1,136 research outputs found

    RADIX-10 PARALLEL DECIMAL MULTIPLIER

    Get PDF
    This paper introduces novel architecture for Radix-10 decimal multiplier. The new generation of highperformance decimal floating-point units (DFUs) is demanding efficient implementations of parallel decimal multiplier. The parallel generation of partial products is performed using signed-digit radix-10 recoding of the multiplier and a simplified set of multiplicand multiples. The reduction of partial products is implemented in a tree structure based on a new algorithm decimal multioperand carry-save addition that uses a unconventional decimal-coded number systems. We further detail these techniques and it significantly improves the area and latency of the previous design, which include: optimized digit recoders, decimal carry-save adders (CSA’s) combining different decimal-coded operands, and carry free adders implemented by special designed bit counters

    High-speed radix-10 multiplication using partial shifter adder tree-based convertor

    Get PDF
    A radix-10 multiplication is the foremost frequent operations employed by several monetary business and user-oriented applications, decimal multiplier using in state of art digital systems are significantly good but can be upgraded with time delay and area optimization. This work is proposed a more area and time delay optimized new design of overloaded decimal digit set (ODDS) architecture-based radix-10 multiplier for signed numbers. Binary coded decimal (BCD) to binary followed by binary multiplication and finally binary to BCD conversion are 3 major modules employed in radix-10 multiplication. This paperwork presents a replacement technique for binary coded decimal (BCD) to binary and vice-versa convertors in radix-10 multiplication. A novel addition tree structure called as partial shifter adder (PSA) tree-based approach has been developed for BCD to binary conversion, and it is used to add partially generated products. To meet our major concern i.e. speed, we need particular high-speed multiplication, hence the proposed PSA based radix-10 multiplier is using vertical cross binary multiplication and concurrent shifter-based addition method. The design has been tested on 45nm technology-based Zynq-7 field programmable gate array (FPGA) devices with a 6-input lookup table (LUTs). A combinational implementation maps quite well into the slice structure of the Xilinx Zynq-7 families field programmable gate array. The synthesis results for a Zynq-7 device indicate that our design outperforms in terms of the area and time delay

    Multi-operand Decimal Adder Trees for FPGAs

    Get PDF
    The research and development of hardware designs for decimal arithmetic is currently going under an intense activity. For most part, the methods proposed to implement fixed and floating point operations are intended for ASIC designs. Thus, a direct mapping or adaptation of these techniques into a FPGA could be far from an optimal solution. Only a few studies have considered new methods more suitable for FPGA implementations. A basic operation that has not received enough attention in this context is multi-operand BCD addition. For example, it is of interest for low latency implementations of decimal fixed and floating point multipliers and decimal fused multiply-add units. We have explored the most representative proposals for multi-operand BCD addition and found that the resultant implementations in FPGAs are still very inefficient in terms of both area and latency when compared to their binary counterparts. In this paper we present a new method for fast and efficient implementation of multi-operand BCD addition in current FPGA devices. In particular, our proposal maps quite well into the slice structure of the Xilinx Virtex-5/Virtex-6 families and it is highly pipelineable. The synthesis results for a Virtex-6 device indicate that our implementations halve the area and latency of previous proposals, presenting area and delay figures close to those of optimal binary adder trees.La recherche sur l'implantation en matériel de l'arithmétique décimale est actuellement très active, la plupart des travaux portant sur des opérateurs pour les processeurs, en virgule fixe ou flottante. Mais les techniques développées pour un circuit intégré n'aboutissent pas forcément à une implémentation optimale dans un FPGA. Il n'y a que peu d'études ciblant explicitement les FPGA. Cet article s'intéresse dans ce contexte, à l'addition BCD multi-opérande, au cœur de multiplieurs et de multiplieurs-accumulateurs à faible latence. Nous étudions les architectures proposées pour cette opération décimale, et nous observons que, sur FPGA, leur performance (surface et latence) est très inférieure à celle des opérations binaire à précision comparable. Nous présentons donc dans cet article une nouvelle technique d'addition BCD multi-opérandes qui s'avère plus efficace que les propositions précédentes sur les FPGA actuels. Elle s'adapte particulièrement bien à la structure fine des FPGA Xilinx Virtex-5/Virtex-6, et se prête bien au pipeline. Les résultats de synthèse montrent que notre implémentation divise par deux la surface et la latence par rapport aux propositions précédentes, les ramenant à des valeurs comparables à celles des meilleurs additionneurs multi-opérandes binaires

    An analysis of spacecraft data time tagging errors

    Get PDF
    An indepth examination of the timing and telemetry in just one spacecraft points out the genesis of various types of timing errors and serves as a guide in the design of future timing/telemetry systems. The principal sources of timing errors are examined carefully and are described in detail. Estimates of these errors are also made and presented. It is found that the timing errors within the telemetry system are larger than the total timing errors resulting from all other sources

    Development of land based radar polarimeter processor system

    Get PDF
    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended

    Design of digital systems

    Get PDF

    One way Doppler extractor. Volume 1: Vernier technique

    Get PDF
    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second

    A Synchronous Data Compression System

    Get PDF
    This thesis discusses in detail the steps required for the design of a general purpose Data Acquisition System (D.A.S.). This D.A.S. is called a Synchronous Data Compression System (S.D.C.S.) because of some special features. The S.D.C.S. is designed to accept data in analog or digital form. A simple control panel interface is developed, and areas of prime interest such as input/output interface control, analog-to-digital conversion, data compression, and data sampling modes are discussed in detail. ? The primary logic type used for the S.D.C.S. is the CMOS type 4000 Series which was developed by R.C. A

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    Get PDF
    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing

    SCHOOL ATTENDANCE AND SECURITY SMS SYSTEM

    Get PDF
    The objectives ofthis final year project are to design and implement the real world problemso that they can preparethemselvesfor future employment. Besides, this project is a requirement for the undergraduate students in orderto complete their studies. The topic chosen for this project is School Attendance SMS System. The system will be able to do certain tasks. This is discussed in introduction part. The project objectives and the scope ofstudy are highlighted at the end ofthe chapter. Information is a very important and powerful item in delivering this project successfully. Briefdescriptions ofthe theory that will be used are covered in the literature review or theory section. This report also states the methodology used and tools required during this project in the methodology and project work chapter. The last part is the conclusion which describe the student's expectation from this projec
    • …
    corecore