 

 medium 23.6 ± 3.0 71.7 ± 2.4 4.7 ± 2.3 

 drowsy 8.4 ± 3.2 44.7 ± 5.0 46.9 ± 4.4 

  
  predicted 

  
  awake medium drowsy 

ECG+Video 

 

given 

awake 90.9 ± 2.6 8.7 ± 2.4 0.5 ± 0.3 

 medium 22.6 ± 2.9 74.1 ± 3.3 3.3 ± 1.8 

 drowsy 7.0 ± 2.9 43.2 ± 5.7 49.8 ± 3.8 

 



 

3.7 Results and discussion 43 

 

 

Artificial Neural Networks 

 
Table 3.8 – Normalized confusion matrix using ANN classifier with 2 labels. 

Features 

   predicted 

   awake drowsy 

ECG 
 

given 
awake 90.9 ± 1.3 9.1 ± 1.3 

 

drowsy 70.5 ± 2.9 29.5 ± 2.9 

 
   predicted 

   awake drowsy 

Video 
 

given 
awake 86.5 ± 2.6 13.5 ± 2.6 

 

drowsy 24.5 ± 2.8 75.5 ± 2.8 

    predicted 

    awake drowsy 

ECG+Video 
 

given 
awake 90.3 ± 1.5 9.7 ± 1.5 

 

drowsy 17.5 ± 1.0 82.5 ± 1.0 

 

 

 
Table 3.9 – Normalized confusion matrix using ANN classifier with 3 labels. 

Features 

 
  predicted 

 
  awake medium drowsy 

  

given 

awake 77.2 ± 5.7 21.0 ± 4.7 1.8 ± 1.4 

ECG  medium 57.3 ± 7.6 40.7 ± 6.5 2.0 ± 1.6 

  drowsy 50.8 ± 9.7 41.8 ± 7.4 7.4 ± 5.6 

  
  predicted 

  
  awake medium drowsy 

Video 

 

given 

awake 85.4 ± 4.3 13.8 ± 4.0 0.8 ± 0.6 

 medium 21.9 ± 3.4 69.0 ± 4.4 9.1 ± 3.5 

 drowsy 13.8 ± 3.1 43.3 ± 4.9 42.9 ± 5.2 

  
  predicted 

  
  awake medium drowsy 

ECG+Video 

 

given 

awake 86.0 ± 2.3 13.1 ± 2.4 0.9 ± 0.5 

 medium 20.0 ± 3.6 72.2 ± 3.9 7.8 ± 1.9 

 drowsy 5.4 ± 2.1 33.0 ± 6.3 61.6 ± 7.1 
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Gradient Boosting Tree 

 
Table 3.10 – Normalized confusion matrix using GBT classifier with 2 labels. 

Features 

   predicted 

   awake drowsy 

ECG 
 

given 
awake 88.3 ± 1.5 11.7 ± 1.5 

 

drowsy 59.4 ± 3.1 40.6 ± 3.1 

    predicted 

    awake drowsy 

Video 
 

given 
awake 90.1 ± 2.0 9.9 ± 2.0 

 

drowsy 20.3 ± 3.1 79.7 ± 3.1 

    predicted 

    awake drowsy 

ECG+Video 
 

given 
awake 91.0 ± 1.5 9.0 ± 1.5 

 drowsy 14.4 ± 1.8 85.6 ± 1.8 

 

 

 

 
Table 3.11 – Normalized confusion matrix using GBT classifier with 3 labels  

Features 

   predicted 

 
  awake medium drowsy 

  

given 

awake 71.3 ± 2.8 26.5 ± 2.9 2.2 ± 1.0 

ECG  medium 48.7 ± 4.8 45.8 ± 4.9 5.5 ± 1.5 

  drowsy 41.7 ± 6.6 36.7 ± 3.9 21.6 ± 5.2 

 

 
  predicted 

 
  awake medium drowsy 

Video 

 

given 

awake 86.5 ± 2.6 12.4 ± 2.7 1.0 ± 0.6 

 medium 23.2 ± 3.4 71.3 ± 4.3 5.5 ± 1.8 

 drowsy 10.4 ± 3.0 41.9 ± 5.2 47.6 ± 4.6 

  
  predicted 

  
  awake medium drowsy 

ECG+Video 

 

given 

awake 88.0 ± 2.5 11.3 ± 2.4 0.7 ± 0.4 

 medium 22.0 ± 2.7 71.0 ± 3.5 7.0 ± 1.7 

 drowsy 3.6 ± 2.5 41.6 ± 4.0 54.8 ± 4.4 
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K-Nearest Neighbors 

 
Table 3.12 – Normalized confusion matrix using KNN classifier with 2 labels. 

Features 

   predicted 

   awake drowsy 

ECG 
 

given 
awake 90.3 ± 2.1 9.7 ± 2.1 

 

drowsy 70.0 ± 3.6 30.0 ± 3.6 

    predicted 

    awake drowsy 

Video 
 

given 
awake 86.5 ± 2.2 13.5 ± 2.2 

 

drowsy 23.9 ± 3.6 76.1 ± 3.6 

    predicted 

    awake drowsy 

ECG+Video 
 

given 
awake 90.4 ± 1.9 9.6 ± 1.9 

 drowsy 21.4 ± 2.1 78.6 ± 2.1 

 

 

 
Table 3.13 – Normalized confusion matrix using KNN classifier with 3 labels. 

Features 

 
  predicted 

 
  awake medium drowsy 

  

given 

awake 79.6 ± 5.7 19.3 ± 5.0 1.1 ± 1.0 

ECG  medium 63.6 ± 6.5 33.6 ± 4.3 2.8 ± 2.8 

  drowsy 60.3 ± 6.8 34.9 ± 6.3 4.9 ± 5.5 

  
  predicted 

  
  awake medium drowsy 

Video 

 

given 

awake 86.7 ± 3.5 11.7 ± 2.9 1.6 ± 0.9 

 medium 27.6 ± 3.5 65.7 ± 4.2 6.7 ± 2.4 

 drowsy 16.4 ± 4.5 47.4 ± 8.5 36.1 ± 9.0 

  
  predicted 

  
  awake medium drowsy 

ECG+Video 

 

given 

awake 88.4 ± 1.6 10.9 ± 1.6 0.7 ± 0.6 

 medium 26.9 ± 6.0 68.3 ± 5.0 4.8 ± 2.4 

 drowsy 13.3 ± 3.1 43.6 ± 6.7 43.1 ± 6.3 
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In summary, analyzing the results, when comparing between different classifiers, their 

performance is similar. Although SVM, RF and GBT classifiers seem to perform better in some 

cases, the overall differences are not significant. 

Inspecting the detailed results, the drowsy class reveals the hardest to identify. In 

particular, all the classifiers tend to predict as awake, drivers that are drowsy. 

When analyzing different features, video features perform considerable better than ECG, 

roughly 14% for the 2 class problem and 20% for the 3 class problem, with ECG performance 

being similar to [92] work. The multimodal approach, combining ECG and video features 

increases the performance by approximately 3% when comparing to the video features alone. 

For all the classifiers and features, the 2 class problem performance is better than the 3 

class. 

One of the goals of this project was to evaluate if non-invasive behavioral measures could 

replace EOG maintaining the same performance. This proved valid, as video features performed 

equally well or better to EOG features tested in [92] work. 

 

3.7.2 Classifiers combination 

As discussed, all the classifiers performed similarly, as so, a potential approach to increase 

the performance was to combine the decisions of multiple classifiers. Using simultaneously ECG 

and video features, and following the previous approach of data preprocessing, multiple 

classifiers were combined at the decision level using both soft and hard voting, the techniques 

previously mentioned in the methods section 3.3.6. 

Initially SVM, RF and GBT classifiers combination was tested, due to their slightly better 

performance in the binary multimodal approach, other combinations were also tried, but in 

general no noteworthy results were obtained. For the soft voting approach each classifier has 

an equal weight. The obtained accuracy results are shown next in Table 3.14. 

 
Table 3.14 – Accuracy results (average and standard deviation) for combined classifiers using ECG and 

video features. 

Classifiers Nº Classes Accuracy (soft voting) Accuracy (hard voting) 

SVM+RF 
2 87.5 ± 1.1 - 

3 79.5 ± 1.5 - 

    

SVM+GBT 

2 88.1 ± 2.2 - 

3 78.9 ± 2.5 - 

    

RF+GBT 

2 88.6 ± 1.4 - 

3 78.0 ± 1.7 - 

    

SVM+RF+GBT 
2 89.6 ± 1.7 88.7 ± 1.4 

3 80.2 ± 1.9 78.8 ± 1.5 

    

SVM+RF+ANN 

2 88.0 ± 1.4 88.3 ± 1.2 

3 79.0 ± 1.3 78.7 ± 1.8 

 

https://www.powerthesaurus.org/initial/synonyms
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Detailed normalized confusion matrix for all the results are also displayed next, from Table 

3.15 to Table 3.19. 

 
Table 3.15 – Normalized confusion matrix using soft fusion of SVM and RF classifiers. 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 
Awake 90.7 ± 1.3 9.3 ±  1.3  

given 

Awake 90.9 ± 2.1 8.4 ±  2.0 0.7 ± 0.7 

Drowsy 18.5 ± 3.8 81.5 ± 3.8  Medium 19.3 ± 1.5 75.8 ± 2.1 4.9 ± 1.7 

     Drowsy 6.0 ± 2.8 43.0 ± 7.4 51.1 ± 6.5 

 

 
Table 3.16 – Normalized confusion matrix using soft fusion of SVM and GBT classifiers. 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 
Awake 92.1 ± 1.9 7.9 ±1.9  

Given 

Awake 89.5 ± 2.2 10.0 ± 2.1 0.5 ± 0.7 

Drowsy 19.1 ± 4.8 80.9 ± 4.8  Medium 19.9 ± 3.7 75.4 ± 3.6 4.6 ± 1.4 

     Drowsy 5.5 ± 3.2 41.0 ± 7.8 53.5 ± 7.7 

 

 
Table 3.17 – Normalized confusion matrix using soft fusion of GBT and RF classifiers. 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 
Awake 90.5 ± 1.7 9.5 ± 1.7  

given 

Awake 89.8 ± 1.9 9.4 ± 2.0 0.8 ± 0.4 

Drowsy 14.9 ± 4.0 85.1 ± 4.0  Medium 22.6 ± 3.2 72.2 ± 3.1 5.2 ± 1.7 

     Drowsy 8.2 ± 3.2 37.6 ± 7.3 54.3 ± 6.4 

 

 
Table 3.18 – Normalized confusion matrix using soft and hard fusion of SVM, RF and GBT classifiers. 

Soft voting 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 

Awake 92.1 ± 2.0 7.9 ± 2.0  

Given 

Awake 
91.5 ± 2.1 7.8 ± 2.0 0.6 ± 0.6 

Drowsy 15.3 ± 3.0 84.7 ± 3.0  Medium 
18.6 ± 3.0 76.8 ± 2.4 4.6 ± 1.9 

     Drowsy 
8.2 ± 4.9 39.3 ± 7.8 52.5 ± 7.0 
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Hard voting 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 

Awake 91.8 ± 1.3 8.2 ± 1.3  

Given 

Awake 
91.0 ± 2.3 8.5 ± 2.0 0.5 ± 0.6 

Drowsy 17.2 ± 2.9 82.8 ± 2.9  Medium 
21.8 ± 2.7 74.1 ± 3.4 4.2 ± 1.8 

     Drowsy 10.2 ± 5.0 39.9 ± 9.4 49.9 ± 6.6 

 

 

 
Table 3.19 – Normalized confusion matrix using soft and hard fusion of SVM, RF and ANN classifiers. 

 

After reviewing the results, the applied combinations of classifiers did not increase the 

overall performance. This might be explained by the high performance that the classifiers were 

already obtaining, high correlation between the classifiers and, in addition, the obtained 

results may already be on the limit of what is achievable with this dataset. 

Nonetheless, other attempts to increase the performance were tested. One of the 

experiments consisted in combining two SVM classifiers, with each classifier using different 

information sources, namely one using only ECG features and another using video features. The 

obtained accuracy results and normalized confusion matrixes and shown next, in Table 3.20 

and Table 3.21 respectively. 

 

 

Soft voting 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 
Awake 91.8 ± 2.0 8.2 ± 2.0  

Given 

Awake 89.0 ± 1.4 10.4 ± 1.4 0.6 ± 0.4 

Drowsy 18.6 ± 3.3 81.4 ± 3.3  Medium 17.3 ± 2.5 76.7 ± 2.7 6.0 ± 2.2 

     Drowsy 7.7 ± 4.0 40.5 ± 7.2 51.8 ± 6.9 

Hard voting 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 
Awake 91.6 ± 1.6 8.4 ± 1.6  

Given 

Awake 89.4 ± 1.6 10.1 ± 1.3 0.5 ± 0.6 

Drowsy 17.7 ± 2.6 82.3 ± 2.6  Medium 20.5 ± 4.0 74.4 ± 3.9 5.1 ± 1.6 

     Drowsy 8.2 ± 4.2 38.2 ± 6.9 53.6 ± 4.4 



 

3.7 Results and discussion 49 

 

Table 3.20 – Accuracy (average and standard deviation) results obtained with two SVM classifiers using 
different information sources. 

Classifier (features) Nº Classes Accuracy 

SVM(ECG)+SVM(Video) 

2 83.9 ± 2.2 

3 73.8 ± 2.6 

 

Table 3.21 – Normalized confusion matrix for the two SVM classifiers using different information 
sources. 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 

Awake 
94.2 ±  

1.5 

5.8 ±  

1.5 
 

given 

Awake 
88.0 ±  

3.1 

11.2 ± 

3.0 

0.8 ±  

0.5 

Drowsy 
34.6 ±  

6.1 

65.4 ±  

6.1 
 Medium 

25.4 ± 

4.3 

71.5 ±  

4.4 

3.0 ±  

1.2 

     Drowsy 
10.8 ±  

5.6 

56.7 ± 

5.8 

32.4 ± 

5.2 

 

The combination of the two SVM classifiers one using EGG features and another with video 

features did not perform well, decreasing the performance when comparing with the results 

obtained using the same classifier with both ECG and video features. The accuracy lowered by 

approximately 3% for both the 2 and 3 classes’ problem. 

 

3.7.3 Imbalanced data  

As can be verified from the previous results, although the overall obtained accuracies are 

reasonably high, when analyzing the performances per class, the majority class is always 

obtaining better results. To balance these variations, the cost-sensitive and oversampling 

approaches previous explained in the methods section were applied for an SVM classifier using 

ECG and video features. The same workflow of data division and processing was used. The 

results are presented next in Table 3.22. 

 
Table 3.22 – Accuracy (average and standard deviation) results for SVM classifier using ECG and video 

features. 

Classifier Balancing approach Nº Classes Accuracy 

SVM 

Cost-sensitive 
2 87.3 ± 1.5 

3 76.1 ± 1.6 

   

Oversampling 

2 87.2 ± 0.9 

3 76.2 ± 1.7 
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Further detailed results are displayed next in Table 3.23 and Table 3.24. 

 

 
Table 3.23 – Normalized confusion for imbalanced approaches for 2 class problem. 

Balancing approach 

   predicted 

 
  awake drowsy 

Cost-sensitive 
 

given 
awake 88.4 ± 3.8 11.6 ± 3.8 

 

drowsy 14.2 ± 7.4 85.8 ± 7.4 

    predicted 

    awake drowsy 

Oversampling 

 

given 

awake 91.1 ± 2.8 8.9 ± 2.8 

 drowsy 20.5 ± 3.4 79.5 ± 3.4 

 

 
Table 3.24 – Normalized confusion for imbalanced approaches for 3 class problem. 

Balancing approach 

   predicted 

 
  awake medium drowsy 

  

given 

awake 86.7 ± 3.0 11.2 ± 3.2 2.1 ± 1.5 

Cost-sensitive  medium 18.3 ± 3.1 69.8 ± 4.8 11.9 ± 4.5 

  drowsy 8.5 ± 5.5 32.8 ± 7.6 58.8 ± 10.5 

    predicted 

  
  awake medium drowsy 

Oversampling 

 

given 

awake 86.3 ± 1.8 13.1 ± 1.9 0.6 ± 0.4 

 medium 20.1 ± 4.9 71.8 ± 3.8 8.1 ± 2.2 

 drowsy 9.2 ± 3.1 36.9 ± 7.2 53.8 ± 7.3 

 

 

The overall performance for both methods was identical to the performance obtained 

without using any imbalance data method for both 2 and 3 class division. Analyzing the detailed 

confusion matrixes, although only minor differences are noticed, two conclusions can be made. 

First, the cost-sensitive method performs better than the oversampling and, secondly, for this 

approach, the accuracy gap between classes slightly decreases, however with a bigger 

variability (standard deviation). 
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3.7.4 Window size sensitivity 

The window size sensitive (section 3.2.2) was evaluated analyzing the performance of an 

SVM classifier trained with both ECG and Video features. The features were extracted in 

different time windows ranging from 15 seconds to 5 minutes. The obtained accuracy results 

are presented next in Figure 3.14. 

Analyzing the results, we can observe that, although there are some slight differences in 

the performances from the different windows lengths, the results are fairly similar. As so, it is 

possible to conclude that, most likely, choosing a different time window length would not 

provide better results. 

 

3.7.5 Sequential data 

According to the procedure explained in section 3.5 a sequential data approach was tested. 

More precisely, regarding the first strategy, that is, extracting features in small windows and 

creating sequences with the adjacent windows, multiple windows lengths were evaluated, as 

well as, the total number of windows in each sequence (sequence length). Most of the results 

did not show good accuracies. The best performance was obtained using windows of 15 seconds 

organized in 2 minutes sequences. 

Table 3.25 shows the obtained accuracy results using ECG features for both 2 and 3 labels 

problem categorization, using 10-fold validation. 

 
Table 3.25 - HMM accuracy (average and standard deviation) results using ECG features. 

Features        Sequence lenght    Nº classes Accuracy (%) 

ECG 
2 minutes 

(8 x 15 seconds windows) 

2 75.5 ± 5.6 

3 53.9 ± 3.7 

 

 

 

Figure 3.14 – Accuracy results (average and standard deviation) for two and three class problem 

for features extracted in different time windows. 
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A more detailed view of obtained results is showed next, in Table 3.26 

 
Table 3.26 - Normalized confusion matrix using HMM with 15 (seconds) x 8 sequences. 

  predicted    predicted 

  Awake Drowsy    Awake Medium Drowsy 

given 

Awake 
88.7 ±  

5.4 

11.3 ±  

5.4 
 

given 

Awake 
30.7 ± 

11.9 

67.5 ± 

11.8 

1.8 ±  

1.6 

Drowsy 
74.1 ± 

15.1 

25.9 ± 

15.1 
 Medium 

18.6 ±  

8.4 

79.0 ±  

8.4 

2.4 ±  

1.6 

     Drowsy 
14.1 ± 

11.9 

72.7 ± 

15.2 

13.1 ± 

8.6 

 

Analyzing the overall accuracy results for the HMM approach and in comparison with the 

respective results obtained with the classifiers in the previous section, particularly for the 2 

class problem, the HMM seems to be more efficient. However, one a more detailed look, 

inspecting the values per class there is a high variability between the results, indicating a lack 

of consistency. 

The same procedure was also tested with video features and the combination of both, but 

it revealed ineffective with results roughly 10% below the obtained with a classifier as SVM. 

Furthermore, to analyze if the overall unsatisfactory results obtained with the HMM 

approach were because of the features and signal discretization used, the second discussed 

approach was tested. Specifically, the raw ECG signal was used for comparison. The results are 

the following, Table 3.27. 

 
Table 3.27 – HMM accuracy (average and standard deviation) results obtained using the raw ECG signal. 

Input Sequence length (minutes) Accuracy (%) 

ECG signal 

1 61.6 ± 11.1 

2 50.9 ± 19.6 

3 52.3 ± 13.7 

 

This approach was considerably inferior to the first described. The best result was obtained 

using sequences of 1 minute length, but even so, it is more than 10% inferior to the HMM 

approach using features. The variability between the results is also very high, with some of the 

validations folds obtaining performances close to zero in the drowsy class. 
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3.7.6 Subject-independent classification 

For this experiment both ECG and Video features were used. An SVM classifier was trained 

in n-1 subjects and then evaluated in n-th subject. This process was repeated for all the 

subjects, which represents a total of 17 persons. The average, minimum and maximum accuracy 

values from the predictions of all subjects are presented next, in Table 3.28. 

 
Table 3.28 – Accuracy results for subject independent classification. 

Classifier Nº Classes Average Min Max 

SVM 

2 75.5 28.8 92.9 

3 58.8 23.8 77.4 

 

As concluded in the previous work [92], the obtained results with subject independent 

tests, for both two and three class problems were considerably worse than when using all the 

data mixed. There is also a substantial difference between the average results and the worst 

result. Partially, this difference might be due to the fact that there is only available data from 

the day session for that subject (minimum result) in comparison with others were day and 

nights sessions are available. Experimenting only for subjects were both day and night data is 

available (15 subjects), increases the worst case by approximately 15%, but the performance 

is still far below the required for a functional drowsiness detector. 

However, the main reason for the overall low performances obtained with the subject 

independent experiment is, most likely, the subjective nature of drowsiness. First, there might 

be individual subject differences in the KSS scale used as ground truth, as one subject feeling 

of drowsiness can be considerable different from another subject. Indeed, the subjective 

nature of the KSS scale has already been reported [12]. It is also probable that this drowsiness 

subjectiveness may also extend to physiological levels, meaning that each driver may manifest 

drowsiness in slightly different ways [40], [134], [178]. 

Consequently, in order to obtain an accurate sleepiness detector, further research needs 

to be performed accounting for this individual subject differences, using, for example, 

personalized algorithms, that can be adjusted between individuals. 
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Chapter 4  

A method for non-invasive acquisition of 
drowsiness measures 

In this chapter, a methodology developed to extract drowsiness related measures non-

intrusively is described. 

While the approaches discussed in the previous chapter consist of a series of techniques 

that attempt to maximize sleepiness detection from a set of already extracted measures 

(SleepEye dataset), this chapter focus on the measure acquisition process. 

In the SleepEye dataset, as stated, all the visual measures are obtained using a Smart Eye 

Pro system. Although it provides accurate measures, the system was not specifically designed 

to detect drowsiness, which may be limiting sleepiness detecting performance using video. In 

particular, there are other potential drowsiness related measures that could be analyzed and 

used to better evaluate drowsiness. 

As such, an exploratory work was developed, to allow the extraction of additional 

drowsiness related measures using video from the drivers face, particularly yawn related 

measures and heart rate estimation. The exploratory nature of this work should be empathized 

and the obtained results, although promising, should only be regarded as a proof of concept 

rather than a final validation. 

All the algorithms implemented in this chapter were developed using videos obtained from 

YouTube, as well as, a video provided by Professor André Lourenço. 

4.1 Framework description 

To achieve the outlined objective of extracting drowsiness related measures from the 

drivers face, an algorithm was developed based on a review of computer vision state of the art 

methodologies used in face analysis. 

The algorithm was implemented in Python, as it is a high-level programming language with 

extensive support libraries, and using videos obtained from standard cameras in a single viewing 

angle, which has the advantage that it is more practical to implement in a real life application. 

The developed framework can be divided in three main steps. First a face detection stage, 

which identifies the driver face in a given video frame, secondly, using the obtained face 

boundary, a set of facial landmarks locations are determined, lastly, with the estimated face 

https://en.wikipedia.org/wiki/High-level_programming_language
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and landmarks locations several drowsiness related measures are computed. The described 

workflow is outlined in Figure 4.1. 

 

A more detailed description of the methods used in each phase of the framework is further 

explained next. 

4.2 Face detection 

As indicated, the first step in the workflow is to correctly identify the drivers face. Because 

all the subsequent steps are dependent on its correct detection, a robust face detector is 

crucial. In the Literature review chapter, some of the methods typically used for face detection 

in drowsiness related problems are discussed, as the Viola-James detector [80], [63], [65], [81], 

[85]. Although those more traditional algorithms perform well in controlled environments, this 

kind of detector may degrade significantly in real-world applications with larger visual 

variations of human faces or illumination conditions. 

Consequently, and with more recent and efficient face detection strategies already being 

used in other projects [183], [184], in this work, a robust cascaded Convolutional Neural 

Network (CNN) face detector was implemented based in [183] work. 

Identically to the ANN discussed in the previous chapter, a CNN is a multi-layered non-fully-

connected neural network biologically inspired [185], [186]. Although a CNN may have many 

different architectures, in general, they consist of convolutional, pooling (or subsampling) and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 – Overall workflow of the drowsiness measures extraction process. 

https://www.powerthesaurus.org/subsequent/synonyms
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fully connected layers. Convolutional layers work as feature extractors, and thus they learn 

the feature representations of their input images. Pooling layers reduce the spatial resolution 

of the feature maps, achieving spatial invariance to input distortions and translations. 

These layers are usually stacked on top of each other, to extract more abstract feature 

representations, constituting modules, and either one or more fully connected layers, as in a 

standard feedforward neural network, follow these modules interpreting these feature 

representations and performing the function of high-level reasoning 

Figure 4.2, adapted from [186], illustrates this overall CNN architecture. 

 

 

Figure 4.2 – Overall CNN architecture. 

The cascade of CNNs implemented in this work consists of three sequential stages. In the 

first stage, a shallow CNN quickly produces candidate windows for the face locations (P-Net). 

Then, it refines the windows by rejecting a large number of non-faces windows through a more 

complex CNN (R-Net). Finally, it uses a more powerful CNN to refine the result again and output 

five facial landmarks positions (O-Net). 

A more detailed view of each of the CNN architectures is illustrated in Figure 4.3, obtained 

from [183]. 

 
Figure 4.3 - The architectures of P-Net, R-Net, and O-Net, where “MP” means max pooling and “Conv” 
means convolution. 

More precisely the used algorithm is adapted from [187] repository, a TensorFlow 

implementation of the described workflow, which provides an already trained model. 

4.3 Face landmarks detection 

Following the face detection, which, for practical purposes, provides a rectangle outlining 

the drivers face, a face landmark detection step is applied. Here, the provided landmarks will 
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serve as the structure for the drowsiness related measures extraction, but the facial landmark 

detection is an essential process for many tasks as face recognition, face tracking, face 

animation and 3D face modeling [188]. 

In summary, the facial landmarks detection (or face alignment) consists in locating 

characteristic points of the face, such as eyes, nose, mouth and chin. This is performed using 

a face shape mark-up, consisting of several landmarks, that is fitted to the face image. In order 

to estimate the alignment there are two main categories of approaches that can be considered, 

optimization-based, which fits the shape minimizing an error function, and regression-based 

methods, which learn a regression function that directly maps image appearance to the target 

output [188].  

In this project, the adopted alignment strategy consists of a cascade of regression functions 

[189]. Considering a shape (S) denoting the (x, y) coordinates of all the facial landmarks in the 

image (I), each regressor (r) in the cascade predicts an estimation of the shape based on the 

current shape estimation (Ŝ) and a set of features extracted from the image, such as intensity, 

as represented in Equation (4.1). 

 

 𝑆̂(𝑡+1) =  𝑆̂(𝑡) + 𝑟𝑡(𝐼, 𝑆̂(𝑡)) (4.1) 

The initial shape can simply be chosen as the mean shape of the training data centered and 

scaled according to the bounding box output of the face detector [189]. An illustration of the 

used facial shape mark-up is shown next, in Figure 4.4, adapted from [190]. 

 

The implementation of the described method was done using Dlib-ml toolikit [191], which 

provides an already trained facial landmark detector. 

4.4 Measure extraction 

As stated, the main objective in developing this framework was to extract from the drivers 

face a vast amount of drowsiness related characteristics. This includes obtaining the same 

 

 

 

Figure 4.4 – Facial landmarks 68 points mark-up. 
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measures used in Chapter 3 plus some additional measures. However, the pupil average 

diameter available from the SleepEye dataset could not be obtained, as it requires specific 

conditions to be properly acquired, for example, using an infrared light source. 

Nonetheless, eyelid opening, eye gaze and head pose are acquired and additionally, the 

mouth opening (lips distance), eyebrow raise and heart rate are also computed. A brief 

explanation of the methods used for the measures computation is presented next. 

 

4.4.1 Facial expressions 

Multiple researches have approached the problem of drowsiness detection by analyzing 

facial expressions. In this project three measures related to facial expressions are extracted, 

the eyelid opening, mouth opening and eyebrows raise.  

All these measures are computed based on the same principle, which is, using a Euclidian 

distance metric between some of the detected landmarks positions. 

To compute the eyelid opening the distance between the upper and lower eyelid is used. 

For example, for the left eye, illustrated in Figure 4.5, following the previous introduce 

landmarks scheme, the distance is obtained averaging two distances, d1 and d2, respectively 

the distance between point 38 and point 42 and the distance between point 39 and 41. The 

distance between the eye corners is used for normalization (d3). 

 

 

Figure 4.5 - Scheme of left eyelid distance calculation method. 

The final eyelid opening measure is obtained averaging the computed eyelid distances from 

both eyes. 

Regarding the mouth opening, an equivalent strategy is applied, using the average distance 

between the upper and lower lips contours. The measure is normalized with the mouth corner 

distance. 

The eyebrow rising measure is subdivided in inner and outer eyebrow rise. In order to obtain 

this measure, the average eyebrow distance to a reference point is calculated. As schematized 

in Figure 4.6, for the left face region, the inner eyebrow distance is computed by the average 

of distance d1 and d2 and for the outer eyebrow the distance d3 and d4.  
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Figure 4.6 – Detailed view of the 68 mark up, with schematized references used for the eyebrow 

distance calculation method. 

The symmetric process is done with the right face region and the final results is the average 

of both. The measure is normalized with the distance between eye corners. 

 

4.4.2 Head pose 

Head pose estimation, as already introduced, is the process of determining the 3 

dimensional orientation and position of the head (rotation and translation). There are multiple 

approaches to this problem, as appearance templates, nonlinear regression and geometric 

methods [192]. In this project, taking advantage of the knowledge of multiple facial key points 

location, a geometric method is used. 

The geometric relationship between a 3D point in the world coordinate space and its 

projection in the 2D image can be mathematically expressed according to Equation (4.2): 

 

𝑠 [
𝑢
𝑣
1

] = 𝐾 [𝑅|𝑡] [

𝑋
𝑌
𝑍
1

] (4.2) 

Where s is a scale factor, (u, v) denotes the 2D coordinates of the projection point and (X, 

Y, Z) denotes the coordinates of a 3D point in the world coordinate space. K is a 3x3 matrix 

which contains the camera calibration parameters such as the focal length and the optical 

center point coordinates. [R|t] is a 3x4 matrix which corresponds to the Euclidean 

transformation from a world coordinate system to the camera coordinate system. R is the 

rotation matrix and t the translation vector [193]. 

Knowing the position of multiple 3D points and respective 2D image projections, it is 

possible to estimate the orientation (R), relatively to the camera coordinate system, solving a 

Perspective n Point (PnP) problem. The described problem scheme can be visualized in the 

following image, Figure 4.7, adapted from [193].
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Figure 4.7 – The PnP Problem scheme: Given a set of 3D points (Mi) expressed in a world reference 
frame, and their 2D projections (mi) onto the image, we seek to retrieve the pose relatively to the 
camera coordinate system. 

More precisely, the 3D location of a set of reference facial points in a world coordinate 

system (obtained using 3D anatomical reference points [194], [195]), the respective 2D 

projections in the image coordinates (facial landmarks) and the camera intrinsic parameters 

(estimated from the image size) are used to estimate the head pose using OpenCV library PnP 

solver [196]. 

The estimated head pose orientation is given in the form of a matrix that can be viewed as 

a multiplication of three rotations: one about each principle axis, as in Equation (4.3). 

 
𝑅 = 𝑅𝑧(γ)𝑅𝑦(θ)𝑅𝑥(ϕ) (4.3) 

Using this relation between the rotation matrix (R) and the three principle axis, head pose 

yaw (γ), pitch (θ), and roll (ϕ) angles are calculated [193]. 

 

4.4.3 Gaze 

As discussed, eyes and their movements play an important role in expressing a person’s 

desires, needs, cognitive processes and emotional states. In fields as human-computer 

interaction, the development of robust gaze tracking methods is crucial, and, often, complex 

methods involving more than one camera or IR lights are used to accurately track gaze [197]. 

In this work, however, a simpler approach was implemented, as, for the needed purpose, 

the fundamental gaze information can be obtained by the relative pupil-eye corners 

displacement. In order to compute this displacement (d), first the pupil location is determined. 

This process, based in [198] work, uses a shape-based approach that exploits the predicted 

dark circular appearance of eye features, combining image intensity and gradient vectors to 

accurately estimate the pupil location. The method is applied directly on the eye region 

determined by the facial landmarks location. 

After obtaining the pupil location, the displacement is computed based on the distance to 

the eye center, which is estimated using the eye corner landmarks. Displacement in both 

horizontal and vertical directions is obtained which is then normalized using the distance 

between the eyes. A schematization of the described process is illustrated next, in Figure 4.8.  

 

 

 



 

62 A method for non-invasive acquisition of drowsiness measures 

 

 

 

 

 

 
Figure 4.8 – Scheme for pupil displacement calculation. 

Nonetheless, an approach using a simple approximation to a 3D gaze was also tried. This 

estimation is done assuming a fixed radius (R) of the eyeball, based on anatomic reference 

values, and applying a straightforward trigonometric formula to solve the angle (Θ) between 

the eyeball center/eye center line and the computed displacement (d), as illustrated in      

Figure 4.9. 

 

 

 

 

 

 

 

 
Figure 4.9 – Scheme of the 3D gaze approximation. 

The angle computed using the horizontal displacement is equivalent to the yaw angle and 

the computed from vertical displacement the pitch angle. The final gaze is obtained averaging 

the results from both eyes and respectively adding the obtained angles to the head pose yaw 

and pitch angles.  

It should be noted that this method accuracy is limited, and if a true 3D gaze is to be used, 

further research should be performed. 

 

4.4.4 Heart rate 

Remotely measuring the heart rate using a camera has already been successfully achieved, 

although in controlled environments, using more than one method, namely methods based in 

subtle head motions [199] and average optical intensity based methods [200], [201]. In this 

work, the technique described in [201] was followed, based on [202] implementation. 

This technique uses the cardio-vascular pulse wave that travels through the body in order 

to compute the heart rate. This principle is the same as of the Photo-plethysmography (PPG), 

that is, blood absorbs light more than surrounding tissue so variations in blood volume affect 

transmission or reflectance correspondingly [201]. 

Typically, the PPG is performed with dedicated light sources in the red and/or infra-red 

(IR) wavelengths. However, the same procedure can still be applied with normal ambient light 

as the source.  

As so, in this work, a heart rate estimation is performed by analyzing the average optical 

intensity extracted from the forehead drivers region. The forehead region is computed from 

the boundaries of the detected face region.

 



 

4.5 Validation 63 

 

4.5 Validation 

In the analyzed driver videos, it was not available any driver sleepiness ground truth. Due 

to this lack of a reference label, evaluation the process applying a supervised machine learning 

classification task is not possible. 

Nonetheless, as an alternative, a validation of the key steps that establish the algorithm 

performance was done, specifically, the landmark detection and heart rate steps were tested. 

In addition, in spite of its limited proof of validation, the overall process was evaluated 

adopting the trained models described in the previous chapter. 

A more detailed description of the executed validation methods and its discussion is 

presented below. 

 

4.5.1 Landmarks validation 

In the description of the measures extraction process it is possible to conclude that most 

of the extracted measures are dependent on the accuracy of the detected facial landmarks 

location. As such, evaluating the error of its detection, although not directly confirming the 

extracted measures correlation with drowsiness, it can confirm, at least with some degree, 

that they are accurate. 

As already stated, the algorithm development was done using videos obtained from 

YouTube. In particular, for the landmarks evaluation, frames from three videos ([203], [204], 

[205]) of self-recorded driving sessions were selected and manually annotated. Figure 4.10 

illustrates a comparison of the detected and manually annotated landmarks for two of the 

evaluated frames, obtained from [203] (left frame) and [204] (right frame). 

 

 
Figure 4.10 - Example of detected (blue) and manually annotated (red) landmarks. 

The comparison of the detected and annotated landmarks was done using a normalized root 

mean square error (RMSE) [206], as depicted in Equation (4.4). 

 

 

𝑅𝑀𝑆𝐸 =  
∑ √(𝑥𝑖

𝑓
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 (4.4) 
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Where x, y are the landmarks location in the image coordinates, f and g, denote detected 

and ground truth respectively, N the total number of landmark and douter the Euclidian distance 

between the inner eye corners. For the chin region as the exact spacing between points was 

very hard to mark consistently, the error was computed between the predicted landmark and 

the closest point belonging to a line defined by the linked ground truth chin points.  

The average RMSE obtained from a total of 100 frames (captured from the cited videos), is 

listed next, in Table 4.1. 

 
Table 4.1 – Average landmark detection RMSE values discriminated by face region. 

Face region RMSE 

Eyes 0.042 ± 0.006 

Mouth 0.033 ± 0.006 

Eyebrows 0.077 ± 0.017 

All landmarks 0.048 ± 0.040 

 

Analyzing the results the obtained average error seems satisfactory. Indeed, when visual 

inspecting the predicted landmarks locations in several frames, although some slight deviations 

might be observed in relation to the manually annotated, the detected landmarks are correctly 

depicting the interest shapes, as the eyelids, lips and face contours. As so, most likely, the 

measures computed using the landmarks are sufficiently accurate for the purposed objectives.  

However, it should be emphasized that all the tested frames are obtained from videos with 

a favorable camera positioning, that is, the driver face is frontally recorded. Moreover, all the 

videos were recording during day light. Further generalization of the algorithm to be 

satisfactorily robust to typical variations, as well as a faster processing speed, should be 

researched. 

It is also noteworthy that on this work the different tasks, that is, face location, landmark 

location and measure extraction were approached as separate problems. However, there are 

already some projects, as the HyperFace [207] and All-In-One Face [107], that explore the face 

analysis problem using a different strategy, an integrated approach which seems to boost the 

performance of the individual tasks. For example, using a deep CNN that can simultaneous 

perform face detection, face alignment, pose estimation, gender recognition, smile detection, 

age estimation and face recognition. Implementing a similar, integrated, strategy might 

increase the robustness of the non-invasive drowsiness measures acquisition process, as well 

as, potentially allow a better evaluation of the driver state by including contextual features. 

For illustrative purposes, a frame with depicted eyes and mouth contours, pupil center and 

head orientation (represented by the green cube) is shown next, Figure 4.11. 
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Figure 4.11 – Illustration of detect eye and mouth contours and head orientation. 

An example of the eyelid opening distance signal obtained using the developed framework 

is presented next in Figure 4.12. For comparison, a sample of the eyelid opening signal obtained 

with the Smart Eye Pro system is also displayed next in Figure 4.13. 

 

  

Figure 4.12 – Example of measured eyelid opening distance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – Example of eyelid opening distance obtained by the Smart Eye Pro system. 

 

Although the samples are from different subjects in different conditions, thus not being the 

most accurate comparison, the signal measured using the developed framework has 

considerably more noise. 

 



 

66 A method for non-invasive acquisition of drowsiness measures 

 

Additionally, as an example, samples of measured head pose and mouth opening signals are 

also shown next in Figure 4.14 and Figure 4.15 respectively. 

 

 

Figure 4.14 – Example of measured head pose angles. 

 

 

Figure 4.15 – Example of measured mouth opening. 

 

4.5.2 Heart rate validation 

In an attempt to validate the heart rate acquisition method, a video recorded during a 

driving session provided by Professor André Lourenço was used. The computed heart rate was 

compared with a reference signal, simultaneously acquired during the video recording with a 

chest strap. The result, obtained averaging both signals in 2 minutes windows, is displayed next 

in Figure 4.16. 

 

 

Figure 4.16 – Comparison between estimated and chest strap acquired heart rate signal. 

The results were unsatisfactory as it does not seem to be a valid correlation between the 

obtained measure and the heart rate provided by the chest strap. This is implicitly a method 
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extremely dependent on the light conditions, and in real driving conditions, shadows and high 

peaks of light create too much noise. And, it is possible that this method cannot achieve 

satisfactory results under such conditions.  

Nonetheless, the recorded drivers face viewing angle was not the most favorable, which 

may also have affected the results. Moreover, when testing the algorithm in a controlled 

environment with a steady pose and light, at least a difference between periods of low and 

high heart rate could be observed. Indeed, if some degree of distinction between different 

levels of heart rate could be obtained, the signal could, for example, provide some 

complementarity to a noisy, non-intrusive, ECG acquisition method. As so, further investigation 

in this or similar approaches should not be disregarded. 

 

4.5.3 Proof of concept 

Despite the importance of having an effective algorithm extracting accurate measures from 

the driver face, the main goal of this thesis is to detect drowsiness, as so, it is important to 

understand if the extracted measures are valid indicators of driver drowsiness. 

The desired validation process could not be applied in the available data, both for the lack 

of ground truth already mentioned, but also, because the amount of adequate video samples 

available was not enough to train and evaluate a classifier. 

In alternative, the strategy used was to train a classifier with the data available from the 

SleepEye dataset and then evaluating the performance in samples extracted using the 

developed algorithm. In particular, an SVM classifier was trained using all the video features 

described in Chapter 3, except for pupil related measures. A total of 15 samples, computed on 

2 minute windows were evaluated, 12 samples were considered examples of awake drivers and 

3 samples were specifically recorded simulating a drowsy driver behavior, for example, with 

slow eyelid movement and some representation of nods. 

All the samples were rightfully predicted (100% accuracy). The obtained results are 

satisfactory, nonetheless, as expressed, it is always a very limited validation. 

Foremost, the additional features obtained using the developed algorithm (mouth opening, 

eyebrow raising, heart rate) should be included to evaluate drowsiness. Thereby, an adequate 

validation of the developed method could be performed, training the classifiers using all the 

available features in a large dataset, namely with several hours of labeled driving sessions. 
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Chapter 5  

Conclusions and future work 

5.1 Conclusions 

Driver drowsiness presents as an actual and relevant problem that is the cause of many 

driving accidents. The number of causalities due to drowsy driving accidents is high and has 

been constant over the last years with associated high economic impact. The high impact of 

drowsy driving related issues results in a strong motivation for developing a countermeasure 

for this problem. 

The natural physiological need associated with drowsing driving cannot be altered, being 

the most valid solution the implementation of a drowsiness detection system in vehicles. A 

system that could detect drowsiness, warning the driver. 

There are already several developed projects focusing on driver sleepiness detection and a 

growing interest from vehicle manufacturers to include such systems in their vehicles. 

Most of the implemented solutions are based on features extracted from the vehicle or 

from driver monitoring, that is, analyze multiple key indicators of drowsiness as steering wheel 

patterns, eye blinks, head nodding and yawning. Other studies have implemented drowsiness 

detection based on physiologic signals analysis which is typically the most reliable drowsiness 

indicator. Most of the methods offers satisfactory results, even so there are different 

disadvantages associated to each method. A more robust approach is detecting drowsiness 

based in the fusion of several of the described methods, an option not properly explored. 

However, regardless of the potential of the hybrid approach, it should also be taken in account 

that in order to implement a drowsy detection system in a real life application the used 

methods must be non-intrusive. 

Considering this, one of the proposed work main goals was to evaluate if intrusive 

drowsiness detection using a physiologic measure (EOG), considered a reliable solution, could 

be replaced by non-intrusive behavioral methods maintaining the detection performance. A 

second and more ambitious goal, to experiment new approaches that could lead to an overall 

improvement of drowsiness detection capacity. 

Using a validated database, obtained in the scope of an experimental field study in real 

traffic on real roads, it was concluded that drowsiness detection performance using non-

intrusive measures was equal to the performance obtained with EOG intrusive signals, thus 

verifying one of the enumerated goals. 



 

70  Conclusions and future work 

 

As for the second objective, a first strategy involved using the previous mentioned database 

signals, combining behavioral methods with physiologic measures (ECG). Although the ECG 

alone it not very accurate, failing to detect several sleepy cases, when combining both methods 

an increment in performance was verified in comparison to the results obtained using only 

visual features, further corroborating that the most valid solution to detect drowsiness is by 

combining different methods. Independently of the used features, the binary class problem 

categorization had a substantial better accuracy than the multiclass. 

 An analysis of the time window length used for feature extraction also revealed that the 

performance of the system is not being substantially affected by this, neither significantly 

increasing nor decreasing the obtained results. 

Applying several strategies it was possible to compare the most and least promising 

approaches, but no considerable improvement was obtained, leading to believe that, likely, 

the obtained results are the limit of what is achievable with this dataset or with the selected 

features. 

Regarding the second strategy, as one of the limitations of the previous datasets was that 

there was no direct access to the raw video source, an experimental framework was developed 

to allow the extraction of additional drowsiness related features using a single camera 

recording the drivers face. The implemented non-invasive acquisition method revealed 

satisfactory accuracy, however, only a limited validation of the procedure as a drowsiness 

detector could be performed. In addition, the developed approach still needs further 

improvement, for example, to better generalize in different light conditions, as during night, 

which might only be feasible with a specific camera.  

5.2 Future work 

Although the proposed goals were achieved, demonstrating that non-intrusive measures 

have a comparable performance to physiologic signals and experimenting hybrid methods that 

improved the overall accuracy, there is still a big margin to improve. This work can also be 

considered one initial study of the AUTOMATIVE (AUTOmatic multiMOdal drowsiness detecTIon 

for smart VEhicles) project. A recently approved project which will focus on the research of 

signal processing and machine learning techniques for driver-specific drowsiness detection in 

smart vehicles. Considering all the above mentioned some suggestions of future work are 

depicted next. 

First, the detection process needs to be completely non-intrusive in order to be applied in 

an actual solution. Within this setting, a next step would be the complementarity of the already 

non-intrusive behavioral measures with a physiologic non-intrusive signal. Although with less 

emphasis, vehicle-based measures could also be incorporated. 

Other information that also should be considered is contextual information. These factors 

may include the type of road, the time of the day or for how long the driver has been 

continuously driving. This information may further increase the performances and allow a 

better discrimination of what is causing the drowsiness state, a useful feature for designing a 

countermeasure system.  

In this project, as in previous works, non-independent subject drowsiness detection systems 

were tested but the obtained performances are far from what is needed for a real life 

application. Solving this problem is a nontrivial task due to the intrinsic physiologic differences 

in drowsiness manifestation, but it is crucial to put an extra effort into solving this issue. For 

https://www.powerthesaurus.org/significantly/synonyms/substantially
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example, assessing the use of a different ground truth method for validation, as the KSS scale 

was the only validation method used. Personalized algorithms to account for individual subject 

differences should also be considered. 

In relation to the implemented method for non-invasive acquisition of drowsiness measures, 

as indicated, its application should be considered as it allows an easy extraction of multiple 

drowsiness related measures, however, further development is needed and more important 

validating the framework using a large dataset.  

Moreover, an integrated approach of the implemented method should also be considered, 

as it might improve the individual accuracy of each step and overall process performance. For 

example, using a deep CNN to simultaneously perform face detection, pose estimation and age 

estimations among other measures that could potentially allow a better evaluation of the driver 

state. 
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