

Design of digital systems

Citation for published version (APA):
Weert, van, M. J. M. (1993). Design of digital systems. (Eindhoven University of Technology : Eindhoven
International Institute; Vol. 276/2). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/07117f23-b702-495e-80a1-e04494e03ca8

h

Eindhoven International Institute

Course In Electronic Engineering

Problems:

Course: Survey
Nr 276/2 : INTRODUCTORV SeMESTER 1993

- Electronic Engineering - il!;

f'~~
:IIi

Subject : DESIGN OF DIGITAL SYSTEMS

Lecturer :Ir M.J.M. van WEERT

Author : Ir M.J.M. van WEERT

Copy

Copyright Ir M.J.M. van Weert

Reproduction In any form
whatsoever is forbidden without
written consent of the author.

Problem numbers in parentheses refer to the problem numbers
in the Dutch edition of this survey (edition January 1992)

Table of Contents

1 Introduction .. , 1.1

2 Digital Systems . 2.1
2.1 What is a digital system? .. 2.1
2.2 The design of a digital system .. 2.7
2.3 Combinational, sequential and binary systems 2.12
2.4 Numbers and number systems. 2.22
2.5 Summary ... 2.28

3 Combinational systems .. 3.1
3.1 Behavioural description; specification . 3.2
3.2 From behavioural description to system

realization . 3.6
3.3 Iterative networks ... 3.7
3.4 Tree structured networks .. 3.16
3.5 Summary ... 3.26

4 Binary systems and Boolean algebra 4.1
4.1 Boolean algebra and switching algebra. .. 4.4
4.2 Switching algebra and binary systems 4.11
4.3 Minterms, standard normal form and maxterms . 4.17
4.4 Summary ... 4.29

5 Realization of switching functions . 5.1
5.1 Realization of a sum of minterms 5.2
5.2 Sum Of Products (SOP) and the function table . 5.10
5.3 Realization of an SOP form; programmable logic 5.19
5.4 Realization with NAND and NOR gates . 5.24
5.5 The multiplexer as a universal building block 5.27
5.6 The exclusive OR function ... 5.31
5.7 Summary ... 5.37

6 Sequential systems ... 6.1
6.1 Finite State Machine (FSM) .. 6.3
6.2 Behavioural description of finite state machines 6.9
6.3 ASM chart ... 6.17
6.4 State diagram and state table. 6.21
6.5 Standard architecture; canonical form 6.26
6.6 Summary ... 6.32

7 Realization of finite state machines 7.1
7.1 Realization of memory; the flip-flop. 7.2
7.2 Binary sequential systems ... 7.9
7.3 Standard functions; standard FSMs 7.16
7.4 Summary ... 7.33

Appendix A. Examinations .. A.1

Appendix B. Literature ... B.l

Appendix C. IEC Symbols .. C.l

iii

1

In trod lie tio n

1 Introduction

This course deals with the design of digital systems.
being systems having discrete rather than
continuous inputs and outputs.

-1.01-

The central -but certainly not trivial - question in this
course is how to design such systems.

1.1

Ultra Large Scale Integration

Texas Instruments TMS320C30

• Digital signal processor

• 700,000 transistors

Intel 80860

• RIse processor

• 1,000,000 transistors
Intel 80486

• else processor

• 1.180,000 transistors
Motorola 68040

• else processor

• 1.200,000 transistors
-1.02-

As a result of the progress of IC-technology we are
able to build continually larger and more complex,
but still economic, digital systems. Figure 1.02
shows an example of the state of the art in 1990. We
see four examples of a pre-eminent digital system:
the microprocessor. The first one is a digital signal
processor with 700,000 transistors. a RISC
processor with 1,000,000 transistors (RISC =
Reduced Instruction Set Computer). The second one
is a Complex Instruction Set Computer, a so-called
CISC-processor, with 1,180,000 transistors and
another CISC-processor with 1,200,000 transistors.
Figure 1.02 lets us see that the complexity of a
digital system, expressed in the number of
transistors on a single IC, has exceeded the
1,000,000 transistor boundary. We have entered the
era of Ultra Large Scale Integration (ULSI).
Furthermore, we do not expect development to stop
here, and time should bring a continually growing
complexity.

Up till now we have considered digital systems on a
single IC. The complexity of digital systems realized
on one or more printed circuit boards, with the help
of more integrated circuits, will exceed multiples of
this complexity.
This course deals with the state of the art of the
design of such gigantiC systems.
The central question remains: "How do we design

1.2

DIGITAL SYSTEMS

Current and new technical systems
with increasing complexity can be
ECONOMICALLY realized using DIGITAL
methods.

• New products with
unprecedented possibilities

• Analog techniques are being
replaced by digital ones.

-1.03-

such a complex digital system?". However, before
we answer this question, or point to possible
directions, we will first take a look at the importance
of digital systems.
The importance of these systems can not be
separated from the powerful technological
development that is due to the production of
integrated circuits. Actually, the high standard of the
microelectronics technology is what enables us, the
digital system builders, to economically realize
complex digital systems. This means, as figure 1.03
shows, that for existing or new technical problems
we can still realize economically feasible (i.e.
affordable), complex digital solutions. This will lead
to new products with unlimited possibilities. This will
also lead to systems where previous analog
solutions are replaced by digital ones. Digital
systems, hand in hand with microelectronics, are
becoming increasingly important in all sorts of
subjects and are infiltrating more fields. It is difficult
not to fall in the temptation of filling a whole chapter
with all sorts of criteria without thinking of an
example. However, we shall limit ourselves to
discussing examples in the field of audio-visual
applications; the field of consumer electronics.

EXAMPLES- CO NSUMER ELECTRO NICS

CO MPACT DISC

• Digital storage of information
- sampling
- modulation

• Error detection and correction
- error correcting codes
- interpolation of signal samples

• Digital to analog conversion
sample rate conversion

• Servo systems

CAR Information and Navigation
System (CARIN)

An example in the consumer electronics area is the
compact disc, see figure 1.04. In the compact disc
system, audio signals, music and speech are
digitally written on a medium, the compact disc.
They are digitally read back with the help of light.
Digital storage means that audio signals being
analog by nature. have to be translated to digital
signals. The sampling and quantizing of the signal
does not belong to the field of this course. Some
aspects of coding will be discussed later. Once we
have the signal in digital form we can do with it all
sorts of things using digital systems. We can
process the Signal; examples being filtering and
modulation. Because the signal is digital we can
always reconstruct the original signal.

-1.04-

When writing or reading information to/from a
compact disc something may go wrong, errors can
occur. A solution is the use of error
detection/correction codes and the interpolation of
signal samples. This is also an example of the
application of advanced techniques in a digital
system. The servo system in a compact disc is also
very important, i.e. the control system of the laser
head and motors. There are also many digital
techniques applied there.
Besides the compact disc, there are other derived
products, such as the CD-ROM, and the Car
Information and Navigation System (CARIN). where
digital systems play an important role.

1.3

EXAMPLE - CONSUMER ELECTRONICS

DIGITAL TELEVISION

Everything behind the MF stage
becomes digital

• A/D and D/A conversion
frequency up to 17 MHz per
8 bits sample

• Digital colour decoder

• Image memory and image processing

• Teletext

• Picture in picture

-1.05-

Another example in the field of consumer electronics
is the digital television. figure 1.05. The expectation
is that base band audio and video signals will be
processed digitally. Video signals occupy a larger
frequency range than audio signals. This is
expressed in higher sampling frequencies in digital
television, up to 17 MHz. I n the processing of digital
video signals we can first consider items such as
digital colour decoders. This will lead to a better
quality of the decoding process with lower costs.
Also. we can consider saving an image in memory
and processing it later on: image processing. The
plans for high definition TV can only be realized by
reducing the required bandwidth through the use of
image processing techniques.
Other examples of the application of digital
techniques in consumer-TV are Teletext and "picture
in picture".

1.4

EXAMPLE - CONSUMER ELECTRONICS

DIGITAL AUDIO

• Digital signal processor

• Digital audio via satellite

• Teledata
- programme identification
- traffic informa lion

-1.06-

As a third example in the field of consumer
electronics we mention digital audio. In figure 1.06
we see that digital signal processors are currently in
a state that allows them to be used in all sorts of
audio signal applications. These digital system
processors could be more general. or specifically
designed for a special purpose application. We have
arrived at a state where a digital system processor
can replace the classical sound controls of an
amplifier. Another application of digital audio is the
transmitting of radio programs, digitally, via a
satellite. It is also possible to transmit other
information in addition to the program information.
We are then talking of tele-data. Examples of
applications could be program identification, as well
as traffic information. For example. information can
be distributed via such a system in the from of files.
This information can then be used in a system, such
as the previous mentioned CARIN system, to point
out alternative routes. These are examples of
applications where digital systems play an important
role and that are currently technically
implementable.

EXAMPLES
• BUSINESS

- Point of sale terminals
Banking terminals

- Credit card verification
- Automatic transactions
- Access monitoring

Stock control
Word processing

• INDUSTRY
- Process control
- Numerically controlled machines
- Robots with sensors and vision
- Process monitoring
- Data acquisition systems

• CONSUMER
- Home computers
- Computer aided learning
- Intelligent toys
- Programmable applications:

kitchen: washing machine.

Cars
microwa ve oven

-1.07-

In addition to consumer electronics, there are many
other fields where digital systems are applied.
Figures 1.07 and 1.08 mention a number of them.
We see first examples from the commercial field,
such as cashier terminals. banking terminals,
identification of credit cards, automatic banking
transactions etc.. collectively known as point of
sales systems. We also see applications in building
security, stock control. word-processing etc. As
examples of industrial applications we can think of
things such as process control, numerically
controlled machines. robots with sensory and vision
capabilities, automatic assembly lines etc. In
general: process control and data acquiSition
systems.
As examples of other consumer applications one
could name home computers, game computers,
tutoring systems, intelligent toys, programmable
home appliances such as washing machines,
microwave ovens etc. Also applications in
automobiles such as the ignition and break systems.
From the field of instrumentation we think of testing
devices where many functions could be automated,
for example continuous automatic calibration. By
instrumentation we mean electronic as well as
chemical and medical analysis instruments.

EXAMPLES

• INSTRUMENTATION
- Automatic test equipment
- Electronic instruments
- Chemical/medical analysis

• COMMUNICATION
- Remote terminals
- Programmable controllers
- Switching equipment
- Multiplexers

Message handling
- Error control

• DATA PROCESSING
- Programmable calcula tors
- Office computers
- Input/Output processors
- Intelligent peripheral equipment

Communication interfaces
Performance monitoring

• ETC. ETC, ETC, ETC, ETC, ETC.
-1.08-

One of the roots of digital techniques lies in the field
of telecommunication. There we find yet another
important application field of digital systems. For
example, remote terminals, programmable
controllers, switching devices for telephones,
multiplexers for data transmission etc. A second
important application area of digital techniques is
the field of processing and storage of data and
information, i.e. the field of data processing. Such
applications include programmable calculators,
office computers, I/O processors, intelligent
terminals and large computers connected to local
area networks.
In this overview we did not pursue completeness;
there are still many unmentioned fields.

Thus far we have discussed a large number of
application fields of digital systems, having a
complexity of millions of transistors. This complexity
will continually increase in the future.

We now return to the central question of this course:
"How do I design a digital system with such a
complexity?". It will be clear that designing large
systems by starting with a network of a few
transistors, and then expanding it until the total
system is realized, will not yield acceptable results.

1.5

DESIGN TRAJECTORY

Specification

Architecture Design

Architecture Verification

Logic Design

Logic Verification

Testability

Electric Circuit Design

Circuit Verification

Layout Design

Layout Verification

Production & Testing

-1.09-

This is a methodology that would probably lead to
disappointment. A better strategy is shown in figure
1.09.
Digital design is a structured and planned
occupation according to a checklist. The whole
design comprises a number of phases, beginning
with an idea and ending with the production and
testing of the final system. We begin by specifying
what we want to build. Next follows the so-called
architecture phase. In this phase we consider how
the digital system should behave in order to satisfy
our requirements. The activity of whether the chosen
architecture satisfies our specifications is called
verification. After the architecture phase we start the
logic design phase. In this phase the building
blocks of the architecture are translated into
realizable logic circuits. We utilize a computer
simulation system to check that the logic circuitry is
indeed an implementation of the specified
architecture.

1.6

We are then speaking of logical verification. An
important aspect of the design is testability. How do
we ensure that an Ie with 1,000,000 transistors
functions correctly after production? During the
logical design we have to take measures that will
guarantee this testability. That is to say making
testing simpler. At the end of the logical design
phase we have a number of schemes with logical
building bricks. These schemes must be translated
into schemes with transistors, resistors, diodes, and
similar components. This translation process we call
the electronic circuit design, being the next phase
in our design trajectory. In this phase we start a new
specification. After the transistor schemes have been
designed we start the layout phase in which we
make the Ie layout. That is, we show where the
transistors should be placed on the Ie, how they are
connected etc. After the layout verification follows
the production and the testing. Figure 1.09 suggests
that all these activities in the design process, are
carried out by one person. In reality this is generally
not true. The specification is made by the customer,
mostly in cooperation with the system designer. The
architecture and logic design are generally made by
the digital system designer. The electrical circuit
design and the detailed layout is the domain of the
Ie designer. The digital system designer will remain
globally involved in this phase. The testing of the
finished product is carried out by the test engineer.
In this course we will be occupied with the design of
digital systems. That is to say: we are considering
methods for systems specifications. We will direct
out attention towards architecture. Another important
topic in this course is the methodology and
techniques used in logic design.

2

Digital Systems

-2.00-

2 Digital Systems

2.1 What is a digital system?

As previously mentioned this course covers the
design and realization of digital systems.

This should be seen in the context of the design
trajectory mentioned in the previous chapter.

2.1

DIGITAL SYSTEMS

• WHAT IS a digital system?

• HOW do I design and
realize a digital system?

-2.01-

The topic of design presents two questions (see
fjgure 2.01):

- What is a digital system?

- How do I design and realize a digital system?

Before we discuss the design and realization of a
digital system, we must first know what a digital
system is. What makes something a digital system?
Fortunately we have notion as to what that is. If I
ask you what a digital system is, you will frequently
come with answers such as: a computer, (parts of)
an automaton, such as a coffee machine, traffic light
controllers, systems in consumer electronics, etc.
And also clocks, such as those hanging all over the
university, are examples of digital systems. We shall
limit ourselves. in this course, to digital systems that
are built using electronic building bricks.

2.2

SYSTEM

• Black Box

• Inputs u, v, w
have a value
- voltage, current. angle,

• Outputs x, y. z
are given a value by the system

• The system shows a behaviour:
the output values vary in time

'. A relation exists:
(li, v, w)R(x,y,z)

which describes the behaviour
of the system. with u ... z

being functions of time

-2.02-

The question: "What is a digital system?", comprises
two sub-questions. First: 'What is a system?", and
"What are the special characteristics of a digital
system?". Formally speaking we can think of a
system as an object, or a black box, with inputs and
outputs (see figure 2.02). We shall limit ourselves, in
this course. to systems with a finite number of inputs
and outputs. The inputs (here called u, v, and w)
have a value. This could be a voltage, a current, an
angle etc. The outputs (called here x, y, and z) are
assigned a value by the system. This could also be
a voltage, a current etc. A system displays its
behaviour. That is to say the output values change
in time due to the change of one or more of its
inputs. The outputs of the systems we consider are
not arbitrary. They are systematic, rule governed,
and the outputs change their values in time
according to a deterministic behaviour. We could
say that the temporal behaviour (behaviour with
respect to time) is described by the system as a
relation between the input and output values.

DIGITAL SYSTEM

• Each input or output has
a value range (domain) with
a finite number of different values

~-~ ? E;-¢

u e I 1 finite set
u

finite set w€ I I
w

X € 0 ~ finite set ______ x
finite z € 0 i set

z

A relation exists
(u, .. ,w)R(x, .. ,z)

-2.03-

A digital system (figure 2.03) is a system with the
(extra) property that all inputs and outputs have a
value domain with a finite number of values. The
value domains of u, v, and w form a finite set, i.e. a
set with a finite number of elements. Furthermore,
the values of the outputs x, y, and z form a set with
a finite number of elements. Moreover, it still holds,
for digital systems, that there is a relation between
inputs and outputs.

This relation, R, specifies the behaviour of the
system in time, and shows the response of the
system to the change in input values. We observe,
however, that a specific set of input values does not
necessarily give a fixed response. Even the system
itself does not change in time. The system remains
the same but it can have memory (it can
remember), involving the existence of system states.
In this case, we are considering a sequential
system. We shall return to this topic later in this
course. We remind ourselves that we shall limit our
discussion to systems that do not change their
behaviour in time. the so-called time-invariant
systems.

EXAMPLE - SYSTEM

X -1L...--------'~ Z

x,z e i real numbers between 0 and 1l
relation: z=F(x)= -lx
THIS IS NO DIG[TAL SYSTEM
Value range of input and output
comprises an infinite number
of elements

EXAMPLE - SYSTEM

I u ,Iv = to .. 9 ~
o z = 1 yes , no ~

S yes if u > v
F : z = l no otherwise

THIS IS A DIG [T AL SYSTEM
-2.04-

In figure 2.04 we have two examples of what could
be, and what is not a digital system. The first
example shows a relation, or a function where the
input and output values belong to the set of real
values between 0 and 1, and the relation is given by

z=v'x
This is not a digital system because the value
domains of input and output do not contain a finite
number of values. In our second example we have
a system with two inputs, u and v, where the values
of u and v belong to the set of whole numbers from
o to 9. We are going to use, throughout this course,
a Pascal-like notation to denote such sets.
Furthermore, the system has an output z, with a
value domain of "yes" and "no". The relation is given
by a function, F, defined by z "yes" if u > wand
"no· otherwise. This is an example of a digital
system because input and output values form finite
sets. Clocks, such as those hanging all over the
university, are examples of digital systems. The input
is composed of a minute pulse or, more accurately,
its presence or absence. The set of output values
contains all the possible positions of the minute and
hour hands: sixty positions for the minutes hand and
twelve for the hours hand. Thus finite sets in both
cases.

2.3

BLACK BOX MODEL
DIGITAL SYSTEM

I R o
Input - Relation Output

.R: Specifies the behaviour
the system

of

• R: Changes in inputs values

---------Changes m output values

• R: Is a specification

-2.05-

To summarize (see figure 2.05) a digital system is
one with several inputs and outputs where all inputs
and outputs have their own domain. Furthermore.
these value domains have a finite number of
elements. In addition, there is a relation, R, between
inputs and outputs. i.e. between input domains I and
output ranges O. This relation, R. defines and
specifies the behaviour of the system. Thus R
defines how the system changes its output values.
when the input values change. We also call R a
specification of the system. This relational view of
the system behaviour and system specification is
called the black box model. or sometimes the
system model.

If we look at a digital system from a different
perspective. we can, rightfully, say that it samples its
inputs before generating the corresponding outputs
(see figure 2.06).

2.4

ALGORITHMIC MODEL

input

data
object

transforma tion

• transformation rules describe
conversion of data object from
input domain to output domain

• a number of more simple
transforma lions ..
prescription. "algorithm"

• system behaviour specified by
algorithmic description,

" programme"

-2.06-

The system processes the input values to produce
new output values, Le. transforms input values (from
the set of possible input values) to output values
(from the set of possible output values). Thus, the
digital system performs a transformation of data
objects from the input domain to data objects of the
output domain. The rules defining this transformation
accurately describe the conversion of objects from
the input domain to objects from the output domain.
These transformation rules specify the behaviour of
the system. In general the transformations, executed
by digital systems. are very complex. We shall have
to decompose such transformations into simpler
ones. These simple transformations may be (partly)
carried out in parallel or in series, so that the same
overall result is obtained.
We receive a recipe or prescription for the
production of the output data from the input data.
We shall call such a prescription an algorithm. In
this view towards the system, the behaviour is
defined by a formal algorithmic description, a
program. Now we shall consider the algorithmic
model. We can regard such an algorithmic
description as a specification of the system and also
as a realizable description.

ALGORITHMIC MODEL

The algorithmic description
can be executed by a
machine comprising:

• control
• data path (operators)

• memory

Example:
A computer system constitutes
the da ta path and the memory.
The programme containing the
description of the algorithm
constitutes the control

-2.07-

An algorithmic description is, indeed, executable by
a machine comprising the following elements (see
figure 2.07):

- Management or control
- Operators or data path
- Memory or data storage

The control defines when each (partial)
transformation may take place. The data path or
operators carry out the transformation. The memory
or data storage serves for the preservation of the
intermediate results and inputs.
Consider as an example a computer system running
a program. The computer system forms, from our
viewpoint, the data path and the memory of the
system. The program which describes the algorithm,
forms the control. Thus, following this model, we
can easily make a system that satisfies the
specification. A disadvantage, however, is that such
a realization will be slow and expensive in
comparison with tailored realizations.
Let us look at an example of an algorithmic system
description. Consider a system that adds a list of
successive numbers and displays, as a result, the
running sum and the count of added

ALGORITHMIC MODEL - EXAMPLE

Sum
Counter

REPEAT

o
- 0

WAIT_FOR Number _Available;
lWait for next numbed

Sum - Sum + Number ;
lCompute next suml

Counter . - Counter + 1
Uncrement counter~

FOREVER lRepeat this loop infinitelyt

-2.08-

numbers. A description of the system's behaviour is
given in figure 2.08. We have used a Pascal-like
language to describe the system, we shall do so
throughout this course. Achieving an absolute
fluency in a programming language, such as Pascal,
is not the purpose of this course. However, we shall
use a Pascal-like language for the communication of
behavioral descriptions. For this purpose, we do not
need too much language knowledge and fluency.

We can notice the following in the behavioral
description of figure 2.08. The system begins by
initializing its memory. That is to say, Sum and
Counter are set to O. The next construct is a
"REPEAT FOREVER" construct. Throughout this
course we shall use similar constructs to denote that
the system behaviour changes in time. hence that
the system has memory. The system will respond
differently to the same input. For example, the same
input, e.g. 5, will produce the successive Sum
output: 0, 5, 10, 15, etc. Furthermore. we see from
the system description that it (obviously) waits until
the following input number is ready. Next, the
number is added to the running sum and the
counter is incremented by 1. This is the whole
system behaviour.

2.5

POSSIBLE CONSTRUCTION: ARCHITECTURE

Number Number _Available

o

(Counter)

-2.09-

Figure 2.09 shows a sketch of a possible
architecture. Here we make use of the three
previously mentioned elements: control, operators
and memory. The control is denoted by a dashed
circle, the operators by a solid circle and the
memory by two horizontal lines. Examples are the
memory of the sum and counter. We observe that
the behavioral description introduces two
transformations, which leads to equivalent operators
or data paths in our model, namely the summation
operator and the count operator. The new running
sum is computed by the summation operator. The
count operator increments the counter by one when
activated. The total system in managed by a
controller. When the controller receives an external
command, indicating that a new number is available,
it will signal the sum and count operators to start
work. Later in this course we shall go deeper into
the use of these models.

2.6

We have seen a short global answer of the question
of "What is a digital system?". A digital system's
input and output elements belong to finite sets of
possible values. Furthermore, in this course we shall
limit ourselves to digital systems that can be realized
with electronic components and that are time
invariant. The behaviour of such a system can be
described by the relation between input and output
values. In this case we are considering a black box
model. Moreover, this behaviour could be described
by a set of transformation rules or algorithms. In this
case we are considering an algorithmic model. In
the latter case, the realization in a data-path/control
model is possible, where each part could be
described by a black box model.

HOW

Do I Design And Realize

a Digital System ?

2.2 The design of a digital system

After having discussed the question "What is a
digital system?" we have arrived at the central topic
of this course: -How do I design a digital system?".
The ultimate purpose of a design process is the
realization of a digital system built of easily available,
trustworthy, standard components such as
transistors, resistors,

-2.10-

logic gates, flip-flops, counters, registers, and also
more complex standard building blocks such as
microprocessors, I/O ports, etc. The system that we
build from these standard components should
behave in a predefined way and exhibit this
predefined behaviour. In practice this is not as
simple as described here.

2.7

COMPLICATIONS

• Objective of design is unclear

No unique behavioural
description / specification

• Missing:

Overall picture of the
total system

Relation between the different
parts of the system

2.11-

Two frequently occurring complications are (see
figure 2.11): the absence of a (good) behavioral
description. That is, what the system must do is not
(clearly) specified. This results in a situation where
the realized system does not always do what the
client had in mind. The swing example on page 2.9
illustrates this problem. Secondly, when dealing with
very complex systems one tends easily to lose the
overview of the total system. One has frequently no
insight in the relation between different system sub­
components. This results in situation where sub­
optimal solutions are frequently obtained, sometimes
causing sUb-components not to work optimally
together. When the underlying relation is not clear
anymore, one often attempts to solve a problem in
one part which actually occurs in other parts.

2.8

REMEDY

• Specify WHAT to make
The wanted behaviour must be
precisely described

• Make a STRUCTURED design and make
use of a HIERARCHICAL system setup

A system should be constructed using
a limited number (a maximum of 7)
subsystems
which again should be constructed
using a limited number of subsystems
which again should be constructed

I

using a handful of building blocks

-2.12-

The remedy of these design complications is twofold
(see figure 2.12). First we have to decide WHAT we
shall make. That is. the desired system behaviour
must be carefully described. Secondly. we must
manage the complexity by designing in a structured
way. Therefore we must use a hierarchical system
structure. This means that we shall try to build a
system from a limited number of subsystems (a
maximum of 7). We shall try to construct each of
these subsystems from a limited number of smaller
subsystems. We continue this process until the
subsystems can be realized by means of a handful
of building blocks.

How it was designed What the drawing looked like

How it was ordered How it was mounted

How it was modified What the client really wanted

2.9

HIERARCHICAL SYSTEM CONSTRUCTION

/

r--l highest level
"'./ ~ ''-,- (system)

'" "-/ >

~ \CONTROL UNIT I ~
o 0

g \DATAPATH I\~

-2.13-

\

\
\

standard
components

Figure 2.13 shows this hierarchical system
decomposition schematically. In this case we see
that the highest system level is divided into three
subsystems. Each of these subsystems is internally
divided into a number of smaller building blocks.
Finally, we realize these building blocks with
standard components. It is important to apply this
structured hierarchical design methodology at aU
levels. That is to say, that on each level we must first
describe WHAT the subsystem must do, and then,
only after the system is completely specified, we
should consider how to build the system from a
number of limited and well-defined subsystems.

2.10

DESIGN METHOD

• WHAT should the (sub)system do?

• HOW should the (sub)system be
built using a number of simpler
subsystems?

• If these subsystems are NO standard
building blocks, repeat from WHAT

HOW TO BUILD A (SUB)SYSTEM

• Make choices from alternatives

• Make use of knowledge and experience

----II-

experienced designer, system expert

-2.14-

We have already divided the design process into a
number of repeated applications of the following two
steps (see figure 2.14):

1. What must the system do?
2. How do I build the subsystem from a number

of simple blocks?

If these blocks are not standard, we should first
describe what these block do, and then afterwards
define how they could be realized. When building a
system from a number of simple blocks we must
sometimes make well balanced choices. Some
alternatives may be less suitable because they lead
to a less optimal realization using standard build
blocks. Hence to make the choice it is necessary to
have some knowledge of the set of available
standard building blocks and their use in more
complex modules. This is called experience and a
person with this knowledge is an experienced
designer.

Ultimately, in the future, a designer would be
assisted by an expert system.

THIS COURSE

• Behavioural description of digital systems
• Functional behaviour of combinational

circuits
• Boolean algebra and switching algebra

• Combinational systems and standard
building blocks

• Behavioural description of sequential
systems

• ASM-charts and state diagrams

• Memory-combinational model
- Moore model Mealy model

• Realization of flip-flops and memories

• Realization of state machines
- counters. registers, pattern generators

• Elements of system design
- processes and data flows
- control unit and data path
- selection and adressing

-2.15-

We can observe two things about the above
discussion:

1. The definition of what is an optimal realization
depends on many factors. such as the price,
the number of components. the size of the
system, the reliability, the speed, or the
desired degree of security.

2. The definition of what are the standard
building blocks, and consequently where the
design cycle stops, depends on the state of
the art. It changes towards more and more
complex building blocks. and even to software
automatically generating circuits (silicon
compilation).

2We have now seen what digital systems are and
we have discussed a method for designing them,
namely the structured hierarchical design
methodology. With some more knowledge about
the basic building blocks. we could view this
course as basically finished.

As one could expect this is not our endpoint.
however. We shall consider. apart from the
necessary basic knowledge and basic building
blocks. the use of a design methodology.

It the remainder of this course we shall first discuss
(see figure 2.15) the description of digital system
behaviour. Subsequently we shall study the
functional behaviour of combinational systems,
Boolean algebra, switching algebra. and standard
building blocks related to combinational functions.
Furthermore, we shall discuss the behavioral
description of sequential systems, being systems
with memory. Here so-called ASM charts and state
diagrams playa role. A sequential system could be
realized using memory and combinational
functions. We shall discuss the realization of this
memory using flip-flops. We shall also discuss state
machines, counters. registers, pattern generators
etc. And last but not least we are going to consider
elements of system design such as processing and
data flow, control and data path, selection and
addressing.

2.11

DIGITAL SYSTEMS

• Combinational systems

• Sequential systems

• Binary systems

-2.16-

2.3 Combinational, sequential and binary
systems

In the previous subsection we discussed the WHAT
and HOW of digital system design. and we
classified its internals as combinational. sequential
and binary. Figure 2.17 shows what we mean by a
system in this course. A system has inputs. u up to
and including w, belonging to the value sets lu up
to and including Iw' Furthermore. it has outputs. x
up to and including z, belonging to the value sets
0" up to and including Oz. The behaviour of such
a system can be specified (defined) by a relation R.
This relation R describes the relation between the
input values and the output response. More
formally. for all allowed input values there is at least
one output value that is defined by the relation.

2.12

SYSTEM

-~-~ I * I -+ ° * ° ~-~-w u.... x z Z

• inputs
U, .. w with value set Iu".Iw

• outputs
X, .• Z with value set 0x ... Oz

• behaviour

- for every u€lu'" w€Iw there is
defined a xeOx .·' Z€Oz

VueIu '" Vw€l] x(u ... w}e Ox

VueIu,·.VweJw] z(u, .. w)€ 0z

-if input/output relation = function:

Function F : Iu*, .. I -+0x*."Oz
(X, .. Z)=F(U ... W) with ueIu, .. weIw

xeOx.··zeOz

U, .. w: independent variables
x, .. z : dependent variables

-2.17-

In this relation we consider all outputs at the same
time. We can also look at every output separately.
Hence, for each output, we get a relation that
describes the connection between the input values
and the values of the considered output. The
system is described by a number of relations equal
to the number of outputs. Both approaches are
equally valid for our purposes. When the relation is
a function (later we shall discuss what this means)
we can write it in another style. We emphasize that
the values of the inputs, u up to and including w,
and the values of the output, x up to and including
z, are defined by the system. There is a functional
relation between the input and output values. We
call the input and outputs of the system the
variables of the system. u up to and including w
are called the independent variables, and x up to
and including z the dependent system variables.

COMBINATIONAL SYSTEM

• No memory operation

• F: I -0 is a function

This means that the response of the
system to the input values are only
depending on the input values at
that particular moment and not on
earlier input values

u t; I ; z € 0;

z = F (u)

2.18-

As previously mentioned, there are digital systems
with and without memory. We shall call a system
without memory a combinational system. Figure
2.18 shows the attributes of a combinational
system. A characteristic of such a system is that
the input/output relation is time invariant. The
response of the system to input values depends
only to the current inputs and not to the previous
inputs. That is to say, the system has no memory,
i.e. it cannot remember. The functional description
maps the input domain uniquely to the output value
domain, i.e. each input value has one specific
output value. Furthermore, the function is time
invariant, i.e. the mapping does not change in time,
and the system always exhibits the same
behaviour.

EXAMPLE - WEEKDAYS

Sunday, Monday, Tuesday.
Wednesday, Thursday, Friday,
Saturday ~

o == Yes, No ~

F z <x is a weekday>

with z € 0 , X € I

EXAMPLE COMPUTATION

I == { 0 .. 15 ~ ; 0 = ~ 0 .. 3 ~

F : z = Lxi 4 J with z € 0 , X € I

-2.19-

Figure 2.19 shows two examples of combinational
systems. In the first example, the input set is the
set of days of the week and the output set is the
set of "yes"/"no". the input/output relation is given
by: "is x a weekday?". It is clear that the answer to
this question depends on the current input value
and does not depend on previous ones. Besides
the answer tomorrow will be the same as today. In
the second example the variable x may take the
integer values from 0 to 15. The value of the output
z is given by the "floor" of x/4. The floor function
has a value equal to the greatest integer being
smaller or equal to its argument. Thus, the floor of
3.14 is 3 and the floor of 6.73 is 6. The value
domain of z is the subset of the integer numbers
from 0 to 3. This is also a system without memory.

2.13

SEQUENTIAL SYSTEM

• Memory operation

The system remembers the input
values of the past

• There is no function F : I -+ 0
Because the response is not
only depending on the current
input values but also on
earlier input values

U € I --1L-____ -'~ Z € 0

-2.20-

We shall call a system that has memory a
sequential system. Figure 2.20 summarizes the
characteristics of sequential systems. A sequential
systems has a memory function, i.e. the system
keeps track of previous input values. As a result,
the input/output relation is not defined by a
function. That is to say, the response not only
depends on the current input values, but also on
previous ones. A certain input value could lead to
several different output values. Repeated dialling of
a certain digit in a telephone number leads to
changing responses from the telephone exchange.
The telephone exchange remembers the previously
dialled digits. In the case of sequential systems,
there is a functional relation between the output z,
and the current input value and all previous input
values.

2.14

EXAMPLE - COMPUTATION OF AVERAGE

I = l 0 .. 15 t
o = 1 0 .. 15 I

F: Zo = L(xO +x-1+x-Z +",+X-9)/lOJ

• Zo€O, xid

• x-l X-9 are the
. nine previous input values

-2.21-

Figure 2.21 shows an example of a sequential
system. This sequential system computes the
running average of ten input values. The inputs may
take integer values from 0 up to and including 15;
the same holds for the outputs. The value of the
output is equal to the average of the current input
value and the previous nine input values. The
average is rounded downwards using the floor
function.

BINARY SYSTEM

• Is a digital system

• Each input and output can have

two values to.l! or lFalse.True!
or INa, Yes!

i 1 ..-- ----. 0
1

i~: ? T~2
: I • I:

i :-!- --..l.- <>
n '-----------' m

I 10,lt
- is the input set or domain
- is a set of binary n-tuples

o = to, 1 fm
- is the output set or range
- is a set of binary m-tuples

-2.22-

The binary system is a special and technically
important digital system. Figure 2.22 shows some
of its characteristics. A binary system is a digital
system with the special characteristic that all input
and output values may take only two different
values. Thus every input and output is bivalent. This
value set is generally given the symbols 0 and 1,
false and true, real and unreal etc. In a binary
system we limit the value domain of inputs and
outputs. If the system has n inputs and m outputs
we can say that (see figure 2.22) I is the input set
of the function domain. I is formed by the set of all
binary n-tuples. A binary n-tuple is a row of
elements, where each element may take the values
o or 1. Furthermore, we can define 0 as the output
domain of the function. 0 is formed by the set of all
binary m-tuples.

A number of advantages of binary systems are:

The input values are bivalent. For example,
this can be realized by a high and low voltage,
the absence or existence of current, a high or
low resistance etc. We need only to
distinguish between two levels.

A BINARY SYSTEM

• is simpler to realize than

a general digital system

A DIGITAL SYSTEM

• any digital system can be replaced

by an equivalent binary system

-2.23-

Because of that a binary system is easy to
realize with electronic devices (building
blocks). In the realization of such a system a
large inaccuracy margin may be buHt in.

A realization of a binary system has a high
reliability.

A realization of binary system has generally a
good resistance against possible disturbances
and other external influences.

Notice that all these advantages have an influence
on the realized system. Binary systems are simpler
to realize than general digital systems (see figure
2.23). The specification, however· the description
of the desired behaviour of a digital system - is
simpler for the more general digital systems. The
reason is that such systems relate better to human
reasoning.

For that reason an important assertion is (see figure
2.23): every digital system can be replaced by an
equivalent binary system.

2.15

CODING

L ____________ _

Coding = relate to each element of a set
of elements a unique vector of
ones and zeroes (binary vector)

-2.24-

The process of translating a digital system into a
binary one is called coding. Figure 2.24 shows a
schematic of the coding process. Coding means
that every element in a set of elements is mapped
to a unique vector of zeroes and ones (a binary
vector). In figure 2.24 we see that every input value
is translated into a binary tuple by a coding step.
All these tuples together provide the binary n-tuple
input to the binary system; based on this input n­
tuple the system determines the m-tuple output
value.

2.16

This binary value is mapped by a second coding
step to elements of the digital system's output set.
This second coding step is also-called the
decoding step. Actually coding is something that
can be done by a digital system, more specifically
a combinational system. Usually such a coding
system is not explicitly realized.

EXAMPLE - WEEKDAYS

~ ? ~ X ..;, weekday
'-----x e Z e

lSunday .. SaturdaY} JYes.No!
Coding
Sunday = 000 Thursday
Monday = 00 1 Friday

= 100 1

=101:Yes=1
= 1101 No =0 Tuesday = 010 Saturday

Wednesday = 0 1 1 unused I
= 1 111

Binary system Q
x2_ ?

xl - x == code for weekday f----i' !
xO- Ze (O,H

X2X1XO€ !0.1}3 F = 1000-0,
001-1,
010-1.
011-1.
100-1.
101-1.
110- 0,
1 11- a or if

-2.25-

Figure 2.25 shows the first step in the process of
realizing our combinational function: "Is x a
weekday?". A coding step is necessary for the
realization of a binary system. Figure 2.25 shows a
possible coding scheme. The days of the week are
coded as triples, Le. binary vectors with three
elements. Since we have three element that may
take the values 0 or 1, we have eight different
combinations. of which there is an unused code. In
this case we use the 111 code for the element
"others". Coding of the output values is simple:
"yes" 1, and "no" = O. The equivalent binary
system is given by a fUnctional relation between the
binary value on the output z and the binary values
on the inputs Xo up to and including ~. The
function can be specified to give an output value
for each corresponding combination of input
values. This is shown in figure 2.25. Note that for
the input combination 111 the output cannot be
specified; indeed 111 does not correspond to a
code for a day of the week, and thus there is no
answer to the question: "Is this a code for a
weekday?". Later we shall return to the issue of
undefined output values.

CODING

Coding =
give every element of a set

• a unique binary vector with a
fixed length

• a fixed number of bits
• an n-tuple

There are

2 n

different n- bit codes (n-tuples)

• 2 bits - 4 different codes

• 3 bits -- 8 different codes ·
• 16 bits -- 65536 different codes

64K

-2.26-

Thus coding is: giving each element of a set a
unique binary vector with a fixed length, i.e. a fixed
number of elements. Each element of a binary
vector is also-called a binary digit or "bit". Hence an
n-tuple is called an n-bit vector. A bit (a binary
digit) can have two values, 0 or 1. Thus, with n bits
(binary n-tuple) we can make 2n different codes.
There are four different code for two bits, and
65,536 codes for 16 bits. We also denote 65,536 by
64k, where k stands for 210 = 1024.

2.17

CODING

If a set S has #S elements:

• it can be coded using

n = Ilog2 #s l bits

n
• there are #S = 2 code words with

in total

(2n)! different assignments
(2n-#S)!

=>

EXAMPLE

.7 weekdays

• n =r log 2 7l=12.8 .. l = 3 bits

• Number

(23)!

(23-7)!

of different code assignments:

= 8! = 40320
1!

-2.27-

Given a value set that we want to code this
question arises: how many bits do we need for this
coding and in how many different ways can codes
be assigned. Figure 2.27 answers this question. We
want to code the value set S. The number of
elements in the set is given by #S. In order to code
with n bits, 2n must be at least equal to the number
of elements. For that reason n must at least be
equal to the "ceiling" of log2(#S), The ceiling
function is the smallest integer grater than or equal
to its arguments. With n bits we can make 2n

different code words. There are #S code words
necessary for the coding. Thus 2n -#S code words
remain unused. Figure 2.27 shows how many
different ways we can deduce #S code words from
2n code words. These are the different possible
code assignments.

2.18

Problem 2.1 (2.6)
Consider coding the set of integer numbers {O .. 99}
a. How many bits are needed for coding this

set?
b. How many code words are unused for this

coding scheme?
c. How many different coding schemes can be

employed?
d. How many elements can a set have at a

maximum to enable coding with the indicated
number of bits?

e. How many coding schemes can be employed
for (d)?

From the numeric example in figure 2.27 we see
that the number of possible codes increases rapidly
with n. Our seven days of the week can be coded
in more than 40,000 different ways. Now the
question is: are these codes equally optimal,
equally good? The answer to this question is
certainly no!. The definition of what is a good code
depends on a number of factors:

The used code must lead to a simple
realization. The code must be optimal with
relation to costs, reliability and availability for
realization purposes.

The used code is depending on the operation
(transformation) carried out on the binary data
and is depending on the way these operations
are realized.

Sometimes the use of the code is defined by
an agreement, convention, or some used
standard. So any two related subsystems
must use the same code.

EXAMPLE - CODING

~x2~3? ~ X ,;, weekday
L-____ -----1 Z € !O,l~

CODING 1 (x
2

X
1
xo)

Sunday = 000 Thursday = 1 00 1
Monday = 001 Friday = 101: Yes =1
Tuesday = 0 10 Saturday = 1 101 No =0

I Wednesday= 0 11 unused = 1 1 11

=> ~ 1 if (xO=l or (x2=1 and xl =0)
F = or (x2 =0 and xl =1)

o otherwise
Implementation using standard
building blocks

x2

F

-2.28-

Figure 2.28 shows another possible coding scheme
for our weekday function. We have previously
specified the related binary function (see figure
2.25). We see that the output F = 1 if Xc = 1
(Monday, Wednesday, and Friday) or X2 = 1 and
x, == 0 (Thursday, and Friday) or X2 = 0 and x, = 1
(Thursday and Wednesday). Otherwise the function
value equals O. Later we shall see that this function
can be realized with three standard building blocks,
as shown in figure 2.28. Here we use two building
blocks to realize the "and" functions. These are
indicated with the & sign. A second building block
is used for the realization of the "or" function. This
is indicated by the ~ 1 sign.
Problem 2.2 (2.7)
Consider the set {Spades, Hearts, Diamonds,
Clubs}.
a. How many bits are needed for coding this

set?
b. How many different coding schemes are

possible?
c. - Specify all possible coding schemes.

- Are all of them really different?
- Is there an essential difference between

codes 01 and 10? (Remark: no weights are
assigned to the individual bits).

- If there is no difference: specify the
number of different coding schemes.

EXAMPLE - CODING

CODING 2
= 1 0 11 Sunday = 000 Thursday

Monday = 001 Friday
Tuesday = 0 11 Saturday
Wednesday= 1 00 unused

= 111: Yes =1
=0101 No =0

=>

F =

I = 1101

II if (x 2 =1 or xa=l)

o otherwise

Implementation usmg standard
building blocks

-2.29-

In figure 2.29 we see what happens if we chose
another code for our function. The codes for the
days of the week are chosen on purpose so that
the function could be realized simply, i.e. with a
minimal number of building blocks. We see that we
have to deal with the code of a weekday if ~ = 1
or Xc = 1. This function could be realized with only
one standard building block: the "or" function. We
conclude that the choice of a code may have a
clear influence on the complexity of the realization.

How do we chose a good code? In general this is
a very difficult question; there are many possible
different codes. Next it is always not clear what a
good code is. In this course we shall not pay any
further attention to the choice of optimal codes.
However, we shall notice that a (defacto) standard
code is frequently prescribed. Often the
standardized ISO or ASCII codes (ASCII =
American Standard Code for Information
Interchange) are applied when coding the set of
alphanumeric characters (letters, digits, dialectical
signs etc).

2.19

bbbb
4321
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bbb
765

000

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
S1

ISO 7 - ASCII code table

001 010 011 100 101 110 111

DLE SP 0 @ P •
P

DCl , 1 A Q a q
DC2 " 2 B R b r
DC3 # 3 C S c s
DC4 $ 4 D T d t
NAK % 5 E U e u
SYN & 6 F V f v
ETB

,
7 G W w g

CAN (8 H X h x
EM) 9 I Y 1 Y

SUB * J Z j z
ESC + , K

Z
k ~

FS , < L 1 I
GS - - M 1 m ~ -
RS > N n ,....,

US / ? 0 0 DEL

-2.30-

Figure 2.30 gives an overview of this code. We see
that it contains 128 different characters. The first 31
characters are the so-called control characters.
They do not belong to the set of printable
characters. but are used to control printers and
similar devices.

2.20

There we also find codes for moving to the
following line, and to place the print-head at the
beginning of the line. Furthermore, we find a large
number of printable characters, e.g. the digits 0 to
9 and all 26 letters of the alphabet in upper and
lower case.

BCD - CODE

• BCD :::: Binary Coded Decimal
• BCD code is a weighted code

2 3 222 1 2 0
II II II II

842 1 weight factors

o 0 0 0 = 0
o 0 0 1 :::; 1
o 0 102
o 0 1 1 :::; 3
o 1 0 0 :::: 4
01015
o 1 1 0 :::: 6
o 1 1 1 7
1 0 0 0 :::; 8
1 0 0 1 :::; 9

b
3

b
2

b
1

b
O

:::;

b *23 + b *22 +b *21 +b *20
3 2 1 0

-2.31-

Another frequently used standard code is the BCD
code. BCD stands for Binary Coded Decimal. These
codes can be used to code decimal digits into
numbers. Figure 2.31 gives an overview. The BCD
code is a weighted code. That is, each individual bit
position is associated with a weight factor. In the
BCD code these weights are, from right to left,
2° = 1, 21 = 2, 22 = 4, and 23 = 8. Using these
weight factors we can calculate the decimal
equivalent of a BCD coded digit. This is done by
multiplying each bit value (O or 1) by the
corresponding weight factor, and then summing up
all the results. Numbers can be coded into BCD by
translating each individual digit into its equivalent
BCD code.

EXAMPLE - BCD CODE
1 9 9 4

U
I I ,

0001110011100110100
I , I

BCD coded numbers:
• Simple conversion from/to

decimal digit symbols

• Many bils needed
4-digit BCD number:
- range 0000-9999
- bils used 4*4 = 16
- 16 bits 216 :::: 65536 combinations
8-digit BCD number:
- range 0 - 108

- bits used 8*4 = 32
- 32 bits 9

binary range 0 - 4*10

• Operations on BCD numbers (+,-,*.j)
are not trivial for binary systems

-2.32-

Figure 2.32 shows how to code the number 1994.
We see how individual digits are translated into a 4-
bit BCD code.

The conversion between BCD coded numbers and
decimal numbers is simple. In reality BCD code has
some disadvantages. First we name the small
domain. We need 4x4 = 16 bits to code a number
with four decimal digits, I.e. 0 .. 9999. But as
mentioned earlier 16 bits provide 65,536
possibilities. Thus the numbers 0 to about 65,000
can be coded in 16 bits. When considering eight
digits the difference between BCD coding and the
number of different codes becomes much larger. A
second disadvantage of BCD codes is that the
standard operations on numbers such as addition,
subtraction, multiplication and division of BCD
coded numbers are not easy to realize in a binary
system. Consequently binary numbers often
constitute a better choice.

2.21

Numbers

and

Number Systems

-2.33-

2.4 Numbers and number systems

Now. we shall briefly overview numbers and how
they can be represented. We shall consider number
systems. We must remember that a number has a
value. and besides that. has a notational form or
way of representation. The val ue of a number is
fixed; the method of writing it mostly depends on
the number system in which this value is given.
Figure 2.34 demonstrates this by displaying a
specific number, 1994. in four different ways. First
we see the familiar decimal representation.

2.22

NUMBER SYSTEMS

A number
• has a value
• uses a notation
• uses a number system

Examples - notation
• decimal
• Roman
• floating point
• binary

Number system

• base (radix) R

• R digit symbols

1994
MCMXCIV 3·
1.994 * 10
111111001010

having values 0, 1, 2, R-1

-2.34-

Next, the same number is shown as the Romans
would write it using the Roman digit symbols. The
next representation is given in the so-called floating
point notation. And finally we have the binary
representation of the number. Each notation has a
set of conventions. or rules that are used to
calculate the value of the number. Such a set of
conventions or rules is called a number system. A
number system is formed by a base or radix with a
value R. and in total R digit symbols with values 0,
1, 2 •.. R-1. respectively.

Number systems

Decimal number system

• R = 10
• di€iO, 1, 2, 3, 4, 5, 6, 7, 8, 9~

• notation: 1994
3 2 1 0

• value:::::; 1*10 +9*10 +9*10 +4*10

Binary number system

• R = 210
• di € 10,1~
• notation: 10011

4 3 2 1 0
• value = 1*2 +0*2 +0*2 + 1 *2 + 1 *2

Hexadecimal number system

• R = 1610
• di € 10.1,2,3.4,5,6,7 ,8,9,A,B,C,D,E,F~

• notation: 9EA3
• value 9*16

3
+ E*16\ A*16

1
+3*16°

-2.35-

Figure 2.35 shows some examples of number
systems. The first example is the decimal system.
In this system the base value (radix) is 10. The digit
symbols are formed by the digits 0 to 9. Also we
see how the value 1994 is denoted in the decimal
system. The value can be computed by considering
each digit position as coupled to a weight factor.
The rightmost digit has the weight 100

, the next
digit has a weight factor 10\ then 102

, and finally
the weight factor 103

• The weight factor is thus a
power of the base.

In the binary number system the base is equal to 2.
The digits are formed by the symbols 0 and 1. A
binary number is formed by a row (n-tuple) of
binary digits, or bits. Figure 2.35 shows an example
of a binary number. The value of a binary number
can be defined by multiplying the individual binary
digits by the corresponding weight factors, and
then summing up the results. The weight factors
are, once more, powers of the base, i.e. powers of
2. Figure 2.35 shows this value computation,
expressed in the decimal system. A third important
number system is the hexadecimal system or the
16-digit system. In this system the base value is 16.
The digit symbols are now formed by the digits
from 0 to 9 and, because we need 16 symbols, the
letters from A to F. The symbols A to F have the
values 10 to 15. respectively. Figure 2.35 shows an

NOTATION AND VALUE

Number notation

• n-tuple of digit symbols

d d 2 d2 d1
do n-1 n-

• d i € ~digit symbols~

Number value

n-l

value = L d
i
* Ri

i=O

n-l n-2 2 1 0
= d R +d 2R + ... +d2R +d1R +doR n-l n-

-2.36-

example of the notational form and the value
computations expressed in the decimal system.
Figure 2.36 shows that the notational form of a
number is an n-tuple of digit symbols, each of
these digit symbols being selected from the set of
R (Radix) digit symbols. The value of a number is
defined by the weighted sum of aU digit symbols.
the weight factor being a power of the base. We
notice that the determination of this value (the
calculation of the weighted sum) can be performed
in different number systems. Because we humans
find it easier to calculate in the decimal system, we
shall generally determine its value using
computations in decimal. In a computer it is easier
to use a binary system.
Hence the use of different systems gives different
notational forms for the same number. We are
interested in methods to convert a number from
one notational form to another, preserving its value.
There are two available methods. The methods we
use depend on:

the number system in which the calculation
will be executed;
the original number system in which the
number is represented;
the target number system in which we want to
represent the number.

2.23

NUMBER SYSTEM CONVERSION
Base x ---+ base 10

• Computation in decimal
• Method: repeated multiplication
• Number value =

(... {d
n
-
1
Rtdn_2) Rt ... td2)*Rtd1)*Rtdo

Example - binary to decimal

10102 = {{1*2tO}*2+1)*2fO = lO to
1101102 = {(((1*2tl)*2tO)*2+1)*2t1)*2tO = 5410

Alternative method:
110110 1 *25 t 1 *2 4 to* 23 f 1 *22tl *21 t 0* 2°

= 32 t 16 t 4 t 2 ::: 54 10
Example - hexadecimal to decimal

9EA3 = {(9*16+l4)*16tl0)*16t3 40611 10
7CA ::; (7* 16+12) * 16+10 ::; 199410

Alternative method:
7CA::; 7d62t12d6 1tlO*160

= 1792 t 192 t 10 = 199410
-2.37-

Problem 2.3 (2.4)
Consider the binary number system using n bits for
the representation of numbers.
a. Show that the greatest value that can be

represented is:
2n

- 1
b. What is the greatest value for n = 8?
c. What is the greatest value for n:= 16?

We apply repeated multiplications if the system we
shall use for calculations and the target system are
equal. Figure 2.37 shows an example of a
conversion to the decimal system with the
calculations also carried out in the decimal system.
We begin by noting the value of the most
significant digit symbol, i.e. the leftmost one. When
there are more digits in the number, we multiply
this decimal value with the base where this number
is coded. This multiplication is carried out in the
decimal system. Subsequently we add the result to
the value of the following digit symbol. If there are
more digits we repeat the whole procedure. The
final result of this calculation is the value of the
number in decimal. Figure 2.37 shows a number of
conversion examples from the binary and
hexadecimal systems.

2.24

NUMBER SYSTEM CONVERSION
Base 10 ---+ base x
• Computation in decimal
• Method: repeated division
• Determination of digits:

Digit 0 (rightmost digit):
~1. ~1. 1
(~:i' Rl) -;- R ~ti' R

1
- remainder dO

Digit k:
~1 i-k ~1 j-k-l (lJi· R) -;- R =L di • R remainder dk

i=k i=k+l
Example - decimal to binary

83 + 2 = 41 rem 1 least sign. bit
41 + 2 = 20 rem 1
20 + 2 = 10 rem 0
10 + 2 5 rem 0
5 + 2 = 2 rem 1
2 + 2 = 1 rem 0
1 + 2 0 rem 1 mosl sign. bit

B3lQ 10100112
Example - decimal to hexadecimal

2783
10

+ 16 = 173 remainder 15

173 + 16 '" 10 remainder 13
10 + 16 = 0 remainder 10

278310 ::: !DF 16

Problem 2.4 (2.3)
Show that:

-2.38-

a. 101101012 =181 10

b. 011011002= 10810

The second method is applied if the number
system used for the calculation is equal to the
number system used to code the number. We
make use of the method of repeated division.
Figure 2.38 shows how to convert a number from
the decimal system by means of calculations also
executed in the decimal system. In this method of
repeated division we divide the number by the base
of the target number system. In figure 2.36 we see
that if we perform such a division we keep a
remainder that is equal to the value of the least
significant, i.e. the rightmost, digit. If we divide the
result again by the base of the target system then
we get a remainder equal to the next digit. By
repeating this division we translate all the digits of
the number into the target system, starting with the
least significant digit and ending with the most
significant one. Figure 2.38 shows two examples: in
the first example a number is converted into binary
and in the second one into hexadecimal.

EXAMPLE - HEXADEClMAL NUMBERS
• Binary ~ hexadecimal conversion

• 4-bits number ~ 1 hexadecimal digit

• Examples:

~ ~ ~ ~: = ~~:
1 0 0 1 = 916
1 0 1 o~ A16

1 1 0 12 = 016

• n-bit number ~ rn/41hex. digits

111: 1100: 1010 2 ~ 7 C A 16

101 : 1011: 0110: 0010 2 ~ 5 B 6 2 16

1111:0111: 1010 :0001 2 ~ F 7 A 1 16

Problem 2.5 (2.2)
Show that:
a. 21610=31204

b. 9910 = 12034

C. A716=22134

d. 8316=20034

Binary systems will generally use numbers denoted
in the binary system. A disadvantage of using
binary numbers is that the number of digit symbols
(bits) is large, even for relatively small numbers. We
need ten digit symbols to represent the decimal
number 1000. The advantage of the hexadecimal
system is that it provides a very compact way of
writing numbers, and at the same time, it is simple
to convert hexadecimal numbers to and from the
binary system. Hence hexadecimal numbers are
frequently used as a short way of writing binary
numbers.

-2.39-

Problem 2.6 (2.5)
a. Write 1098510 in the binary system.
b. Write 27810 in the base 5 number system.

Figure 2.39 discusses the conversion between
binary and hexadecimal numbers, being a very
simple one: a four bit binary number can be coded
into a single hexadecimal digit. Indeed, with four
bits we can have 16 different quadruples which can
clearly be represented by the 16 digits of the
hexadecimal system. If you wish you can verify this
representation by converting the binary and
hexadecimal numbers to the decimal system. The
opposite way is also possible. A hexadecimal digit
can always be written as a 4-digit binary number.
And an n-bit binary number can be converted to
(nj4)-digit hexadecimal number, beginning with the
least significant bit, forming groups of four bits, and
replacing these groups by the corresponding
hexadecimal digit. Figure 2.39 shows a number of
examples.

2.25

BINARY ADDITION

Adding 2 hits:

0 + 0=0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (result=1: carry=1)

Adding with carry:

510 = 101 2

310 = 011 2
111 (carry=i)

+
810 10002

-2.40-

We have now seen how to denote numbers in the
binary system. The following step is to be able to
calculate with binary numbers. In this course we
shaUlimit ourselves to addition and multiplication of
two positive binary numbers. When we learn to add
in the decimal system we could start by adding two
digits. Applying this to the binary system means
adding two binary digits, i.e. two bits. Figure 2.40
shows the rules for adding two bits.

Regarding calculations in the decimal system, when
adding two digits the result is sometimes too large
to be represented in one digit. For example 9 + 7
gives 16. We say then 9 + 7 = 6 with a "carry" of
1. Something similar is valid for the binary system.
We see that if we calculate 1 + 1 the result is 0
with a carry of 1. This carry is used when adding
the next two digits in the number as shown in
figure 2.40. There the carry from the last (right) two
digits is explicitly shown.

2.26

BINARY ADDITION

27
10 = 011 0 112

35
10

= 1000112
11 (carry)

+
62 = 1111102 10

93
10

= 010111012
47

10
= 001011112

1111111 (carry)
+

140
10

= 10001100 2

-2.41-

Figure 2.41 shows another two examples. We
recommend that you carefully study these two
examples and that you practice with the addition of
other binary numbers.

Problem 2.7 (2.1)
Determine the sum of the binary numbers 011011
and 110110. What do you notice concerning the
number of bits in the result?

BINARY MULTIPLICATION

10010 (multiplicand)
1100111 (multiplier)

------x
1 * 18 10010
1 * 18 = 1 00 1 0 -
I * 18 = 1 00 1 0 . -
o * 18;: 00000 - ..
0*18:::: 00000-··-
1 * 18 1 00 1 0 . - .. .
1 * 18 1 00 10 . - - .. .

+ 185410 = 11100111110 2

Multiplication by a power of 2

• * 210:::: shift left 1 position:

dn- 1 dn- 2 .. · d2d1 dO dO 2 dn- 1 dn- 2 .. · d2d1 dOO

10110
2

* 10
2

:::: 101100
2

• * 2 nlO:::: shift left n positions:

1000 2 * 1000 2 = 1000000 2
-2.42-

When considering multiplication in the binary
system we could also look at related examples in
the decimal system. Also in multiplication the
multiplicand is successively multiplied by all digits
in the multiplier starting with the least significant
(Le. the rightmost) digit. Now the digits of the
multiplier have the value 1 or O. The result of the
multiplication is consequently the multiplicand itself
or O. As usual, the intermediate result is shifted one
place to the left and then we add all these
intermediate results. This gives the result of the
multiplication. Figure 2.42 shows a worked out
example.

Furthermore we shall pay attention to a special
attribute of binary multiplication. It appears that
binary multiplication of a number by 2 is equivalent
to shifting the binary number one position to the left
and adding a least significant 0 to the right of the
number. Figure 2.42 shows an example. We also
observe that a multiplication by 2n (2, 4, 8, 16 etc.)
means that the binary number is shifted to the left
by n positions and the free positions are filled with
zeros. These characteristics are frequently utilized
in digital systems.

NOT COVERED IN THIS COURSE

• Negative numbers

• Fractional numbers

• Floating point numbers

• Subtraction and division

• Finite register length

• Error detecting and
error correcting codes

-2.43-

Thus far we have given a short introduction to
binary numbers and binary calculations. We are
aware that a lot of topics remain untouched. An
overview is given in figure 2.43. We did not go into
the representation of negative numbers or fractions.
We did not consider floating point notations.
Neither did we consider binary subtraction or
division. Also we did not cover problems arising
from the fact that in binary systems numbers are
represented by a fixed number of bits. We only
mention the existence of other codes, such as error
detecting and correcting codes.

2.27

2.5 Summary

We have tried to answer the questions: 'What is a
digital system?", and "How do I design a digital
system?". As an important criterion of digital
systems we have discussed inputs and outputs
being elements of finite value sets. We have
discussed behavioural descriptions by means of a
functional relation, referred to as the black box
model, or by means of a number of transformation
rules or algorithms: the algorithmic model. When
designing a digital system it is important to first
determine what we want to realize. We must make
a clear behavioural description. Furthermore we
must structure the design to manage its complexity.
We must follow a structured design methodology
yielding a hierarchical system. This is called a
structured hierarchical design methodology.

Furthermore we have seen that digital systems
could be divided into two classes: systems with
and without memory functions. Systems without
memory functions are called combinational
systems, and systems with memory are called
sequential systems. We have also observed that
digital systems are generally realized as binary
systems. A binary system is a digital system, its
inputs and outputs having two different values.

2.28

The process used to convert general digital
systems to binary systems is called coding. We
have seen that we could code in several ways and
that not all codes give equally good results. Next,
we have seen that the choice of code is frequently
imposed by standards, or as a reSUlt of working
with other subsystems. The topic of number
systems is closely related to codes. In this course
we shall use three different number systems: the
decimal, the hexadecimal and the binary systems.
Binary systems are generally suited for
manipulating and calculating with binary numbers.
In this course we have limited ourselves to dealing
with addition and multiplication of two positive
binary numbers.

3.

Corn bina tional

Systems

-3.01-

3 Combinational systems

We have seen in the previous chapter that a
combinational system is a system without memory.
The behaviour of the system can be described by a
functional relation between the input and output
values. We can say that the system maps values in
the input domain to values in the output domain.
This mapping scheme does not change in time.
In the coming three subsections we shall consider
the design and realization of combinational systems.

We shall apply a structured hierarchical design
methodology. We first describe what the system
must do; afterwards we try to realize the system by
combining a limited number of subsystems. In this
chapter we shall first consider the behavioural
description of systems. i.e. what the system must
do. Subsequently we shall discuss two standard
methodologies for decomposing a system into
several subsystems.

3.1

COMBINATIONAL SYSTEM

• Transformation

system domain ---7 system range

• Domain and range:

finite sets

EXAMPLES

• !Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturda~

.10 .. 25N

-3.02-

3.1 Behavioural description; specification

As a combinational system becomes more complex
we prefer to use the algorithmic approach (model)
to describe its behaviour. We shalt still use the black
box model for functions that are simpler to describe.
In figure 3.02 we see that the behaviour of the
combinational system can be determined by a
transformation of the system domain to the system
range. The domain (the set of input values) and the
range (the set of output values) are finite sets. A
description of the system behaviour always begins
with the definition of the system's domain and
range. We shall denote these sets in two different
ways. First we can name all elements of the set.
Figure 3.02 shows such a definition for the days of
the week example. We also shall specify a set by
placing the first and last elements. separated by two
dots, between braces. Figure 3.02 shows such a
definition of the set of integer numbers from 0 to
255.
When writing an algorithmic behavioural description
we shall make use of the syntax and semantics of
the Pascal language.
We shall make use of the operations defined in this
language, and by doing so we shall learn what these
operations do and mean.

3.2

COMBINATIONAL SYSTEM
Example 1 - Adder

A € 10 .. 255l

- adder -

B € to .. 255J SUM € to .. 511~

VAR A,B: 0 .. 255;
SUM: 0 .. 511;

BEGIN
SUM - A + B

END

-3.03-

As mentioned earlier we shall use a similar language
to define the behaviour of systems, i.e. to specify
them. To explain how this works we shall consider
a few examples. Figure 3.03 describes the behaviour
of an adder. The adder is system with two inputs
and one output. Both inputs can take integer values
from 0 to 255. The system adds both values and the
result appears on the output. The output therefore
has a value range from 0 to 511. However, this last
value can never occur as a result of an addition. The
reason for choosing 511 as the upper limit will be
explained later. The system's behaviour is explained
in one Pascal statement: SUM becomes A + B.
Notice that from the system we have determined the
input domain, the output range and the
transformation from the input domain to the output
range. Therefore, the behaviour is sufficiently
specified.

Problem 3.1
Consider a system with:

inputs A,B {O .. 15}
output MUL E {O .. 255}
function F: MUL = A x B

Make a behavioural description in Pascal.

COMBINATIONAL SYSTEM

Example 2 -

Adder wilh A,B,SUM € IO .. 255}

A € 10 .. 255~ ...-----, SUM € IO .. 255~
- adder f-----

- f-----
B € ~O .. 255~ OverFlow € IO.l~

VAR A,B,SUM: 0 .. 255;

OverFlow: 0 . .1;

BEGIN
SUM: = (A+B) MOD 256;

OverFlow : = (A+ B) DIY 256

END

-3.04-

We often need adders where the output set is the
same as both input sets. This enables us to use the
sum output as an operand in a new addition. Figure
3.04 shows a description of such an adder. We see
that the value range of the variables A. B and SUM
are integer numbers from 0 to 255. Because the
addition of such numbers could produce a result
lying outside the value range of the sum, we need
a second output from our system. The second
output indicates whether the result is in the range of
SUM. This extra output is called overflow. Naturally,
this output may take two values. It will take the value
no if the result of SUM is not outside the range, and
yes if the result of SUM is in the range. Both
possibilities are given by ·overflow = 0" or
·overflow = 1."

It should be clear by now, from the behavioural
description, that the range of the output SUM is
limited. Therefore, we can make use of the modulo
operator. The behavioural description, shown in
figure 3.04, uses the construct A + B MOD 256. This
construct will always yield an output value between
o and 255, Le. if necessary the number 256 will be
subtracted from A + B. The value of the overflow is
determined by dividing A + B by 256 and then
rounding the

COMBINATIONAL SYSTEM

Example 3 - Comparator

A € fO .. 255~
..-

comparator -
..-

B € fO .. 255~ OUT €

19reater.equal,less~

YAR A.B: 0 .. 255;
OUT: (grealer,equal,less);

BEGIN
IF (A > B)
THEN OUT : = greater
ELSE IF (A==B)

END

THEN OUT: = equal

ELSE OUT: = less

-3.05-

result downwardly (i.e. truncating). This is done by
the DIV operator.
If the sum of A and B lies in the range from 0 to
255, then the overflow will be equal to 0, otherwise
it will be equal to 1. Operators, such as MOD and
DIV, describe a behaviour and do not suggest any
details about their realization.

As a third example, figure 3.05 describes a system
that compares two numbers lying within the value
range from 0 to 255. The output shows the result of
this comparison. The output may take the values
"greater", "equal" and "smaller". We shall call such a
system a comparator. When describing the
behaviour of this system the use of operators alone
is not sufficient; we shall need to use another
construct. We have to compare the values of both
inputs and based on that take an action. Such a
behaviour can be described with:

if A > B then OUT equals greater.

We can describe the other cases similarly.

3.3

COMBINATIONAL SYSTEM
Example 4 - Multiplexer

multiplexer
10---+---(
11 -..J

1
[2 --I
13 --I

14 ~/:---+----OUT
Is --I I € W! ... I

I I6 -"""\ I
17 --\ I

Io ,I7 € W!·.·I

SEL
SEL € 10 .. 71

• is a control (selection) input
• determines the function of OUT
• does not determine the value of OUT

F : SEL ---?» II d.SEL I 0~SEL~7t
with OUT = Id (ISEL)=ISEL

OUT. ISEL € W!···LSEL € !0 .. 7t
-3.06-

As a fourth example, figure 3.06 discusses the
behaviour of a multiplexer. A multiplexer is the
digital system equivalent to a multiple position
switch. Figure 3.06 shows an 8-input multiplexer.
Besides these 8 inputs 10 to 17 , the multiplexer
contains the so-called selection input SEL. The
value of this selection input (in our case between 0
and 7) determines the input to be connected to the
output. We also can say that the value of the
selection input determines the function of the
mUltiplexer. and that it only indirectly determines the
value of the output OUT. These thoughts lead us to
the functional description shown in figure 3.06.
There the multiplexer is defined by reflecting the
value of the input SEL to a set of identity functions
Id• Each of these identity functions. Id,SEL' maps the
selected input, IsEL• to the output. Note that we limit
ourselves to the situation where all inputs ISEL and
the output OUT have the same value set. This
restriction does not have to be made formal, but in
practical implementations of multiplexers this is
always the case.
Notice also that the exact nature of the input and
output value sets is not really important. This fact is
also shown in the Pascal description of the
behaviour shown in figure 3.07. There we have
defined the variables 10, I" .. 17, OUT of type

3.4

COMBINATIONAL SYSTEM - PASCAL DESCRIPTION

Example 4 - Multiplexer; IF statement

VAR IO,Il,I2,I3,I4,I5,I6,I7,OUT: AnyType;
SEL: 0 .. 7;

BEGIN
IF (SEL = 0) THEN OUT : =10;
IF (SEL = 1) THEN OUT : =I1;
IF (SEL = 2) THEN OUT: =12;
IF (SEL = 3) THEN OUT: =13;
IF (SEL = 4) THEN OUT: =I4;
IF (SEL = 5) THEN OUT: =15;
IF (SEL = 6) THEN OUT: =16;
IF (SEL = 7) THEN OUT: =17

END

-3.07-

-AnyType". Furthermore, we see that the behavioural
description of the multiplexer only contains some "IF
THEN" statements; a statement for each possible
value of the selection. Notice that one of the eight
possible conditions will be true and that only one
related "THEN clauses" will be executed. Thus, the
output gets its correct value.
Problem 3.2
Consider a system with:

inputs A,B E {-9 .. 9}
SEL E {Add, Subtract}

output RES {-19 .. 19}
function F: RES = A + B if SEL = Add

RES = A-B if SEL = Subtract
Make a behavioural description in Pascal.
Problem 3.3
Consider the system given in problem 3.2.
The following architecture is given for the
realization:

A

B

Make a behavioural description in Pascal for the
system parts and the whole system.

COMBINATIONAL SYSTEM - PASCAL DESCRIPTWN

Example 4 - Multiplexer; CASE statement

VAR IO,Il,I2,I3.I4,I5.I6,I7,OUT: AnyType;
SEL: 0 .. 7;

BEGIN
CASE SEL OF

o OUT 10;
lOUT: = 11;
2 OUT: = 12;
3 OUT: = 13;
4 OUT: = 14;
5 OUT: = 15;
6 OUT:= 16;
7 OUT: = 17

END (*case*)
END

-3.08-

Such a multiple IF-THEN construct can be
expressed more elegantly using the Pascal CASE
statement. This is shown in figure 3.08. The "CASE
SEL OF" construct is followed by a list of all possible
values of SEL For a given value of SEL only the
statement following the corresponding label will be
executed, giving the output OUT its correct value. In
the multiplexer example we have encountered a new
aspect of digital systems. The multiplexer performs
a function to its inputs depending on the value of
another input. We shall call this other input the
control or selection input. The function of the
multiplexer is determined by the value of this special
input. We say also that the multiplexer in driven
(controlled) by a control input. We have now used
two words: control and selection, which play an
important role in system design. We shall return to
this topic later.
We have now discussed some examples of simple
behavioural descriptions. Here we shall make some
remarks. We have used an executable programming
language to describe the behaviour of our systems.

SYSTEM VERIFICATION

Behavioural description

• can be executed in software
• this is called simulation
• simulation - works serially
• hardware - works in parallel

~

SPECIAL HARDWARE DESCRIPTION LANGUAGES

• HHDL (Silvar Lisco)

• VHDL (different companies)

• SID (Sagantec)

• IDaSS (TUE, group Digital Systems)

• etc, etc.

-3.09-

As stated in figure 3.09, this has the extra advantage
that the behavioural description can be executed (on
a computer). Le. the behavioural description is
executable. Therefore, we can compute the
behaviour of the digital system, simulate it. There are
some disadvantages related to simulations. An
important problem is that hardware implementations
of have inherent parallelism, Le. different actions are
carried out simultaneously. Many programming
languages are sequential, and Pascal is not an
exception. That is to say that successive statements
are executed sequentially. "First this and then that".
To remove this and other problems, specific
description languages have been constructed. With
these languages we can describe and simulate
parallel actions. Such languages are called hardware
description languages. Figure 3.09 lists the names
of some hardware description languages.
Sometimes such a language is a part of a total
system in which hardware can be described
graphically and simulated. An example of such a
system is IDaSS (Interactive Design and Simulation
System) developed in the digital systems group of
Eindhoven University of Technology. Later we shall
see some applications of this system.

3.5

8- BIT NUMBERS

• Number set

• Equivalent with

• Equivalent with

~o .. 255~

~O.1~8

~O .. F~2

Binary number system

8-bit number
==

Hexadecimal number system

2 hex digit number

-3.10-

Secondly, we want to make a remark about the sets
of numbers used in the various examples. Why did
we choose a set of numbers from 0 to 255 instead
of, for example, from 0 to 99? This choice is clarified
In figure 3.10. From chapter 2 we know that the
chosen numeric range is identical with the range of
numbers expressible in an 8-bit binary number. Thus
we can simply convert our number set to an 8-bit
binary number or, alternatively, to a 2-digit
hexadecimal number. This choice is influenced by
practice, where it is common to perform processing
on 8-bit binary numbers or their multiples. A group
of 8 bits is a very common unit called a byte. Thus
we usually consider a 1-byte number, a 2-byte
number. or an n-byte number. Also, as shown in
figure 3.10, a byte can be represented by two
hexadecimal digits.

3.6

From

Behavioural Description

To

System Realization

-3.11-

3.2 From behavioural description to system
realization

After specifying the desired system behaviour and
verifying it by means of simulation we arrive at a
point in the system design trajectory where we must
consider a possible realization. That is to say, how
can the system be built from a limited number of
subsystems that are simpler to realize. Generally
spoken there is no direct answer to this question.
There are no known methods to find an optimal
decomposition of a system into subsystems. In this
decomposition lays the core of what I would like to
call the "art of design".

SYSTEM REALIZATION
.... to

• standard building blocks

• after coding step

.... to

• a limited number of subsystems

• a (standard) architecture

iterative networks

- tree structured networks

-3.12-

A couple of general direction will be pointed out.
Figure 3.12 first points out that we must know
whether the function that we want to make is
realizable using standard building blocks. To give a
satisfactory answer to this question it is necessary to
have an extensive knowledge of the available
building blocks. To this end we shall often need to
be supported by an expert (system). In other
circumstances there might be programs that can
automatically translate our system description into a
realization that uses standard building blocks. This
is called silicon compilation. Silicon compilation will
first be realized for the simpler (sub)systems.
Frequently the system behaviour is modeled using
a black box model. Later we shall discuss methods
that translate black box models into realizations with
standard building blocks. If the (sub)system is (still)
too complex, and thus these possibilities are not
available, then we shall be guided by, among other
things, our own creativity. We can try to find a
relation with related and frequently used standard
architectures. We shall discuss two of them here.
First the iterative networks and then the tree
structured networks.

Iterative

Networks

-3.13-

3.3 Iterative networks

An iterative network in principle comprises several
identical building blocks that are connected in
cascade. That is to say the building blocks are
connected in a row. There is a first or starting
building block, that passes its results to the
following building block. This following block in turn
passes its results to its neighbour and so on. The
first building block in the row determines, in
principle. the output of the system. This first building
block frequently has a different function. A k-iterative
network consists of k building blocks.

3.7

5 - ITERATIVE NETWORK

li€ Iu

-3.14-

Figure 3.14 shows an example of a system that is
realized as a 5-iterative network, i.e. a network with
5 building blocks. We see that the inputs u and v
now are, in one way or another, equally divided
among the inputs of the 5 building blocks.
Furthermore, we see clearly that there is a block on
the head of the list that determines the output value
of the system. This building block is labelled F.
Furthermore, this figure clearly shows that the
cascade elements are connected in a row.

3.8

K-ITERATIVE NETWORK
REQUIREMENTS

• Let I be the value set of an input

• There must exist a value set ['

such that there is

a one-to-one mapping of [to (I')k

• For each element of [there is a

single k- tuple (I') k

and vice versa

EXAMPLE - 5- ITERATIVE NETWORK

• There is a:

• with:

• and:

• such that

I~and I~
lLt.U3.U2.Ul'UO € I~

v4 • va . v2 • v1 ,v 0 € I~

u €Iu <E---7 (U4' u3 • u2 .ul.UO) e(I~)5
V € Iv <E---7 (v4 • va . V2 'v1 ,vo) € (I~ t

-3.15-

Are there requirements that a system, or its input
values, must fulfil to make it possible to realize it by
a k-iterative network? Figure 3.15 gives the answer
to this question. It appears that one should be able
to map the value sets of each system input neatly to
the individual value sets of the inputs of the
subsystems that form the iterative network. Formally
stated, one should be able to write the value set of
each system input as a k-tuple of another value set
and vice versa. For our iterative network of figure
3.14 it must be valid that each u and v of the set of
input values can be mapped one-to-one to the 5-
tuple (u4, u3, u2, Ul, uO) for u and the same for v.

EXAMPLES - MAPPING

• Every element in 10 .. 9991
can be mapped one-to-one
to a triple in to. 913

• The set !0 .. 255l
~annot be mapped one-to-one

to the set ~O .. 9t
3

• The set to .. 2551
can be mapped one-to-one to

2 2
- 10 . .15~ or ~O .. F~ hex. number system

10 .. 31 4 quaternary number system

{O,H 8 binary number system

• The set !Sunday .. Saturday~
cannot be meaningfully mapped to
a set of n- tuples

-3.16-

Figure 3.16 clarifies by a few examples what this rule
means. First we see that each element of the set of
integer numbers for 0 .. 999 maps one-to-one to a
triple with digit elements from 0 to 9. This is
precisely the way that we write the values of these
numbers in the decimal system.
Example 2 shows that the set of the numbers from
0 .. 255 cannot be mapped one-to-one to triples of
the elements 0 .. 9. The triples 259 and 715 do not
belong to the value set of the input. Example 3
shows that the same value set can be mapped one­
to-one to duples with elements equal to hexadecimal
digits. We also can represent the same value set by
quadruples with elements from 0 to 3. Finally we
also can present the value set by binary 8-tuples. A
2-iterative network, each of its subsystems accepting
hexadecimal digits as input, can be used to realize
a system with such a value set. On the other hand
we can realize the same system by an 8-iterative
network where each subsystem takes binary values
as inputs. As a fourth example we consider the days
of the week. For this set of elements it is not clear
how it can be represented by a set of k-tuples.
Therefore. we must think before realizing "Is X a

EXAMPLE COMPARATOR

• Inputs A. 8 € 10 .. 2551
• One-to-one mapping to jO .. 3l
• 4-iterative network

A[3]
. 8[3]

~ A[2]
A e 8[2]

jO .. 255l i

I A[l]
----1 8[1]

8e
jO .. 255l A[O]

8[0]

A[i],8[i]€ ~0 .. 3l

head

4

OUT€;
19reater,
equal,
lessl

3 2 1 0
A = A[3] * 4 + A[2] *4 + A[1] * 4 + A[0] t 4

-3.17-

weekday?" as a k-iterative circuit. The question is
then whether the iterative circuit is the best
architecture here.
As an example of an iterative circuit realization we
shall discuss the realization of the modified
comparator shown in figure 3.05. The main
schematic is shown in figure 3.17. Here we see that
the inputs, with a value range from 0 to 255, are
represented by quadruples of elements with a value
range from 0 to 3. We search for a realization of a 4-
iterative network. In figure 3.17 we have shown that
we shall attempt to realize the comparator with the
help of 4 identical sub-circuits called COMP4. We
see, because of this scheme, that the start circuit
has a redundant input. We shall set this input to the
value "equal*. We are then considering a
requirement or a pre-condition. Furthermore, we
notice that the elements of the quadruples A[i] are
written as elements of a row or an array. We have
done so to be able to construct a Pascal description
of the system. In this Pascal description the
behaviour of the individual COMP4 subsystems must
be defined, and the way these subsystems work
together also must be defined.

3.9

EXAMPLE - COMPARATOR

Pascal description

TYPE Quit=O .. 3; (*QUaternary digIT*)
CompRes=(greater,equal,less);

FUNCTION
COMP4 (u,v: Quit; Prev: CompRes): CompRes;

BEGIN
IF (u>v)

END;

THEN COMP4 : = greater
ELSE IF (u=v)

THEN COMP4 : = Prev
ELSE COMP4 : = less

-3.18-

I n figure 3.18 we first find the behavioural
description of the subsystem COMP4. We have
defined this behaviour as a Pascal function. Such a
function can be seen as a stand alone piece of
description that we can refer to later. In figure 3.18
we have first defined the type of input and the type
of output of our system COMP4. If we compare the
description of COMP4 with the previously given
description of our larger comparator (see figure
3.05) we notice that both descriptions are practically
identical. There is one exception, however. If the
inputs u and v are equal then the comparator result
will not be "equal". However it will be equal to the
result of the previous comparator in the iterative
network. This is given by the variable Prevo The
behaviour of the total comparator is explained as
follows: The first COMP4 (in the iterative network)
compares the most significant part of the input
numbers. If they are equal then the least significant
part of the input numbers is compared in the
following COMP4 in the row etc. If all parts of both
numbers are identical then the last COMP4 will
ultimately pass "equal" to the above.

3.10

EXAMPLE - COMPARATOR

Pascal description with array

VAR A,B: ARRAY[O .. 3] OF Quit;
OUT, Temp: CompRes;

BEGIN

TEMP: =COMP4(A[O].B[O].EQUAL;
Temp: =COMP4(A[1],B[1].Temp);

Temp: =COMP4(A[2],B[2],Temp);
OUT: =COMP4(A[3],B[3],Temp)

END

-3.19-

Figure 3.19 shows the behavioural description of the
whole system described in Pascal. Notice that we
define the system variables A and B as quadruples
that are described as arrays of elements.
Furthermore, we still need a variable to connect the
COMP4 elements. This variable is called Temp. In
this description, which is exclusively correct for a
sequential language such as Pascal, we can clearly
derive the cascade circuit. The tail COMP4
determines the result that is to be used by the
following COMP4 in the cascade circuit, which
internally passes a result to its neighbour. This goes
on until we arrive at the component that can
determine the output of the total system. We shall
come back to this behaviour later when we discuss
the timing aspects of iterative networks.
We also can make use of the iterative language
constructs in Pascal to describe an iterative circuit.

EXAMPLE - COMPARATOR

Pascal description
with array and repetition

VAR A,B : ARRAY(O .. 3] OF Quit;
OUT, Temp: CompRes;
I: Integer;

BEGIN
Temp equal;

FOR I : = 0 TO 3

Temp: = COMP4(A[I],B[I],Temp);

OUT := Temp

END

-3.20-

Figure 3.20 gives an example of the comparator.
Instead of writing four almost identical statements
we also can make use of a "FOR" statement This is
done in figure 3.20. Furthermore. such a description
is a good start for the realization of the system as a
sequential circuit.
We shall return to this point later.

EXAMPLE - COMPARATOR
Alternative implementation

A

B

A[3]
8[3]

A[2]
8[2]

A[l]
8[1]

A[O]
8[0]

equal

OUTe
L..-_------l head

igreater.equal.less~

A[i),B[i] € 10 .. 3f
3 2 1 a

A[3] *4 +A[2]*4 +A[1]*4 +A[O]*4
3 2 1 a

8[3] * 4 + B[2] * 4 + 8[1] * 4 + 8[0] * 4

-3.21-

Problem 3.4
When realizing a comparator as an iterative circuit
it is also possible to compare the most significant
part of both numbers in the tail circuit, and the least
significant part in the head circuit. Figure 3.21
shows a block diagram of such a comparator. Give
a Pascal description of the behaviour of the
components COMP4 and the whole behaviour of the
total comparator.

3.11

SUB-OUTPUTS

• Implementation of
k-iterative network
with
k sUb-outputs

• Condition:

Every output value 0
can be mapped one- to-one to
a k-tuple in (O')k

EXAMPLE

The output values

~grea ter. eq ual.less~
cannot be meaningfully mapped
to a set of k- tuples

-3.22-

The dotted lines leaving each element G. in figure
3.14, show that it is also possible to determine the
output values of all elements simultaneously. Here
we are considering a k-iterative network with k
partial outputs (see figure 3.22). This is only possible
for outputs with value sets that can be mapped one­
to-one to a k-tuple of elements of another set.
Figure 3.22 shows that the output value set of our
comparator C'greater", "equal" and "less") could not
be meaningfully mapped to k-tuples. Therefore, the
comparator cannot be realized as a k-iterative
network with k SUb-outputs.

3.12

EXAMPLE ADDER
• A,B,SUM € lO.255~
• OverfloVo€ 10,1!
• 10 .. 2551 is mapped one-to-one to !0,1! 8

• 8-iterative network:

A[i].B[i],SUM[i] € !O,1!
-3.23-

OverFlow

€ ~O,1!

SUM €

lO .. 2551

The adder is a circuit that can be realized as an
iterative circuit with partial outputs. The adder,
previously described in figure 3.04, can be realized
as an a-iterative network. Figure 3.23 shows the
structure of the iterative network. Notice that inputs
A and B and output SUM have a one-to-one
mapping on a binary a-tuple. Each sub-circuit ADD2
adds 2 bits of both operands and produces one bit
of the SUM result. The carry is passed to the
following circuit in the row, beginning by the tail
circuit and ending as overflow at the head circuit.

EXAMPLE - ADDER

Behavioural description

A== A[7]*27 +A[6]*26
, ..

... A[2]*22 +A[1]*21+A[0]
B= '"

SUM =SUM[7] * 27+SUM [6]*2\ ...
... + SUM[1]*2 1 + SUM[O]

Pascal description with procedure

TYPE Bit == 0 .. 1;
PROCEDURE

ADD2(u, v,ci: Bit VAR sm,co: Bit);
BEGIN

(* describe 2- bit addition *)
sm : == (u+v+ci) MOD 2;
co (u+v+ci) DIV 2

END;

-3.24-

The behavioural description of the circuit ADD2 is
given in figure 3.24. Because we now have more
than one output per circuit we cannot make use of
Pascal functions. Instead we must use a procedure.
Therefore the VAR parameters sm and co are both
outputs from the circuit ADD2. The behaviour of
ADD2 is described by a 2-bit addition statements. To
describe this we can make use of the modulo and
integer division operators.

EXAMPLE ADDER

Pascal description with array

VAR A,B,SUM: ARRAY[O .. 7] OF Bit;
OverFlow: Bit;

NextCarry: Bit;
I: INTEGER;

BEGIN
NextCarry : = 0;

(*initial condition*)

FOR I: =0 TO 7
ADD2(A[I],B[I],NextCarry,

SUM[I] ,NextCarry);
Overflow : = NextCarry

END

-3.25-

Problem 3.5
Verify that the description of figure 3.24 is related to
the previously mentioned statements of adding two
bits (fig 2.40).

The behaviour of an a-bit adder can be described
iteratively as shown in figure 3.25. There the variable
NextCarry is used for saving the carry of the 2-bit
adder. In the "FOR-loop" the a bits of both inputs
are successively added to each other and the sum
and the new NextCarry are determined.

3.13

Timing Aspects in

Iterative Networks

-3.26-

TIMING - 4-ITERATIVE COMPARATOR

grealer ~~..,.;grec:.:a;;;;;ter,--____ _

~ X~~~te;;;;;r ___________ _

~~~I~~==================== 
~~-~~~~----------------------equal 

I 
to tl 

;g.,comp: 

« 
-3.27-

In the given behavioural description of the adder 
timing considerations arise. Thus far we have not 
considered the time necessary to execute a 
combinational function. The execution of a 
combinational logic function using an electronic 
circuit costs a certain amount of time. This time 
m~ght be very short, in the order of nano-seconds 
for a basic operation, but can lead to too slow 
realization when used in iterative networks. 
Figure 3.27 schematically shows the behaviour in 
time of a 4-iterative comparator. Such a diagram is 
called a timing diagram. At the bottom of timing 
diagram the values of the inputs A and B are shown 
symbolically. At time to the values of the quadruples 
3120 and 1203 change to the quadruples 1233 and 
1230, for A and 8 respectively. All four comparators 
need some time to process these input values. We 
see that (initially) at time to there is no change in the 
outputs (TEMP1 to TEMP3 and OUT) of these 
comparators. 

3.14 

I 
t2 

I 
t3 

I 
t4 

) 

After a certain delay time T d' i.e., at time t1, the 
values of these outputs change. These value 
changes, at that time point, are only a result of the 
change of the input values A[I] and 8[1]. Indeed, the 
inputs TEMP1 to TEMP3 remain unchanged until 
time t1. 
Now these inputs take on new values and after a 
certain delay, i.e., at time t2, the outputs TEMP2 to 
TEMP3 and OUT change their values again. Both 
head comparators in the iterative network are once 
more confronted by a new change of an input value. 
After a new delay time, i.e. at time t3, they will adjust 
their outputs TEMP3 and OUT. Finally, after another 
delay time, i.e., at time t4, the head comparator will 
produce its output value. We see that a change of 
the inputs ripples through the system from tail to 
head. 



RIPPLE-THROUGH BEHAVIOUR 

• Total delay = 
k * (delay of single module) 

• Lookahead networks 

-3.28-

We are considering ripple-through behaviour (see 
figure 3.28). The total delay time of a k-iterative 
network is equal to k times the delay time of a 
network module. This can be a considerable 
disadvantage especially for iterative networks with 
several cascaded elements. The delay time becomes 
long and therefore the system possibly cannot 
execute its task with the desired speed. The 
disadvantage of iterative networks can be 
compensated by using so-called look-ahead­
networks. The characteristics of such networks lie 
beyond the scope of this course. 
At the beginning of this paragraph we defined an 
iterative circuit, very strictly, as a cascade of 
elements with a "tail" and a "head" element Each 
element processes a part of the input and passes 
information to the following element in the chain. We 
can generalize this idea of iterative networks by 
allowing information exchange in the other direction. 
from head to tail. There are known circuit 
realizations where this is applied. The following step 
allows the use of multi-dimensional iterative circuits. 

MULTI- DIMENSIONAL 
ITERATIVE NETWORKS 

-3.29-

Figure 3.29 shows an example of this. Now each 
circuit in the iterative network has two following 
circuits where it can deposit information. Naturally, 
the following step is to allow a bidirectional (in two 
directions) information stream. The treatment of this 
type of iterative network is beyond the scope of this 
course. 

3.15 



Tree Structured 

Networks 

-3.30-

3.4 Tree structured networks 

A tree structured network is a network of circuits, 
where the system output is connected to a circuit 
and this circuit has connections (branches) to other 
circuits. Each of these other circuits also has 
connections to a following layer of circuits etc. A 
general tree structure can be irregular and 
unbalanced. In this section we shall limit ourselves 
to networks with a binary tree structure. 

3.16 

BINARY TREE STRUCTURE 

F 

F 

G 

F 

G 

layer3 layer2 layer! 

Depth of the tree = 
number of circuit layers 

-3.31-

Figure 3.31 shows a schematic of a network with a 
binary tree structure. We see that the output of the 
system is connected to a circuit, F. on layer 1. Both 
inputs of this circuit are connected to two identical 
F circuits on layer 2. In turn the two inputs of each 

. of these circuits are connected to identical G circuits 
on layer 3. Here the circuits (on layer 3) do not 
branch any further but are connected to the system 
inputs. The depth of a binary tree is equal to the 
number of circuit layers we have. In figure 3.31 we 
have a depth of 3 layers. 



SYNTHESIS OF TREE STRUCTURE 

The synthesis of a tree structure 
is a recursive process: 

• Make a two-layer tree structure 

-3.32-

The synthesis of a tree structure is a recursive 
process. That is to say: we do not immediately 
realize our system as a binary tree with a depth of 
n layers, but we do that step by step. The recursive 
process is illustrated in figures 3.32 to 3.34. The first 
step is shown in figure 3.32. This step develops a 
two-layer tree structure. 

SYNTHESIS OF TREE STRUCTURE 

The synthesis of a tree structure 
is a recursive process: 

• Make a two-layer tree structure 

• Realize each of the resulting 
circuits Gl as a two-layer tree 
structure 

-3.33-

L'-' 
IFf- -

11.. __ ..i 

I 

Subsequently we can attempt to realize each 
resulting G1 circuit as a new 2-layer tree structure. 
Herewith each G1 circuit is replaced by the F circuit 
(see figure 3.33). 

3.17 



SYNTHESIS OF TREE STRUCTURE 
The synthesis of a tree structure 
is a recursive process: 

• Make a two-layer tree structure 

• Realize each of the resulting 
circuits Gl as a two-layer tree 
structure 

• Realize a next layer Gi as a 
two-layer tree structure: 
this adds a next layer to the 
tree depth 

After these two steps we have realized the system 
as a 3-layer tree structure. The realization of a 
following Gi as a 2-layer tree structure adds a 
following layer to the depth of the tree. This is 
shown for the two G2 circuits in figure 3.34. As we 
make the same step for both of the other G2 circuits 
we have a complete 4-layered tree structure. 

3.18 

TWO- LAYER BINARY TREE 
Definition 
• I is a value set of a 

system input 

• l' is a value set with a 
one-to-one mapping 
of I to (1')2 

• For each i ~ I there is an 
i' € (I') and vice versa 

Examples 

• la .. 255~ can be mapped one-to-one 

to la . .15! 2 or ~a .. F1 2 

• !a .. 7~4 can be mapped one-to-one 
to (10 .. 712) 2 
(split a 4-digit number in two groups of 2 digits) 

-3.35-

We see that the development of the tree structure 
depends on the possibility to realize our system as 
a 2-layer binary tree. A condition for the existence of 
binary tree realization is shown in figure 3.35. This 
condition boils down to the condition that the value 
set of each input of the system must have a one-to­
one mapping to a duple. A binary tree will generally 
spoken not always be effective, however. 

Figure 3.35 gives a few examples. First the set of 
integers from 0 to 255 can be mapped to duples 
with elements from the set 0 to 15 or the 
hexadecimal digit symbols. Another example shows 
the mapping of quadruples with elements from 0 to 
7 to duples, which are in turn composed of duples. 
We split a 4.<Jigit number into two groups of two 
digits. 



EXAMPLE - COMPARATOR 

Inputs A,B £ ~O .. 255t 
One-to-one mapping to 10 .. l5( 2 

(see fig. 3.05 ) 

A[l] 

B[l] 
OUT £ 

~greater, 
A[O] COMP16 equal. 
B[O] LO less~ 

TYPE Hit = 0 .. 15; (*' HexdigIT *) 

CompRes = (greater,equal,less) 

-3.36-

As an example of realization with a binary tree 
structure we shall discuss the comparator. Figure 
3.36 shows a schematic of a 2-layer tree-structured 
decomposition. The range of both inputs A and B is 
mapped to 2 hexadecimal digits. The two most 
significant digits are compared in the upper 
COMP16 and the least significant digits are 
compared in the lower COMP16. The results of both 
comparators are combined in the circuit COMBINE. 
We see that our system is built from two different 
circuits, thus we also must deliver two behavioural 
descriptions. 

EXAMPLE - COMPARATOR 

Beha vioural description: functions 

FUNCTION 
COMP16( U, v. Hit}: CompRes; 
BEGIN 

IF (u>v) 
THEN COMP16 : = greater 
EIBE IF (u=v) 

THEN COMP16 : = equal 
ELSE COMP16 : = less 

END; 

FUNCTION 
COMEINE(Hi,Lo: CompRes}: CompRes; 
BEGIN 

IF (Hi = equal) 
THEN CO MEINE Lo 
EIBE COMBINE: = Hi 

END; 
-3.37-

Figure 3.37 shows both behavioural descriptions as 
two functions. Notice that the function COMP16 
describes the standard behaviour of a comparator. 
If the value of the variable u is greater than the value 
of the variable v, then the result of the comparator 
is "greater". The result is "equal" if u equals v, and 
otherwise the result is Kless". The function COMBINE 
must now combine the results of both comparators. 
This is a very simple function as shown in the 
behavioural description. The comparison of both 
most significant hexadecimal digits determines 
whether A > B unless both digits are equal. Then 
the comparison of the least significant digits 
determines the result of the comparison. This is 
precisely the description of the behaviour of the 
COMBINE function. 

3.19 



EXAMPLE - COMPARATOR 

Behavioural description: 
Use of functions 

VAR A,B: ARRAY [0 . .1] OF Hit; 
OUT: CompRes; 

BEGIN 

OUT: = 
COMBINE (COMP16(A[1].B[1]). 

END 
COMP16(A[ 0 ].B[ 0] )); 

-3.38-

Figure 3.38 shows the behavioural description of the 
total system, making use of the functions COMBINE 
and COMP16. This description is self-explanatory. 

Problem 3.6 
Show that the COMP16 module can be realized as 
a 2-layer tree-structured network. Give a Pascal 
description of your solution. 
How does the tree of the total system look? 
How many layers does the tree have? 

3.20 

EXAMPLE - MULTIPLEXER 

multiplexer 

-t 
--I 

I 
-'1 
-.l '/,----1 
--I 

I 
-4 , 
--\ , , 

SEL e 10 .. 71 

OUT 

• SEL is a control input (selection input) 

• SEL can be split into two control inputs: 

- from SEL € lO .. 71 to 

- duple (SELa,SELb) € ~0.1!.10 .. 3! 

-3.39-

We have seen earlier that the multiplexer takes a 
distinct place among the combinational circuits. The 
multiplexer's special characteristic is that it has a 
particular input, the control or select input, which 
determines the function of the multiplexer. Figure 
3.39 shows this again. We can achieve a binary tree 
realization by dividing the control function into a 
duple (instead of mapping the inputs into duples). 
So we get the elements SELa and SELb (see figure 
3.39). 



EXAMPLE - MULTIPLEXER 

• Use SELa to select one of the 
groups (10 .. 13) or (I4'.I 7) 

• Use SELb to select one input 
from the selected group 

MUX4 

MUX2 

MUX4 

SELa € lO.1~ 

SELb € lO .. 3~ 
-3.40-

OUT 

Figure 3.40 shows the consequence of this on the 
binary tree realization of the multiplexer. With 
selection input SELa we select an input from the 
groups 10 to 13 or 14 to 17, With selection line SELb 
and the two multiplexers in layer 2 we chose one of 
the four possible inputs from both groups. Each 
multiplexer in layer 2 (Le., the MUX4 circuits) can be 
again realized as a 2-layer tree structure. 

EXAMPLE - MULTIPLEXER 

Realization with further splitting 
of control input 
• SELb is split into 

(SELx,SELy) € 10.11 2 

• This results in a 3-layer tree structure: 
I7 
16 

I5 
I4 

SEl{O] 

-3.41-

SEl{2] 

SElf1] 

Finally we arrive at a schematic such as the one 
shown in figure 3.41. We have now mapped the 
values of the selection line to a binary triple. Each 
element of the triple is used at its own layer in the 
binary tree to select between those two possible 
inputs. We see that the multiplexer is built from 
MUX2 circuits, Le., 2-input multiplexers. 

Problem 3.7 

In figure 3.04 of the survey the behaviour of an 
adder is shown. 

a. Specify a 3-layer tree-structure realization for 
this adder. 

b. What is paritcular about layer 1 and 2? 

c. Give a behavioural description of the different 
layers. 

3.21 



EXAMPLE - MULTIPLEXER 

TYPE BIT ::= 0 .. 1; (*Binary digIT*) 

FUNCTION 
MUX2( Ia,Ib: AnyType; Selx: Bit}: AnyType; 

BEGIN 
IF (Selx=l) 

THEN MUX2 - Ia 

ELSE MUX2 Ib; 
END; 

-3.42-

Figure 3.42 shows a description of the function of 
these 2-input multiplexers. The behavioural 
description is now very simple. We only have a few 
alternatives. It is either la or Ib that is passed to the 
output. There are no other possibilities. This is 
shown in figure 4.42. 

Problem 3.8 
Give, making use of the behavioural description of 
MUX2 shown in figure 3.42, a description of an 8-
way multiplexer, and show the structure of this 
multiplexer. 

Problem 3.9 
Consider the multiplexer in fig 3.39 of the survey. 
a. Is a k-iterative realization possible, using 2-

input multiplexers (MUX2)? 
b. If so: 

- What is the value of k? 
- Show a circuit diagram. 
- What difference is there in comparison with 

standard iterative circuits? 

3.22 

EXAMPLE - DEMULTIPLEXER 

\:-----00 
'\ -,-01 
\-~O 

/

\ 12 
I I 

In _--- 1 I 1 
1 I I 
1 I I 
I I I 
I I 1 

I I I 
I / I 
l L - - -r------Or 

1 SEL € la .. ?} 

• In,00.01· .. ·07 € Wl···~ 

• SEL is a selection input 

• SEL selects a certain output which will 
continuously copy the input value 

• The other outputs have a default 
value from W 

-3.43-

We have now seen how we can get another type of 
control structure by mapping the control or selection 
input to an n-tuple. We can get yet another type of 
tree structure when realizing a demultiplexer. A 
demultiplexer is the inverse circuit of a multiplexer. 
We have now a system with one input In and several 
outputs. Figure 3.43 shows these output 0 0 to 0 7, 8 
outputs in total. Besides that. the demultiplexer has 
a control input. This control input decides which 
output is connected to the input. The unselected 
outputs have a default value from the set of possible 
output values. 

Problem 3.10 
Give a Pascal behavioural description of the 1 to 8 
demultiplexer shown in figure 3.43. We do not 
consider the value of the unselected outputs. 

Problem 3.11 
Give a tree-structured realization of the 1 to 8 
demultiplexer. What do you notice when comparing 
this tree structure with the multiplexer's tree 
structure? 



Timing Aspects In 

Networks with a 

Tree Structure 

-3.44-

TIMING 3-LAYER COMPARATOR 

OUT greater ~er ------------------
® greater equal 

RES1[i] ;:--_,--____ X'-_-,----__ 
tID greater greater 

A(i] 

B[i] 

equal 
equal 
equal 
grea er 

Td.comp4 Td.combine 
( )( ) 

-3.45-

As with iterative networks time also plays an 
important role with tree structured networks. Also 
here the question arises how fast a tree structured 
network can execute a defined combinational 
function. To simplify the comparison with iterative 
networks we shall again discuss the comparator. 
Figure 3.45 shows the realization of a comparator in 
a 3-layer tree structure. The same figure shows a 
timing diagram. We see that if at time to the input 
quadruples change their value; then the 
comparators in layer 3 (the COMP4 circuits) also will 
change their values. 

The timing diagram shows the values of these 
outputs (item 1 to 4). We see that after a certain 
delay time To the comparators change their values. 
This happens at time t1. Consequently the inputs of 
the COMB circuits at layer 2 changes after a certain 
delay time; at time t2 the outputs of these circuits 
will take a new value. This is given in items 5 to 6 in 
the timing diagram. At time t2 the inputs of layer 1 
COMB circuits change, and at time t3 the value of 
the output OUT will take a new value. 

3.23 



DELAY 

• The total delay is determined 
by tree depth = number of 
tree layers 

• Number of circuits ~ 2 depth 

-3.46-

The total delay time of the binary tree circuit is 
determined by the depth (the number of layers) of 
the tree. The number of circuits in the tree is really 
equal to the second power of the depth of the tree. 
For larger systems the binary tree realization will in 
general be faster than an iterative circuit but it also 
will use more circuits than its equivalent iterative 
realization. The gain in speed brigs a higher cost. 

3.24 

N-ARY TREE STRUCTURES 
Comparator 

• A,B € 10 .. 2551 ~ A,B € 10 .. 31 4 

• Consequently this is a 
quaternary tree structure: 

A[3] 
B[3] 

A[2] 
B[2] 

A[l] 
B[l] 

A[O] 
B[O] 

COMP4 

COMP4 

COMP4 

A[i],B[i] € 10 .. 31 

COMB 

OUT € 19reater,equal,lessl 
-3.47-

OUT 

Up till now we have only considered binary tree 
structures. We can similarly define ternary (3-ary), 
quaternary (4-ary), or in general n-ary tree 
structures. We shall illustrate this with two examples. 
In figure 3.47 the comparator is first realized as 
quaternary tree structure. We see that there are 4 
connections from the COMB circuit on layer 1 to 4 
equivalent circuits on layer 2. Each circuit on layer 
2 forms a comparator that compares two numbers 
in the domain 0 to 3. We only have to deal with a 2-
layer circuit with a shorter delay time from input to 
output. This is an advantage in comparison the 
previously discussed binary realization. The COMB 
circuit at layer 1 probably will be more complex, 
however. 

Problem 3.12 
Describe the behaviour of the COMB circuit in the 
comparator of figure 3.47. 
Compare this behavioural description with the 
corresponding circuit of the binary tree realization 
shown in figure 3.36. 



N-ARY TREE STRUCTURES 

• SEL € ~O . .151 -7 10 .. 3l2 

• 2-1ayer quaternary tree structure 

MUX4 OUT 

SELa € ~O .. 3J 

SELb e ~O .. 3~ 

-3.48-

In figure 3.48 we find a realization of a 1 out of 16 
multiplexer in a 2-layer quaternary tree structure. We 
have now mapped the selection input with a domain 
from 0 to 15 to a duple, where the elements have a 
range from 0 to 3. 

Each of these elements controls a 1-out-of-4 
multiplexer MUX4. On layer 1 of the quaternary tree 
structure we find again one of those multiplexers, on 
layer 2 we find four multiplexers. Again we see the 
branching to four circuits in layer 2. 

3.25 



3.5 Summary 

This chapter dealt with the definition and 
construction of combinational systems. We have 
clearly limited ourselves to systems without memory. 
We have shown how we can use a formal 
description language such as Pascal to define the 
behaviour of combinational systems. It is also 
important to define clearly the domain and range of 
the system, in other words the possible values of 
inputs and outputs. 
Making a good behavioural description, i.e., a good 
specification, is only the first step on the way 
towards the realization of a digital system, however. 
In our hierarchical structured design methodology 
the following step is to try to divide the system into 
a limited number of subsystems. We have not 
answered the question how to do this. In this step 
lies what might be called: "the art of design". 
We can give a couple of directives, however, such 
as: 

3.26 

Can we find a mapping to standard building 
blocks? or 
Is an association with a standard architecture 
a good solution? 

We have discussed two standard architectures, the 
iterative network and the tree-structured network. In 
a few examples we have shown how we can 
develop these network structures. We have also 
compared the timing aspects of both network 
structures. We concluded that networks with a tree 
structure are generally faster, at the expense of a 
larger number of components. 
Finally we notice that we totally concentrated on 
algorithmiC descriptions. By working out several 
examples we see that some subsystems are really 
not that simple. They often require a transformation 
into a black box model possibly combined with a 
coding step. This transformation and the subsequent 
realization in standard building blocks is discussed 
in the following two chapters. 



4 

Binary Systems 

and 

Boolean Alge bra 

-4.01-

4 Binary systems and Boolean algebra 

I n the design process we eventually have to deal 
with small subsystems. At a certain moment a 
transition is made from a digital system to a binary 
system. This binary system should finally be 
realized. 

We have called the transition from a digital system 
to a binary system coding. This coding step can be 
done separately with an explicit coding step. 
Actually, as we shall see, this coding step can also 
be implicit within the realization of our system as an 
iterative or tree-structured network. 

4.1 



CODING 

digital system 

coding 

binary system 

-4.02-

Figure 4.02 shows this coding step as the link 
between the digital system and the binary system. 
We shall continue to limit ourselves to combinational 
systems. i.e. systems without memory, where the 
relation between inputs and outputs is given by a 
function. This function is the mapping of the binary 
n-tuple at the input to the binary m-tuple at the 
output. In chapter 2 we have shown the transition 
from a digital system to a binary system for the 
function "Is X a weekday", where we explicitly made 
a coding step. 

4.2 

EXPLICIT CODING STEP 
Example 

-1
~---x~~----~~ 

weekday 
x e z e 
lSunday .. Saterdarl 

Coding 
Sunday = 000 Thursday 
Monday = 001 Friday 
Tuesday = 01 0 Saturday 
Wednesday= 011 Others 

Binary System 
Xz _ ? 

o 

1Yes.Nol 

= 1 001 
= 1 01: Yes 
= 11 01 No =0 

I = 1111 

Xl _ X ;, code for '------
Xo _ weekday z € 10,11 

x2 Xl Xo € 10.113 

F = 1000-0, 001-1, 
010-1, 011-1, 
100-1. 101-1. 
1 1 0 - 0, 1 1 1 - 0 or 1! 

-4.03-

The related figure is repeated in figure 4.03. The 
chosen code for the days of the week is explicitly 
shown, and the resulting function of the binary 
system is also mentioned. 



IMPLICIT CODING STEP 

Example 
Realization of adder: 
• A. B. SUM € 10 .. 255l 
• Type of network: 8-iterative 

• A[i], B[i]. SUM[i] € ~0,1~ 

• Function: 
ADD2 : 10,11

3 
----. ~0,112 

• Behaviour: 

PROCEDURE 

ADD2( u, v,ci: Bit; VAR sm,co: Bit); 
BEGIN 

sm (u+v+ci) MOD2; 
co (u+v+ci) DlV2; 

END; 

-4.04-

When realizing an adder with an input range from 0 
to 255 as an iterative circuit, we Implicitly make a 
coding step. This is shown in figure 4.04. The inputs 
and outputs of the subsystems of the 8-iterative 
circuit (i.e. A[I), 6[1] and SUM [In have a range from 
o to 1, and thus they are binary. The system ADD2. 
the 2-bit adder, has become a binary system by 
which binary input triples are mapped to binary 
output duples. The description of the circuit 
behaviour in figure 4.04 shows that the system 
operates on bits; binary inputs and binary outputs. 

TRUTH TABLE 

• Function: 

F: 1 0,1 ~ n ----. 1 o,q m 

• A truth table comprises: 
- Each input n-tuple i € ~O,l~ n 

- Each corresponding output 
m- tuple 0 € io,H m 

ADD: 10,11 3 ----. 1 0,11 2 

ci u v smco 
000 0 0 
001 1 0 
010 1 0 
011 0 1 
100 1 0 
101 0 1 
110 0 1 
1 1 1 1 1 

-4.05-

For the type of combinational system we are 
discussing now, a Pascal behavioural description is 
no longer convenient. A specification similar to the 
one given for the function "Is X a weekday" is more 
useful. In that case we have simply written down an 
output value for each input tuple. We call such a 
table a truth table. When we have a mapping from 
an n-tuple to an m-tuple, the truth table can be 
constructed by writing down the Input n-tuple for 
each output m-tuple. This is shown, as an example. 
for the ADD2 circuit of our 8-iterative adder. Check 
for yourself if this table is consistent with the circuit's 
behavioural description shown in figure 4.04. 

4.3 



BINARY SYSTEM 

• Function: 
F: ~O.1~n-to- ~O,nm 

• Rewrite F uniquely: 
-as an m-tuple of functions 
-each function defines a single binary output 
-F ::: (f

l 
J

2 
, .•.. fm) 

-with fj: iO,l1 n -I 0,11, l~i~m 
• The following must hold: 

F(x) (f/x). f
2
(x) .... 1m (x)) with x € !O,1!n 

SWITCHING FUNCTION 

• A binary function is called a switching runction 

.1.: to.1! n -to- 10.q 
I 

fj (x
n

_
l
,x

n
_

2 
.. · X

2
,x

1
,x

O
) 

= a switching function of n variables 

-4.06-

A binary system is a system that realizes a mapping 
from an input binary n-tuple to an output binary m­
tuple (see figure 4.06). On the other hand we can 
also interpret the function F as an m-tuple of the 
functions fl through fm so that each of the functions 
fi forms a mapping from an n-tuple. at the input. to 
a single binary value, at the output The mapping 
F(x) of the input x can be determined by combining 
the mapping functions f1(x) through fm(x) into one m­
tuple. 
A special feature is that we can realize the function 
F by finding a realization for each of the functions fi. 
We can now concentrate on the functions fi which 
are simpler (considering them one at a time) than 
the function F. We call the function fi of )(".1 through 
Xo (with range {O,1}) a switching function of n 
variables. Later we shall see that we can realize one 
or more switching functions by means of standard 
digital ICs, providing switching functions of a limited 
number of variables. Our design problem can 
basically be solved in this manner. 

4.4 

Boolean Algebra 

and 

Switching Algebra 

-4.07-

4.1 Boolean algebra and switching algebra 

So far we have only encountered truth tables as 
tools for describing the behaviour of combinational 
systems. Truth tables become very large for 
functions of more than a few variables, and thus 
become quite unmanageable. We feel the need for 
some other method to describe the behaviour of 
combinational binary functions. One method is 
based on a specific type of algebra. the switching 
algebra. A more common algebra is the Boolean 
algebra. which was first formulated by George Boole 
in 1854. Only in 1938 Shannon linked it with 
switching functions. 



SWITCHING ALGEBRA 

• A set P with two elements 10.11 

• Two operators + and. 
closed in relation with P 

• Postulates = axioms 

- PI: the operators are commutative 

- P2: the operators are associative 

- P3: the operators are distributive 

- P4: the operators have a unity element 

P5: each element in the set P 
has an inverse element 

-4.08-

In this course we shall be confined to switching 
algebra. Switching algebra (see figure 4.08) is 
defined by: 

A set of values P holding only two elements 
which are symbolized by 0 and 1. So all 
variables belonging to P can only be equal to 
the symbols 0 and 1, and thus are binary. 
Two operators which we indicate by the + 
symbol and the . symbol. Those operators are 
related to the elements of P in such a way that 
they can be applied to the elements of P, 
delivering again elements of P. 
Five postulates which determine the actions of 
the operators on the elements. Postulates or 
axioms are statements which cannot be proven 
on their own. They are assumed to be true. 
The postulates and their consequence will be 
discussed hereafter. 

COMMUNATlVENESS AND ASSOCIATIVENESS 

• PI: the operators are commutative: 

V'a,b€P a+b = b+a 

a.b= b.a 

• P2: the operators are associative: 

V'a,b,c € P (a+ b)+c=a+(b+c) 

(a.b).c=a.(b.c) 

• Remarks: 

(a+ b)+c = a+(b+c) = a+(c+ b) = (c+a)+ b 

(a.b).c=a.(b.c)=(aec). b=-----

Here parentheses provide no 
information; they may be omitted 

-4.09-

In figure 4.09 we first discuss the postulates P1 and 
P2 as well as their Significance for "daily work". P1: 
''the operators are commutative", means that the 
order in which the operands are placed has no 
significance. So A + B = B + A and 
A • B = B • A. The arithmetic division for Instance, 
is a non-commutative operator. as we know 4:2 Is 
not equal to 2:4. 
P2: "the operations are associative" which means 
that the order by which an expression, that contains 
several identical operators, is evaluated has no 
significance. Calculating A + B first and then taking 
the result + C gives the same result as A + the 
result of B + C. The same is true for the • operator. 
One of the consequences of the postulates P1 and 
P2 is that parentheses placed In expressions with 
only one type of operator are unnecessary and can 
be omitted (figure 4.09 shows some examples). 

4.5 



DISTRIBUTIVENESS 

• P3: the operators are distributive 

Va, b,ceP a-(b+c) = (a-b)+(a-c) 

a+(b-c) = (a+ b)- (a+c) 

• Remarks on priority rule: 

- First - then + 
- Using this rule parentheses can 

often be removed: 

a+(b-c) = a+b-c 

(a- b)+(a-c) = a- b+a-c 

- However in the following case 
this is not possible: 

(a+ b) -(a+c) 

Often the - symbol IS omitted: 

a+(b.c) = a+ bc P3 (a+ b)(a+c) 

a-(b+c) = a(b+c) ~ ab+ac 

-4.10-

P3: "the operators are distributive" (figure 4.10) 
means that the dot-operator can be distributed over 
the left and right operands of the plus-operator, and 
that the plus-operator can be distributed over the left 
and right operands of the dot-operator. Figure 4.10 
shows some examples. 
Now we shall attach priorities to both operators. We 
shall give the dot-operator a higher priority than the 
plus-operator. This means that we can frequently 
omit the parentheses when writing expressions. That 
is to say we can omit the parentheses that enclose 
a dot-operator. Indeed, the dot-operator is evaluated 
first because of the given priority rule. Figure 4.10 
shows a number of examples. Frequently we go one 
step further and omit the dot-operator symbol. In 
this case we usually write variables juxtaposed in 
sUb-expressions. Figure 4.1 0 shows some examples. 

4.6 

UNITY ELEMENT = NEUTRAL ELEMENT 

• P4: for each of the operators • and + 
there is a unity element in P: 

- An element referred to as 1 for operator -
- An element referred to as 0 for operator + 
- The following holds for the unity elements: 

Va € P a+O = a 
a·1 = a 

• Remark: 
- The unity elements 0 and 1 are unique 

Proof: 
Assume ° l,02€P are two elements 
related to the operator + 

Then Va€P holds a+Dt= a 
Take a=02' then 02+ 01 = 02 
However also Va€ P holds a+02= a 

Take a=Ol ,then ° 1 + 02= 01 
Accordingly 

02=02+01 = 01 +02= ° 1 

1 02=01 =0 I 

-4.11-

P4: For both of the dot and plus operators there is 
at least one unity element in P, denoted by 1 and 0 
respectively (see figure 4.11). We also say that 0 is 
the neutral element of the plus-operator, and that 1 
is the neutral element of the dot-operator. This 
means that an operation with a second argument 
equal to the unit element delivers the first argument 
as a result. Thus a + 0 = a and a . 1 = a. We see 
from figure 4.11 that the unit elements 0 and 1 are 
unique. That is to say: there are no two unit 
elements in P with the same attribute. The proof that 
o is a unit element with respect to the plus-operator 
is shown in figure 4.11. The proof for the element 1 
goes along similar lines. 



INVERSE ELEMENT 

• P5: for each element in P there 
exists an inverse element 
(complement) in P 

• This inverse element is denoted . 
as a or a 

• The following holds: 

VaeP 3aeP such that a+a ==1 
and a-a =0 

• Remarks: 

The complement a of a is unique 

- From P4: 

- Accordingly 

1+0==1 
0-1=0 

IT 1 
I = 0 

-4.12-

PS states: for each element In P there exists a 
complement in p. also called inverse. If we express 
this inverse with a or a', then it is valid (for the 
inverse of a) that a + a' = 1 and a . a' = O. See 
also figure 4.12. We also note that complement of a 
(i.e. a') is unique. Therefore. each element in P has 
exactly one complement. We shall not discuss the 
proof of this assertion. Another important aspect of 
the postulate Ps is that the inverse of element 0 is 
equal to the element 1, and that the inverse of 
1 Is O. The prof of this property is shown in figure 
4.12. 

From the postulates, that can not be proven on their 
own, we can derive a number of consequences. We 
have already mentioned some of these results; other 
results deserve some more attention. Therefore, they 
are expressed as theorems. In the following figures 
we shall formulate 7 theorems. We shall discuss 
these theorems briefly without considering the 
derivation of their proof. These figures show for 
each theorem at least one prof, the proof of the rest 
of the theorem can be simply derived from the given 
part. This will be left to a number of exercises. 

THEOREMS 1 AND 2 

Va,b,c € P holds 

• ThL Duality principle 

+ 
+ 
o 
1 

<=> • 
1 
o 

This can be proved according to 
the dual definitions of 
the postulates 

• Th2. Idempotention 

I a· a == a I 
a+a = a 

Proof: 
P4 P5 - P3 

a. a = a-a+O = a·a+a.a = 
- P5 P4 

a.(a+a) = a·1 = a 

-4.13-

Figure 4.13 shows, as the first theorem, the duality 
principle. We can formulate this theorem as follows: 
Each algebraic switching expression remains valid 
when we exchange the plus and dot operators and 
at the same time the unit elements 0 and 1. The 
proof of the duality principle follows immediately 
from the dual definition of the postulates. An 
expression that is formulated by the exchange of 
operators and the unit element of another 
expression is called a dual expression. When 
considering the postulates from P1 to P5 we always 
find expressions that are dual to each other. 
Figure 4.13 shows theorem 2, the idempotent 
property. "Idempotent" literally means the same 
power or the same ability. Under the idempotent 
property we understand that the expression a . a is 
the same as a, i.e. can be replaced by a. The same 
is true for a + a. 

4.7 



THEOREMS 3 AND 4 

• Th3. Operations with 0 and 1 

la+l = 11 a-a = a 
Proof: 

P5 ( -) P2 ( ) - Th2 - P5 a+l = at ata = ata ta = ata = 1 

• Th4. Absorption 

Proof: 

ata-b == a 
a·(atb} == a 

P4 P3 Th3 P4 
a+a.b = a.1+a.b = a.(1+b) = a.I = a 

-4.14-

Theorem 3 in figure 4.14 shows some more 
properties of operations with the elements 0 and 1. 
Compare these with the properties of the unit 
elements as formulated in postulate P4. Postulate P4 
and theorem 3 lead to four different operations on 
the elements 1 and O. Theorem 4 is known as the 
"absorption" theorem. We see that the value of the 
variable b has no effect on the value of the whole 
expression. and hence it can be omitted. The 
absorption theorem can be used to simplify 
expressions, i.e. to eliminate variables from the 
expression. 

4.8 

THEOREMS 5 AND 6 

• Th5. Simplification 

Proof: 

ata.b == atb 
a.(atb) == a·b 

_ P3 P5 P4 
ata.b = (ata).(atb) = 1.(atb} = atb 

• Th6. Involution property 

la == al 
Proof: 

A complement of a is a, 
because these elements satisfy P5. 
The complement is unique, so that 

(a)' = a = a q.e.d. 

-4.15-

Another form of simplification of expressions is 
shown in theorem 5 (see figure 4.15). In this 
theorem we see that the inverse of a is redundant in 
some expressions, and thus can be omitted. 
Theorem 6 is known as the "involution property". 
This theorem shows that the inverse of the inverse 
of an element delivers the original value of the 
element. Thus complementing a variable twice 
produces the original variable again. 



THEOREM 7 

De Morgan's Laws 

a+b = a.b 
a.b = a+b 

• Proof: 
The complement of a+b is a.b if 
P5 is satisfied 

a+b+a:. b 1. 1 (1) 

{a+b).a:.b ? 0 (2) 

• Proof of {I}: 
- - Th2 - - - - P1 P2 

a+b+a·b = a+b+a·b+a·b =' 

- - - -Th5 - -
a+a·b+b+a·b = a+b+b+a = 

(a+a)+{b+b) ~ 1+1 Tg,21 

• Proof of {2}: 

( ) 
- - P3 - - - - P5 

a + b a • b = a· a • b+ b • a • b = 
- - Th3 Th2 

O·b+a·O = 0+0 = 0 
-4.16-

In figure 4.16 we finally see theorem 7, the De 
Morgan laws. These laws playa very important role 
in the applications of switching algebra. They show 
that the inverse of an expression with the plus­
operator is equal to an expression with the dot­
operator and inverted variables. The reverse is valid 
for expressions with the dot-operator. Figure 4.16 
shows De Morgan's laws formulated for two 
variables. Figure 4.17 gives a more general 
formulation of De Morgan's laws. The inverse of an 
expression with only plus-operators gives an 
expression with only dot-operators and inverted 
variables. The same holds for the inverse of 
expressions with only a dot-operator. 

The symbols we use for the plus and dot operators 
also have a meaning in normal algebra. We have, in 
the meanwhile, seen so much of switching algebra 
that we realize that the related operators are 
completely different. Therefore, we have until now 
used the terms plus and dot-operators consistently. 
This is not really practical. In daily practice we also 
carelessly use words such as sum and product to 
denote the dot and pius operators respectively. We 
shall, from now on, follow this convention. 

4.9 



DE MORGAN - GENERAL FORMULATION 

• De Morgan's laws: 

a+b+c+ ... +y+z = a-.'b.c .. :y·z 

• Alternative notation: 

(taS n 
= ITa. 

i=l 1 1 

/ 

(~ai) n 
= La. . 1 

1=1 

-4.17-

The De Morgan laws could also be formulated as 
follows: the negation of the complement of a sum of 
a number of variables is equal to the product of the 
negation of the variables. Now we can understand 
the notation of figure 4.17 where we have used the 
sum or L sign to denote the sum of a number of 
variables, and the product or :rt sign to denote the 
product of a number of variables. By using this 
notation we can write De Morgan's laws in a short­
form. 

4.10 

Problem 4.1 (4.2) 
Show by means of switching algebra postulates and 
theorems the validity of the following: 

a. ab+a(h+q+abc = ab+a(h+q 

b. abc+abc+8bc+abc+8bc+abc = b+c 

c. xyz + xyz = (X+}1Z 
d. x+xy+z(x+J? = x+y 
B. (a+C}(a+b)(b+q = (a+C}(b+q - -t xy+xz+yz = xy+xz 

Compare with problem e; what do you 
remark? 

- -g. wx+xy+xz+wyz == xy+xz+wy 
(Application of problem f.) 



Switching Algebra 

and 

Binary Systems 

-4.18-

4.2 Switching algebra and binary systems 

As a motivation for the introduction and use of 
switching algebra we have mentioned that we need, 
next to truth tables, a more formal and compact 
specification for the behaviour of binary systems. 
We have discussed the principles of switching 
algebra. The following step is to make a connection 
between switching algebra and the behaviour of 
binary systems, such as the one given by, for 
example. a truth table. 

SUM AND PRODUCT OPERATORS 

• Operators 
+ o 1 • a 1 
001 0 a 0 
111 101 

- -

• Truth table 

a b + a b • 
000 o 0 0 
o 1 1 o 1 0 
1 0 1 1 0 0 
1 1 1 1 1 1 

• Summary 

OR (+) 
The function a+b is 1 
if a or b or both are 1 

AND (.) 
The function a. b is 1 
if both a and bare 1 

-4.19-

As a first step we shall consider figure 4.19; there 
we examine the result of applying the sum and 
product operators on the elements 0 and 1. For 
each of the two operators we can, using postulate 
4 and theorem 3, construct a matrix. From this 
matrix we see, for example, that the sum of the 
elements 0 and 1 is always 1. We also see that the 
product of two elements is only equal to 1 if both 
element are equal to 1. From such a matrix of the 
sum or product operators we can simply deduce the 
truth table for such an operation. Notice that the 
truth table on one hand introduces the effect of the 
sum or product operator, and on the other hand is 
a behavioural description of a binary system that 
executes this sum or product operation. The 
behaviour of a binary system is given by a functional 
relation, I.e. a function. In the case of the sum 
operator this function is called the or-function. The 
or-function is defined by: 

a + b = 1 if a or b or both are equal to 1. 
Finally the product operator, Le. the and function is. 
defined by: a • b = 1 if both a and b are equal to 1. 

4.11 



ELECTRONIC CIRCUITS 

supply. voltage 

Voul 

circuit 1 circuit 2 

Va Vb VoUl Va Vb Vout 

L L L L L L 
L H H LH L 
H L H H L L 
H H H HH H 

V a 

supply .vollage 

circuit 3 

Va I Vout 

L H 
H L 

For TTL L < 0.8 Volts and H > 2.4 Volts 

-4.20-

In figure 4.20 we show symbolically that we can 
make a circuit, using electronic devices (such as 
transistors and resistors) that are integrated on a 
silicon chip, that shows the following behaviour. For 
circuit 1 it appears that when both the input voltages 
Va and Vb have a low value the output voltage Vout. 
also has a low value. The output voltage Vout. will 
have a high value if one or both of the input voltage 
have a high value. The definition of what is a low or 
high voltage depends on a number of factors such 
as the height of the feeding voltage, the used 
building blocks etc. In the frequently used family of 
building blocks, the TTL family or the Transistor 
Transistor Logic family, L stands for a voltage < 0.8 
Volt and H for a voltage> 2.4 Volt. In some modern 
CMOS building blocks these numbers are different 
(CMOS Complementary Metal Oxide 
Semiconductor). 

4.12 

Another frequently used circuit exhibits the 
behaviour shown in figure 4.20 as circuit 2. The 
output voltage VOU! remains low if at least one of the 
inputs Va or Vb has a low level. The output value is 
only high if both input values are high. 

Finally we have a third important circuit with only 
one input and one output. The output voltage is 
high if the input voltage is low, and the output 
voltage is low if the input voltage is high. 

Of course voltages in an electronic circuit are 
analog; i.e. they may take many possible values. 
Actually, by defining voltage thresholds we can 
consider voltages lower than a threshold value and 
voltage higher than another threshold value. Thus, 
we can consider "low" and "high" voltages. By 
designing our circuit such that the output voltages 
are also lower or higher than certain thresholds we 
create circuits where the input and output are dual­
valued (i.e. binary). These inputs and outputs only 
have high or low voltage values. We shall not 
concern ourselves with knowing the precise value of 
such Voltages. 



OPERATORS <E---+ ELECTRONIC CIRCUITS 

• l 0.1 ~ <E---+ 1 H,Lt 
• Alternative mapping: 

- Positive logic 
o ~ L 
1 ~ H 

- Negative logic 

o ~ H 

1 ~ L 

In this course we choose positive logic 

-4.21-

Figure 4.21 shows on one hand switching algebra 
with operators that act on the elements 0 and 1, and 
on the other hand that electronic circuit can be 
realized where the output voltages are high or low. 
We shall eventually make use of these electronic 
circuit as realizations of the related operator 
functions. Therefore it is necessary that we map the 
element {O,1} to the elements {H,L}. Such a 
mapping can be done in two ways. First we can 
map 0 to Land 1 to H. 

We are then considering positive logic. We can 
really, without any problem, map 0 on the high 
voltage level and 1 on the low voltage level. We are 
then considering negative logic. In principle, there 
is no advantage for one or the other mapping. 
However. we must make a choice to avoid 
confusion. In this course we shall always use 
positive logic; thus we shall only make use of the 
mapping: 0 becomes a low voltage, and 1 becomes 
a high voltage. 

4.13 



"AND" AND "OR" GATES 

circuit 1 

Va Vb Vout a b out 
L L L 0 0 0 

~~ut L H H => 0 1 1 (or-gate) H L H 1 0 1 
HH H 1 1 1 

out = a+b 

circuit 2 

Va Vb Vout a b out 
L L L o 0 0 (and-gate) ~=cyut LH L => o 1 0 
H L L 1 0 0 
HH H 1 1 1 out = a.b 

-4.22-

INVERTER 

V'I Vo
., 

L H ::::;> 
H L 

~ 
~ I ~ inverter 

-4.23-

Figure 4.22 shows what this implies for circuit 1 and 
circuit 2. Replacing L by 0 and H by 1 leads to the 
truth table shown in figure 4.22. By comparing this 
with the truth table of the and-function and or­
function, shown in figure 4.19 we see that they are 
identical. Circuit 1 is thus a realization of the or­
function. This circuit is also called an or-gate. In 
schematics we use the shown symbol (figure 4.22) 
for or-gates. The truth table related to circuit 2 is 
equivalent to the truth table of the and-function. 
Circuit 2 is thus called an and-gate. Figure 4.22 
shows the and-gate symbol. 

4.14 

For circuit 3 we find the truth table shown in figure 
4.23. We see that the output "OUT" is equal to the 
inverse of a. Therefore, we call circuit 3 an inverter. 
Figure 4.23 also shows the inverter symbol. This 
symbol is, in fact, composed of two parts. The 
rectangular block with a 1 in the middle acts as an 
amplifier (buffer). The inverting function is denoted 
by the small circle that is shown at the output close 
to the rectangle. 



CIRCUIT SYMBOLS 

• AND 

=B--
=D-
=[J-

• INVERTER 

• OR 

=EJ-
=D-
=EJ-

Inverter at input 
or output: 

r- -1 
---<l b-o 

L_ _J 

• POLARITY INDICATOR 
H _ ra 11- L 
~ ~ 

L - L~ ~J- H 

-4.24-

In this course we shall make use of the IEC 
(I nternational Electrotechnical Commission) standard 
schematic symbols. They are described in the 
standard document IEC 617-12. A summary can 
also be found in Appendix C of this survey. Figure 
4.24 again shows the symbols we use for and-gates 
and or-gates, among other frequently used gate 
symbols. We shall see these symbols in all sorts of 
schematics. We shall make two remarks about the 
use of these symbols. We have seen that the 
inversion function (an inverter) is expressed by a 
circle. To specify an inverted behaviour in a 
schematic we do not have to draw the complete 
inverter; it is sufficient to draw the circle symbol at 
an input or output of a gate. We shall later give 
some examples. 

The second remark concerns the use of negative 
logic mixed with positive logic. In the standard 
symbol set of the schematic symbols of digital 
symbols, we find the so-called polarity indicators. A 
polarity indicator is shown as a small triangle at the 
input or output (see figure 4.24). A polarity indicator 
shows that a high input voltage is translated into an 
internal logic a and a low input voltage is translated 
into an internal logic 1. We act as if the circuit 
performs its operations to these logical values. The 
polarity indicator on the output shows that an 
internal logical 1 is translated to a low voltage at the 
output port of the circuit. A logical a is also 
translated to a high voltage at the output of the 
circuit. 

4.15 



SWITCHING FUNCTION AND TRUTH TABLE 

f{a,b} = a. b+8:. b 
f{O,O} = 0.0+0.0 = 0.1+1.0 = 0+0 = 0 
f{O.1} = 0.1+0.1 = 0.0+1.1 = 0+1 = 1 

f(1.0) = 1.0+1.0 = 1.1+0.0 = 1+0 = 1 

f(1.1) = 1.1+1.1 = 1.0+0.1 = 0 

a b f 

o 0 0 
o 1 1 
1 0 1 
1 1 0 

f is 1 if (a is 0 and b is 1) or (a is 1 and b is 0) 

f is 1 if (a: and b are both 1) or (a and b are both 1) 

f is 1 if (a. b is I) or (a. b is I) 

f is 1 if a . b + a· b is 1 
f=a·b+a·b 

-4.25-

We have used switching algebra (with the help of 
sum and product operators) as a method of 
describing switching functions. We have seen that 
we used certain methods to realize these operations 
(in the and-gate and the or-gate). Later we shall see 
that each arbitrary switching algebraic expression 
can be realized by the right combination of and­
gates and or-gates. But can we realize any arbitrary 
combinational binary function? In other words what 
is the relation between the truth table of a 
combinational binary function and switching 
algebra? Figure 4.25 further examines this relation. 

4.16 

Starting from an algebraic switching expression or 
a switching function we can derive the truth table by 
substituting the function's n variables by all possible 
n-tuples; this is done by filling in all the possible 
variables' values. This is shown in figure 4.25 for a 
function of two variables a and b. With the help of 
our postulates and theorems we can reduce these 
constant expressions to a single 0 or 1 value. This 
is then the value of the specific function for this 
binary n-tuple. In this way we can find the switching 
function of the truth table. The other way around, we 
can make an assertion about the value of the 
function from the truth table. This assertion we can 
then rewrite to a switching function of the variables. 
From the truth table of figure 4.24 we derive that the 
function f = 1 if a = 0 and b = 1 or if a = 1 and 
b = O. This statement can be re-derived, as shown, 
to a switching algebraic expression. We shall return 
in the following paragraphs to the relation between 
the truth table and switching functions. 



Minterms 

Standard Normal Form 

Maxterms 

-4.26-

4.3 Minterms, standard normal form and 
maxterms 

In this section we shall formally determine that the 
behaviour of all combinational binary functions can 
be defined by, at least, an algebraic expression. In 
a following chapter we shall see that this also means 
that we can in principle realize all combinational 
binary functions. 
The clue is called the standard normal form. 

+ 
or operator, or function 
sum operator, sum 

a+b+c+ ... +Z 
sum of variables. sum term 
or-function of variables 

• and operator. and function 
product operator, product 

product of variables, product term 

and function of variables 

-4.27-

First we shall present (see figure 4.27) a number of 
frequently used expressions. Instead of using the 
terms plus-operator or sum-operator we frequently 
use the terms or-operator, or-function, sum etc. We 
frequently describe an expression such as 
a + b + c + z by: sum of variables, sum term or 
or-function of variables. We also refer to the dot­
operator or the product operator as the and­
operator or simply the product. We shall also use 
expressions such as: the product of variables, a 
product term, and-function of variables etc. 

4.17 



SWITCHING FUNCTION AND MINTERM 
Switching function 

f: lo.H n ~ 10,11 
• n-tuple € 10, if n provides the value 

of the n variables x n-l ,x n-2 •... X 0 

• every n-tuple is related to a 
single row In the truth lable 

Minterm 
(1) A minlerm is a producl term where 

all variables or their complement 
occur exactly once 

(2) A minterm is a switching function 
{O,qn --? 10,1~ 

wilh lhe properly that there is a 
single input n-tuple producing a 
value 1 

(3) The set of n-tuples el 0, qn 
can be mapped one-to-one to the 
set of minlerms with n variables 

-4.28-

We have defined a switching function as a mapping 
from a binary n-tuple to a value of the set {O,1}. On 
the other hand we have defined a switching function 
as function of n variables xn_1 to "0. The choice of an 
input n-tuple (from the set of possible input n-tuples) 
is connected to assigning a 0 or 1 value to each of 
the variables Xn-l to "0 (see figure 4.28). We have 
also seen that each n-tuple corresponds to exactly 
one row in the truth table. Keeping all of these three 
things In mind we arrive at the three assertions in 
figure 4.28. 

4.18 

MINTERM - (1) 
• Some 4-variable minterms 

abed 

abed 
abed 
abcd 

• n-variable minterms 

• 

- for each variable: 2 possibilities 
(normal or complement) 

- n variables lead to 2 n minterms 

example: all 3-variable minterms 

abc abc 

abc abc 
abc abc 

abc abc 

-4.29-

1. We define a minterm as a product term where 
all variables or their complements occur 
exactly once. Figure 4.29 shows a number of 
minterm examples. Notice that we may omit 
the product operator symbol. Because each 
variable or its complement occurs exactly once 
we can compose 2n minterms from n variables. 
Thus, for 3 variables we have 8 terms. Figure 
4.29 shows all of these 8 minterms. 



MINTERM - (2) 
• A minlerm is a product lerm: 

accordingly it is a swilching function 
• A minlerm has the value 1 when 

- its non-inverted variables have the value 1 
and 

- its inverted variables have the value 0 

• Because there are no other variables, 
just one particular n-tuple leads 
to the minlerm value 1 

• This particular n-luple is construcled 
as follows: 

- each non-inverted variable is replaced 
by a 1 

- each inverted variable is replaced 
by a 0 

Examples: 
a oed 1 when (a,b,c,d)=(l,O,O,l) 
accd = 1 when (a,b,c,d)=(O,O.1.1) 
aocd = 1 when (a,b,c,d)=(l,O.1.1) 

-4.30-

2. A minterm is a switching function of a binary n­
tuple to a binary variable, with the extra feature 
that exactly one n-tuple yields the function 
value 1. A minterm is a product term and thus 
it is a switching function (see figure 4.30). A 
minterm (and thus a function) has the value 1 
if all variables that appear in a non-inverted 
form in the minterm have the value 1, and all 
inverted variables have the value O. This is the 
only case for which all the operands of the 
product operators are equal to 1 yielding a 
result equal to 1. By doing so we have given all 
the variables a value corresponding to exactly 
one n-tuple. Figure 4.30 shows how we can 
construct this special n-tuple for a minterm. 

MINTERM - (3) 

A one-to-one mapping of binary 
n-tuples to the set of n-variable 
minterms is given by the construction 
rule in figA.30 

Example - 4 variables 

10 11 ~ aocd 
00 10 ~ aoca 
1010 ~ aocd 

With 

n-tuple 
binary decimal 

---;;. ---;;. 
number number 

abed ~ 1001 ~ m9 
abede ~ 01 0 11 ~ m 11 

abcd ~ 1111 ~ m 15 
abed ~ 0000 ~ rno 
abcde ~ 11111~ rn31 

-4.31-

3. The set of all binary n-tuples can be mapped 
one-to-one to the set of all minterms with n 
variables. The indicated mapping is given by 
the so-called construction rule of the n-tuple 
from the corresponding minterm. Figure 4.31 
shows a number of examples. 

A minterm is defined by its algebraic expression. 
Actually, the relation between a minterm and a 
binary n-tuple leads to another frequently used 
notational from. A binary n-tuple (which is related to 
a minterm) can be seen as a binary number with a 
value. The related decimal number is frequently used 
to express the minterm. Figure 4.31 shows a 
number of examples. With minterm m9 we mean the 
minterm associated with the quadruple 1001, that is 
the minterm ab'c'd. Notice now that the place of the 
variable in the n-tuple plays an important role. This 
is due to the fact that the positions of the ones and 
zeros in the binary n-tuple are coupled to weights. 
In all our examples the variable a will be related to 
the bit with the highest weight in the n-tuple, Le. the 
most significant one. 

4.19 



EXAMPLE 

• Function: 
3 

f: {O,q ~ {o.n 
• Truth table: 

abc f 
000 0 
o 0 1 1 
o 1 0 0 
o 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 
~ L function value 

r n-tuples (triples) 

• f is 1 for triples 001. 011, 100. 111 

• f is 1 if minterm aoc or abc or aoc 
or abc is 1 

• f is if aoc+abc+a6c+abc is 1 

-4.32-

What did we achieve with these three points? Figure 
4.32 shows a truth table of a function with three 
variables. From this truth table, we see that the 
function value 1 results from the input triples 011, 
100 and 111. Actually, with the help of the previously 
formulated relation between n-tuples (in this case 
triples) and minterms we can say that the function 
value is 1 when one of the minterms a'b'c, a'bc, 
ab'c' or abc is equal to 1. We know that at most one 
of the mentioned minterms can be 1, and that this is 
exclusively so when the variables a, band c have 
the values shown by the above mentioned triples. In 
all other cases the function value is equal to O. We 
can now formalize the above mentioned or-relation 
by making use of the or-operator or the or-function. 
We say that f = 1 if 

a'b'c + a'bc + ab'c' + abc = 1. 

4.20 

NOTATIONS FOR MINTERM FUNCTION 

• Function: f = aoc+abc+aoc+abc 

• Sum of minterms form = 

standard normal form: 

f =L(1.3,4,7) 

-4.33-

This leads to the expression shown in figure 4.33 
that describes the function f. We see that f is given 
by an or-relation, a sum of a number of terms that 
are all minterms. Such an expression is called the 
sum-of-minterms form, or the standard normal form. 
Previously we have seen that in order to write a 
minterm form we do not need to write the complete 
algebraic expression, but that we also can refer to 
this minterm by the letter m with an index. The sum 
of minterms from shown in figure 4.33 (for f) can be 
denoted as m1 + m3 + m4 + m7 • We frequently 
denote the sum of minterm from by making use of 
the sum symbol. This is shown in figure 4.33. 



EXAMPLE - STANDARD NORMAL FORM 

• Function: f = :[ (0,1,4,5,10, 1l,12) 

• f = mO+ml +m4 +m5+ m lO+ mU+ m 12 

• f = aocd+a.ocdHibca+a.bcd 
+aocd:+aocd+abcd: 

• f = 1 for quadruples 
0000, 0001, OlDO, 0101, 1010, lOll, UOO 

• Truth table 
abc d f 

o 0 0 0 1 
o 0 0 1 1 
o 0 1 0 0 
o 0 1 1 0 
o 1 0 0 1 
a 1 0 1 1 
o 1 1 0 0 
o 1 1 1 0 

-4.34-

abc d f 

1 000 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 

Consider the following example. In figure 4.34 the 
function f is defined as the sum of the minterms 0, 
1. 4. 5, 10. 11, and 12. We can denote this by 
making use of the sum or L symbol and relate the 
decimal numbers with the wanted minterms, or by 
using the notation mo + m1 + ... + m12• Both 
notational forms are equivalent. In both cases we 
want to express that the function f is a sum of the 
minterms shown in the third expression of figure 
4.34. This is the only algebraic expression that 
determines the behaviour of the function f clearly. 
We can convert this expression to a truth table by 
considering the function f as being equal to 1 only 
when the combinations of the variables' values 
results in one of its minterms being equal to 1. Thus, 
f = 1 if the values of the inputs are equal to the 
quadruples related to the minterms. These 
quadruples are shown in figure 4.34. From these 
quadruples follows the given truth table. Notice that 
there is a very direct relation between the decimal 
numbers used at the beginning of this example to 
express the minterms, and the truth table. Indeed, 
the decimal numbers can be translated into their 
binary equivalent. yielding the n-tuples resulting in a 
function value equal to 1. 

REMARKS - STANDARD NORMAL FORM 
• Any switching function has a 

standard normal form 

- Any switching function has its 
own unique standard normal form 

-There are 2nminterms with n variables 
- 1 function with sum of 0 minterms 

n 
- (~ ) functions with sum of 1 minterm 

- (~n) functions with sum of 2 minterms 

_ In total there are: 
n n n :zn:zn 

1+(~ )+(~ )+ ••• +(~n)=(1+1) =2 

functions of n variables 

-4.35-

The decimal number 0 produces the n-tuple 0000. in 
this case f is equal to 1. The decimal number 5 
produces the n-tuple 0101, also in this case f is 
equal to 1. And finally, the decimal number 12 
produces the n-tuple 1100 and f is also equal to 1. 
We see that the sum of minterms form and the truth 
table of an arbitrary function are closely related: they 
constitute the same type of specification. 
We shall make some remarks about the sum of 
minterms form or the standard normal form (see 
figure 4.35). First we notice that each switching 
function can be written as a sum-of-minterms form, 
I.e. each switching function has a standard normal 
from. Secondly. it is valid that each function has Its 
own unique standard normal form. Better said: two 
functions with the same standard normal form are 
identical. 
Thirdly we shall consider the number of different 
functions with n variables. From the previous remark 
we know that this number is equal to the number of 
different standard normal forms. Previously we have 
seen that we can form 2" different terms from n 
variables. A minterm mayor may not relate to a sum 
of minterms. We say also that the minterm belongs 
or does not belong to a function. 

4.21 



NUMBER OF FUNCTIONS 

# variables 
1 
2 
3 
4 
5 
6 

# functions 
4 
16 

256 
65536 

4.294.967.295 
>:P 1.B x 10 19 

• 0 variables ~ 2 functions 

(=0. f=l 

• 1 variable ~ 4 functions 

f(a):::: 0 

f(a):::: a 
f(a):::: a 

f(a) = 1 

-4.36-

With 2n minterms we can: 
form 1 function, described by a sum of 0 
minterms. 
form (2n over 1) functions, described by the 
sum of 1 minterm. 
form (2n over 2) functions, described by the 
sum of 2 minterms etc. 

If we add these numbers we get the total number of 
functions of n variables (see figure 4.35). What this 
means for the number of functions is shown in figure 
4.36. For functions with 5 or more variables the 
number of different functions is gigantically large. 
Furthermore. figure 4.36 shows all functions of 0 
variables and 1 variable. We must also consider that 
"the constant function with a value equal to 0 or 1", 
is a function. Figure 4.37 shows an overview of all 
functions with two variables. These functions are 
composed by making a selection from the 4 
mentioned minterms. By using a 1 to denote that a 
specific minterm belongs to a function. and a 0 to 
denote that it does not. we can attach a decimal 
number to the different functions. 

4.22 

NUMBER OF FUNCTIONS 

• 2 variables ~ 16 functions 

ab aD ab aD function 

fo 0 0 0 0 :::: 0 -------------------------fl 0 0 0 1 :::: aD nor 
f2 0 0 1 0 :::: ab inhibit a<b 
f4 0 1 0 0 :::: aD inhibit b<a 
fa 1 0 0 0 :: ab and -------------------------f3 0 0 1 1 =a inverse 
f5 0 1 0 1 = 0 inverse 
f6 0 1 1 0 = ao+ab exclusive or 
fg 1 0 0 1 = ab+ao equivalent 
flO 1 0 1 0 = b 
f12 1 1 0 0 = a --r----------------------f7 0 1 1 1 = a+ 0 nand 
fll 1 0 1 1 =a+b a< b 
fI3 1 1 0 1 =a+o b< a 
f14 1 1 1 0 =a+b or -r----------------------
f15 1 1 1 1 =1 

minterms 
-4.37-

This is shown in figure 4.37. One of the functions we 
know is the function fa; the and-function. The 
functions f3 and fs are the inverse functions. The 
function f14 is the or-function. Later we shall also get 
acquainted with the function fl' the nor, the function 
f7• the nand, and the function fs• the exclusive-or. 
It will be clear to you that we did not make tables of 
all functions of 3 or more variables. 



MAXTERM 

(1) A maxterm is a sum term where 
all variables or their complement 
occur exactly once 

(2) A maxterm is a switching function 

IO,lln~lO,H 
with the property that is a single 
input n- tuple produces a function 
value 0 

(3) The set of n-tuples I O,l(can be 
mapped one-to-one to the set of 
maxterms with n variables 

( 4) Any function can be written as a 
product of maxterms 

-4.38-

We have seen that there exists a sum of minterms 
form for each function. A sum-of-minterms form is a 
special case of the sum of products form. 
Furthermore, there exists a product of sums form for 
each function. In this case each of the sum terms is 
a maxterm. Figure 4.38 shows a definition of a 
maxterm. 

MAXTERM - (1) 

• Some maxterms of 4 variables: 

a+b+c+d 
a+b+c+d 
a+b+c+d 
a+b+c+d 

• All maxterms of 3 variables: 

a+b+c 
a+b+c 
a+tHc 
a+5+c 

iHb+c 
EHb+c 
a+5+c 
a+5+c 

-4.39-

Figure 4.39 shows some maxterms that are 
composed of four variables; it also shows all 
maxterms composed of three variables. 
Analoguously to our treatment of minterms, we can 
now consider a maxterm as a switching function 
that maps a binary n-tuple to a single binary 
variable. The maxterm has the special characteristic 
that there is exactly one n-tuple for which the 
function value is O. For all other n-tuples the 
maxterm's value is equal to 1. 

4.23 



MAXTERM - (2) 

• A maxterm is a sumterm; hence 
it is a switching function 

• f = xO+x1+····+x.+ ... +x.+ ... +x l+x 
I J n- n 

is only equal to 0 
if all xi =0 and all x j =0 

in other words if all 
Xi=O and all xj=1 

• this defines precisely a single n-tuple 

MAXTERM - (3) 
• Construction of n-tuple: 

replace all x 1 by 0 
and 

- replace all x j by 1 

• Construction of maxterm: 
- Replace each 0 by the corresponding Xi 
- Replace each 1 by the corresponding Xj 

-4.40-

Figure 4.40 illustrates this further. We see that a 
maxterm is only equal to 0 if all present normal 
variables are equal to 0 and all the present inverted 
variables are equal to 1. Herewith we have given all 
possible variables a value; we have thus selected 
exactly one n-tuple from the set of possible n-tuples. 
For all the other n-tuples there is at least one normal 
variable equal to 1, or there is at least one inverted 
variable equal to O. In all cases we get (for the 
maxterm) the value -1 or some-other-value", which 
is always equal to 1. 

Once more, the set of n-tuples can be mapped one­
to-one to the set of maxterms with n variables (see 
figure 4.38). Figure 4.40 shows how the n-tuples 
could be obtained from the maxterms, and also how 
the maxterms can be defined in terms of the n­
tuples. We notice that exactly one binary n-tuple 
belongs to each maxterm, and vice versa. 

4.24 

EXAMPLE - CONSTRUCTION OF N-TUPLE 
• 4 variables 

1011 -. a+ b+c+d = 0 for (a,b,c,d)=(1,O,1.1) 
0010 -. a+b+c+d = 0 for (a,b,c,d)=(O,O,1,O) 

1010 -. a+b+c+d =0 for (a,b,c,d)=(1,O,l,O) 

• With 

n-tuple--binary number --
__ decimal number 

a+b+c+d ~ 0110 ~M6 
a+b+c+d+e ~ 10100 ~ M20 

a+b+c+d ~ 0000 ~ Mo 
a+b+c+d+e ~ 11111 ~ M:ll 

-4.41-

Figure 4.41 shows some examples of this relation 
between n-tuples and maxterms. Notice specially 
that a 1 in an n-tuple corresponds to the inversion of 
a variable; a 0 in an n-tuple corresponds to a non­
inverted variable. For minterms the opposite holds. 
Also now we can consider, in the case of maxterms, 
the related n-tuple as a binary representation of a 
decimal number. We can refer to the maxterm with 
this decimal number. To distinguish it from a 
minterm we use the capital letter M with an index. 
See figure 4.41 for a number of examples. Compare 
this figure with figure 4.31 where similar cases of 
minterms are shown. 



EXAMPLE - DERIVATION: PRODUCT OF 
abc f MAXTERMS 
o 0 0 0 

• Truth 0 0 1 1 
table 0 1 0 0 o 1 1 1 

1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

• f is 0 for triples 000, 010, 101, 110 
• f is 0 if maxterm a+b+c or a+b+c 

or a+b+c or a+b+c is 0 

• f is 1 if maxterm a+b+c and a+o+c 
a+b+c and a+ b+c all are 1 

.fislif 
(a+b+c) -(a+b+c)-(a+b+C).(a+b+c) is 1 

• f = (a+ b+c) -(a+ h+c).(a+ b+c).(a+b+c) 
=M-M-M -M o 2 5 6 

=11(0,2,5,6) 
= product of maxterm form 

-4.42-

Finally we notice (in figure 4.38) that each fUnction 
can be written as a product of maxterms. The 
example in figure 4.42 shows how we can derive this 
product-of-maxterms form. 
First we note the triples yielding a function value O. 
Each triple corresponds to a maxterm that is only 
equal to 0 for this combination of variables. The 
function f is equal to 0 if a single of these maxterms 
is equal to O. In all other cases the function value is 
equal to 1. Specially, the function value is equal to 
1 if all the (found) rnaxterms are equal to 1: if each 
of the maxterms has the value 1. the product of 
these maxterms is also equal to 1. Thus. it is valid 
that f = 1 if the product of the maxterms is equal to 
1, or f = Mo • M2 • Ms • Me. We are considering a 
product-of-maxterms form. It is advised to compare 
the derivation of this product-of-maxterms form with 
the corresponding derivation of the sum-of-minterms 
form. 

MINTERM VS. MAXTERM FORM 

• Consider 
f=m. 

I 

- f is 1 for the n- tuple 
corresponding to the binary value of i 

• Consequently 
f=m. 

I 

- 1 is 0 for the n-tuple 
corresponding to the binary value of i 

• Consequently 

and 
mi= Mi 

Mi= mi 

• The complement of a minterm with 
binary value i is equal to the maxterm 
with the same number 

-4.43-

For the same function we can describe the sum-of­
minterms form as a product-of-maxterms form. 
These two notational forms must be directly related 
to each other. In figure 4.43 we have a function 
given as a sum of one minterm, or as the minterm 
mi' We know that this function only has the value 1 
for one possible combination of input values. The 
function is 1 for that n-tuple with a binary value is 
equal to I. Actually, the inverse (m;') of the function 
is equal to 0 for that n-tuple. Previously we have 
seen that this n-tuple defines the maxterm MI' The 
conclusion is then that the inverse of a minterm with 
a index number i. Is equal to the maxterm with the 
same index. This conclusion is in agreement with De 
Morgan's laws. 

Problem 4.2 (4.1) 
Show, with the help of De Morgan's Jaws, that 
inverse of the minterm m '0 of five variables is equal 
to the maxterm M 10' 

4.25 



Problem 4.3 (4.3) 

Show whether 

the sum-of-minterms forms and 
the product-of-maxterms forms 

are identical for functions f, and f2 in the fol/owing 
cases: 

a. ~(x,n = (XY+XM 
'ix,n = xy+xy 

b. ~(w.x.y,z) = WXZ+Wx+wxy 
'iw,x,y,z) = (x+Z}(w+x)(w+ Ji) 

c. ~(x,y,z) = (Y+xz) and ft.,x,y,z) = xyz+xyz+. 

d. ~(x,y,z) = (x+ y)(X+ y+ z)(x+ y+ z) 
'ix,y,z) = x 

4.26 



INVERSION OF FUNCTION 

• Fune lion: f = L (min terms) 
• Inverse: f (remaining minterms) 

• Example: f = L(1.4.5.7) 
• Inverse: 1= L (0.2.3.6) 

according to the truth table: 

abc f 1 
o 0 0 0 1 
o 0 1 1 0 
o 1 0 0 1 
o 1 1 0 1 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 1 1 0 

-4.44-

Consider now a function f that is given as a sum of 
minterms (figure 4.44). The inverse of f is equal to 0 
when f itself has the value 1, and the inverse of f is 
equal to 1 when f itself has the value O. This latter 
case is true for the minterms that do not belong to 
f; these are not part of the sum of minterms for 1. In 
other words the inverse of f is 1 for the minterms 
that are not a part of the sum of minterms for f. 
These we call the "other minterms". The inverse of f 
is determined by the sum of these other minterms. 
Figure 4.44 explains this with the help of an 
example. The function f is given as the sum of the 
minterms 1, 4, 5 and 7. Therefore, the inverse of f 
must be equal to the sum of the other minterms. 
These are the minterms O. 2. 3 and 6. The truth table 
shows this unambiguously. The functions f and f' are 
complements to each other. When f = 1, f' = 0 and 
vice versa. 
We shall now take a further step (figure 4.45). We 
know that if a function is given by the sum of a 
number of minterms, the inverse function is given by 
the sum of the other minterms. The involution 
characteristic (see theorem 6 in figure 4.15) states 
that the inverse of the inverse of f is equal to f. Thus 
f = f' is the inverse of the sum of the other 
minterms. 

RELATION MINTERMS - MAXTERMS 

Function: f == Z:(minterms) 

Inverse: 1 == Z:(remaining minterms) 
Accordingly: 

f == f == z:=-:"( r-e-m-a-in-i-ng-m-i-n-te-rm-s) 

De YOll!8n 11 (remaining minterms) 

== n (remaining maxterms) 

Example 1 (continued from fig. 4.44): 

f(a.b.c} = f == Z:(O.2.3.6);;;; mO+m2+m3+ma 

Example 2: 

f(a,b,c)= Z:(O,1.2,6,7)== n(3,4,5) 

-4.45-

With the theorem of De Morgan. the inverse of a 
sum is transformed into a product of the inverses of 
the other minterms. The inverse of a minterm is the 
maxterm with the same index number. Finally we 
find that f can also be written as the product of the 
"other maxterms". 
To summarize: a function f can be written as a sum 
of a number of minterms, and also as the product of 
the other maxterms. Let us, for further explanation. 
complete the example that we started in figure 4.44 
(see figure 4.45). Previously we have derived that 
the inverse of f can be written as the sum of the 
other minterms O. 2. 3 and 6. Thus f itself Is equal to 
the inverse of the sum of these minterms, or 
according to De Morgan, it is equal to the product 
of the inverse of these minterms. Actually, the 
inverse of the minterm mo is the maxterm Mo, and 
the inverse of m2 is maxterm M2 etc. Finally we find 
that f can also be written as the product of the 
maxterms 0, 2, 3 and 6. These were exactly the 
missing numbers in the sum of the minterms form of 
f. Another example (see figure 4.45) shows f(a,b,c) 
to be given by the sum of minterms 0, 1, 2, 6 and 7. 
Thus f is also equal to the product of the maxterms 
3.4 and 5. 

4.27 



Problem 4.4 (4.4) 

Consider the function T of 4 variables: 

7tw,x,y.2) = wxy+xz+ wyz 

The following holds for the numeric representation of the minterms: 
the variable w has the highest weight; z has the lowest one. 

a. Write the function in numerical form as a sum of minterms, i.e. as: 
T 2: { ... J. 

b. Write the function in numerical form as a product of maxterms. 

c. Consider r being the inverted function of T: repeat questions a. and b. for T'. 

d. Do the same for Td being the dual function of t (see survey page 4.7J 

Remark: you need hardly to do any computation work for problems b, c and d. 

Problem 4.5/4.6/4.7 (4.5/4.6/4.7) 

Work out the questions in problem 4.4 a - d also for the following functions: 

4.5. 7tw,x,y.2) = (W+x+y+z){x+y+z)(w+x+yXw+y+z)(w+y+z) 
4.6. 7tw,x.y.2) = wx(xz+yz)+z(w+x)(w+x) 
4.7. 7tw,x,y.2) = (wz+y)(W+x+ y+z) + wxyz 

4.28 



4.4 Summary 

In this chapter we have become acquainted with 
switching algebra and its relation to binary systems. 
We have applied switching algebra for the 
behavioural description of binary systems, because 
the exclusive use of truth tables would have limited 
our possibilities. Switching algebra is related to a set 
P of the two elements 0 and 1, and defines two 
operations, the sum and the product, that are closed 
over P. Furthermore, we have given five postulates 
from which we have derived seven theorems. 
Postulates and theorems enable us to evaluate 
expressions with "and" and "or" -operations, to 
process and to simplify them. During this course we 
shall make regular use of these theorems and 
postulates; you would do yourself a favour by 
knowing them. 
An aspect of this chapter is that, in any case, we 
could use electronic devices to make circuits to 
implement the function of the sum and product 
operators, producing high and low voltages. We are 
considering the and-gate and the or-gate. 
In the following chapter we shall see how to realize 
general sum-of-products forms from these and and 
or-gates. 
The application of an algebra enables us to reason 
more formally about the sum and product relations 
between variables and their implication for 
combinational binary systems. We have seen that 
there exist two standard normal forms closely 
related to the truth table. The first one is the sum-of­
minterms form that is also called the disjunctive 
normal form. The second normal from is the 
product-of-maxterms form, which is also called the 
conjunctive normal form. Later we shall frequently 
use the abbreviation SOM (Sum-Of-Minterms). We 
have seen that both standard normal forms exist for 
all functions. Moreover, we have learned how to 
derive one standard normal form from the other, and 
we know the relation between both forms and the 
truth table. In the following chapter we shall make 
use of this knowledge to find realizations of 
combinational binary functions. 

4.29 



5 

Realization 

of 

Switching Functions 

-5.01-

5 Realization of switching functions 

In this chapter we shall discuss the realization of 
combinational binary systems being described by 
switching functions, by mapping them to standard 
components. First we shall consider the realization 
of switching functions described by the sum-of­
minterms form. Then we shall consider the more 
general sum-of-products form and its realization 
possibilities. 

Furthermore, we shall see that we can realize any 
switching function with only one type of gate. In the 
previous chapters we have described the behaviour 
of the multiplexer, and we have seen the possible 
systems and architectures for it. In this chapter we 
shall show that the multiplexer can be used as a 
universal building block for the realization of 
switching functions. Finally we shall discuss a new 
type of building block for easy realization of specific 
functions. 

5.1 



Realiza tion 

of a 

Sum of Minterms 

-5.02-

5.1 Realization of a sum of minterms 

In the previous chapter we have seen that we can 
describe any switching function as a sum of 
minterms. 

5.2 

SUM OF MINTERMS: AND/OR GATES (1) 

f sum of minlerms Lm i 
= or-function of minterms 

Example 
f=L (0.2,3,7) = mO+m2+m3+m7 

(0.2.3,7) 

-5.03-

We can also say: f is given by an or-function of a 
number of minterms (see figure 5.03). For the 
realization of such a function we can use an or-gate 
with as many inputs as there are minterms in the 
function. For each of the inputs we must realize a 
new function, equal to one of the minterms of the 
function. 
We shall take as an example a function f which is 
given by the sum of minterms 0, 2. 3 and 7. This 
function can be realized by an or-gate with four 
inputs, where on each input we must realize one of 
the minterms mo. m2• rna or m7• We know that if one 
of these terms is equal to 1 then the output of the 
or-gate will be also equal to 1. 
The realization of a function as a sum of minterms 
is now reduced to the realization of a number of 
minterms. We have previously defined a minterm as 
a product term. where all variables occur either in 
normal or complemented form. 



SUM OF MINTERMS: AND/OR-GATES (2) 

• Minterm: and-function of variables 
and their complement 

• Realization: and-gate + inverters 

• Example: m 2 = ahc 

~ 
-a [J-m2 b abc 
-c 

-5.04-

We can also say (see figure 5.04) that a minterm (an 
and-function) is composed of variables and/or 
inverted variables. Thus, a minterm can be realized 
by an and-gate and a number of inverters. The and­
gate must have as many inputs as there are 
variables. Figure 5.04 shows, as an example, the 
realization of the mlnterm m2. Notice that it is 
necessary to first invert the variables a and c, before 
their values are passed to the and-gate. In chapter 
4 we have already stated that it is not always 
necessary to draw an inverter as a separate symbol. 
We can denote the inverter function by drawing a 
small circle at the related input of the and-gate. We 
arrive at the second schematic in figure 5.04. 
Sometimes we also do not worry about the 
realization of the inverted a and c, and we show 
which specific variables need to be inverted at the 
inputs of the and-gate. This is shown is the third 
schematic in figure 5.04. Thus, these three 
schematics represent alternative realizations of the 
same minterm. The drawing method to be used 
depends on the environment 

SUM OF MINTERMS: AND/OR-GATES (3) 

• Sum of minterms: 2-layer and/or 
realization 

• Example: 

f=2:(O, 2,3,7) 

a---t--O 

b -+-+-1--1 ;;::1 
f(a,b,c)= 

2:(0,2,3,7) 

C -+-+-+--i 

& 

-5.05-

The combination of these and the previous figure 
shows a method for the realization of a sum-of­
minterms form. Figure 5.05 shows an example. 
Notice that, if we do not consider the inverters, the 
realization form is a Nayer tree structure. In layer 
one we have the or-gate. layer two is composed of 
a number of and-gates. Therefore, we are 
considering a 2-layer and-or realization. As an 
example we have chosen a function which is given 
by the sum of minterms 0, 2, 3 and 7. We see that 
we need 4 and-gates for the realization of the 
minterms. The topmost and-gate realizes the 
minterm mo. the following and-gate realizes m2• The 
following one rna' and finally the last and-gate 
realizes m7• Verify this for yourself. Notice that now 
at most one output of the and-gates is equal to 1 
and the rest of the outputs are equal to o. The four 
and-gates' outputs are combined in the or-gate. 
where the function value is available at its output. 

5.3 



2-LAYER AND/OR - EXAMPLE: ADD2 
• Truth table 

ci u v sm co 
000 0 0 
001 1 0 
010 1 0 
o 1 1 0 1 
100 1 0 
101 0 1 
110 0 1 
1 1 1 1 1 

• sm=m 1+m 2+m4+m 7 = L: (1.2,4,7) 
• co =m3+m5+m6+m 7 = L:(3,5.6,7) 

-5.07-

Earlier (figure 4.05) we constructed the truth table of 
our ADD2 module. This truth table has been 
repeated in figure 5.07. We shall realize this module 
using and-gates and or-gates. We state first that the 
sum output, sm, is given by the sum of the 
minterms 1, 2, 4 and 7 and that the carry output, co, 
is given by the sum of the minterms 3, 5, 6 and 7. 
For each of the two switching functions we get a 2-
layer and-or realization. Verify that the named 
minterms can be realized using and-gates. Notice 
also that both functions sm and co have the 
minterm m7 in common. We could have realized this 
minterm just once, connecting its output to both or­
gates. This would save an and-gate. We shall return 
to this later. 

5.4 

REAUZATION WITH FIXED ARCHITECTURE 

• Architecture: 2-layer and/or 

• Universal building block: 

- realize all minterms of n variables 

with 2n and-gates 

- connect the minterms with 
an or-gate 

-5.08-

We have now shown that the realization of a sum of 
minterms occurs according to a fixed pattern; it is 
realized according to a fixed architecture. This is the 
two-layer and-or tree structure (see figure 5.08). 
Applying this general architecture we can create a 
universal building block used to realize any 
switching function of n variables. In this building 
blocks we first construct all minterms of n variables. 
Therefore, we need 2n and-gates. Those and-gates 
corresponding to minterms belonging to the sum-of­
minterms function, should be connected to the or­
gate. 



EXAMPLE - ADD2 

1"% 
0--' 

m 1 

0-
& m2 

0-
m3 

0-
m4 

sm 

0-
& m5 

sm :: 
(1,2,4,7) 

0--' 
& rna 

0-
& m7 

D-
ei u v -5.09-

As an example we show in figure 5.09 such a 
universal building block of three variables. Notice 
that we construct all minterms of three variables with 
the 8 and-gates, and that we connect the necessary 
minterms to the or-gate using switches. In figure 
5.09 the switches are set such that the sm function 
of our ADD2 module is realized. Notice that the 
inputs of the or-gates that are not connected to an 
and-gate's output must be connected to a logic O. 

GENERAL STRUCTURE 

~O rna 
aa 

2 n m1 a1 and-
a2 

gates m2 

for m3 

an - 2 
min-
terms a n-1 m t!-1 

f 

-5.10-

In figure 5.10 the idea of a universal building block 
is more generally worked out. The system's n-inputs 
ao to an.1 are connected to a black box, where we 
assume it contains the 2n and-gates for the 
construction of the minterms. These minterms are 
available at the right hand side of the black box, and 
are connected by means of a switch to an or-gate. 
Notice that only one minterm has the value 1, and 
all other minterms have the value O. 
Furthermore, we notice that we have drawn one 
input for the or-gate; in reality this gate has 2n 

inputs. Figure 5.10 only shows a global schematic 
picture. We shall not deal with implementation 
details further in this course. What is meant is that 
by making a connection we can add a specific 
minterm to the (already constructed) sum of 
minterms at the output. 
Since we have already constructed these 2n 

minterms in the building block, is it a waste to use 
these minterms to only make one function. We can 
simply expand the number of outputs by adding a 
number of or-gates. 

5.5 



GENERAL STRUCTURE MORE OUTPUTS 
0 

ao 
mo 

a1 
2 n m1 

and-
a2 

gates m2 

for m3 

an- 2 min-
terms an- 1 m Jt!-1 

-5.11-

Figure 5.11 shows this. We can now use the same 
set of realized minterms to make several sum-of­
minterms forms. Of course this is more economical 
than realizing all minterms for each function 
separately. 

5.6 



READ-ONLY MEMORY - ROM 

• n inputs = address lines 

• Address decoder: 
lout of 2 n min terms 

• Memory words 

ao 

address 

decoder 

an - 1 

-5.12-

A universal building block such as the one just 
described exists in reality and is called a Read Only 
Memo!}, (ROM). see figure 5.12. The reason for 
calling this building block a ROM is not important at 
this point. What is important, however, is the use of 
a number of different terms. First we call the n 
inputs of the building block address lines. These 
address lines go to an address decoder, its 
operation being the same as a minterm generator. 
The address decoder has 2" outputs; only one 
output is equal to one, corresponding to the 
selection of 1 out of 2n minterms. 

~ ~~ry matrix 

These outputs go to the memory matrix, which in 
fact is nothing more that the set of switches in our 
universal building block. One horizontal row of a set 
of switches is called a word, and an individual 
switch represents a bit in a word. 
We say now that the address decoder selects a 
word from the memory matrix by means of its 
output that is equal to 1. The individual bits in that 
word become the values on the corresponding 
outputs. A 0 for such a bit means that the 
corresponding output is a 0, A 1 means that the 
corresponding output is a 1. 

5.7 



CONNECTION MINTERMSjOR GATES 

Way of drawing: 

-5.13-

In figure 5.13 we shall further examine the way 
minterms must be connected to or-gates. If we do 
so in larger circuits by drawing individual lines from 
the output of the corresponding minterm to the input 
of an or-gate. we shall quickly arrive at a complex 
situation due to the large number of lines. Also 
drawing open or closed switches can produce a lot 
of detailed drawing work, and could be a source of 
errors. 
Figure 5.13 shows a frequently used method. A 
connection between a minterm and an or-gate is 
shown by placing a dot or circle at the intersection 
point in the memory matrix. So both schematics in 
figure 5.13 show the same circuit. 

5.B 

We shall discuss how to make these connections in 
a ROM. That is. we shall consider the programming 
of the ROM, which can be done in the following 
ways: 

1. By using a specific mask while manufacturing 
the IC. The contents are thus determined in the 
factory. This device is refered to as a ROM. 

2. The contents of another device type can also 
be programmed by the user (in the field). 
Therefore, the user needs special equipment to 
program such devices. We are considering a 
Programmable ROM or a PROM. 

3. We speak about an Erasable PROM or an 
EPROM if the user can erase the contents of 
the ROM after using it. and reprogram this 
EPROM later. 



EXAMPLE ROM 
• ADD2 module 

ci ...£. 
1 address t---t---t-­

U ........=-
V ..JL decoder t---t---t--

sm CO 

Truth table: fig. 5.07 

• Standard lEe symbol 

ROM 8 x 2 
v -- o~ 0 [O]A f-sm 
u- A-
. 2 7 [ 1 J A L-... co Cl- I -

In figure 5.14 we have (as an example) realized our 
ADD2 module in a ROM with 8 memory words, Le. 
3 address inputs and 2 outputs. This is called an 8*2 
ROM. During the implementation we have assumed 
that the input ci corresponds to the most significant 
address bit and the input v corresponds to the least 
significant address bit. Furthermore, we assume that 
the minterms mo to m7 are at the outputs of the 
address decoders from top to bottom. If we 
compare the placing of the circles of the outputs sm 
and co with the truth table of figure 5.07 then we 
see a strong correspondence. Where there is a 1 in 
the truth table we get a circle. 

Problem 5.1 (5.1) 
In chapter 3 (figure 3.18) we gave a description of 
the COMP4 module. This module compares two 
numbers, with a value between 0 and 3, and gives 
as a result "greater", "equa/" or "less". if we code 
this result as fol/owing: "greater" = 100, #equal" = 
010 and "less' 001. Give a ROM implementation 
ofCOMP4. 
Make a suitable coding for the numbers on both 
inputs. 

-5.14-

In figure 5.14 we have drawn the schematic of a 
ROM implementation of an ADD2 module, where we 
made use of the standard ROM symbol. It is clear 
(in this symbol) what the address lines are, where 
the least significant bit is, where the most significant 
bit is, and the address domain. Also the bit positions 
of the corresponding output in the ROM words are 
given with [O]A and [1]A. "A" indicates that the 
output depends on the A-inputs (Address lines). 
Notice that we have no information about the 
contents of the ROM. From the symbol alone we 
can not see what the function of this building block 
will be. Therefore, we need extra information. 
Schematics which are built with these symbols, 
show clearly how the system must be built, Le. show 
the structure, but give no information about the 
functionality of the system, Le. what the system 
must do. Therefore, a schematic is not a full system 
specification. 

5.9 



Sum of Products (SOP) 

and the 

Function Table 

-5.15-

5.2 Sum Of Products (SOP) and the function 
table 

We have seen that we can realize any function in its 
sum-of-minterms form. We have a building block, a 
ROM, that we only need to program. Currently 
EPROMs of 64k*8 (lk=1024 210) words are 
available. With such a ROM we can realize any 8 
functions with 16 variables. Here a small problem 
arises. A function of 16 variables can contain a 
maximum of 65,536 minterms. It is questionable 
whether we can make error-free specifications of 
similar functions in a sum-of-minterms form. We are 
not restricted to only make use of a sum of 
minterms; we can also make use of the more 
general product terms. 

5.10 

PRODUCT TERMS 

• Examples of product terms: 

ad ; abc ; bc 
abd ; bcd; ..... 

• Expansion to Sum-of-minterms: 

- Assume that variable a i 

does not occur in product term p 

- Then the following holds: 

P = p.l = p.(a. ta.} = p·a. t pea. 
1 1 1 1 

- We add variables 

-5.16-

In figure 5.16 we have described some product 
terms with 2 or more variables. Each product term 
can always be re-described as a sum of minterms. 
Indeed, let us assume that a variable aj does not 
occur in a product term p. Figure 5.16 shows that 
this product term can be written as a sum of two 
new product terms: paj and paj'. The variable aj 

occurs in both product terms. We have added a 
variable. We can go on with this process until aU 
variables occur, in normal or inverted form, in each 
product term. Thus, we have arrived at a sum of 
minterms. 



ADDITION OF VARIABLES - EXAMPLES 

4 
(a,b,e,d) € ~ 0,11 

ac = ac (btb) 
= acb t acb 
= acb(dtd) t acb(dtd) 
= acbd t acbd t acbd t acbcI 

abd = abd( etc) 
= abed t abcd 

-5.17-

The first example in figure 5.17 shows how the 
variable b is added to the product term ac'. This 
results in two product terms; however, the variable 
d is still missing. Consequently, it is added to 
produce a sum of four minterms. In the second 
example variable c is missing; it is added to 
produce a sum of two minterms. 

Problem (5.2) 
Write the following two product terms as a sum of 
minterms 
1: bd as a sum of minterms with 4 variables. 
2: a as a sum of minterms with 3 variables. 

FROM SUM OF MINTERMS TO 
(SUM OF) PRODUCT TERM(S) 

• Removal of variable: 

pa i + pa i = p( a i + a i) = p. 1 = P 

• Example 

abc + abc = ac(b+b) = ac·l = ac 

abc + ac = ac(b+1) = ac·l = ac 

ac + abc t abc = ac + ac(b+b) = 
-= ac + ac = c 

-5.18-

Naturally, we can also do it the other way around. 
Figure 5.18 shows how we can go from a sum of 
minterms to a (sum of) product term(s). Suppose 
that we have 2 product terms that are identical 
except for 1 variable. This variable occurs in its 
normal form in one product term, and in its inverted 
form in the other product term. We can now 
combine both product terms into a new product 
term where the corresponding variable does not 
occur. In this way we eliminate a variable from the 
product terms. Figure 5.18 shows three examples. 
In the first example the variable b can be omitted 
from both product terms, and the product terms 
combine to a new product term. Example 2 shows 
us that if a variable is missing in one of the two 
product terms, we can still combine both product 
terms into a new product term, where the 
corresponding variable is eliminated. Finally, in the 
third example the variable b is deleted from the last 
two product terms, and then the two resulting 
product terms are combined to produce only one 
product term with one variable. We see that in all 
cases the number of product terms is decreased 
and that the number of variables per product term 
also decreases. 

5.11 



SUM-OF-PRODUCTS FORM 

• Any function can be written 
as a Sum-Of- Products (SOP) 
in at least one way 

• For any function there is 
at least one Sum-Of-Products form 
with a minimum number of product 
terms 

minimal SOP form 
= sum of prime implicants 

-5.19-

We now make the following assertion (figure 5.19): 

Any function can be written in one or more 
ways as a Sum-Of-Products (SOP) form. 

Indeed, we have seen earlier that for any function 
there exists a sum-of-minterms form. This is a sum­
of-products form. Thus, the assertion is correct. We 
can frequently eliminate variables from the 
minterms and combine the minterms to other 
product terms. In this way we arrive at other sum­
of-products forms for the same function. 

5.12 

Frequently the number of product terms that we get 
is smaller than the number of minterms that we 
started with. If we master this combination of 
product terms and the elimination of variables, we 
can finally come up with a sum-of-products form 
where the number of product terms is minimal. That 
is, there is no sum-of-products form with a smaller 
number of product terms for the same function. We 
now state: 

For each function there is at least one sum-of­
products form with a minimum number of 
product terms. This form is called the minimal 
sum-of-products form. 

The proof of this statement lies beyond the scope 
of this course. We shall notice that this minimum 
occurs when all the product terms belong to the 
class of the so-called prime implicants of the 
function. 



MINIMAL SOP FORM - ADVANTAGES 

Minimal SOP realization has advantages 
above SOM realization 

• Less product terms lead to 
- less and-gates 
- less or-gate inputs 

• Less variables in a product term 
lead to less and-gate inputs 

• Summary: 
less components + less wiring 
= less costs 

-5.20-

Why is the sum-of-products forms so important? 
What is the advantage of the minimum sum-of­
product form over the sum-of-minterms form? 
Figure 5.20 answers this question. First we shall 
notice that the sum-of-products form could be 
realized in the same way as a sum-of-minterms 
form. We have to deal with a sum form which, 
therefore, can be realized with an or-gate. The 
inputs of this or-gate are connected to the 
realizations of different product-terms. 
These product-terms are only and-functions of 
variables, and thus can be realized with an and­
gate. In this view, the sum-of-products form 
realization strongly resembles the sum of minterms 
realization. The minimum SOP form realization has 
as an advantage over the SOM form realization, 
that the number of product-terms to be realized is 
smaller than the number of minterms. A smaller 
number of product-terms means that we need less 
and-gates for the realizations. Thus, this is cost­
saving. The use of less and-gates also means that 
the number of inputs of the or-gate can be smaller. 
Therefore, the realization of the or-gate will be 
cheaper. Furthermore, a product-term contains less 
variables than a minterm. 

MINIMAL SOP FORM - EXAMPLE 

• Function: 
f = (0,2,3,7) 

= abc + abc + abc+ abc 

= ac(b+ b) + bc(a+a) 

= ac + bc 

• Realization: 

f 

• Former realization (fig.5.05) : 
4 and-gates with 3 inputs 

lor-gate with 4 inputs 

-5.21-

This means that we not only need less and-gates 
but also that in general the and-gates could be 
realized with less inputs. Thus, we can use less and 
cheaper and-gates. To summarize: the minimal 
SOP form realization lead to less and cheaper 
components and less wiring between these 
components. All of this leads to a realization with 
lower cost. 
We have previously given a sum-of-minterms 
realization for the function that is given as the sum 
of minterms mo' m2, m3 and m7 (see figure 5.05). In 
figure 5.21 we shall derive a sum-of-product-terms 
realization for this function. Here, we first write the 
function as a sum of minterms. We see that we can 
delete the variable b from the first two minterms, 
and the variable a from the last two minterms. This 
results in a sum-of-products form with two product­
terms. A schematic of the realization of this sum-of­
products form is shown. It consists of an or-gate 
with two inputs and two and-gates with two inputs. 
The previously given realization required more 
gates with more inputs per gate. There is thus a 
clear saving. 

5.13 



MINIMIZATION 

• Karnaugh diagram 

• Quine- McCluskey's method 

• Programs 
- espresso algorithm 
- Multiple Output Minimizer (MOM) 

-5.22-

To get the maximum gain from the saving achieved 
by the sum-of-products form is it necessary that we 
have means for obtaining the minimal SOP form. 
Seeking this minimal form is called minimization 
(see figure 5.22). Among the known methods are 
Karnaugh diagrams and Quine-McCluskey's 
method. Both methods are briefly described in 
practically all books on digital systems design. We 
shall not do so in this course. Currently, there are 
a number of good programs available for finding 
the minimal SOP form. We shall name various 
implementations of the espresso algorithm. A 
version of MOM (Multiple Output Minimizer) is 
suitable for use on a PC. MOM works on a different 
principle than the espresso algorithm. Notice that 
non of the programs apply the above mentioned 
methods of Karnaugh and Quine-McCluskey. 
Next to the algebraic method of specifying the 
sum-of-products form we would also like to have a 
tabular method, which is comparable with a truth 
table. Such a table is called a function table (see 
figure 5.23). 

5.14 

FUNCTION TABLE 

.Let (a,b,c,d)€iO,H 
4 

• We note: 
abed = 1 0 1 0 (minterm) 
abd = 1 1 x 0 (c is missing) 

ad = 0 x x 1 (b and c are missing) 
be = xlI x (a and d are missing) 

• Tables 
Truth table Function table 

abc f abc f tffitbC f 
000 l~OxO 1 ~OxO 1 
0010~xOl0~xlll 
0101 xlII 
0111 lxOO 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

-5.23-

In a function table we do not specify the function's 
value per minterm but rather per product-term. Also 
now we describe a product-term by an n-tuple 
where we need a new symbol, the letter x, to 
denote that the variable corresponding to the 
specific place in the n-tuple, does not occur in the 
product-term. Figure 5.23 gives a number of 
examples. In the first example we see the minterm 
ab'cd', represented by the quadruple 1010. In the 
following product-term the variable c is missing. 
This is denoted by an "x" in the third position in the 
quadruple. The variables band c are missing from 
the product-term a'd, therefore we write Oxxl. The 
same holds for the product-term bc. 
Figure 5.23 shows the truth table of the function 
f = :E (0,2,3,7). Next to the truth table, we can also 
define a function table for the function, where we 
note the product-terms for which the function 
equals 1 or O. 
We can also suffice with noting, in the function 
table, only the product-terms for which the function 
is equal to 1, omitting the other product-terms for 
which the function is O. This form is also shown in 
figure 5.23. From this we immediately find the 
function f a'c' + bc. By doing so we have 
realized the function of figure 5.21. 



FUNCTION TABLE - EXAMPLE 
lout of 8 multiplexer (fig.3.06/3.08) 
• Pascal: 

VAR IO,I1,[2,I3,I4,I5,I6,I7,OUT: 0 .. 1; 
SEL : 0 .. 7; 

BEGIN 
CASE SEL OF 

END 
END 

• Coding: 3 

SEL d 0 .. 7l---7 SEL € 1 0 . .1~ 
• Function table: 

SEL IO I1 I2 13 14 15 16 17 OUT 
000 1 x x x x x x x 1 
001 x 1 x x x x x x 1 
010 x x 1 x x x x x 1 o 1 1 x x x 1 x x x x 1 
100 x x x x 1 x x x 1 
101 x x x x x 1 x x 1 
1 1 0 x x x x x x 1 x 1 
111 x x x x x x x 1 1 

.8 product terms 

.11 variables and 2048 minterms 
-5.24-

The example in figure 5.24 shows that we can 
describe functions very compactly using function 
tables. If we limit ourselves to binary variables for 
the inputs and outputs of the 1 out of 8 multiplexer 
of chapter 3, and we code the selection input SEL 
with a binary triple. then we can simply build up the 
function table. Indeed, the multiplexer's output OUT 
is only equal to 1 if the selected input is equal to 1. 
Thus, if the value of the selection input SEL = 000 
then the input io will be switched to the output OUT 
and OUT will only be 1 if io 1. This is 
disregarding the value of the rest of the inputs. 
These values play no role and can be expressed 
with an x. 
Notice that the function table built up in this way 
only has 8 producHerms. despite the fact that the 
function has 11 variables and thus has 2048 
minterms. 

Problem 5.3 (5.3) 
Draw a realization with and-gates and or-gates for 
the function table given in figure 5.24. 

SOM FORM VS. SOP FORMS 
• A single Sum-Of-Minterms form 

A single truth table 
abe f 
000 0 
o 0 1 1 
010 1 
o 1 1 1 
1 0 0 1 
101 1 
1 1 0 0 
1 1 1 0 

• More Sum-of- Products forms 
More function tables 
abc f abc f abc f abc f 
x 0 1 1 100 1 lOx 1 100 1 
o 1 x 1 x 0 1 1 o x 1 1 101 1 
lOx 1 o x 1 1 010 1 x 0 1 1 

010 1 o 1 x 1 
be abc ab abc 
+ + + + 
ab be 

-
abc ac 

+ + + + 
ab - abc be ac 

+ + 
abc ab 

-5.25-

In the previous chapter we have noticed that any 
function has only one specific sum-of-minterms 
form. Therefore, any function is also specified by a 
truth table (see figure 5.25). Most functions have 
more than one sum-of-products form, and therefore 
more than one function table. In figure 5.25 four 
different function tables are specified for the same 
function (the one given by the truth table). The 
corresponding algebraic sum of products are noted 
under the function table, so that you can check that 
it really deals with the same function. 

5.15 



INCOMPLETELY SPECIFIED FUNCTIONS 
• Combinational digital system 

Fd: I ~ 0 

coding 

U 
binary system 

n m 
Fb : f O. q ~ f 0, 1~ 

• If 2
n
> # I there are n-luples which are 

nol related to elements in I 

• These n-tuples are valid input 
values to the binary system 

• What is the related output value? 

- [do not know 
- don't care 

• Incompletely specified function 

-5.26-

In chapter two we have seen that a combinational 
digital system is described by a mapping from an 
input domain to an output range. We realize the 
binary system that is obtained by coding the digital 
system (see figure 5.26). Using this binary system, 
a binary n-tuple at the input is mapped to a binary 
m-tuple at the output. With n input bits we can 
make 2n different codes. This number must be at 
least equal to the number of elements in our inputs 
set I. If the number of codes is larger than the 
number of elements in I, then there are n-tupJes 
that are not used to code elements of I. 

These n-tuples are valid input values for the binary 
system. They are not related to elements of I. What 
is then the corresponding output value of the binary 
system? There is no answer to this question: in this 
case the desired system behaviour does not specify 
a value for the output m-tuple. Accordingly we must 
say that we do not know what the output value 
must be. In other words it does not really matter; 
the value is a don't care value. Functions of which 
value is not defined for certain input n-tuples are 
called incompletely specified functions. 

5.16 



INCOMPI.ErELY SPECIFIED FUNCTION - EXAMPLE (1) 

• Function: 
? 

x . weekday 

• Input code (111) is not used 

Function table: 

x
2
x 

x 0 1 
o 1 x 
lOx 
1 1 1 -

" It means: function value is 
don't care 

• Algebraic form: 

f = ~ Xo + x2X1 + X2x1 + ~X1XO 

We have coded the 7 days of the week with a 3-bit 
code in the "weekday" function. Consequently there 
is an unused code from the 8 possible code words 
(see figure 5.27). This is code-word 111. The value 
of the fUnction for this code is "don't care". 
Previously, we have shown this in the truth table by 
writing 0/1 in the place for the function value. Form 
now on we shall denote these don't cares by a 
horizontal dash in the function table. 

-5.27-

Figure 5.27 shows the modified function table for 
the "weekday" function. We point out with emphasis 
that this don't care hyphen is not a possible output 
value of the function, but it only shows that we did 
not specify what the output value must be for these 
input combinations. When the function is realized 
we shall have to make a choice. We shall come 
back to this point later. In an algebraic expression 
of the sum of products we can also show that the 
function's output is don't care in the case of a 
specific product-term. We do this by underlining the 
corresponding product-term. Figure 5.27 shows an 
example. 

Problem 5.4 (5.4) 
Figure 2.28 gives a gate realization of the 
"weekday· function. Verity that this realization 
corresponds to the function table of figure 5.27. 
What do you notice in relation to the don't care 
value? 

5.17 



INCOMPLETELY SPECIFIED FUNCTION - EXAMPLE (2) 

• Let i € i o .. 9l and f € i 0, II 
f = 1 if i is an even number 

• Use binary code 
o ~OOOO 
1 ~OOO 1 

9~1001 

• Unused codes 
101 0 
101 1 
1100 

1101 
1 1 1 0 
1 111 

• Function table 
deb a f 
o x x 0 1 
1 0 0 0 1 
1 0 1 x -
1 1 x x -

(0,2,4,6) 
(8) 

f = aa + dcba + deb + dc 

-5.28-

In figure 5.28 we see the following example: A 
digital system which has an input with a value 
domain of the integer numbers from 0 to 9, and an 
output with a value range 0 or 1. The function 
between the input and output is given as 

"f = 1 when the value of i is even" 

If we use a binary code of 4 bits to code the 
possible input values, then there will remain 6 
unused codes, corresponding to the hexadecimal 
digits A to F. Figure 5.28 shows the function table 
for f. We shall not discuss the derivation of this 
function table. The algebraic sum-of-product terms 
are also given, with the prOduct-terms leading to a 
don't care value underlined. If we make the function 
value for these product-terms 0, we shall get a 
function with 2 product-terms. Accordingly we need 
a total of 3 gates to realize this function. 

5.18 

INCOMPLETELY SPECIPIED FUNCTION - MINIMIZATION 

• With minimization a completely specified 
function is produced with 
- a minimum number of product terms 
- each product term having a minimum 

number of variables 

• During minimization don't care terms 
are made 0 or 1 

• Example 
- f= 1 if i is an even number 
- function table after MOM 

dcbalf 
xxxOl1 

- minimized function: f= a 
• In the minimized version f = 1 

also for the quadruples 

1010, 1100, 1110 

-5.29-

A function with don't care terms gives us an extra 
degree of freedom when realizing it. For each don't 
care term we have the choice of realizing the 
function value as a 0 or a 1. Good minimization 
methods and programs (figure 5.29) make use of 
these extra degrees of freedom to find the smallest 
possible number of prOduct-terms. Minimization 
converts an incompletely specified function into a 
completely specified one, with all product-terms 
containing the smallest possible number of 
variables. Thus, an automatic optimal choice is 
made for the don't care terms. Figure 5.29 shows 
the resulting function table for the function "f = 1 if 
i is even" after minimization by the MOM program. 
During the minimization it turns out that such an 
optimal solution is obtainable if the function is equal 
to 1 for the inputs 1010, 1100 and 1110. In that 
case the function can be realized with a single 
inverter. We see that don't care terms can play an 
important role in finding optimal realizations for 
switching functions. Therefore, we have to be alert 
for possible don't care situations. 



Realization of 
an SOP form 

Programmable Logic 

-5.30-

5.3 Realization of an SOP form; programmable 
logic 

We have discussed two realization methods for the 
sum-of-products form. Figure 5.31 states them once 
more. 
First we can realize a sum of products by means of 
a two-layer and-or realization. Therefore a number 
of interconnected discrete building blocks are 
necessary. Thus, lots of components with lots of 
wiring. 
We can also chose for a realization with a ROM. 
Then we must realize the function as a sum of 
minterms. This can sometimes be infeasible. Earlier 
we have composed the function table for the binary 
l-out-of-8 multiplexer. We stated that the table 
contained only 8 product-terms. while the function 
had 11 variables. 

SOP REALIZATIONS 

• Separate gates 
- 2-layer and/or realization 
- many gates and much wiring 

• Programmable sum terms; ROM 
- always Sum-Of- Minterrns form 
- 11 var -:;::. 2048 minterms 

• Programmable product terms + 
programmable sum terms 

= Programmable Logic Array (PLA) 

• Programmable product terms only 

= Programmable Array Logic (PAL) 

• General term: 
User Programmable Logic (UPL) 

-5.31-

In a ROM implementation the function value must 
be specified for 2048 minterms. This is a 
consequence of the fact that we can only program 
sum-terms in a ROM. On the other hand the 
product-terms to be used are fixed when minterms 
are realized in the address decoders. 
We get a more flexible building block by also 
making the composition of prOduct-terms 
programmable. Such a building block is called a 
PLA, a Programmable Logic Array, being very 
complex and expensive. 
We get a less complex building block which is also 
very useful for the realization of a sum-of-products 
form, by making the sum terms fixed and only the 
product-terms programmable. In this case we are 
considering a PAL, Programmable Array Logic. In 
general terms programmable building blocks are 
known as User Programmable Logic, UPL 

5.19 



PROGRAMMABLE LOG[e ARRAY EXAMPLE 

a a 
a,---~~-------.-.------~~------~~-------

d.,.---++ 

e-..----++ 

In this paragraph we shall take a brief look at the 
construction and the use of the PLA and the PAL. 
In principle the PLA consists of two large 
programmable matrices (see figure 5.32), the and· 
matrix and the or ·matrix. 

5.20 

or array 

-5.32 

In the and-matrix we can denote which variables (or 
inverted variables) should be selected to compose 
a product-term, by using a number of 
programmable connections. In the or-matrix we 
combine these different product-terms into a sum­
of-product terms. 



FPLA 82S100/82S101 LOGIC DIAGRAM 

~ 
~ 
F2 

Fa 
F4 

I5 
~ 

I F7 
I 
I..()-o 

0 CE 

-5.33-

Again we apply a simplification when drawing 
schematics of this type. We only draw one line to 
the and-gates and the or-gates. We get a schematic 
such as the one shown in figure 5.33. As we have 
done in the ROM, we show here that a connection 
must be made between an input and an and-gate, or 
a product-term and an or-gate with a dot on a 
crossing of wires. 
In the schematic of figure 5.33 we also see that in a 
PLA it is possible to use a specific product-term for 
several output functions in the same time. We are 
then considering product-term sharing. This reuse of 
product-terms enables us to use the building block 
more efficiently. 

REUSE OF PRODUCT TERMS 

• Functions 
f = ac + bd + cd 

1 

f bd + cd + ac 

• Realization 
a 
c 

b 
d 

c 

21 

d '----; 21 

a 
c 

• Multiple Output Minimization (MOM) 

5.34-

Figure 5.34 gives an example of this. The two 
functions fl and f2 are shown, each defined as a sum 
of three product-terms. We see that the product· 
terms bd and cd' are used in both functions. We 
can thus realize four product-terms instead of six. 
But we must then connect the outputs of two and­
gates with both or-gates of both the function (fl and 
f2)' In general this is not a problem. To be able to 
make optimal use of the reusability of product-terms 
it is necessary to actively seek sum-of-products 
forms for several functions where the same product­
terms are used as much as possible. 

5.21 



REUSE OF PRODUCT TERMS - EXAMPLE 
• BCD code to 7 segment code converter 

a 

r /-;-; b 

e//c 
d 

II I II I 
'-I I'-::J I 
,- ,- 1'1" 
_, II 'I I_I 

• Trulh lable 

DCBAabcdef~ 
00001111110 
00010110000 
00101101101 
00111111001 
01000110011 
01011011011 
01101011111 
01111110000 
10001111111 
10011111011 
1010- ----
lOlli- ----
1100----
110 1 
1110-------
1111------

-5.35-

Some minimization programs can do this; we refer 
to Multiple Output Minimization (MOM). As an 
example of the reusability of product-terms we 
define in figure 5.35 a BCD-code to 7-segment-code 
translator. A 7-segment-code is used in a 7-segment 
display, being able to display the digits 0 to 9 with 
the help of 7 segments. Figure 5.35 shows how the 
7 segments could be used. Now, the truth table can 
be simply written. 
Notice that for the input codes 1010 to 1111, which 
do not belong to the BCD code, the outputs of the 
code translator are don't cares. 

5.22 

SINGLE OUTPUT MINIMIZATION -
EXAMPLE WITH PLA 
• BCD code to 7 segment code converter 

D 
C 
B 
A 

Ie 

.. .. 
,.. 
.. 

. : . 

$a 

. ........... ( 

.... , ....... 

-5.36-

..... 
-.- 1 \ 

I 

_r-- 1 ~ 
I 

_r-- 1 T 

-r"-"''"'f \ 
I 

-t-"-'"'"'f ~ 

--"" 1 -.. r-- I \ 
I 

... r-- I ~ 
I 

.. r-- :~ 

e 

f 

a 

b 

c 

d 

g 

Figure 5.36 gives a PLA implementation for this 
code translator, where single output minimization is 
applied. 



MULTIPLE OUTPUT MINIMIZATlON 
EXAMPLE WITH PLA 
• BCD code to 7 segment code converter 

-5.37-

I .. 
I 

~ 

Figure 5.37 gives the code translator realized as a 
PLA, where multiple output minimization is applied. 
Notice that now clearly less product-terms are 
necessary. In borderline cases this means that we 
only need 1 instead of 2 building blocks for the 
realization. 

PAL 16L8 LOGICAL DIAGRAM 

• Only and-array IS programmable 
inputs 

~ ____ ~A ______ ~ 

1 
°.2 3 "~67 ••••••••• 2b2~ 2~9~l 

0 
1 
2 
3 )-i: • 5 

• 7 

~ <;; 

· · · · · · · ......... · · · · · · · · · · · · · · · · · · · 
0 
I 
2 
3 

• • 6 
7 

• ..s-
o 
I 
2 
3 

• • • 7 

9~ < 
o 2 .. 6 

I 3 :; 7 UPL \ CARe 1 

-5.38-

1. 

13 

12 

11 

We shall close this paragraph by showing another 
structure in figure 5.38: a PAL. In the PAL only the 
product-terms are programmable, and it is 
determined in advance which product-terms are 
going to belong to which sums, and hence to which 
outputs. The number of product-terms per output is 
therefore fixed. The form of the product-terms is 
programmable. Generally, the reuse of product­
terms is not possible in a PAL. Therefore, multiple 
output minimization is pointless, stronger still it is 
not advisable. Single output minimization gives 
better results in these cases. 

5.23 



Realization with 

NAND and 

NOR gates 

-5.39-

5.4 Realization with NAND and NOR gates 

We have seen that any function can be described as 
a sum of products. This sum·of-products form can 
be realized by making use of and-gates, or-gates 
and inverters. Therefore, there are three necessary 
building blocks. We shall now show that these 
functions can also be realized using only one type 
of building block. This building block is the nand­
gate. 

5.24 

NAND GATE 
• Truth table and gate symbol 

a b nand 
o 0 1 
011 
1 0 1 
1 1 0 

~=e}-nand 

f= a· = (a- b)' 

• De Morgan's law 

f=a.b=a + b 

-5.40-

Figure 5.40 shows the characteristics of the nand­
gate given in the form of a truth table and an 
algebraic expression. Notice that the nand-gate can 
be obtained from an and-gate by inverting its output. 
We are thus considering the not-and-gate. The 
standardized symbol corresponds to this statement. 
Another representation can be obtained by applying 
the rules of De Morgan to the algebraic expression. 
Indeed, De Morgan states that the inverse of a . b 
equals a' + b'. This is an or-relation between the 
complements of two variables. This equivalence is 
shown at the bottom of figure 5.40. 



SOP REALIZATION WITH NAND GATES 
• Any SOP realization has an equivalent 

with only NAND gates 

• Why: 

-5.41-

By making use of this equivalence we can now state 
the following (see figure 5.41): 

Any SOP realization has an equivalent 
realization which only uses nand-gates. 

This assertion is simple to explain if we consider that 
the cascade connection of two inverters has no 
effect on the final function. These inverters might 
also be placed at the outputs of the and-gates and 
at the inputs of the or-gate of a SOP realization. We 
have just seen that an or-gate with inverters at its 
inputs is equivalent to a nand-gate. Herewith. the 
assertion proof is almost done. 
In a number of cases we still need extra inverters. 
Here we can also use a nand-gate. Indeed, if we 
connect both inputs of a 2 input nand-gate to each 
other the gate functions as an inVerter. Check this 
for yourself. 

NOR GATE 
• Truth table and gate symbol 

a b nor 

o 0 1 
010 
1 0 0 :=Ef-. nor 

1 1 0 

f a+b = (a+b)' 

• De Morgan's law 

f=a+b=a.l) 

a 
b 

-5.42-

a 
b 

Next to the nand-gate we also know the nor-gate, 
which is obtainable form the or-gate by inverting its 
output: the not-or-gate. Figure 5.42 shows the 
characteristics and the symbol of this gate. We also 
see that, using De Morgan's rules, we can view this 
gate as an and-gate with inverted inputs. 
In this chapter we have only considered the sum of 
minterms and the sum-of-product terms. We have. 
to some extent, overlooked the existence of 
maxterms and general sum terms. Actually. 
according to the duality principle, for any function 
we can construct a product-of-maxterms form, or a 
more general product-of-sums form. This can be 
realized using a 2-layer or-and realization, where the 
output results from the and-gate and the inputs of 
the and-gate are connected to an equivalent number 
of or-gates. 

5.25 



POS REALIZATION WITH NOR GATES 

• Any SOP realization has an equivalent 
realization with only NOR gates 

-5.43-

In relation to the nor-gate we can now make the 
following statement about the product of sums form 
(figure 5.43): 

Any POS realization has an equivalent 
realization which only uses nor-gates. 

5.26 

The left top part of figure 5.43 shows a pas 
realization. As we have done with the SOP 
realization, we can transform this schematic into the 
schematic at the right bottom of figure 5.43. where 
we still only use nor-gates. We see that an arbitrary 
function is realizable using only nand-gate or only 
nor-gates. This is important, because in practice it is 
easier and cheaper to make a nand-gate or a nor­
gate than an and-gate or an or-gate with electronic 
devices. Frequently an and-gate is realized by taking 
a nand-gate and putting an inverter behind it. 
Realizations with nand-gates or nor-gates are in 
general cheaper and faster. 



The Multiplexer 

as 

Universal Building Block 

-5.44-

5.5 The multiplexer as a universal building block 

In chapter 3 (figure 3.06) we got acquainted with the 
multiplexer. Under control of a selection input SEL, 
one of the inputs is connected to the output. 

MULTIPLEXER 

• Inputs: w 0 ' wI'" w 5-1 E W~ .... ~ 

• Output: out € WI·· .. l 
• Selection input: 

SEL € I 0 .. s-l t 
The selection input is used to select 
one of the inputs and map it to 
the output 

• Mapping function = 
identity function Id: 

-5.45-

We have stated that the control input, SEL, 
determines the function of the multiplexer and 
indirectly determines the value of the output (see 
figure 5.45). With the control input, SEL, we select 
the mapping of one the inputs to the output. 
We can show this by using the identity function 'd' 
The value of this function is equal to its argument. 

5.27 



MUX INPUTS :::: FUNCTION RESULTS 

00--1 

i € I I 
I 
I 

MUX 

SEL el 0 .. s-l t 

• We select a function f SEL: I ~ W 

• Total function Ftot: 10 .. s-l t ~ (I ~ w) 
leading to Ftot (SEL) = f SEL 

• Alternative representation of total 
function: Ftot: I * 10 .. s-11 ~ W 

• Can each of the functions fSEL : I~W 
be realized in a simpler way? 

-5.46-

It becomes interesting if we allow the input values of 
the multiplexer to be results of functions. We have 
expressed this schematically in figure 5.46. We now 
have an input domain, I, and a collection of s 
functions fo to fs-1' 

All of these functions map their input set to the value 
set W of the multiplexer inputs. We select one of the 
functions fj with the selection input SEL The total 
system can be described by mapping the value set 
of the selection input, SEL, onto a set of functions 
that map the input domain I onto the output range 
W, in a way that we select one of the functions fSEL 

for each value of the section input SEL An 
equivalent representation is the mapping of the 
product of the input domain I and the value range of 
the selection input to the output range W. We have 
turned the realization of a function into the 
realization of another s functions. We hope now that 
the realization of each of these functions is simpler 
that the realization of the original function. 

5.28 

m 
BINARY lOUT OF 2 

MULTIPLEXER (1) 

• Domains: out € W::::~ 0.11 
SEL € ~ 0,11 

m 

• Assume 1= ~O,ll 
n 

• Accordingly 
Ftot : 10, llm ~O 0, qn ~l 0, 10 

n m 
Ftot :IO,ll * lo,q ~IO,lt 

• Assertion 
A combinational binary system with 

F: 10, nn+m ~ 10, II ,n~O, m>O 

can be realized with 

1 out of 2m multiplexer 

-5.47-

Finally, considering our switching functions, we turn 
our attention to the binary multiplexer. Figure 5.47 
shows that for this multiplexer is it valid that the 
output has two values, i.e. it is binary. Furthermore, 
the 1 out of 2m multiplexer has m binary selection 
inputs. The value of SEL is now coded in an n-tuple. 
If we form the value range of the inputs, I, from a set 
of n-tuples, then we can realize any arbitrary 
combinational switching function of n + m inputs with 
a binary multiplexer. The precise assertion is shown 
in figure 5.47. 



BINARY lOUT OF 2
m 

MULTIPLEXER (2) 

• Accordingly 
n 

F : ~ 0, q ~ i 0, 1 t 
can be realized with 

F: ~O, qm ~OO, qn-m~~o, q) 
alterna tively: 

F: ~ 0, qm ~ (F') 

n-m 
F ' : ~ 0, 11 ~ ~ 0, q 

m 
(2 different functions F') 

We distinguish 

• n-m >0 
m . 

2 funchons of n-m variables 

• n-m =0 
m 

2 functions F': ~ l: I-----? ~ 0, q 
These are constant values! 

-5.48-

In figure 5.48 we have formulated this in another 
way. Let F be a mapping of an n-tuple to a binary 
value. This function can then be realized with the 
help of a 1 out of 2m multiplexer selecting a function 
from a set of functions mapping an (n-m)-tuple to 
{O,1}. This set contains a maximum of 2m different 
functions, F'. Now we can distinguish between two 
cases. First n-m may be larger than o. Then we have 
2m functions of n-m variables. If n-m equals a then 
we have 2m functions that form a mapping from an 
empty set to {O,1}. These are constant values. 

REALIZATION WITH MULTIPLEXER-EXAMPLE (1) 
• Function: is x a weekday? 

• Truth table 

X2X1XO f X2X1XO f 
000 0 100 1 
001 1 101 1 
010 1 110 0 
o 1 1 1 111 -

x2 rux 
2 0 

Xl o g7 Xo 

0 0 
1 1 
1 2 f f: I 0, 11 
1 3 
1 4 
1 5 
0 6 

7 

f :!0,1I
3
-Od-!0,10 

-5.49-

Figure 5.49 shows an example. There the function 
"is x a weekday" is realized using a 1 out of 8 
multiplexer. Notice that the three variables x2 to Xo 
are now necessary for the control of the selection 
input of the multiplexer. The functions of the other 
inputs are thus constants. We now see that we can 
place the function values of the truth table on these 
inputs. 

5.29 



REALIZATION WITH MULTIPLEXER- EXAMPLE (2) 

lout of 4 multiplexer with selector x2xO 

lS2 X0 1Xl f 
o 0 I 0 0 

I 1 1 o t 10 1 
: 1 1 

1 0 10 1 
I 1 0 

1 110 1 It 

mux 
x2 1 ~ 0 
Xo ---...; 0 S G"3 

xI - 0 
1 0- 1 
Xl 0- 2 
1 - 3 

~ f' 
0 xl 

~ f'=1 
I 

~ f; = Xl 

~ f'=1 
4 

f : ! O.lr-~O 0.1I~! 0.11) 
-5.50-

In figure 5.50 we have realized the same function 
using a lout of 4 multiplexer. We now need two 
variables to select a function of a third variable. In 
our example we chose ~ and Xo as selection 
variables. By writing the truth table somewhat 
differently we can directly read from it which 
function of x1 must be set on the other inputs of the 
multiplexer. 

5.30 

REALIZATION WITH MULTIPLEXER-EXAMPLE (3) 

• lout of 2 multiplexer with selector Xl 

Xl IX2 Xo f 
01000 

I 0 1 1 
I 1 0 1 
: 1 1 1 

110 0 1 
I 0 1 1 
I 1 0 0 
: 1 1 

X2 ~1 

Xo 

Xl -

--x2 

mux 
G 

0 t-----o f 

1 

f :10. n -7(10, 1I~!0.1D 
-5.51-

In figure 5.51 we have finally once more realized the 
same function, but now with a lout of 2 multiplexer 
where we have used the variable x1 as a selection 
variable. By rearral1ging the truth table we can once 
more determine the function that we have to set on 
both of the other inputs of the multiplexer. Notice 
that the function fo' is 1 if either ~ or Xo are equal to 
1. The function f/ equals 1 if ~ equals 0 (after 
making the correct choice of the don't care value). 
Check this for yourself. This produces the realization 
shown in figure 5.51. 

Problem 5.5 (5.5) 
For the realization of the function Bis x a weekday" 
using a 1 out of 2 multiplexer, we can also choose 
x2 or Xo as selection variables instead of Xl' 

Determine for both of these alternative realizations 
what the other multiplexer input functions must be. 



The 

exclusive-OR 

function 

-5.52-

5.6 The exclusive OR function 

Next to the and, or, nand and nor-gates there is a 
fifth gate that cannot be ignored in a chapter about 
the realization of switching functions. This is the 
exclusive-or gate. This gate realizes the exclusive-or 
function. Figure 5.53 shows the truth table of the 
exclusive-or function of two variables and its 
corresponding symbol. We say also 

f = a exclusive-or b 
Or: 

f = a $ b 

We see that the function equals 1 if a is not equal to 
b, or: 

f = a'b + ab' 

THE EXCLUSIVE-OR FUNCTION (1) 
• 2 variables 

a b f 
o 0 o 
o 1 
1 0 
1 1 

1 a -f2k-tlL) = a $ b 

·3 

1 b~-
o 
f- 5 1 if a f b 
- ~ 0 otherwise 

f= ab + at> 
variables 

abc 

000 
001 
010 
011 
1 0 0 
101 
110 
111 

f 
0 
1 
1 
0 
1 
0 
0 
1 f-5 1 if 2k+l inputs are 1 

- ~ 0 otherwise 
-5.53-

Otherwise the function equals o. We can also define 
an exclusive-or function for more that two variables. 
In figure 5.53 we have the truth table for the 
exclusive-or function for three variables. We can 
now say that the exclusive-or function is equal to 1 
if an odd number of inputs is equal to 1. This odd 
number is expressed with 2k + 1. This explains the 
symbol of the exclusive-or function. 

5.31 



THE EXCLUSIVE-OR FUNCTION (2) 

• Assertion: 
An exclusive -OR function 
of n variables 

has a minimal SOP form with 

2 0-1 product terms 

• This is the SOM form 

-5.54-

The exclusive-or function has a drawback which is 
summarized in the statement of figure 5.54. An 
exclusive-or function of n variables has a minimum 
sum-of-products form with 2""1 product-terms. All 
these product-terms are minterms. These minterms 
are formed by all binary n-tuples with an odd 
number of elements that are equal to 1. These 
minterms can not be combined into a smaller 
number of product-terms. Consequently, an 
exclusive-or function of a larger number of variables 
can not be optimally realized as a 2-layer and-or 
network. Indeed, we need a separate and-gate for 
each minterm. 

5.32 

THE EXCLUSIVE-OR FUNCTION (3) 

Realization as a binary tree 

• Assume f=x eX e ..•. EIlX EIlX e .... EIlX 
1 2 n-l n 2n 

Let f
l
=x

1
ex

2
e .... ex

n 
and fh'xn+l e .... ex2n 

• The following holds: 
- if an odd number of terms xl" x2n 

have the value 1 

- then f=l 

• Hence f= 1 if either 
an odd number 

and 

an even number x n+1" x2n =1 
or 
an even number 

and 
an odd number xn+1" x2n =1 

• Accordingly f=1 if either 
f 1=1 and f h= 0 

-5.55-

luckily, it is possible to realize exclusive-or functions 
of many variables as a binary tree. This is shown in 
figure 5.55. There our starting point is an exclusive­
or function of 2n variables. This is split into two 
exclusive-or functions f, and fh, each having n 
variables. See figure 5.55. We know that the function 
f = 1 if an odd number of variables x1 to x2n = 1. 
This condition can be translated into equivalent 
conditions for the variables Xl to xn and the variables 
xn+1 to x2n (see figure 5.55). We can then conclude 
that the function f equals 1 if the function f, = 1 and 
fh = a or f, = a and fh = 1. If we compare this with 
our exclusive-or function, then we see that f equals 
fl Ea fh. Thus, the first layer of our binary tree is 
formed by an exclusive-or gate. 



THE EXCLUSIVE-OR FUNCTION (4) 

d 
e 

Example 1 

f = aEBbEBcEBdEBeEBg 

a 
b 
C 

2k+1 

-5.56-

f 

The resulting f, and fh can now be further divided in 
the same way into smaller exclusive-or functions. By 
using 2 and 3-input exclusive-or gates we can 
realize exclusive-or functions of more variables, such 
as the shown in figure 5.56. 

THE EXCLUSIVE-OR FUNCTION (5) 

Example 2 - ADD2 module 

ci u v sm co 
00000 
o 0 1 1 0 
01010 
01101 
10010 
10101 
11001 
11111 

sm= cieuev 

U~k+l 
~ 2k+l sm 

Cl 

co = z:: (3,5,6,7) 

=ciouov + ciouov + ciouov + ciouov 

= u v + ci ( u e v ) 
-5.57-

We shall now discuss two practical examples where 
the exclusive-or function is quite suitable. First we 
have once more the truth table of our ADD2 module 
in figure 5.57. 
Comparing the column of the sm function with the 
truth table of an exclusive-or function of three 
variables, we see that sm is given by the exclusive­
or of ci, u and v: 

sm = ci EB u EB v 
Thus, the sum output (sm) can be realized with a 3-
input exclusive-or gate, or two 2-input exclusive-or 
gates as shown in figure 5.57. We can also see that 
when realizing the carry-out output, co, we can also 
make use of the exclusive-or between the variables 
u and v. Because we have already used this 
exclusive-or function to determine the sum, we can 
do with an or-gate and two and-gates for the 
realization of the co function. 

5.33 



THE EXCLUSIVE-OR FUNCTION (6) 

Example 3 - full adder 

u 
V I 

I 
I 
I 
I I 

~aJ.r acTdef '--+....:.:.::.::........::=~--I co 

ci------' 

half adder: 

u v s c 
o 0 0 0 
o 1 1 0 
1 0 1 0 
1 1 0 1 

-5.58-

Figure 5.58 shows the whole realization of the ADD2 
module. We recognize the two exclusive-or gates for 
the determination of the sum, sm, and the two and­
gates and an or-gate for the determination of the co 
function. Such a circuit is called a "full adder". 

5.34 

The circuit surrounded by a dotted line consisting of 
an exclusive-or gate and an and-gate is called a 
"half-adder". Figure 5.58 shows the truth table ofthis 
half-adder. We see that this half-adder determines 
the binary sum of two bits, without adding a carry 
bit from a previous addition. 



8- BIT ADDER AS AN 8- ITERATIVE CIRCUIT 

Uz Vz 

Sz 

-5.59-

Figure 5.59 shows how to realize an a-bit adder as 
an a-iterative circuit of full adders. 
When storing and transferring binary n-tuples 
sometimes errors can happen, disturbances occur. 
One or more elements of the n-tuple can get 
another value. 

Frequently, an extra bit is added to such an n-tuple 
to be able to detect whether an error occurs. The 
value of this extra bit is chosen such that the total 
number of elements in the (n + 1 )-tuple that have the 
value 1 are even (or odd). We are then considering 
an even (or odd) parity. The question of odd or even 
parity (= number of elements that have the value 1) 
of an n-tuple, can be answered using an n-input 
exclusive-or function. 

5.35 



PARITY GENERATOR 

• Parity generator 

2k+1 

-
i o. lfn

+1 

output 
has even 
parity 

• 74280: 9-input parity generator/checker 

a 2kt1 
b 
c 

even 
d 2k+1 
e 
f 

odd 

~ 
2k+l 

-5.60-

Indeed, this function has the value 1 if an odd 
number of inputs have the value 1. i.e. the n-tuple 
has an odd parity. We see in figure 5.60 how we can 
make an (n + 1 )-tuple with an even parity from an n­
tuple using an n-input exclusive-or. Also we have in 
figure 5.60 the principle schematic of the TTL 74280 
building block. This is a 9-input parity 
generator jchecker. We see that the necessary 9-
input exclusive-or function is realized using a 2-layer 
tree structure with three input exclusive-or gates. We 
can simply say that an exclusive-or gate with 
inverted inputs is equal to an exclusive-or gate with 
an inverted output. 
If we invert the inputs of an exclusive-or gate. we 
actually determine whether the number of zeroes at 
the input is odd. 
Example: 001 # zeroes = 2 (even) = not odd 

# ones = 1 (odd) 
So inverting the inputs inverts the xor function; but 
this only holds if there Is an odd number of inputs! 

5.36 

SN74S280 PARITY GENERATOR/CHECKER 

r-------------------, , , 
a , , 

, I 

d 

I , 

, , 
I 
I 
I 
I 
I , , 
I 
I L ____________________ J 

Source: Texas Instruments TIL Devices 

-5.61-

In figure 5.61 we find the SN74S280 schematic. 
which is an edited version of the schematic in a 
Texas Instruments data book. In this schematic we 
have shown the 3-input exclusive-or functions with 
a dotted line. We see that these functions are 
realized in the sum-of-minterms form. We also notice 
that a direct implementation of a 9-input exclusive-or 
function in a sum-of-minterms form will require a 
total of 256 and-gates. A tree realization is 
significantly advantageous. 



5.7 Summary 

In this chapter we have discussed the realization 
possibilities of combinational binary functions. 
Because all combinational binary functions have a 
sum-of-minterms form, a realization using and-gates 
and or-gates is always possible. The realization of a 
sum-of-minterms form can also be done using a 
programmable building block, the read-only 
memory or ROM. We have seen that in many cases 
the sum-of-minterms form can be converted into a 
sum-of-products (SOP) form, that can generally be 
realized with less gates and thus is cheaper. 
Searching for the SOP form with the smallest 
number of product-terms is called minimization. 
Programs are available for this. A minimal sum-of­
products form leads to a cost-effective 2-layer and­
or realization. Here also we can use programmable 
building blocks. We have discussed the PLA and the 
PAL We have also seen that we cannot or do not 
want to always specify the value of the function for 
all the possible input combinations. We then speak 
of an incompletely specified function. For specific 
input combinations the function value is a don't 
care. Minimization procedures make use of these 
extra degrees of freedom to find an optimal 
realization. We emphasize again that we have 
occupied ourselves with the sum-of-minterms form 
and the sum-of-products form in chapter 5. For each 
combinational binary function there also exists a 
product-of-maxterms form and several product-of­
sums forms. These lead to the dual or-and 
realization. 

Furthermore, we discussed the realization of 
functions by exclusively using nand-gates or nor­
gates, instead of and-gates and or-gates. Both gate 
types are simpler and cheaper to implement with 
electronic devices than the and-gates and or-gates. 
Due to the availability of programmable building 
blocks, such as PLAs and PALs, the use of the 
multiplexer as a universal building block is pushed 
into the background. Actually, as we have seen, the 
multiplexer offers good possibilities for the 
realization of general combinational binary functions. 
Finally, in this chapter we have introduced a fifth 
type of gate: the exclusive-or gate. The exclusive-or 
function plays an important role in the addition of 
two binary coded numbers, and in the detection and 
correction of errors. We have shown this in a 
number of examples. 
In the previous chapters we have discussed how we 
can specify combinational systems, i.e. systems 
without memory. Along the way of systematic 
hierarchical design methodology we can divide such 
a system into a number of smaller subsystems. If 
these subsystems are sufficiently simple we can 
map them onto an equivalent combinational binary 
system via a coding step. The behaviour of such a 
system can be described in a truth table or a 
function table or by means of switching algebra 
expressions. Finally, we can realize the resulting 
switching functions using standard building blocks, 
such as the and-gate and the or-gate, or using 
programmable building blocks. Herewith we have 
completely run the path from specification to 
realization for combinational systems. We finally 
concluded that obviously any memoryless digital 
system is in principle realizable. 

5.37 



6 

Sequential Systems 

Behaviour 

and 

Architecture 

-6.01-

6 Sequential systems 

In chapter two we have already stated that, next to 
combinational systems, sequential systems play an 
important role. Both types of system differ from each 
other by the fact that in combinational systems the 
past plays no role; in sequential systems, however, 
it certainly does. 

Sequential systems are not characterized by a 
simple functional relation between momentaryvalues 
on the input and output. Of course, input and output 
values are related to each other, but previous input 
values are essential in this respect. 

6.1 



SEQUENTIAL SYSTEM 

IRO 

• The system has memory 

- the response is depending on 
current and previous input values 

- a certain input value occurring at 
different times can lead to 
different output values 

-6.02-

We say (figure 6.02) that the sequential system has 
memory functions. The momentary value on the 
output is depending on the current and previous 
input values. The system keeps track of what the 
previous input values were. An important 
consequence is that in a sequential system a certain 
input value can lead to several different output 
values at different times. In chapter two we said that 
the repeated selection of the same digit of a 
telephone number leads to different reactions in a 
telephone exchange, being a large sequential 
system. 

6.2 

SEQUENTIAL SYSTEM 

Running average 

EXAMPLE 

• Input: 
I = lO . .151 

• Output: 
o jO .. 15! 

e Function: 
z· = L(x+x. l +X· 2 +X· 3+ X 4+ X, 5 )/6J 1 L 1 1- 1- 1- 1- 1-

with zi €O, Xi € I 

• zi: 
output value at time i 

running average of the 
previous 6 input values 

eExample 
Xi 0 0 0 0 0 0 1 2 3 4 5 6 7 8 
Zi : 0 0 0 1 1 2 3 4 5 

~i 

Xi 9 10 9 8 7 6 5 4 3 2 1 0 0 0 

Zi 6 7 8 8 8 8 7 6 5 4 3 2 1 1 
~l 

-6.03-

Figure 6.03 shows another example of a sequential 
system. Let the domain of the input and output 
values be defined by the integer numbers from 0 to 
15. We can then determine the running average of 
the last 6 input values by adding the current input 
value to the 5 preceding ones, and dividing the 
whole by 6. We must still round the result to an 
integer number. Notice that the system must save 6 
input values to be able to compute the momentary 
output value. In figure 6.03 we also show the output 
process as a response to the given process of the 
input values. We begin first with the introduction of 
6 zeroes. Notice that we only know after the sixth 
zero what the output will be. The following output 
values can be simply calculated from the given input 
values. Notice that here we are clearly considering 
a sequential system. The output Zj is not only 
depending on the current input value but also on the 
previous ones. So it can happen that a certain input 
value can lead to different output values. Notice that 
the time - in the sense that some actions occur 
before others - now plays an important role. The 
order in which input values are introduced 
determines the output value. 



Finite 

State 

Machine 

(FSM) 

-6.04-

6.1 Finite State Machine (FSM) 

Each digital system for which the output value is 
determined by the past input values, is a sequential 
system. This is somewhat problematic: although the 
value set of the Inputs and outputs have a finite 
number of elements, this does not say anything 
about the relation between the input and output 
values. A specially interesting question is how much 
of the past we must remember to determine the new 
output values. In a number of cases it appears that 
this amount of remembered information is so large 
that the specification and realization of the 
sequential system becomes a problem. 

SEQUENTIAL SYSTEM - STATES (1) 

• We limit ourselves to sequential 
systems with a limited memory 

• Only a limited number of events 
can be remembered 

• Memory operation 
= recording an element m a finite 

set S = l·.··l 

• S=l .... ~ is a set of 
states 

• At a certain moment the system 
can be in one of those states 

• When an input changes {new event!} 
the system goes to a new state 

-6.05-

To avoid this sort of problem, we limit ourselves in 
this course to an important subclass of sequential 
systems, viz. those for which the memory has a 
limited size, i.e. only a limited number of items can 
be stored (see figure 6.05). More precisely, we 
formalize the memory function as the saving of an 
element belonging to a finite set. An event which we 
have to remember can be specified by an element 
of this finite set S. The elements of the S set are 
called the system states. When a special input value 
(a new event) occurs, the system assumes a next 
state. The fact that the system is in that next state, 
is a result of the occurring event, reflecting that the 
corresponding input value has occurred. 

6.3 



SEQUENTIAL SYSTEMS - STATES (2) 

1=1'4 8=1 .... 1 ~k.1 

• Assume that a number of input values 
aoAl A2,a_3,a_4 , .. with ai € 1 

puts the system into a state 
So € S 

• Assume that another series of input values 
bo,b_1 ,b_2,b -3' b_4 , .. with bi € I 

puts the system into the same state 
So € S 

• This means the system cannot distinguish 
the two input series 

• Responses to 
cl'aO,a_j,a_2,a_3,a_4'" with cl,ai € 1 

and cl'bO,b_l,b_2,b_3,b_4'" with cl'b
i 

€ I 
are identical 

• The past is included in the current 
state of the system 

-6.06-

The sequential systems that we approach in this 
course are thus defined as three finite value sets. In 
figure 6.06 these are expressed as I for the set of 
input values, S for the set of states, and 0 for the 
set of output values. The present and previous input 
values determine the system's current state. We can 
also say that a time series of input values puts the 
system into a determined state (see figure 6.06). 
With a limited number of different input values (finite 
value set) we can make a large number of different 
series of input values. 

Check for yourself. for example. in how many 
different ways we can make a series of ten digits 
from the digits 0 to 9. Because our system only has 
a finite number of states each series of inputs values 
cannot put the system in yet another new state, as 
there are too few of them. Many different sequences 
of input values will put the system in the same state 
as So (see figure 6.06). The system contains 
insufficient input states to distinguish the series ao .... 
and bo .... The system does not know which of the 
series ao.... or bo .... are responsible for the current 
state so' Consequently, if for both sequences the 
following value is c" the system produces an 
identical response. We say that the past, the series 
of input values that has occurred is completely 
taken into account in the current system state. Only 
the current state determines what the system's 
response will be upon a following input value. 

6.4 



SEQUENTIAL SYSTEM STATES (3) 

H~ S = !H! h:!H! 
• Assume thal a number of inpul values 

io ,i_I ,i_2 ,i_3 , ..... with i, €I 

puts the system into a state 

So € S 

• A next input value i I € 1 
puts the system into the next state 

Sl € S 

• Next state function: 
NS: S * I -?>-S 

• An element S m will be derived from 
each pair (s k,i, ) 

current state: Sk€ S 
current input i1€I 

- next slate: Sm€ S 

-6.07-

In figure 6.07 we have summarized this behaviour of 
our sequential system again. We shall call such a 
system a finite state machine. As we have seen, a 
sequence of input values puts the system in a 
specific state. The following input value then puts 
the system in a next state. This following state is 
depending on the momentary input value i1 and the 
past, that is taken into account in the current state 
so. We shall exclusively discuss our approach for 
finite state machines for which the next state is 
given as a function of the current state and the 
current input value. Thus, we are considering the 
next state function NS. This function relates an 
element sm to each pair (Sk' il) introducing the 
following system state. This following state function 
determines the behaviour of our sequential system. 
Furthermore, it is not always necessary that the new 
state sm has to be different form the old state Sk' In 
that case the machine's state does not change 
under the influence of the new input value il • 
Consider, as an example, the sequential system for 
determining the running average. 

STATES EXAMPLE (1) 
Running average 

• Input sel: {o .. 151 
• The state is determined by the 5 

previous input values X·I····· X·5€{ 1- • 1-

• Accordingly 
- set of slates 

S = 1*1*1*1*1 
- the current state can be 

defined by 
s. = (x. l'X . ., IX. 3 ,x .• IX. 5) I 1- 1-, 1- 1-.. I-

• Next state function 
NS: S * I ~ S 

• However 
(Si ,Xi ) ~ Sit! 

- S has 16 5 = 1.048.576 elements 
# elements of next state function 
domain = #(S*I) ~ 16.10

6 

- We have to specify the next state 
16 million pairs (s .. x. ) 

1 J 
-6.08-

In figure 6.08 we have again expressed that the set 
of input values comprises the integer numbers from 
o to 15. First we ask ourselves what is the set of 
states for the system. We know that the system 
must save the previous 5 input values to be able to 
determine the running average. 
It is convenient to denote the momentary system 
state by this 5-tuple. The total set of states is then 
formed by all 5 digits, where the digits have a value 
from 0 to 15. If we want to describe the behaviour of 
our system, we shall have to begin with the 
specification of the next state function NS. Here we 
really have a problem. As shown the state set S has 
in total 165 = 1 ,048,576 elements and the domain of 
the next state function has itself about 16 million 
elements. This means that we need to specify the 
following state for 16 million pairs (s;, xi)' This is an 
impossible exercise. We cannot specify such a 
machine in this way. Thus, the conclusion must be: 
it is far from true that any sequential digital system 
is describable and thus realizable as a finite state 
machine. Obviously we need to have other methods 
to design these types of machines. We shall return 
to this in the following chapter. 

6.5 



ST ATES - EXAMPLE (2) 
Electronic digit lock 

-Function: 
the lock opens if 4 digits have 
been entered in the good order 

- Input set: 
10 .. 9~ 

- Se t of sta tes: 
S {no digits OK, 1 digit OK. 

2 digits OK, 3 digits OK, 
4 digits OKt 

10D.1O.2D,3D,4D~ 
-Example: 

correct sequence of digits = 194 B 
Next state function: 

NS: I (OD,l) -7 1D, 
(1O,9) -7 2D, 
(2D,4) -7 3D, 
(3D,B) -7 4D, 
(Si ,Xj ) -70D for other 

s i E S and x j El ~ 
-6.09-

As an example of a systems that is realizable as a 
finite state machine we identify the electronic digital 
lock. In figure 6.09 we go further into the function of 
this digital lock. The point is that the lock may only 
open if 4 correct digits are input sequentially. If a 
wrong digit occurs in a series of 4 digits, the system 
returns back to the state where no correct digits 
were input. We see that the set of input values I 
consists of the digits from 0 to 9, and the set of 
output values consists of the closed or open state of 
the lock. We indicate how many correct digits are 
input with the system's possible states. 

The set of states S is thus given by: "no correct 
digit", "one correct digit", "two correct digits", "three 
correct digits" and "four correct digits". We 
abbreviate this with the symbols OD to 4D. If 1948 is 
the correct sequence of input digits, we can specify 
the next state function as shown in figure 6.09. 
Initially we are in the state OD; no correct digit is 
received. Only the input of the digit 1 puts us into 
the state 1 D. The input of any other digits does not 
cause any state change. In state 1 D the input of the 
digit 9 puts the system in state 2D: two correct 
digits have been recorded. AU other digits take us 
back to state 00. You can check the correctness of 
the given specification for yourself. 

6.6 



NEXT OUTPUT FUNCTION 

1= I. 
.The new output value Zi€O is 

determined by the current and 
previous input values xi' Xi-[' x i- 2 , ... € I 

• Previous input values (the past) are (is) 
taken into account in the current state Sj€S 

• Next Output function 
NO: S * I ........:;,. 0 

• An element Z m will be related to 
each pair (sk,i l ) 

- current state: Sk€ S 
- curren t input: i € I 
- next output value: Z~€O 

• Example: digit lock 
NO: ! (3D,8) -7 open, 

(Sj .xi) -7 locked for other 
(si ,xj ) € S*I 

-6.l0-

In the behaviour of sequential systems. states are 
not the only important issue. The output values are 
even more important. These output values that 
change in response to the changing input values are 
what we, the users of the sequential system, receive 
and observe. 
In general we can say (see figure 6.10) that the new 
value Zj on the output is determined by the new 
input value and the previous input values. Thus, the 
past plays a role here. This past is taken into 
account in the system's current state. Thus, from 
this current state together with the new input value 
a new output values is determined. We limit 
ourselves to systems for which this relation is given 
by a function, the Next Output function NO. This 
function, representing the new output value of the 
system, relates an element zm to each pair (Sk' i,). As 
an example. figure 6.10 shows the next output 
function, NO. of our digital lock. This function is very 
simple. Only if 3 correct digits have been input (i.e. 
we are in state 3D). then the lock will be opened 
after the input of the digit 8. 

FINITE STATE MACHINE 

• Sequential system 

I .. ··t -I=l·,· ,l 

• Input set I with limited number of elements 

• Output set 0 with limited number of elements 
• State set S with limited number of elements 

• Next State function NS: S * I -7S 
• Next Output function NO: S * I -70 

• Finite State Machine (FSM) 

defined by 5-tuple 

FSM = (r.S.O.NO.NS) 

-6.11-

Thus, the current state. 3D, together with the new 
input 8 produces the new output "open". In all other 
cases the new output is equal to "locked", 

Summarizing. we see in figure 6.11 that we limit 
ourselves. in relation to sequential systems in this 
course, to systems which can be described by the 
fof/owing 5 items: 

An input set I with a finite number of elements 
An output set 0 with a finite number of 
elements 
A state set S with a finite number of elements 
A next state function NS describing the relation 
between input and state 
A next output function NO describing the 
output value 

We call such a system a finite state machine. an 
FSM. Such an FSM is defined by the 5-tuple (I. S. 0, 
NO, NS). We note that the theory of finite state 
machines goes further than the scope of this course. 

6.7 



ASYNCHRONOUS AND SYNCHRONOUS 
SYSTEMS 
Experiment - digit lock 

• Initial state: 
• Input digit: 

so=OD 
xo=l 

to next state: 
input digit does 

s 1=1D 
not change: 

xo=l 
to next state: s2=OD 

• Accordingly xo=l leads to 
s ( OD ~ ID ~ OD ~ ID ~ OD ..... 

Asynchronous beha~our 

• To avoid uncontrolled state 
transistions we introduce a 
synchronisation mechanism: 

The next state and the next output 
should only be determined when a 
command has been recieved 

Synchronous system 
-6.12-

At the end of this paragraph we shall perform a 
small mental experiment. Let us consider the 
electronic digit lock (figure 6.12). Assume that the 
system is in the initial state So = 00. i.e. no correct 
digits have been input. If we now put the digit 1 on 
the input, then we know that the system will go to 
the following state Sl = 10. Arriving at this state, the 
value of the input will in general be unchanged and 
thus still equal to the digit 1. Actually, the next state 
function shows for this situation (= input value + 
state) that the following state must be 00. Thus, the 
system goes to its next state S2 ::: 00. We see that 
we get, as a result, a system that remains alternating 
(bouncing) between both states. 00 and 10. The 
system does not arrive at a stable state. Systems 
that immediately react on inputs are called 
asynchronous systems. 

6.8 

Obviously the manner in which we specify the next 
state function is not suitable for the definition of that 
sort of asynchronous systems. I n this course we 
shall limit ourselves to synchronous systems. Such 
systems have a synchronization mechanism. This 
mechanism ensures that after each reception of an 
instruction the system only determines the following 
state and following output one time. Applied to our 
digit lock, this means the following: In the initial state 
So ::: 00 we set the digit 1 on the input. We then 
give the system the instruction to go to the next 
state. The system thus goes to a state Sl 1 0 and 
waits there for an instruction to go to the following 
state. Now we have the time to change the value on 
the input before we supply this new instruction. 
Later we shall see how we can simply implement 
this type of system. 



Behavioural Description 

of 

Finite state Machines 

-6.13-

6.2 Behavioural description of finite state 
machines 

Also in the design of sequential machines we make 
use of the structured hierarchical design 
methodology. That is to say, we have to ask 
ourselves (in the case of sequential systems): "What 
must our system do?", and only after that we look 
for the answer of the question: "how do we realize 
such a system?". Thus we must concern ourselves 
with the behavioural description, i.e. the specification 
of our sequential system. Here we limit ourselves, as 
mentioned earlier, to finite state machines. The fact 
that time plays an important role in the behaviour of 
our sequential systems makes the behavioural 
description more complex. In programming 
languages such as the language used in this course 
(Pascal), we need language constructs to show that 
the system must wait for the external occurrence of 
commands. The next state and output can only be 
set after receiving such a command. We shall 
include two facilities specially for this. First, we 
assume the availability of a new standard procedure: 
WAIT FOR INPUT. - -

SYNCHRONIZATION (1) 

• New procedure in Pascal: 
- name: 

WAIT_FOR_INPUT(VAR <variable>: <type» 

- function: 
*wait until a new input value 

is available 

*assign this value to the 
argument <variable> 

• Example: 

SYSTEM COPY; 
VAR In,Out: AnyType; 
BEGIN 

REPEAT 
WAIT _FO R_INPUT( In); 
Out: =In 

FOREVER 
END. 

-6.14-

If we use this standard procedure in a behavioural 
description, we want to indicate that in this place the 
system must wait until a new input value is available. 
This new input value is then assigned to the 
arguments given to the standard procedure. As an 
example of the use of this standard procedure, 
figure 6.14 shows a description of a system that only 
copies the input value to the output. With the 
REPEAT FOREVER construct we show that we here 
are considering sequential system behaviour. The 
description is continually repeated in time. What is 
actually repeated infinitely? 
We see first the WAIT _FOR _INPUT procedure, 
where we wait until a following input value is 
available. This new value is then assigned to the 
variable In, and in the following statement copied to 
the output. Here the system is going to wait again 
for the following input value. 

6.9 



SYNCHRONIZATION (2) 
• New data type in Pascal: 
• New procedure in Pascal: 

-Name: 

EVENT 

WAIT_FOR_EVENT( <variable>: EVENT) 
- function: wait until a new event 

with the name <variable> has 
happened 

• Example 1 - pushbotton: 
- event: pushing a button 
-event variable: Pushbutton 
- waiting for this event to happen (Pascal): 

WAIT_FOR_EVENT (PushButton) 
• Example 2 - register FSM 

SYSTEM REGISTER; 
VAR In, Out: Any Type; 

C loc k: EVENT; 
BEGIN 

REPEAT 
WAIT_FOR_EVENT(Clock); 
Out: In 

FOREVER 
END. 

-6.15-

Sometimes we also want the sequential system to 
wait for external events, such as a push-button or 
the interruption of a light beam. Here the input value 
is not interesting; the fact that the event happened 
is much more important. To describe such a 
situation in our behavioural description, we need a 
new standard type (see figure 6.15). We shall call 
the new standard type an EVENT. Thus we can have 
in our description variables of the type event. We 
add here an extra standard procedure, the 
WAIT_FOR _EVENT procedure. With this procedure 
we express that we want to wait until a new event, 
corresponding to the variable name, has occurred. 

A variable with the name "button" can indicate the 
event "the button will be pushed". Figure 6.15 shows 
how we can simply describe a register using this 
mechanism. A register is a very simple finite state 
machine that does not do anything except, when 
given a command, saves the input value in its 
memory and in the same time puts this value on its 
output. The command is given via a special input 
which is frequently call clocked input. Accordingly, 
we have defined in our description a variable clock 
of the type EVENT. The description is very simple. 
We wait for the occurrence of the clock event, and 
then we copy the input value In to the variable Out, 
and it is kept until the next clock event. Notice that 
we shall not further specify or use the value of the 
clock, whatever it may be. This value is not 
interesting from the viewpoint of our system 
behaviour. 

6.10 



FINITE STATE MACHINE - SPECIFICATION 
• FSM 5-tuple: FSM = (I,S,O.NO,NS) 
• Define: input set I 

state set S 
- output set 0 

• Specify: - next output function NO 
- next state function NS 

• Example - digit lock: 
TYPE DIGIT 0,.9; 

STATES = (OD.1D,2D.3D.4D); 
LOCK = (open. locked); 

VAR Number: DIGIT; 
Stale: STATES; 
Output: LOCK; 

BEGIN 
REPEAT 

WAIT_FOR_INPUT (Number); 
SeLNexLOutput; 
Set- Next-State 

FOREVER 
END. 

-6.16-

Now we know how to define synchronization with 
the external world in our description. We can now 
proceed to the description of the behaviour of 
various finite state machines. In figure 6.16 we show 
what is needed to determine this behaviour. First we 
see that the input value set. the output. and the 
states must be defined. When we have done that we 
can specify the next output (NO) and the next state 
(NS) functions. We shall explain them both using a 
number of examples. 
As a first example we show in figure 6.16 the 
behaviour of our electronic digit lock. This 
behavioural description begins with the definition of 
the input set. the state set and the output set, using 
type declarations. Subsequently we include the 
declaration of the input variable, the state variable 
and the output variable. The core of the behavioural 
description is very simple. We first wait for a new 
input digit. Then we determine the following output 
value and the following state. In the behavioural 
description we have shown this using two 
procedures: Set Next Output, and Set Next State. 
We notice also that a language. such as Pascal. is 
sequential. The sequential writing of both procedure 
calls suggests that both procedures are executed 
after each other. 

DIGIT LOCK PROCEDURES 

PROCEDURE SeLNext_Output; 
BEGIN 

IF (State=3D) AND (number=8) 
THEN Output : = open 
ELSE Output: locked; 

END; 

PROCEDURE Set_Next_State; 
BEGIN 

CASE State OF 
aD: IF Num ber= 1 

THEN Slate: 10 
ELSE Slale: aD; 

10: IF Number=9 
THEN State: 2D 
ELSE State: aD; 

2D: IF Number=4 

3D: IF Number=8 

4D: State: ==OD 
END 

END; 
-6.17-

Thus, first calculating the following output and then 
determining the following state. The execution does 
not necessarily have to be sequential. In many 
cases the determination of the following output and 
the determination of the following state can be 
parallel, i.e. will take place in the same time. That is, 
we do not have to first determine the following state 
and then (afterwards) determine the next output. 
Indeed, for the determination of the new output 
value the current (momentary) state value is 
necessary. Figure 6.17 shows both procedures. 
Compare this behavioural description with the 
previously given functional specification for the next 
output function in figure 6.10 and for the next state 
function in figure 6.09. Notice that these behavioural 
descriptions are combinational functions. and that 
we do not need a REPEAT FOREVER construct. The 
given behavioural description are self-explanatory. 

Problem 6.1 (6.1) 
In the description of the Set Next State procedure 
(figure 6.17) the IF statements are not filled in for 
the cases ·State = 2DM and ·State = 3D", Complete this 
description by filling in these statements. 

6.11 



MODULO- N COUNTER 

• Output sequence: 

.... 0,1,2 .... ,n-2.n-l.0,l,2 .... 

• Let the state sequence be the same 
as the output sequence. 

The following is then possible: 

S ° en NS = NO 

• Modulo-n counter (MNC) is 
defined by: 

MNC = (I.O,NO) 

• Alternative - algebraic notation: 

NS=NO : sm+!= (sm + 1) mod n 

States Sm+1 ,Sm€S={O .. n-lf 

-6.18-

A modulo-n counter is a sequential system that. 
upon a command of an external counting input, runs 
through a sequence of the integer numbers modulo­
n. The system begins with 0, and then goes to 1, 
then 2, etc. to n-2 and finally to n-l. beginning again 
with O. Such a system can be used, for example. to 
count the number of times that an external event 
occurs. We could count the number of visitors of an 
exibition. or the number of articles that pass an 
assembly-line belt. Such a modulo-n counter can be 
best realized by making the sequence of states 
equal to the sequence of the output values: O. 1. 2 
... n-2. n-l, O. etc. The set of states is thus equal to 
the set of output values. We also have to deal with 
the same function for the determination of the 
following state and the following output. 
We see that a modulo-n counter is completely 
defined by the triple (I. 0, NO). Furthermore, in this 
case we can also. as shown in figure 6.18, 
algebraically specify the next state and the next 
output function. 

6.12 

EXAMPLE - MODULO-12 COUNTER 

SYSTEM Mod_12_Counter; 
TYPE RANGE = 0.,11; 
VAR ClockPulse: EVENT; 
CounterOutput: RANGE; 

BEGIN 
REPEAT 

WAIT _FO R_EVENT( ClockPulse); 
CounterOutpul =(CounterOutput+1) MOD 12; 

FOREVER 
END. 

-6.19-

We shall make use of that later. In figure 6.19 we 
have specified the behaviour of a modu10-12 
counter. In such a counter the range of the state set 
and. thus, the output set is from 0 to 11. Notice 
further that we define a variable ClockPulse. of type 
EVENT, to represent the external events. In the 
behavioural description we wait for the arrival of this 
counting pulse, after which the contents of the 
counter are increased by 1 modulo 12. 

Remarks: 
We have defined the modulo-n counter as a triple 
where the set of the input values I is included. This 
set is empty, i.e. the modulo-n counter has no 
ordinary inputs. Later we shall discuss modulo-n 
counters that can be set to a specific starting value, 
or that can be started or stopped by specific 
signals. In this case the set of input values I will not 
be empty. 

Problem 6.2 (6.2) 
Give a description of a modul0-5 counter. This 
counter contains, in addition to the counter pulse 
input, an ordinary input with a value set {start, 
stop}. After an occurring external event the counter 
will only assume its counting state if the value of 
this input is equal to 'start", 



PATTERN GENERATOR 
A pattern generator generates a 

periodic pattern using n elements 
in the output set 0 

• Example: Output set O=la.b.c,d~ 
pattern with period length 7: 

aa baccdlaa baccdlaa baccd .... 
pattern with period length 5: 
aaccclaaccclaaccc .... 

- pattern with period length 7: 

abcddcb labcddcb labcddcb .... 
• A pattern generator is defined by 

5-tuple: FSM = (I.S,O,NO,NS) 
next state function: 

NS: sm+1=(sm+1) mod n 

with s mt1 ,s m € S= 10 .. n-l~ 
(modulo-n counter) 

- next output function: 
NO : S -----7 ° 

-6.20-

A pattern generator is a sequential system that 
produces, as output, a periodic pattern of elements 
which belongs to a certain set of output values. 
These patterns are characterized by the elements 
that are present in them and the length of the 
pattern, i.e. the period duration. Figure 6.20 shows 
three pattern examples with elements of the same 
set of output values. We see that in all cases that, 
after some time, a special sequence of output values 
is repeated. After the last pattern element is 
produced the system will begin, once more, with the 
first element of the pattern. A pattern generator can 
be realized by a finite state machine. For a periodic 
length n we make the next state function equal to 
the next state function of a modulo-n counter. Thus, 
we have n states. The output function is now a 
simple mapping of each state to the corresponding 
output value. 

PATTERN GENERATOR - EXAMPLE 

• Output set: 0= 10 .. 9! 
• Pattern to be generated: 

05599(period length 
• We use a modulo-5 counter 

state set: )0 .. 41 
• Description: 

SYSTEM Pa tternGenerator; 
TYPE OUTRANGE = (0,5,9); 

STATES = 0 .. 4; 
VAR Sync: EVENT; 

State: STATES; 
Output: OUTRANGE; 

PROCEDURE SeLNexLOutput; 
BEGIN 

(* determine NO: S ---7 0 *) 
END; 

BEGIN 
State: =0; Output: =0; 
REPEAT 

WAIT_FOR_EVENT(Sync); 
SeLNexLOulput; 
Slale: =(Slate + 1) MOD 5 

FOREVER 
END. 

-6.21-

Figure 6.21 shows an example. We want to describe 
a pattern generator which sequentially generates the 
following output values 0, 5, 5, 9, 9, 0, ... etc. Thus. 
the pattern has a period of length 5. The next state 
function is equal to that of a modul0-5 counter. The 
rest of the behavioural description Is simple. 
Afterwards we define the range of the output and 
the state set as type declarations. We can declare 
the necessary variables. Notice also that the pattern 
generator is controlled by an external event, which 
is defined as the variable Sync. The following output 
value is determined In the procedure 
SET NEXT OUTPUT. - -

6.13 



PATTERN GENERATOR 
( continued) 

EXAMPLE 

PROCEDURE Set_Next_Output; 

BEGIN 
(* determine NO: ------7 S *) 

CASE state OF 

0,1: Output - 5; 
2,3: Output 9; 

4: Output - 0 

END 

END; 

-6.22-

This procedure is described separately in figure 
6.22. In the REPEAT FOREVER loop we see again 
the known behavioural description. First we wait for 
the external event. Then we set the following output 
value, and then go to the following state. Notice that 
the way in which we determine the following state is 
completely similar to the method applied in a 
modulo-n counter. 
As we have said, figure 6.22 describes the 
procedure of determining the following output value. 
Notice that we still must specify the new output 
value from the current state. In state 0 and 1 the 
new value is 5, in state 2 and 3 the new value is 9, 
and in state 4 the new output value is O. This 
behaviour is described in the shown CASE 
statement. 
The controller forms yet another class of sequential 
systems. A controller is a sequential system (see 
figure 6.23) which generates a sequence of control 
signals by which other systems or subsystems can 
be controlled. 

6.14 

CONTROLLER 
• A controller generates a sequence 

of control signals in order to 
control other systems 

• The value of the control signals 
depend on the controller's 
input signals 

• Status signals give feedback 
information from the controlled 
system 

• Example: simple drinks machine 

- wait until coin has been dropped 
and a selection has been made 

- drop a cup 

- fill the cup during a certain 
time with the chosen drink 

-6.23-

Till now it appears that the definition of a controller 
strongly corresponds to that of a pattern generator. 
The difference is that a controller reacts to values on 
its input. The generated control signals are in 
general depending on the input values. These input 
values are frequently called status signals, used by 
the control system to return its current state. For 
example, a motor's status could be halted or 
running; a container's status could be its amount of 
liquid; a kettle's status could be its momentary 
pressure etc. We could make use of a controller to, 
for example, determine a minimum liquid level in a 
container. In this course we shall, as an example, 
discuss a simple controller for a drinks machine. 
Figure 6.23 summarizes what this controller must 
do. First it waits until a coin in inserted and a choice 
is made. These are the two inputs of our controller. 
After that the controller will cause a cup to be 
dropped, and after a certain waiting time, it will fill it 
with the chosen drink. The controller is simple in the 
sense that we can go through all different problems 
that can occur, such as the unavailability of cups, 
the drinks running out or the improper functioning of 
specific items. 



Coin Dispenser 

ifalse.Truef 10ft. U p,Coke, Orangef Drinks 
Controller Machine 

Choice CupDisp 
1Up, Coke. ~Off, Onf 
Orange, 
Nonet ~ 

-6.23a-

6.15 



DRINKS MACHINE - BEHAVIOURAL DESCRIPTION (1) 

SYSTEM DrinksMachine; 
CASE State OF 

Wail: IF Coin AND (Choice<>None) 
THEN BEGIN 

CupDisp: =On; 
Stale: DropCup; 

END; 
DropCup: BEGIN 

WAIT_FOR_EVENT(Timer); 
CupDisp: Off; 
CASE Choice OF 

Up : Dispenser:=Up 
Coke: Dispenser: =Coke; 

Orange: Dispenser: =Orange 
END; (*Choice*) 
Stale: DispDrink 

END; 
DispDrink: BEG IN 

WAIT_FOR_EVENT{Timer); 
Dispenser: =Off; 
State: Wait 

END 
END; (*State*) 

-6.24-

As shown in figure 6.24 the behavioural description 
is nevertheless somewhat complex. First we 
distinguish the three controller states. These are 
'Wait", the controller waits for the coin and the 
choice of drink type. Then we have the state 
"DropCup", where a cup is being dropped. Finally 
we have the state "DispDrink" where the cup is filled 
with the chosen drink. 
These states are defined in the type STATE. Also, 
we have summarized the choices that can be made 
in the type CHOICES. Notice also that no choice is 
a possible value. The possible control signals for the 
drinking dispenser are summarized in the type 
DISPENSE. Finally, releasing a cup happens due to 
a signal of the type CLIPREL Using these types, we 
can declare a number of necessary variables. These 
are the variables State, Choice, CupDisp, and 
Dispenser. Notice that we make use of the boolean 
Coin and the variable timer of the type EVENT. The 
behavioural description begins with defining an initial 
state and its corresponding output values. After that 
the known REPEAT FOREVER construct, depending 
on the current state, determines what the new action 
must be and what the new state must become. 

6.16 

DRINKS MACHINE - BEHAVIOURAL DESCRIPTION (2) 
SYSTEM DrinksMachine; 
TYPE STATES=(Wait,DropCup.DispDrink); 

CHOICES::::( Up,Coke. Orange.None); 
DISPENSE=( Off.Up.Coke.Orange); 
CUPREL=( Off.On); 

VAR State STATES; 
Coin BOOLEAN; (*True.False*) 
Choice CHOICES; 
Dispenser: DISPENSE; 
CupDisp CUPREL; 
Timer EVENT; 

BEGIN 
Slale : = Wail; (*BeginSlale*) 
Dispenser::::: Off; (*BeginConditions*) 
CupDisp ::::: Off; 
REPEAT 

CASE Slate OF 
I 
I 
I 

END (*CASE*) 
FOREVER 

END. -6.25-

We do this with the CASE statement described in 
figure 6.25. 

In the state "Wait" we wait until the coin is inserted 
and the choice is made. Then we give the free cup 
signal and we go to the "Drop Cup" state. In this 
new state we wait for some time to allow the cup to 
become stable, after which we give the drink 
dispenser the correct information. At the same time 
we go to the state "DispDrink". Here we allow the 
selected drink to be poured for a fixed amount of 
time after which the dispenser is switched off and 
goes to the initial wait state. This completes the 
behavioural description of the controller of our 
drinks machine. 
The given description leads to two remarks. We 
notice that the next state function and the output 
function are not described in separate procedures, 
but are both described in a CASE statement. 
Furthermore. we see that now the output signal 
"Dispenser" depends on "Choice", i.e. on an input 
signal. Thus. the value of Dispenser is not 
exclusively determined by the machine's state. 



ASM 

chart 

-6.26-

6.3 ASM chart 

Next to the use of formal languages such as Pascal, 
there are other popular methods to describe the 
behaviour of finite state machines. These methods 
frequently have a less formal character than a 
language, but are a little closer to a possible 
realization. A method to be discussed in this course 
is the use of the Algorithmic State Machine (ASM) 
chart. This is a description method based on 
graphical symbols. A central concept in an ASM 
chart is the machine state. An assumption implicitly 
used in this method is that the machine can only go 
to a following state after a command of the global 
synchronization mechanism. We use an ASM chart 
to describe the behaviour of synchronous systems. 
Figure 6.27 shows that we can make use of three 
different symbols in the behaviour description of a 
finite state machine. The state of the machine is 
given by a rectangle, the state box. The name of the 
state, the state symbol, is shown to the left of the 
state box inside a circle. See state 3D in figure 6.27. 

ALGORITHMIC STATE MACHINE CHART 

An ASM chart 
• is a behavioural description of a 

synchronous system (FSM) 
• uses 3 different symbols 

,....------------.., 

@ state box 

decision 
diamond 

output box 

• each state has a single entry 

• a decision diamond performs 
- a single test 

on a single input 

-6.27-

Under the state box it is possible to further specify 
the behaviour of the machine in this state. We do so 
by using one or more decision diamonds. These 
decision diamonds are used for testing input values. 
The requirements of these input values must be 
formulated in a way that can be answered with "yes" 
or "no". After these decision diamonds one or more 
output boxes are used. These output boxes are 
used to specify the following output values, i.e. for 
specifying the next output function NO. 
The whole part surrounded by the dotted line in 
figure 6.27, describes the behaviour of a state 
machine for one state, in this case the behaviour of 
our electronic lock for state 3D. An important aspect 
of an ASM chart is that we can only enter the 
description of an arbitrary state in one way, that is 
in the top side of the state box. The behavioural 
description of a state can only be given via one of 
the output boxes. Furthermore, it is important that 
we have to use an individual decision diamond for 
each input we want to test in a state. 

6.17 



ASM CHART - EXAMPLE (1) 
Pattern generator 

r-
I@ 
I 
I 
I 
(--

:CD 
I 
I 
L -
I 
I@ 
I 
I 
I 
r-

:® 
I 
I 
l-
I 
I@ 
I 
I 
L_ 

(a) 

We shall now consider a number of examples of 
behavioural description using an ASM chart. In 
figure 6.28 we find the behavioural description of our 
pattern generator. Here we have the behavioural 
description of each state surrounded by dotted lines. 
Notice that in our pattern generator there are no 
inputs to be tested. thus. the ASM chart has no 
decision diamonds. We notice also that each state 
has only one output box; accordingly we can only 
go to a single following state from each state. Then 
the output in each state can only have a single 
value. 

6.18 

@ 

CD 
@ 

® 

@ 

(b) 

-6.28-

In such a situation we can introduce a simplification. 
We can write the output value in the state box of the 
following state. where we can dismiss the separate 
output boxes. The resulting ASM is shown in figure 
6.28b. Notice that now the description of a state 
consists of only a state name (or state symbol), and 
the state box where we have written the current 
output value. Verify that it is still the previous state 
that determines the current output value. Later we 
shall discuss a realization form for which the 
interpretation is completely different. 



ASM CHART - EXAMPLE (2) 
Electronic digit lock 

-6.29-

In figure 6.29 we find the ASM chart description of 
our electronic digit lock Compare this description 
with the Pascal-based description of figures 6.16 
and 6.17. From now on we shall dismiss the dotted 
lines by which we surround the description of one 
state. These dotted lines are officially not a part of 
the ASM description. Notice that in the Pascal-based 
description we also define the value sets of the 
inputs. states and outputs. However, in an ASM 
chart there are no good means to define these value 
sets. 

ASM CHART - EXAMPLE {2} 
Electronic digit lock (continued) 

-6.30-

We shall have to deduce them from the context. The 
behaviour of the finite state machine for our 
electronic digit lock. as described in figure 6.29. 
speaks for itself. Notice that we can still arrive at a 
single final state from the states 10. 20, 3~. and 40. 
Consequently the output value remains the same in 
these states . Furthermore, we see that in state OD 
the output value remains "locked". Also now the 
output can take only one possible value in each 
state. The ASM chart can be simplified again by 
writing this output value in the state box of the 
following state and omitting the output boxes. This 
is done in the ASM chart of figure 6.30. Check for 
yourself that this ASM chart corresponds with that of 
figure 6.29. 

6.19 



ASM CHART - EXAMPLE (3) 

Drinks machine 

Finally, we have shown in figure 6.31 the ASM chart 
of our drinks machine. Notice that we need to test 
more than one input value in two states. Thus, we 
use more decision diamonds. Furthermore, the 
behavioural description completely corresponds to 
the previous behavioural descriptions given in the 
Pascal-based language (see figure 6.25). Check this 
for yourself. Because in the state "DispDrink" the 
value of the output depends on the choice made, 
we can not write the output value in the state box of 
the following state. A small simplification is possible 
as shown in the next problem. 

Problem 6.3 (6.3) 
The ASM chart of the drinks machine (figure 6.21) 
shows that in the states ·Wait· and "DropCup· the 
outputs can take only one possible value. Draw, 
based on this, a simplified ASM chart. 

6.20 

-6.31-

We have now learned how to produce a behavioural 
description of a finite state machine using the ASM 
chart technique. With the ASM chart we can formally 
define the behaviour of our finite state machine. The 
strong side of the method is the uniform way in 
which a state's behaviour can be described. 
Decision diamonds create a clear decision structure. 
It is always clear in which path the state goes; what 
will be the following state and the following output 
value. The weak side of an ASM chart is the lack of 
means for specifying the value sets of input, states 
and output. Nevertheless an ASM chart is a valuable 
support tool. As we shall later observe, it has a 
strong resemblance to a realization method which 
we shall apply to finite state machines. 



Sta te Diagram 

and 

State Table 

-6.32-

6.4 State diagram and state table 

Another method for describing the behaviour of a 
finite state machine makes use of the state diagram. 
Also, in a state diagram the starting point is formed 
by the machine states. 

STATE DIAGRAM 

A state diagram is a method 
to describe the behaviour of 
a Finite State Machine 

FSM = (LS,O,NO,NS) 

state: 

state name, 
symbol 

",.. 

/ 

next I 
state \ I 

\ / ,_ .... 

,. ...... 
/ \ 

I \ 
\ I 
\ / ,_ ...... 

ic = input condition 
no = next output value 

-6.33-

A state is shown as a circle which is drawn around 
the state name or state symbol. We show that we 
can go from one state to the other using arrows 
between the two states. Both are shown in figure 
6.33. Notice that we write the so-called input 
condition and next output values near the arrows. 

6.21 



STATE DIAGRAM 

ic = input condition: 
• conditions to be fullfilled by the 

input values in order to go to the 
indicated next state 

• inputs not mentioned have no 
influence 

• only one of the conditions at the 
arrows leaving a certain state, may 
be true 

no = next output value: 
• a next output should be specified 

for 
- each arrow and 
- each output 

Several outgoing arrows may lead to 
the same next state. 

-6.34-

1n figure 6.34 we go further into details. By an input 
condition we mean the requirements to be fulfilled 
by the input values in order to go to the indicated 
following state. Naturally, this state transition will 
only take place upon a command of a special 
synchronization signal. 
Specifying all inputs at the input conditions often 
involves unnecessary writing work and leads to 
unclear conditions. Therefore, the convention should 
be followed that inputs have no influence on state 
transitions not referring to them. 
In a good behavioural specification it must be 
absolutely clear which is the following state. Applied 
to our input conditions this means the following: if, 
from a given state, several arrows go to following 
states, then the different input conditions 
corresponding to these transitions must not be true 
at the same time. More precisely: there may be at 
most one true condition among those leaving a 
state. After the Input condition, separated by a • i 
we place the next output value. Here we need to 
specify for all outputs (per output arrow) the 
following output value. The clarity of the 
specification plays an important role. There should 
not be any doubt about the value of the output in a 
following state. 

6.22 

STATE DIAGRAM - EXAMPLE (1) 
Pattern generator 

• No input conditions 

• Only one output value for each state 

-6.35-

Therefore we also agree that at each arrow only one 
following value may be specified for each output. 
However, we may specify different new output 
values; there may be several arrows to the same 
following state. We shall now illustrate the use of the 
state diagram through a number of examples. 
In figure 6.35 we have first drawn the state diagram 
for our pattern generator. It is easy to recognize that 
we always go through the different states, one after 
the other in the same sequence. Notice that the fact 
that there are no inputs to be tested (there are no 
input conditions) is specified by a horizontal dash. 
The output value follows the slash. This is always 
the output value of the pattern generator in the state 
to which the arrow is pointing. In state 1 and 2 the 
output is 5, in state 3 and 4 it is 9, and in state 0 it 
O. As we noticed in the ASM chart, also here we 
have to deal with a situation where the machine in 
each state produces only one output value. In this 
situation we can further simplify the state diagram, 
by writing these output values in the following state 
circle, with the slash (f) separating it from the state 
symbol or the states name. This simplified state 
diagram Is also shown in figure 6.35. 



STATE DIAGRAM - EXAMPLE (2) 
Electronic 

• only one output value in each state 

-6.36-

1n figure 6.36 we have drawn the state diagram of 
our electronic digit lock. Notice first that we can go 
back to state 00 from all states. Also from state 00 
an arrow is drawn with its beginning and ending 
points on the circle of state 00. Here we show that 
as long as we do not choose the digit 1 first, we 
remain in state 00. Notice further that from each 
state, except state 40, 2 arrows go towards two 
following states. Here we have to deal with the 
requirement that only one of the input conditions of 
these arrows may be true. The fact that this is 
fulfilled In figure 6.36 follows directly from the way 
we have written the input condition. 
Because also now the output in each state can take 
only one value, we can simplify the state diagram. 
This is shown in figure 6.36. Also now we can 
interpret this as a specification of the current output 
value in the current state. Notice for example that 
the lock is open in state 40, after four correct digits 
are input 

STATE DIAGRAM - EXAMPLE (3) 
Drinks machine 
• Abbreviations: 

C=Coin ; Ch=Choice 
CD=CupDisp ; D=Dispenser 

C= False or Ch= None 
/CD=Off,D=Off 

-6.37-

We finally see in figure 6.37 the state diagram of our 
drinks machine. To limit the length of the input 
conditions and specification of the next output 
values, we have applied a number of abbreviations. 
Notice that we now specify the values of the outputs 
CupDisp and Dispenser at each state transition. Give 
further attention to the input conditions that are 
shown at the outgoing arrows of the ·Walt" state. 
Convince yourself that the condition "C = False or 
Ch = None" and the condition "C = True and 
"Ch:#None" can never be true at the same time. 
With the help of De Morgan's theorem we can 
convert one condition to the other. Notice finaUy that 
we have three arrows going to the state "DlspDrink" 
to show the three different values of the output 
Dispenser. 

6.23 



STATE TABLE 
A state table is a method to describe 
the behaviour of a Finite state Machine 

Beha vioural description: 

FSM = (I.S,O.NO,NS) 
NS: S * I-.07S 
NO: S * 1-.070 

State table: 
input eI 

I ~ values 
: 
I 
I 
I 

-- --------ES---
1 :\ 

current next state 
state next output 

eS 

-6.38-

A following step in the specification of finite state 
machines - a step closer to realization - is the use of 
the state table. The ASM chart and the state 
diagrams are two graphical methods for the 
specification of behaviour. The state table is surely 
not With a state table we concentrate on the next 
state and next output functions, NS and NO. For 
both functions it is valid that their domain is given 
by the cartesian product of the set of states and the 
set of input values of the finite state machine. 
We create a two-dimensional structure, a matrix, 
where the current state selects a row and where the 
input values define the columns (see figure 6.38). At 
the intersections between the machine states and 
the input values we can specify the following state 
and the following output value. We have now a two­
dimensional table. called a state table. In this state 
table we can directly fill in the next state function 
and the next output function. 

6.24 

STATE TABLE - EXAMPLES (1) 

Fa ttern genera tor 
• No input values 

current 
state 
° 1,5 
1 2,5 
2 3,9 
3 4,9 
4 0,0 

'---v----' 
next state, 
next output 

Electronic digit lock 
current I input values 
state . 0 1 2 3 4 5 6 7 8 9 

o=open 
I: locked 

OD 00.1 10,1 00,1 00,1 OD,! OD.! 00,1 DO,! 00,1 OD.! 
10 OD,! OD,! OD.! OD.! 00,1 00.1 OD.! OD,I 00,1 2D.! 
20 OD,I 00.1 00,[ OD.I 3D.! OD.! 00.1 OD.! OD.! 00,1 
3D OD,] OD.! OD,I 00,1 00,1 00,1 00,1 OD,I 4D,o OD,! 
4D 00,1 00,1 OD.I 00,1 00,1 00,1 OD,I ~O,! 00,1 OD.! 

\'-----~ V 
I 

next state, next output 
-6.39-

In figure 6.39 we have first constructed the state 
table of our pattern generator. Because there are no 
inputs. our two-dimensional matrix structure Is 
reduced to one column. In each row (per current 
state) we write what will be the next state and the 
next output. If we look at the ASM chart in figure 
6.28 or the state diagram in figure 6.35 we see that 
we can simply derive the state table from one of 
both specifications. This is a useful practical 
approach. 

Our electronic digit lock is a finite state machine 
where inputs playa role. The state table shown In 
figure 6.39 thus has several columns, one for each 
input value. In the resulting table we have shown, for 
each state. an input value. the next state. and the 
next output. Here we have Indicated using the letter 
I that the lock is locked and with the letter a that the 
lock is open. From this example it appears clearly 
that working with input values is not always 
practical. We must now specify 50 new states, at the 
same time, in the previously given state diagram or 
ASM chart It was limited to 9 new states. 



STATE TABLE - EXAMPLES (2) 
Electronic digit lock (continued) 
• use of input conditions 

current 
state =1 =9 =4 =8/12nd19andt4and;8 

OD 
1D 
2D 
3D 
40 

ID,I 00.1 00,1 00,1 OD,l 
OD.! 20.! 00.1 00.1 00,1 
00,1 00,1 30,1 00,1 OD,l 
OD.l 00,1 OD,1 4D,o 00,1 

,00.1 OD,! OD.! OD,1 OD,l I 

next state, next output 
• 2-column table 

current 
state, Input 

00, t 1 
00, = 1 
1D, f. 9 
10, = 9 
20, :t= 4 
2D. = 4 
3D, f= B 
3D, = 8 
40,-

next 
state, Output 

DO, locked 
1D, locked 
00. locked 
20, locked 
DO, locked 
3D, locked 
00. locked 
40, open 
DO, locked 

-6.40-

Here we can do something by using input 
conditions instead of input values. This is done in 
figure 6.40. We have defined the following input 
conditions for our electronic digit lock: ''the digit = 1", 
''the digit=9", ''the digit=4", ''the digit=8", or "the 
digit equals non of these values". We see by doing 
so that the number of following state and output 
values to be specified is decreased to 25. 
Nevertheless we have input conditions that may play 
no role in certain states. So in state 00 we only 
have to check if the input digit is 1 or not; the 
conditions =9, =4, and =8 play no role in this state. 
In such a situation it is better to leave the two­
dimensional structure in favour of a table with 
current state and input conditions next to each 
other. In figure 6.40 this two-column table has been 
worked out for our electronic digit lock. 

Notice that we now only need to specify the next 9 
states and next outputs, corresponding to our state 
diagram or ASM chart. Notice that we might have 
several rows (in a table) for the same state, but with 
another input condition. It is again emphasized that 
for a correct specification of these conditions, only 
one may be true. Indeed, it must always be clear 
what is the following state and what Is the 
corresponding output value. 

Problem 6.4 (6.4) 
Construct a state table for the drinks machine. 
Explore both possible forms of the state table. 

The state table forms the connection between the 
behavioural specification of a finite state machine 
and its realization. In the following chapter we shall 
come back to this. 

6.25 



Standard Architecture 

and 

Canonical Form 

-6.41-

6.5 Standard architecture; canonical form 

We have now discussed a number of methods for 
describing the behaviour of a synchronous finite 
state machine. For these types of machines we can 
now make our first step in the design process. In 
this paragraph we shall make a start with the 
question how to realize a finite state machine; in the 
next chapter this will be worked out further. 
In principle we can realize finite state machines in 
several ways. There exists a useful general 
architecture, a generally applicable method for 
splitting into partial functions. We here refer to the 
canonical form (canon = rule, line of action). The 
names of Huffman, Moore and Mealy are connected 
to these canonical forms. This general architecture 
relates to our description of a finite state machine. 
where the machine is specified by a 5-tuple (I, S, 0, 
NO, NS). Two important elements of the 5-tuple are 
the next state function NS and the next output 
function NO. 

6.26 

REALIZATION OF FINITE STATE MACHINE 
• FSM specification 

FSM = (I,S,O.NO.NS) 
NS: S * I-S 
NO: S * 1-0 

• Realization 
functions 

i.r~ 
S€S 

• Realization 
functions 

of combinational 

~no€O 
NS,NO ~ns € S 

of memory (register) 

Record the next state and next 
output when receiving a command 
(clock) 

n~o # 
ns s 

Clock 

-6.42-

Previously. we have noticed that these are two 
combinational functions having the same domain. 
These combinational functions can be realized in 
one combinational block, as shown in figure 6.42. In 
previous chapters we have discussed how to realize 
these combinational functions. Notice that these 
functions determine the following state and the 
following output value, given the current state and 
momentary input value. For the realization of a finite 
state machine we still need a memory function. This 
memory function (when given a command) records 
the next state and the next output (which are 
determined by the combinational function) in order 
to replace the current state and the current output 
value. If we compare this required behaviour with 
the behavioural description of a register shown in 
figure 6.15. we notice that such a register is 
applicable here. As long as we do not know how to 
realize a register this remark is not important for 
now. At this moment it is sufficient to know that we 
can realize the necessary memory function using a 
register. We have now split the realization of a finite 
state machine into two partial realizations, namely 
the realization of two combinational functions and 
the realization of the memory function. 



FSMs - STANDARD ARCHITECTURE 
• Canonical form 

I r-""?L--....I I 

oeO 
I----r-:>-

I~------__ --+--~ L _________ _ 

• Timing diagram 

Clock~I-__+--I__-_+_-_I_ 

i X10 : ! XII ! X 12 X 13 I 

S~S2 lXS3 l~ 

ns~S3! mS3! ~ 
noJt=xcOzJ m02j X«@3! ~ 
O~Ol :XOg :02 :xOa :~ 

I I I I 

CD ® ® @~l 

-6.43-

If we add those partial blocks together we get the 
standard architecture for finite state machines as 
shown in figure 6.43. We see that the combinational 
block determines the next output no and the next 
state ns from the momentary value of the input i and 
the current state s. On command of the input 
"Clock" the memory function takes over this next 
output and next state, and the current output and 
state are made equal to these new values. The 
timing diagram shown in figure 6.43 can clarify the 
behaviour further. Here we have the occurrence of 
the external event on the input "Clock" shown with 
so-called needle pulses. When interpreting the 
timing diagram we must consider that the execution 
of a combinational or memory function costs a 
certain amount of time. After the external event has 
taken place, it will take some time before the 
outputs s and a take new values. We see that clearly 
in time period 1, where s changes from Sa to S1 and 
a changes from 0 0 to 0 1, Subsequently the 
combinational block will get a new value on its input 
s, and after some time the next state ~ and the next 
output O2 will be determined. 

It is not given exactly at which time these value will 
be available. This uncertainty we indicate in the time 
sequence diagram by a number of crosses. In each 
case these new values have to be available before 
the following external event occurs. At that moment 
the new values are once more taken over by the 
memory function. We are now in time period 2. In 
this time period also the value of the Input i 
changes; the next state sa and the next output O2 

are now determined by the momentary input i1, and 
the current state S2' Notice also that the value of the 
next output is equal to the value of the momentary 
output. Thus, the output value will not change and 
will remain equal to oz. For a while the next output 
uno" takes no other values. Due to the synchronous 
nature of our finite state machine, this cannot cause 
any harm. The events in time period 3 and 4 speak 
for themselves. Notice also that the momentary slate 
in time period 3 and 4 are equal; the state does not 
change. 

6.27 



CANONICAL FORM - SUBTYPES (1) 

Type 1 - Output and state set 
have common elements 
(possibly identical) 

oeO 

~ ____________ ~ ____ ~seS 

Type 2 - Next output is a 
function of current state only 

NS: S * I-?S 
NO: S-?O 

Clock 

-6.44-

This general architecture has a number of interesting 
variations. In figure 6.44 we show two of them. In 
the first place there are imaginable situations, where 
the set of states and the set of output values have 
common elements. In such a situation we can use 
the current state value also (partly) as an output 
value. We have illustrated this graphically by giving 
to the memory function only one output for the 
current output value and the current state value. 
This situation will arise frequently if the states and 
the output values are coded in binary tuples. We 
shall come back to this later. 

6.28 

A second variant we get if we consider that there 
are finite state machines for which the next output is 
exclusively determined by the current state and not 
by the momentary input. Our pattern generator and 
our electronic digit lock are examples of such finite 
state machines. In such a case it is better to 
separate the determination of the next state and the 
next output. For this purpose we use two separate 
combinational blocks. To also separate the memory 
function for the states and the output value, we get 
the architecture shown in the lower part of figure 
6.44. A further variant can be obtained by omitting 
the memory function for the output values of this 
machine. 



CANONICAL FORM - SUBTYPES (2) 
Type 3 - Moore machine 

CO: S ~O 
Current output is a function 
of current state only 

ASM chart. 

@ 

CD 
® 
® 
CD 

S ta te diagram 

-6.45-

We then get the finite state machine shown in 
figure 6.45. Notice that the output is not determined 
by the previous state but by the current state. In 
otherwords. the current state determines the current 
output value. Thus, we are considering the ·current 
outpur function CO. Such a finite state machine is 
called a Moore machine. 

Notice that the previously simplified ASM chart or 
the state diagram, where the following output value 
was placed in the state box of the following state or 
in the circle of the following state, are also useful for 
the behavioural description of such a state machine. 
We only need to change the interpretation in: the 
current state determines the current output value. 
Thus, the state related to the corresponding state 
box or corresponding circle determines also the 
momentary output value. Furthermore, the behaviour 
is the same in general. 

6.29 



CANONICAL FORM - SUBTYPES (3) 
Type 4 - Mealy machine 
CO: S * 1-70 
Current output is a function of 
- current state 
- current input values 

ie~. ieI 0 NS ns # CO oe 

! seS 
Clock 

ASM chart, State diagram 

8 '-----T-----' 

The input of the current output function CO leads to 
a fourth variant on the general architecture, the 
Mealy machine. See figure 6.46. In this fourth variant 
the current output value is based on the current 
state and the momentary input value. The 
architecture of such a machine is shown in figure 
6.46. Notice that we obtain this architecture by 
omitting the memory function for the Next Output 
function of our general architecture (in fig. 6.43). The 
behaviour changes now clearly. Indeed, a change of 
an input value now directly causes a change in 
output values. This change is not synchronized any 
more by an external event. We say that the changes 
of the outputs are asynchronous. A Mealy machine 
can very quickly react to changes in an input value. 
These asynchronous changes are at the same time 
sources of problems and errors, certainly in a 
system where several Mealy machines work 
together. Another problem occurs during the 
behavioural description of a Mealy machine. 

6.30 

-6.46-

It appears that our ASM chart or our state diagram 
cannot be used, unless we modify them. In figure 
6.46 we have shown what needs to be changed. 
Because in a Mealy machine the current value of 
outputs is determined by the current state and the 
momentary value on the inputs, we must test these 
input values in the current state and not in the 
previous state, as we did earlier. In figure 6.46 we 
have shown a part of the ASM chart of our drinks 
machine for a Mealy machine. Comparing this part 
with the ASM chart shown in figure 6.31 we see that 
the decision diamonds for making the drinks choice, 
have moved from the state OropCup (DC) to the 
state OispOrink (00). This corresponds completely 
with the fact that both the current state and the 
current input values determine the current output 
values. We have to perform the same change to the 
state diagram. Also this is shown in figure 6.46. 
Furthermore, we notice that the output boxes now 
contain the current output values, which are valid in 
the current state. 



TIMING DIAGRAMS 
eMoore machine 

Clock 

e Mealy machine 

Clock I 

s 

o 

-6.47-

Figure 6.47 finally shows one timing diagram for the 
Moore machine and one for the Mealy machine. 

Moore machine 
In the timing diagram of the Moore machine it is 
shown with arrows that the current state s 
determines the current output o. We see first. in time 
period 1, that the current state changes from So to 
8 1, Accordingly the output value will change after a 
short time from 00 to 01, At the same time the next 
state s.2 is determined. This is taken over by the 
memory function at the beginning of time period 2. 
A short time afterwards the new output value 0.2 is 
determined. Notice that the change of the input 
values from io to il in time period 2 has no effect on 
the determination of the output values. 

This input value only plays a role during the 
determination of the output value. 

Mealy machine 
In the timing diagram of the Mealy machine we 
clearly see (with the help of arrows) that a change 
of input values can have a direct effect on the 
momentary output value. In time period 1 we first 
see that the current state change from So to Sl 
causes the output value to change to 01' A short 
time after this (in the same time period) the input 
value changes to i1• Due to this the value of the 
output changes again. now to 0.2' We see that in a 
Mealy machine the output may take several different 
values within one time period. The other time 
periods speak for themselves. 

6.31 



6.6 Summary 

In this chapter we got acquainted with the 
characteristics of sequential systems. These systems 
are distinguished from combinational systems by 
their memory function. The response of sequential 
systems is not only depending on current input 
values, but also on previous ones. The system 
remembers what happened in the past. A special 
category of sequential systems is formed by the 
finite state automata or finite state machines. A 
special aspect of these machine is that the memory 
function is expressed in the machine state. There is 
a finite set of values. states. that represents the 
memory. The past is now accounted for in the 
momentary machine state. Next we have to deal 
with a finite set of input and output values for each 
digital system. A finite state machine is described by 
a 5-tuple, consisting of the elements: input set I. 
state set S, output set 0 and the functions for 
determining the next state NS, and the next output. 
NO. We have limited ourselves in this course to 
synchronous finite state machines. i.e. machines that 
go to the following state and set the following output 
value under the influence of an external event. We 
have discussed some methods for the behavioural 
description of such systems. For synchronization 
purposes we had to extend our Pascal-based 
language with two standard procedures 
WAIT FOR INPUT and WAIT FOR EVENT. 
Next we introduced the standard tYpe EVENT and 
the construct REPEAT - FOREVER. As exponents of 
finite state machines we have seen the modulo-n 
counter, the pattern generator and the controller. We 
have given these systems a Pascal-based 
behavioural description. Next we have learned about 
the ASM chart and the state diagram as two 
alternative methods for the graphical definition of 
system behaviour. 

6.32 

When working towards a realization. we shall 
translate the Pascal-based behavioural description to 
an ASM chart or a state diagram. Both methods are 
used in literature. After we have described our 
behaviour in a state diagram or an ASM chart, we 
can compose a state table. Such a table clearly 
determines the behaviour of the next state and 
output functions, and is a next step towards the 
realization of a finite state machine. 

Finally we got to know a standard architecture or 
canonical form for the finite state machine. This 
standard architecture starts by separating the 
combinational logic block (where the next state and 
the next output functions are determined) and the 
memory function block. We have discussed a few 
variants of this standard architecture, including 
Moore and Mealy machines. These machines lack a 
memory function behind the next output stage. Here 
no next output, but rather a current output function 
is incorporated: the current state determines the 
current output value. In Mealy machines the 
momentary input value is included. Because the 
mentioned memory functions are lacking, these 
machines are, in general, cheaper to realize. The 
Mealy machine has the advantage that it can react 
quicker to input changes. A disadvantage of both 
machines is that outputs can change their values in 
short intervals; they do not change synchronously. 
This makes the design in general more difficult. 
Honesty compels us to say that till now the cost 
considerations have played a decisive role and, 
thus, one often chooses for Moore or Mealy 
machines. However, the costs of the memory 
function decreases with the continuously growing 
integration density. so maybe in future the more 
general canonical form will be chosen. 



7 

Realization 

of 

Finite state Machines 

-7.01-

7 Realization of finite state machines 

In previous chapters we discussed methods for 
describing the behaviour of finite state machines, 
that is, methods for their specification. At the same 
time we have considered the general structure, Le. 
the architecture of finite state machines. 

In this chapter we are approaching the second 
question in our design process: uHow do I realize a 
finite state machine?". An important subitem is the 
realization of the memory function. What remains 
are two combinational functions, and we know how 
they can be realized. 

7.1 



FINITE STATE MACHINES - SUMMARY 
• Definition 

FSM = (r.S,O,NO.NS) 

• Canonical form 

no 

NS,NO I--n_s_-7I 

• Realization as binary system 
coding of I, S, 0 

• Realization of 
memory; 
recording of bits 

combinational functions: 
NS I * S ----'7 S 
NO * S ----'7 0 

-7.02-

O€O 

S€S 

Figure 7.02 shows in a nutshell the realization of 
FSMs. We know that a finite state machine can be 
described by a 5-tuple (I, S. 0, NO. NS). In the 
previous chapter we have introduced the canonical 
form as a general architecture. The finite state 
machine is divided into two blocks. a block for the 
combinational functions NS and NO. and a separate 
block for the memory functions. We must consider 
that the realization will finally take place as a binary 
system. Accordingly our value sets I. S. and 0 must 
be coded. The realization of a finite state machine is 
thus carried out by first realizing the memory 
function, where the bits of the binary coded 
momentary state and momentary output are saved, 
and secondly by realizing the combinational binary 
functions NS and NO. 

7.2 

Realiza tion of Memory 

The Flip- Flop 

-7.03-

7.1 Realization of memory; the flip-flop 

We shall first concentrate on the realization of the 
memory function. Later the coding problem and 
some realizations of frequently used finite state 
machines will be discussed. 
There are many known electrical and non-electrical 
methods to realize the memory function. As an 
example. one electrical method applies the charge 
saved in a capacitor. In this course. however. we 
shall specifically study a realization of memory 
functions generally applicable in finite state 
machines. Here the memory function is usually 
realized by a flip-flop. A flip-flop is a circuit with two 
stable states. The circuit always assumes one of 
these states. When externally affected the flip-flop 
may go from one of its stable states to the other. 
A good mechanical analogy to the flip-flop is the 
light switch. It has two stable positions. By pressing 
on the right place the switch is tilted and goes over 
to the other stable position. 



FLIP- FLOP REALIZATION 
Memory function 
• bi-stable circuit = flip-flop 

= circuit with 2 stable states 
R ~1 0-.,..-- Qa 

s-----j 
.Let S=R=O; Qa=O, Qb=l 

is a stable states 

• Make S=1. R=O 
causes Q b=O, then Q a=1 
new stable state 

• Make S=O, R=O 
Qa =1. Qb=O. 
remains in stable state 

• Make S=O. R=l 
causes Q a=O, then Q 1 
back to first stable state 

-7.04-

Figure 7.04 shows a possible realization of a flip-flop 
using two nor-gates. Let us analyze this circuit. First 
we assume that the inputs Sand R are equal to 
zero, and that the output Qa = 0 and Qb = 1. One of 
the inputs of the upper nor-gate is now equal to 1 if 
the output remains O. For the lower nor-gate both 
inputs are 0 when the output Q b remains equal to 1. 
This situation does not change: the flip-flop is in a 
stable state. If we from this situation make S equal 
to 1 then one input of the lower nor-gate will be 
equal to 1; consequently the output Qb will become 
equal to O. This causes both inputs of the upper nor­
gate to become equal to O. where Q a is equal to 1. 
After that nothing changes; the flip-flop is now in its 
second stable state. 

If we now make input S equal to 0, one input of the 
lower nor-gate will still remain equal to 1, and 
nothing is changed. The flip-flop remains in its 
second stable state. If we subsequently make input 
R equal to 1, one of the inputs of the upper nor-gate 
becomes equal to 1, and output Q a becomes equal 
to O. By doing so both inputs of the lower nor-gate 
become equal to 0, and output Qb becomes 1. The 
flip-flop returns to its first stable state. Summarizing, 
we see that the flip-flop arrives at one of its stable 
states by making the input S equal to 1 for some 
time. We are considering the set state: the flip-flop 
is "set". The S input is called the set input. We can 
simply go further and state that, once the flip-flop Is 
in its set state. making the set input 1 has no 
influence anymore. The flip-flop is set and remains 
so. By making the R input (the reset input) equal to 
1 the flip-flop goes to its other state. We shall call it 
the reset state. We say that the flip-flop is "reset", 
Such a flip-flop Is called a set-reset flip-flop or also 
a set-reset latch, 

7.3 



SET/RESET FLIP-FLOP (LATCH) 
• with NOR gates • with NAND gates 

Re~Q 

~Q 
Set :8Q Set 

& -
Reset Q 

• Symbol 
sLfsl---Q 
Re~Q 

• Truth table 
Set Reset Q HI Q t+\ 

o 0 Qt Qt state not changed 
o 1 0 1 reset state 
1 0 1 0 ~tsta~ 
II? ? undefined 

• Characteristic equation 
Q HI =S+R·Qt with S·R=O 

-7.05-

In figure 7.05 we have shown that such a set-reset 
flip-flop can not only be realized with nor-gates, but 
also with nand-gates. In this case, we have to deal 
with not-set and not-reset inputs. In figure 7.05 we 
have shown the symbol for the set-reset flip-flop and 
the corresponding truth table. Notice that in the truth 
table we indicate the output value after the 
corresponding input condition is fulfilled as 01+1' and 
the output value before this input condition as 01' 
From this truth table we see that the state of the flip­
flop remains unchanged if the set and reset inputs 
are both equal to O. The reset state is entered if only 
the reset input is made equal to 1. Similarly we see 
that the set state is entered if only the set input is 
made equal to 1. One situation we did not discuss 
yet: what happens when the set and reset inputs are 
simultaneously equal to 1? Formally, this situation is 
not defined for the set-reset flip-flop. The result is 
depending on the realization of the flip-flop. In 
general we must avoid this situation when using a 
set-reset flip-flop. 

7.4 

Problem 7.1 (7.1) 
Analyze for the flip-flop realized with nor-gates the 
situation S=R= 1, and show to which state the flip­
flop returns if one of the input signals goes back to 
O. What will happen is both Signals return to 0 at the 
same time? 

Next to the truth table we can also define the 
behaviour of a flip-flop in an algebraic way. This Is 
done with the so-called characteristic equation. 
Figure 7.05 finally shows these characteristic 
equations for the set-reset flip-flop, 

We have now got to know the flip-flop as a basic 
circuit for the realization of memory functions. 
Actually. for applications in our synchronous finite 
state machines, we miss one important element: the 
synchronization of the command input. In the case 
of flip-flops we consider the clock input. 



SET-RESET LATCH WITH CLOCK 

• Symbol 
Set~ls ~: ClockCl 

Reset lR 

• Function table 
Clock Set Reset Ql+l 

x x t frozen stale 
1 0 0 Qt unchanged state 
1 0 1 0 reset stale 
1 1 0 1 sel slale 
1 1 1 ? undefined 

Q 

Q 

• Characteristic equation 
Qt+1=C.S+R·Qt+C·Qt with S·R=O 

-7.06-

Figure 7.06 shows how we can expand our set-reset 
latch with a clock input. For this purpose we -and­
our set and reset inputs with the clock input. The 
effect is very simple, as shown in the function table 
of figure 7.06. As long as the clock input is 0 the 
values on the set and reset input play no role. The 
flip-flop keeps its state, we say that the state is 
frozen. Only when the clock becomes 1 (external 
command) the set and reset inputs get their 
previously discussed functions. This value 
dependency on the clock input is shown in the 
symbol of the set-reset latch. With a C at the clock 
input we show the so-called command dependency_ 
The functionality of the other inputs depends on the 
value of this input. The other inputs have the same 
number; in this case 1 as the command input. The 
inputs 1 Sand 1 R are depending on the value on the 
input C1. 

D-LATCH WITH CLOCK 

D 

Clock 

• Symbol 
D-1IDl-- Q 

Clock ---1.£Y-- Q 

• Function table 

Clock D Q HI 

0 X Ql 

1 0 0 

1 1 1 

• Characteristic equation 
Qttl = c·n + C·Qt 

-7.07-

Q 
Q 

In addition to the set-reset latch there are also other 
flip-flop types being of practical importance. One of 
them is shown in figure 7.07: the D-Iatch with clock 
input. This type is derived from the clocked set-reset 
latch. Let us consider the function table as a means 
of discussing its behaviour. We see that if the clock 
input is 0, the 0 input has no influence on the state 
of the flip-flop. If the clock input is 1, then a 0 on the 
o input will put the flip-flop in the reset state. 
causing the output Qt+ 1 to become O. If in this 
situation the input 0 is made 1, the output Qt+ 1 will 
also become 1. We can also say that as long as the 
clock input is 1 the output will follow the 0 input. 
The behaviour is clear from this characteristic 
equation. Notice that the symbol again shows the 
command dependency of the 0 input on the value 
of the clock input. 

7.5 



D-LATCH - APPLICATION 

no D- O€O 

s€S 1------;>1 la tc hes 
'--_---' ns 

Clock 

• Timing diagram 

Clock J.l~ ______ ~J.l~ __ _ 

s 

changing 
state 

-'7.08-

In figure 7.08 we see a number of O-Iatches used in 
a synchronous finite state machine. Clearly we 
recognize the canonical form where D-Iatches are 
used for the memory function. We shall explain their 
behaviour with the help of timing diagram. We begin 
with a 0 clock value. In this period. the value of the 
following state ns is determined from the current 
state s and the (eventually changed) input i. 
Actually. because the states of the D-Iatches are 
frozen. the value of s will not change yet. The new 
state is only assumed at the moment the clock input 
goes from 0 to 1. A short time later the outputs of 
the O-Ialches will change. 

7.6 

This is expressed in a new value of the current state 
s. In the timing diagram we see that, a short time 
later. a new ns is formed as a result of the changes 
of s. This next state information may not yet be 
immediately taken over by the D-Iatches. Indeed, we 
assume only one state change per external 
command, per clock tick. Accordingly the clock 
input must be made 0 again in time. This is also 
shown in the timing diagram. We see that the states 
of the D-Iatches may only be changed during a 
short time. The pulses on the clock input are equal 
to 1 for a relatively short time. Similar pulses are 
difficult to generate and distribute reliably over a 
large system. In addition to that, the gates' delay 
time (and similar effects) playa relatively large role. 
These matters are indicating that D-Iatches are not 
really well suited for this application. Instead we 
should prefer flip-flops being input-sensitive (allowing 
their state to be changed) only for a very short time. 
An example Is the edge-sensitive flip-flop. 



EDGE-TRIGGERED D FLIP-FLOP 

• Symbol D 

: flDl :~ 
Clock tfLJ Q 

• Function table 

D Q HI 

o 0 
1 1 

Q is the output value after a 
t+l 

0-1 clock edge 

• Timing diagram 
D 

CIO~ 
• Characteristic equation 

QtH = D 

-7.09-

In figure 7.09 we have shown the edge-sensitive 0 
flip-flop_ Such a flip-flop can only change its state at 
the moment the clock input goes from 0 to 1. This 
behaviour is indicated by the triangle near the clock 
input. Also we notice this behaviour in the function 
table because the value of the clock input is not 
mentioned there anymore. A 0 to 1 transition is 
important at the clock input. 
With 0 1+ 1 we give the value of the output after such 
a transition at the clock input. We see that if the 0 
input was equal to 0 for this transition, the new 
output value also becomes equal to O. Also if the 
value of the 0 input was equal to 1 for this 
transition, then the new output value also becomes 
equal to 1. Again the output follows the 0 input but 
now with a certain delay caused by the clock input. 
In the timing diagram we have shown also that the 
D input may change its value, even when the clock 
Is 1, as long as the D input is stable just before and 
during the clock's transition from 0 to 1. We call this 
transition the active transition. The edge-sensitive 
flip-flop can not simply be realized as an expansion 
of the set-reset latch. The method of realizing this 
flip-flop is beyond the scope of this course. 

TOGGLE FUP-FLOP 

• Symbol 

Toggle.--rlT ~ Q 

Clock --tCl I 
'--------' 

• Function table 

Toggle Qt+l 

o 
1 

• Characteristic equation 

Qt+l= Qt E9 T 

-7.10-

Next to the edge-sensitive D flip-flop there are also 
other types. We present in figure 7.10 the T (toggle) 
flip-flop. The toggle flip-flop symbol shows that we 
are dealing with an edge-sensitive flip-flop. The 
function table clearly shows the behaviour of this 
flip-flop. If the value on the toggle input is equal to 
o then the state of the flip flop will not change; that 
the flip-flop is in hold mode. If the value of the 
toggle input is equal to 1 then after each active 
clock edge the output value and the state of the flip­
flop will change. The flip-flop continuously goes, on 
command of the clock input, from one of its states 
to the other. Notice also that we can show this 
behaviour in the characteristic equation with the aid 
of exclusive-or function. 

7.7 



JK FUP-FLOP 

• Symbol 

J LJ 
- >C1 

K lK 

Clock 

• Function table 
J K Q t+1 

o 0 Qt 
010 
1 0 1 
1 1 Q t 

Q 

(hold) 
(reset) 
(set) 
(toggle) 

• Characteristic equation 

Qt+1= JQ t+ KQ t 

-7.11-

In figure 7.11 we have shown another type of edge­
sensitive flip-flop, the JK flip-flop. The behaviour of 
this flip-flop is shown in the function table. Notice 
that if the J and K inputs are not both equal to 1, the 
behaviour is similar to a set-reset flip-flop. A 1 on the 
J input puts the flip-flop in the set state after the 
active clock edge; a 1 on the K input puts the flip­
flop in the reset state after the active clock edge. If 
both J and K are equal to 0, the state of the flip-flop 
does not change. 
Now the situation J = K = 1 is defined: the flip-flop 
goes to its toggle mode, i.e. after each active clock 
edge the state is changed. 

Remark: 
We have discussed a number of flip-flop types 
reacting on a change of the clock from 0 to 1. There 
are also flip-flops reacting on a transition of the 
clock from 1 to O. Such a flip-flop has the negative 
edge as the active edge. In the flip-flop symbol we 
show this by means of an inverter ball in front of the 
clock input. 
Edge-sensitive flip-flops are only sensitive to the 
values of its inputs for a short period. Another 
method to achieve a limited-period sensitivity is 

7.8 

MASTER-SLAVE FLIP- FLOP 

Reset 

Clock 

• Timing 
Clock.J 

1S 

1S 
Cl 
lR 

diagram 

I 

2S 
C2 
2R 

Q 

lR 
C2~-I~~~-4~==~-
2S 
2R 

Q 

• Symbol C~k~ ~ ~ t ~ 
Reset ..... , __ ...J. 

-7.12-

applied in the master-slave flip-flop shown in figure 
7.12. We see that a master-slave set-reset flip-flop is 
built from two clocked set-reset latches, which are 
connected in cascade. The second latch gets the 
inverted value of the clock. If one flip-flop can 
change its state (it is enabled), the other flip-flop will 
freeze its state. While the right flip-flop freezes its 
state and the outputs remain constant, the first flip­
flop follows the values of the set and reset inputs. 
When the clock input goes to 0, the left flip-flop will 
freeze its state to produce stable set and reset 
signals to the right flip-flop, which can now change 
state. The set and reset inputs have no influence 
anymore on this new state, because the left flip-flop 
has frozen its state. The total effect is that now the 
outputs of the master-slave flip-flop change at the 
moment the clock becomes O. In this sense the 
master-slave flip-flop looks similar to the negative­
edge sensitive flip-flop. However, the overall 
characteristics are still different, so the master-slave 
property is indicated by a separate symbol: a -, 
near the outputs. In addition to the master-slave set­
reset flip-flop, the master-slave JK flip-flop is also a 
frequently used type. 



Binary 

Sequential Systems 

-7.13-

7.2 Binary sequential systems 

In the previous paragraph we got to know the flip­
flop as a possibility for implementing the memory 
function of finite state machines. Now we can direct 
ourselves towards the realization of finite state 
machines. Again we want to realize our machine as 
a binary system. Here not only input and output 
values are presented by binary tuples, but also the 
machine states. Notice that this completely agrees 
with the use of the flip-flop as a binary memory 
element. 

BINARY SEQUENTIAL SYSTEMS 

• Finite State machine 
FSM = (I.S,O,NO,NS) 

• Realization as a binary system 
- coding of I. S. O. 

• Input coding: 
• Output coding: 
• State coding: 

I -7 iO,11 
n 

o -7 iO.1~m 
S -7 IO,1~s 

• Binary combinational functions: 
s+n s 

NS: S*I -7S or NS: ~O,1f ~ ~O,lf 
l s+n l m NO: S*I -70 or NO: 10,15 ~ 10,ls 

• Memory operation: 
using flip- flops to record 
- individual state code bits s 
- individual output bits m 

-7.14-

Thus we have (see figure 7.14) to deal with three 
value sets (I. $, and 0) which must be coded. We 
consider the input coding, the output coding and 
the somewhat different state assignment. They result 
in two combinational binary functions, which we 
know how to realize. The memory function is 
realized by the individual bits of the s-tuple related 
to the state (which is stored in an equivalent number 
of flip-flops). The same is true for the output m-tuple. 
In a previous chapter we have seen that input and 
output coding have a large influence on the 
complexity of the realization of a binary function. In 
finite state machines the chosen state assignment 
has influence on the complexity of both the next 
state and the next output functions. It is extra 
important to choose a state assignment that 
produces a simple realization. Unfortunately there Is 
no exact solution for this problem. In the 1990s. 
computer programs will be available which can 
make a relatively optimal state assignment. In this 
course we shall limit ourselves to getting acquainted 
with a number of frequently used state assignments, 
without bothering about optimization. 

7.9 



STATE CODE ASSIGNMENT (1) 

• State code 
The applied code has great influence 
on the NS and NO functions to be 
realized 

• Slale minimization 
- Minimization of the 

number of states 
= number of elements in S 

- Minimization of 
number of flip- flops: 

s = r log 2 #s 1 

17 states ~ 5 flip flops 
16 states ~ 4 flipflops 

9 states ~ 4 flipflops 

-7.15-

Figure 7.15 also mentions state minimization as a 
method for reducing the number of states. i.e. the 
number of elements in S. Reducing the number of 
states can influence the complexity of the realization 
of the next state and next output functions. Also a 
smaller number of states can lead to a smaller 
number of flip-flops. However, as shown in figure 
7.15. this reduction has a logarithmic nature; 
consequently possible simplifications are minimal. 
We shall not say anymore about state minimization 
in this course, except that in the 1990s programs will 
be available that can carry out this state 
minimization in combination with an optimal state 
assignment. Methods for state minimization will not 
be discussed here. 

7.10 

STATE CODE ASSIGNMENT (2) 
Method 1 - binary coding 

• s-bit binary numbers are used 
to code the states 

• Especially applied for modulo-n 
counters etc. 
State code = output code 

• Example: modulo-7 counter 
- runs through the states 0,1,2, .. ,6,0.1 ... 
- 7 states; 3 bits 
- code 

0=000 2=010 4=100 6==110 
1=001 3=01l 5=101 

- coded state table 
current next 
state state=output 
o 0 0 0 0 1 
o 0 1 0 1 0 
o 1 0 0 1 1 
o 1 1 1 0 0 
1 0 0 1 0 1 
1 0 1 1 1 0 
1 1 0 0 0 0 

-7.16-

In state assignments we associate a binary tuple of 
a certain length with each element of the set of 
states S. We shall now discuss four methods for 
state assignment. 
First in figure 7.16 binary coding is shown. Here we 
use s-bit binary numbers for coding the states. The 
number of bits s is equal to log2(#S), where #S 
denotes the number of elements in S. Such a code 
is frequently used in the modulo-n counter, where 
consecutive states are coded with consecutive 
binary numbers. The state code is generally equal to 
the output code, such that no separate next output 
function is necessary anymore. As an example we 
have coded in figure 7.16 the 7 states of a modulo 
7 counter with three bits binary digits. We can then 
construct a coded state table being a truth table of 
our next state function. 



STATE CODE ASSIGNMENT (3) 
Method 2 - Gray coding 

• Two consecutive code-words 
differ in one bit position only 

• Example: Gray code with 10 
code-words 

000 0 

• Usage: 

o 0 0 1 
o 0 1 1 
011 1 
o 1 1 0 
1 1 1 0 
101 0 
101 1 
1 0 0 1 
1 0 00 

Consecutive code-words can be 
assigned to consecutive states 

• Ad van tage: 
- only one bit (one flip-flop) 

changes during a state 
transition 
this leads to a simple Next 
State function 

-7.17-

As a second possible method for state assignment 
we introduce the Gray code in figure 7.17. In a Gray 
code, two consecutive code-words are constructed 
in such a way that they only differ from each other 
in one bit position. As we go from one code word to 
the following, only one bit changes. In figure 7.17 we 
show as an example a Gray code with 10 code­
words. Check for yourself that this code indeed 
fulfils the above mentioned characteristics of the 
Gray code. 

Problem (7.2) 
Construct another Gray code with 10 code-words. 

In state assignments we use the Gray code in the 
following manner: if we go from a certain state to 
another, we are considering consecutive states. We 
can now assign to these consecutive state 
consecutive code-words. The advantage is that in a 
transition form one state to another only one bit is 
the state code needs to be changed. Thus only one 
flip-flop needs to change value. Depending on the 
used flip-flop, this can lead to a simple next state 
function. We call the Gray code an uni-variant code, 
and we also speak about a uni-variant state 
assignment. 

STATE CODE ASSIGNMENT (4) 
Method 3 - lout of n coding 

• Only one out of the n bits in a 
code-word is 1 

• We need #S bits = #S flip-flops 

• Example: Pattern generator 
- code: lout of 5 code 

0=00001 3=01000 
1=00010 4=10000 
2=00100 

- coded state table 
Current 
state 
o 0 0 0 1 
000 t 0 
o 0 tOO 
o 1 000 
1 0 0 0 0 

• Advantage: 

Next 
stale, output 
o 0 0 1 0, 5 
o 0 1 0 0, 5 
o 1 0 0 0, 9 
1 0 0 0 O. 9 
00001. 0 

- simple determination of current 
state (a single bit) 

- this leads to simple Next State 
and Next Output functions 

-7.18-

In figure 7.18 we introduce a third method of state 
assignment: the 1-out-of-n coding scheme. In such 
a code only one bit in a code-word is equal to 1. If 
our code-words have a length of n bits, we can in 
total make n code-words. To use this in our state 
assignments we need code-words with length of #S 
bits. This means that we also need #S flip-flops to 
store the state. The large number of required flip­
flops is a disadvantage of the 1 out of n coding. As 
an example we have coded in figure 7.18 the states 
of our pattern generator with the 1 out of 5 code. 
The coded state table is also shown. Compare this 
table with the one given in figure 6.39. The 1 out of 
n code has the advantage that we can very simply 
determine what the current state is; we only need to 
observe which bit is 1. In combination with a 
programmable or-array, such as the one shown in 
figure 5.11, this leads to a simple realization of the 
next state and next output functions. The individual 
bits of the current state take the place of the 
minterms. 

7.11 



STATE CODE ASSIGNMENT (5) 
Melhod. 4 - Coding "by inspection" 
• Delermine a code simplifying the 

realization of next stale and nexl 
output functions 

• Example- Electronic digit lock 
- OUlpul coding: 

locked =0 
open =1 (only in state 4D) 

S stale bil(s) and output 
function should preferenUy be 
combined 
Code assignment for 52 SI so: 

00=000 20=011 4D=110 
10=001 3D=OlO 

With the chosen coding the lock 
is only open if S2 = 1 

Out 

-7.19-

The fourth method of state assignment which is 
shown in figure 7.19 we have called "coding by 
inspection". This indicates that we shall not use a 
fixed code, but that we determine what an optimal 
code might be for each specific case. An optimal 
code must lead to a simple realization of the next 
state and next output functions. This is a trial-and­
error "methodology".There are no fixed rules to give 
in order to find an optimal coding. Sometimes the 
used output coding can be indicative. We attempt to 
code the states in such a way that the next output 
function is simple. Frequently, we apply a variant of 
our canonical form shown in item 1 of figure 6.44, 
by trying to use bits of the state code for the output. 

In other cases a simple realization of the next state 
function can be an objective. In figure 7.19 we have 
shown as an example of the first case, a state 
assignment of our electronic digit lock. Here we 
start from the given output coding: locked = 0 and 
open = 1. We know that the lock must only open if 
we go to state 40, or the lock is only open if we are 
in state 40. We can now arrange the state 
assignments in a way that we can use one bit of the 
binary state tuple for the output function. Then we 
do not need a separate next output function and we 
do not need separate flip-flops. With the code 
shown in figure 7.19 this is indeed possible. We see 
that now bit S2 only becomes equal to 1 in state 40. 
Thus this bit can also be used for the output 
function. 

7.12 



CODING BY INSPECTION - EXAMPLE 
Pattern generator 
• Binary output coding 

0=0000 5:0101 9=1001 
• Choice of state coding 

0=000 2=011 4=100 
1=010 3=101 

• Coded state table 
Stale Next 

5 
5 
9 
9 
o 

n03=ns2; n02=n51 ;no\ =0;noO=n52 +ns, 

Consequently there are no 
additional flip-flops for 03> 02 and 01 

• Realization 

n 
Clock 'O'~ol 

-7.20-

1n figure 7.20 we have applied the coding "by 
inspection" to the state assignment of our pattern 
generator. Here the output values 0, 5 and 9 must 
be coded In binary. If we now chose the shown 
code for the 5 states of our pattern generator, then 
this leads to the coded state table shown in figure 
7.20. From this table we see that the next output 
and next state functions are almost identical. We 
specially see that for the bits the following is valid: 
n03 = n~ n02 = ns l , nOl = 0, noo = nS2 + ns l . We 
see that this leads to a relatively simple realization. 

Problem (7.3) 
Give a realization of the next state function of this 
pattern generator using and-gates and or-gates. 

We have now seen that there are different methods 
for state assignment. But they lead to one result: 
states coded as sets of binary tuples. Together with 
the input and output coding, this leads to the binary 
next state and next output functions. These 
functions produce as a result a binary s-tuple and a 
binary m-tuple, respectively. The individual elements, 
bits of these tuples, need to be clocked into their 
flip-flops. Actually, in general this cannot be done 
straight away. From the previous paragraph we 
know that each type of flip-flop has its own way of 
control. We thus have to deal with the input 
conditions of the used flip-flops. So a set-reset flip­
flop will demand other requirements of the input 
values than a D flip-flop. 

7.13 



FUP-FLOP TYPES (1) 
s+n s 

• Next state function NS to.ll ~ 10.11 
s+n m 

• Next output function NO l0,ll ~ i0,ll 
• D flip-flop: Qltl=D 

- Input D = ns; upon active clock 
edge the new state is copied 
NS and NO functions: no modi­
fication 

• T flip-flop: Qit1=TiIlQt 
Input: T = s iIlns; upon active 
clock edge new state is deter­
mined 

- NS and NO functions: must be 
modified (" excita lion functions") 

Example: modulo-6 Gray code counter 
s2 sl So nS2 nS t ns 0 t2 tl to 
000001001 
001011010 
011010001 
010110100 
110100010 
100 000 100 

-7.21-

In figure 7.21 we first direct ourselves to the 
demands of a 0 flip-flop. We see from the 
characteristic equation that all = 0; if we make the 
input 0 equal to a bit nSi from the next state tuple, 
then the new state will be assumed on the active 
clock edge. In a 0 flip-flop we can thus always 
connect the binary coded next state. Modifications 
in the function ns or no are not necessary here. 
Because of these reasons we have only used 0 flip­
flops in previous examples. 

In figure 7.21 we also consider the demands of the 
T flip-flop. From the characteristic equation of this 
flip-flop we distinguish that the input condition for 
the trigger input T must be equal to at ® 0t+l' 

Actually. when used as memory for a bit of the state 
code. it is valid that 0 , is equal to the current state 
bit s and that 0

'
+1 represents the next state bit ns. 

Thus the condition for T must be s ® ns. An 
adaption of the next state and next output function 
is necessary: we are considering the excitation 
function. Figure 7.21 finally shows a modulo-6 
counter for a Gray code that contains the 
modification. We see first the coded state table with 
the current state bits ~ and So and the next state 
bits n~ to nso' The columns with a next state bit 
need now to be replaced by the shown columns for 
the trigger inputs of the three T flip-flops. 

7.14 

Problem (7.4) 
Give a schematic realization of the Gray-code 
modulo-6 counter (in fig. 7.21). Realize the 
excitation function using a PAL. 



FUP- FLOP TYPES (2) 

• J-K flipflop: Qttt=JQt +KQ t 

- Inputs: J = {~s i 
K = {fm i 

Transition table: 

if s=O 
otherwise 
if s=1 
otherwise 

Qt~Qt+l'J K 
o ~ 0 0 
o ~ 1 1 
1 ~ 0 - 1 
1 ~ 1 0 

NS and NO functions: must be 
modified 

- Introduction of don't care terms 

- Example: Gray code modulo-6 counter 

S2S1S0 nS2nsln~ jzhio k2klkO} 
o 0 0 0 0 1 0 0 1 - - - Jns'1l S,.O 
o 0 1 0 I I 0 1 - - - 0 Ji ~t- ~tbe~wi:!e 
0110100---01 
0101101-0-0- _. 
1 I 0 1 0 0 - - 0 0 1 - ". =(DSi if 8 i ~l 
100000 -001 - - "I -otberWlSll 

-7.22-

Finally we discuss in figure 7.22 the demands set by 
a JK flip-flop. Again our point is the characteristic 
equation. Here we consider again that ot+, 
represents the next state bit and at represents the 
current state bit. The J input only has influence on 
the following state of the flip-flop if the current state 
is equal to O. In the other cases the value of the J 
input is don't care. J must be equal to ns if s is O. At 
the same time we conclude that the K input must be 
equal to ns' (not ns) if the current state s = 1. I n the 
other cases the value of the K input is don't care. 
The necessary J and K inputs, related to the desired 
state transitions of the flip-flop are shown in tabular 
form. We see that the use of a JK flip-flop requires 
a basic adaption of the next state and next output 
functions. Also there are extra input don't care 
terms. In figure 7.22 we show what this means for 
the Gray code modulo 6 counter. 

Now the next state columns must be replaced by 
the columns of the J and K inputs of our flip-flops. 
Instead of three binary next state functions we must 
now realize six binary excitation functions. The 
conclusion that it is therefore better not to use JK 
flip-flops in the realization of finite state machines is 
however not correct. The choice of the best flip-flop 
to use, strongly depends on the type of machine. JK 
flip-flops are well suited in counter-based finite state 
machines. In such cases, the use of the JK flip-flop 
will generally lead to simple excitation functions, 
simpler than ones of the other flip-flop types. 

Problem (7.5) 
The coded state table of our pattern generator is 
shown in figure 7.20. If we use JK flip-flops for the 
realization, how will the table of excitation functions 
look? 
What do you notice about the binary output function 
noD? 

7.15 



Standard Functions 

and 

Standard FSMs 

-7.23-

7.3 Standard functions; standard FSMs 

In this paragraph we shall concentrate on the 
behaviour of two very frequently occurring types of 
finite state machine types: the counter and register 
functions. These functions are so frequently and 
generally used, that they are produced as standard 
building blocks. We shall explain the behaviour of 
some of these standard building blocks with the 
help of the common standard IEC symbols. 

In figure 7.24 we first discuss the counter functions. 
We know that a counter is a special finite state 
machine with the characteristic that the states 
continually go through the same sequence. and that 
there is no separate next output function. 

7.16 

COUNTERS 
• Modulo- n Counter (MNC) definition 

MNC = (I,S.NS) 
• Principle: the machine passes 

through its states in a fixed 
sequence 

• State assignment: 
- binary code 

(modulo 2n = n-bit counter) 
BCD-code 

(modulo-lO counter) 
lout of n code (ring counter) 

- Gray code 
- etc. 

• Options and extra facilities 
- (a)synchronous reset input 
- enable input 

parallel loadability; preset 
option 

- upwards/downwards counting 

-7.24-

A counter with p states is called a modulo-p 
counter. Counters can be classified by the used 
state code. Generally, binary code is used for a 
modulo 2n or an n-bit counter. If we have to deal 
with a modu10-10 counter. the use of BCD-code is 
more natural. If the 1 out of n code is used we are 
considering a ring or Johnson counter. Also other 
state codes such as the Gray code are possible. In 
addition. a counter can offer realizations with extra 
functionality. We have summarized the different 
possibilities in figure 7.24 under the heading 
·options". A counter can have a separate input to set 
it to O. This is called a reset or clear input. A 
standard counter will increment the counter state by 
1 for each clock pulse. Frequently this is not 
desired; we want to be able to stop and start this 
counting function with a separate input. Such an 
input is called enable input. Some counters offer the 
possibility to enter an initial state via separate inputs. 
i.e. to load it. Next there are counters that not only 
count in one direction. up, but can count in both 
directions, up as well as down. 



COUNTER SYMBOLS (1) 
• Standard counter 

CTR3 {O 
+ CT 1 

2 

modulo-23 modulo-10 

• With reset (clear) input 
r=~-.,--, 

~DlV7 {O 1CT-O CT 

C1/+ 2 

asynchronous synchronous 

• Parallel loadabiUty and "ripple carry" output 

-7.25-

In figure 7.25 we have shown the standard symbols 
for different realizations of counter functions. We 
begin with two standard counters. The left counter 
is an ordinary binary 3-bit counter. denoted by the 
name CTR3 (derived from the word "counter"). We 
see that a plus sign is placed at the edge-sensitive 
input. This ~ +" shows that the counter will make a 
positive counting step at each leading clock edge. 
The count value CT is available on the 3-bit output 
numbered from 0 to 2. At the right side we have 
shown a modul0-10 counter, denoted with the name 
CTRDIV10. The symbol is similar to the one of our 
binary counter. A reset or clear input is used to set 
the count value to O. This can in principle be 
effectuated in two ways: asynchronously 
(independently of the clock), or synchronously 
(based on the clock command). Notice that in the 
synchronous implementation of CRTDIV7 the edge­
sensitive input now has a double function. Firstly it 
serves as a command input for the clear function, 
expressed by the letters C1. Secondly this input has 
a counting fUnction expressed by the pulse sign. 
Notice that the notation D1CT=0" at the clear input 
means that if this input is 1 at the following clock 
edge (command dependency) the counter CT is set 
to O. 

CT=9 

Finally we have in figure 7.25 drawn another counter 
where a counter value can be loaded via separate 
inputs. Because this function has influence on the 
behaviour of the individual flip-flops we must draw 
these flip-flops separately. This is shown in the lower 
half of the symbol; here the flip-flops are identified 
by the weight of the respective bits in the BCD­
code. The upper half of the symbol forms the 
common control part. One input is used to choose 
one of the counter modes: "count" or "load". This is 
an input with the so-called mode dependency, 
expressed by M1. The edge-sensitive input has two 
functions. First there is a command dependency of 

C2, and next there is the counting function. With 
-1 +. we express that the count function is only 
activated if the mode-input M1 = 1. Furthermore. we 
see in the first individual flip-flop (indicated with 
"1,2D") that the flip-flop takes the value on the 
corresponding 0 input if input M1 =0 and there is a 
positive clock edge. This counter has another output 
in the common control part. It is indicated with 
"CT =9" that this output Is only 1 If the counter 
position = 9. Such an output is called a ripple-carry 
output and is meant to control the following counter. 
A following counter must than have the so-called 
enable input. 

7.17 



COUNTER SYMBOLS (2) 

• Enable input 
CiRDtVl6 

ENl lCT=15 
1+ 

• Upward/downward counting 

CTRDIVIO 
2+ ICT=9 
Gl 
t- 2CT=0 
G2 

• Combinations 

CTR3 
III leT=? 
M2 
H/2_2CT=0 

-7.26-

Such a counter is shown in figure 7.26. This counter 
has an input with an enable dependency, expressed 
with EN1. The used symbol by the edge-sensitive 
input shows that the counter functions if the internal 
value of this enable input is 1. Because of the 
Inverter ball the external value on the input should 
be equal to O. We see also that this counter has a 
ripple-carry output, which is equal to 1 if the counter 
position is equal to 15 and the counter is enabled. 
In this counter the individual bits are otherwise not 
available. 
For counters which can count upwards as well as 
downwards, there are two possible implementations. 
The left counter in figure 7.26 has two edge-sensitive 
inputs. At the same time we indicate with the G 
dependency, that if this input is high the counting 
function of the other input is operational. At edges 
of the higher input the counter will count upwards. 
while at edges of the lower Input the counter will 
count downwards. This corresponds to the plus and 
minus signs at the respective inputs. Notice also that 
there are now two ripple-carry outputs. one for each 
direction. 

7.18 

The right counter has only one edge-sensitive input, 
but also a separate mode-input. With "M1" and "M2" 
we express a single input. indicating whether mode 
M1 or mode M2 is active. From the symbol at the 
edge-sensitive input we read that mode M1 
corresponds with upward counting and mode M2 
with downward counting. This counter also has two 
ripple-carry outputs being activated depending on 
the chosen mode. 

By combining a number of options we can compose 
complex counter functions. In the lower part of 
figure 7.26 the logical symbols for two practical 
counter circuits are shown. To the left we see the 
symbol of the 74163, a 4-bit binary counter with a 
clear function, a parallel-load option, 2 enable inputs 
and in addition to the 4-bit outputs, a separate 
ripple-carry output. We see from the symbol at the 
outputs that it makes use of master-slave flip-flops. 

To the right we see the symbol of the 74192. a 
modul0-10 "up/down" counter. This counter can 
count upwards and downwards with the help of two 
separate edge-sensitive inputs. It also has a 
separate clear input and a possibility for the parallel 
loading of the counter. We also see two ripple-carry 
outputs. 



MODULO-1O COUNTER (1) 

• Function: 
- modulo-lO counter 
- enable input 
- binary code 

• Behavioural description 

SYSTEM CTRDIVIO; 
TYPE RANGE = 0 .. 9; 
VAR Clock: EVENT; 

Enable : BOOLEAN; 
Counter : RANGE; 

BEGIN 
REPEAT 

WAIT_FOR_EVENT (clock) 
WAIT_FOR_INPUT {enable}; 
IF (Enable) 

THEN Counter: =(Counler+ l)MOD lO 
FOREVER 

END. 

-7.27-

Let us consider how to realize such a counter. In 
figure 7.27 we have formulated a design job. We 
want to make a simple modu10-10 counter with a 
separate enable input. The counter should use 
binary code. Our starting point is the behavioural 
description given in figure 7.27. Notice that the 
enable input appears in the IF statement within the 
REPEAT FOREVER loop. As long as Renable" is not 
true we do nothing; the counter position remains 
unchanged. When "enable" becomes true, the count 
will be incremented by 1 at each clock pulse. 

MODULO-lO COUNTER (2) 
• Simplified ASM chart 

-7.28-

From this behavioural description we derive the 
ASM-chart shown in figure 7.28. 
Because we have to deal with a finite state machine 
where we can only have one output value per state, 
we can use the simplified ASM-chart. Here the next 
output values are written in the next states' boxes. 
Notice that the output values and states are equal to 
each other, as it should be in the case of a good 
counter. Notice also that we must test the value of 
the enable input in each state. Only if this value is 
equal to 1, we are allowed to proceed to the 
following state. 

7.19 



MODULO-lO COUNTER (3) 
• State table 

current 
state Enable=O =1 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

o 1 
1 2 
2 3 
3 4 
4 5 
5 6 
6 7 
7 8 
8 9 
9 0 

~ 
• State table; binary state code 

current Next state 
state ~nable=O =1 

000 0 
o 0 0 1 
o 0 1 0 
o 0 1 1 
o 1 0 0 
010 1 
o 1 1 0 
o 1 1 1 
100 0 
100 1 

00000001 
00010010 
00100011 
00110100 
01000101 
01010110 
01100111 
01111000 
10001001 
10010000 

-7.29-

As a following step in our design process we must 
compose the state table. This is done in figure 7.29. 
We see that the 2 possibilities for the value of the 
enable input leads to two columns for the next state. 
Knowing that the next state is equal to the next 
output we have omitted the latter. The state table 
resulting from filling in the binary equivalent of the 
states is shown in figure 7.29. The current and next 
state are given by binary quadruples. This coded 
state table is in fact the truth table of our next state 
function. 

Before we realize this function, we must determine 
which type of flip-flop to use. For the realization of 
a counter function, a T flip-flop or a JK flip-flop are 
often the most advisable types. Here we shall use 
the T flip-flop. 

7.20 



MODULO-tO COUNTER (4) 

.Realization with T flip-flops 
-ti =si$nsi 
- when Enable=O: nsi=s i; accordingly ti=O 

.Exitation functions: 
s3s251 So Enab t3t2tltO 53s2s1 So Enab t3 t2tl to 
xxxx 0 0000 10001 0001 
o 000 1 0001 1 001 1 1 001 
00011 0011 10101 
00 1 0 1 0001 1 0 1 1 1 
00111 0111 11001 
o L 00 1 000 1 1 1 0 1 1 
01011 0011 11101 
o 1 1 0 1 000 1 1 1 1 1 1 
01111 1111 

.Function values for unused 
state codes: don't care 

.After minimization: 
to = Enab t 1 = S3' So' Enab 

t2 = S l' So' Enab 

t3 = S2'Sl· s o,Enab+sa'so·Enab 

-7.30-

In figure 7.30 we show what this means. We know 
that the excitation function for the t input of each 
flip-flop is given by an exclusive-or function between 
the corresponding bits of the current state and the 
following state. By considering that the state does 
not change if the enable input has the value 0, and 
thus the following state is equal to the current state, 
we can write the first part of our excitation function 
in a brief but powerful manner. Indeed the t inputs 
must be equal to O.ln figure 7.30 we have translated 
the state table into a table of the excitation function. 
Notice the first rule of this table where the situation 
is sketched for "enable" = O. The value of the state 
bits plays no role at this point. The t inputs of the 
flip-flops are O. Furthermore, you can check for 
yourself that this table is derived from the state table 
of figure 7.29 by applying the previously discussed 
exclusive-or operation. 

There is one more thing worth mentioning. When 
coding the states, codes occur that do not 
correspond to state symbols. Actually, these codes 
are legal and operational states for the binary 
implementation of finite state machines. 

In principle. because the behaviour of the machine 
is not specified for these states, we can take the 
function value don't care. We assume that the 
machine only runs the specified states. Formally 
said this is correct reasoning. Actually in this wor1d 
nothing is ideal, including the realization of a finite 
state machine. As a result of a disturbance or an 
error it can always happen that the finite state 
machine arrives in one of these undefined states. 
We always have to keep this possibility in mind. It 
would therefore be better to design the behaviour of 
the machine for the unspecified states, so that the 
machine can return to one of the specified states as 
quickly as possible. 

We should at least convince ourselves that if the 
machine arrives at an unspecified state, it should 
proceed to one of the specified states. We shall not 
discuss this problem further. 

We now have made a function table for our 
excitation function. This table can be minimized, 
which leads to the function (shown in figure 7.30) of 
the 4 inputs to to t3' Guided by these relations we 
can compose a schematic. 

7.21 



MODULO-lO COUNTER (5) 
• Schematic 

~------------~lT 

Cl 

& 

& 

& 

& 

Enable Clock 

Sl 

Sz 

= next state determination of 74160 
-7.31-

This is done in figure 7.31. In this case we have 
realized the excitation function with separate gates. 
Another possibility would of course be a realization 
with a PtA or PAL This we shall leave to a number 
of exercises. In the schematic of figure 7.31 we 
notice that this coincides with the next state 
determination of the 74160, a synchronous 4-bit­
counter. 

7.22 

MODULO-8 COUNTER WITH CLEAR INPUT 
• Behavioural description 

SYSTEM CTR3_ With_Clear; 
TYPE RANGE == 0 .. 7; 
VAR Clock: EVENT; 

Clear : BOOLEAN; 
Counter: RANGE; 

BEGIN 
REPEAT 

WAIT_FOR_EVENT(Clock); 
IF (Clear) 

THEN Counter : = 0 
ELSE Counter: =(Counter+1)MOD 8 

FOREVER 
END. 

-7.32-

Problem (7.6) 
In figure 7.32 the behavioural description of a 
modulo-8 counter with a clear input is given. Give 
a realization of this counter. Make use of D fJip­
flops. Show that the use of T flip-flops or JK f/ip­
flops is an advantage here. 

.. 



Problem (7.7) 
The behaviour of a modul0-8 up/down-counter can be described as follows: 

TYPE MODES: (Up, Down); 
COUNTSTATES: 0 .. 7; 

VAR CountPulse : EVENT; 

BEGIN 
REPEAT 

Direction: MODES; 
CounterOutput: COUNTSTATES; 

WAIT FOR EVENT(CountPulse); 
IF Direction = Up 

THEN CounterOutput:= (CounterOutput + 1) mod 8 
ELSE CounterOutput := (CounterOutput· 1) mod 8 

FOREVER 
END. 

Questions: 

B. Describe the behaviour with an ASM-chart. 

b. Make B state table. 

c. Make a Grey code counter realization using T(oggle) flip-flops. 

7.23 



REGISTERS (1) 
• Function: memory 
• Next State and New Output: 

NS=NO : SlH=it 

StH € S . itd 

• Options and extra facilities 
separate load input 

- (a)synchronous reset (clear) input 
- "3-state" outputs 
- shift register functions 

* shift left/right 
* serial input + serial output 

-7.33-

As a second group of standard functions we shan 
discuss the register. In figure 7.33 is expressed that 
in this register function the emphasis lies on the 
memory function. We can save values in a register. 
Also in registers the next state function is in general 
equal to the next output. Formally we can describe 
the behaviour of a synchronous register with St+l = 
it. where t + 1 stands ior the time moment after the 
active clock edge and t for the one before. Upon 
each new clock edge a register will copy the value 
on its inputs. 

7.24 

Here we see that a register can be simply realized 
with the help of one or more flip-flops. depending on 
the number of bits we want to save. The 
combinational logic for the next state function is 
thus absent here. A register is formed by a set of 
flip-flops switching at the same clock edge. 
Finally we can expand this standard register function 
with a number of extras. In figure 7.33 we have. 
among others. mentioned: a separate load input, a 
reset or clear input, "three (tri) state" outputs and 
shift-register functionality. The meanings of these 
terms will be further explained when discussing the 
corresponding building blocks. 



REGISTERS (2) 
• Standard register 

Clock REG4 
-----C>Cl ..., ,-

. I {- ID r----:l 
1 t € =~E~~~~~=J s t+ 1 € S 

• Separate load input 

Ml REG4 
-----C>C2 

• Asynchronous clear input 

Ml REG4 
--I>C2 

R 

-7.34-

If figure 7.34 we have first drawn the symbol of a 
standard 4-bit register. Notice the name REG4 on 
top of the symbol. The symbol further contains a 
common control part, that is the highest part of the 
symbol. Here we find the edge-sensitive command 
input C1, where the clock is connected. Under this 
common part we find 4 rectangles as symbols for 
each of the individual flip-flops. Each flip-flop has a 
o input which is controlled by the common clock 
input. The operation is self-explanatory. 
In many systems there is a central clock-generator 
that supplies all flip-flops with the clock signal. For 
a register that means that for each active clock edge 
new input data must be available. Of course this is 
not always desired. Frequently we want one register 
to keep the saved information for several clock 
pulses. This can be achieved with a register which 
has a separate load input. 

The symbol for such a register is shown in figure 
7.34 (in the middle). Notice that a second input is 
added in the common control part, the mode-input 
M1. Furthermore, we see that the 0 input of the 
individual flip-flops are also controlled by this mode­
input. These flip-flops will load new data when the 
mode-input M1 = 1. and the clock input has an active 
edge. If the mode-input M1 is low then the register 
will keep its old value; it will not change. In the 
bottom of figure 7.34 we have expanded this register 
with a reset (clear) input. Notice that the R input is 
independent of the clock input. Here we conclude 
that this clear input is obviously asynchronous. That 
is to say: when the external value of this input is 
equal to O. all flip-flops will immediately assume the 
reset state. i.e. the 0 state without waiting for an 
active clock edge. 

7.25 



REGISTERS (3) 
• 3-state outputs 

,.....::-----, 
Reg4 

Clock Cl 

EN2 

• Enable = 0: 
- outputs are in their "3rd state" 

= high impedance 

• Principle of 3-state output 

In Out 

Enable I 
• Application: several devices with 

outputs connected together; 
only one of these may be enabled! 

-7.35-

In f~gure 7.35 we have the symbol of a 4-bit register 
with the so-called "three (tri) state" outputs shown. 
A tri-state output is an output that in addition to the 
o state and the 1 state can be in a third state; this is 
where the name comes from. This third state is not 
a logic state, but is characterized by a very large 
output impedance. As shown in figure 7.35. for 
realization purposes, we shall consider it as a 
normal output which is connected in series with an 
electronically controlled switch. If the switch is 
closed the output is in the normal 0 or 1 state. When 
the switch is open the output is in the third state, the 
state of high impedance. In the symbol of the 
register the tri-state property is expressed by a 
triangle near the output of each individual flip-flop. 
The 2 near this rectangle shows that the tri-state of 
these outputs are controlled by another signal. In 
the common control block we see that this is the 
signal EN2. which we call the enable signal. 

7.26 

This signal "enables" the output, i.e. lets the output 
work in its normal mode. When do we need such a 
tri-state output? In digital systems there are many 
situations where information of one of meany 
sources (e.g. registers) must be processed. If we 
now supply all these sources with tri-state outputs 
we can connect them all together. By enabling only 
the wanted source we avoid that several outputs will 
produce information at the same time and thus 
cause a short-circuit. The parallel connection of 
several sources and the selection of one of these 
sources is the purpose of the tri-state output. Also in 
computer systems three state outputs are frequently 
used at the interconnection of different subsystems. 



REG ISTERS (4) 
• Shift regis;..:t-,-er~;:::::;"7_---' 

Clock SRG4 ";",,,,-ocl/-+ 

SerIn 

diagram 

S2 ~st.t XSO.l XSerlnt 

S3~S2:t XSu X,-,~07-"-.t_ 
l t +l : t +2 t +3 

• Serial input + serial output 
SRGB 

Serln ~="""=~..:..:J&.=:O lD 

Clock 

(7491) 
-7.36-

In figure 7.36 we discuss the behaviour of a shift­
register. On top we have drawn its standard symbol. 
Notice the letters SRG4 on top of the common 
control block. These letters are derived from the 
name Shift-ReGister. The shift-register is a register 
that can shift (move) its contents over one or more 
bit positions. 

The behaviour is explained using the shown timing 
diagram. First we see that in time period t the values 
of the 4 outputs are shown. At the active clock edge 
the contents of the shift-register will be shifted one 
bit position. This means that the information of bit So 
now arrives at the flip-flop of bit Sl' Similarly the s, 
bit shifts one position towards S2 and at the same 
time the bit of ~ shifts to sa. The bit that was saved 
in bit sa. is lost. The value of the serial input Serl" is 
put in so. All of this is shown in time period t + 1. On 
the following clock edge the whole process is 
repeated. Information from bits so. s,. ~ if shifted 
towards the bits S,. ~. ~. 

SerOut 

The new information of the serial input is put in so. 
This is shown in time period 1+ 2. Now we return to 
our symbol. We see that the common control block 
has one input. the clock input, an edge-sensitive 
input with two functions. 
First there is the combinational function C1 where 
the loading of the first flip-flop belonging to So is 
controlled. Then we have the shift function which is 
expressed with the arrow. It is possible, at the same 
clock edge, to load new information in the first flip­
flop So and to shift the old information over 1 bit 
position. 

We can imagine that there are many variants of the 
shift-register. We shall not discuss these In this 
course. We want to give some attention to a shift­
register type, where not all output bits are available. 
The symbol of such a shift-register is shown in figure 
7.36 (bottom). Notice that here we are discussing an 
a-bit shift-register. The shift-register has an edge­
sensitive clOCk input, 2 serial inputs combined by an 
"and" function, a serial output SerOut and its 
complement. The serial output corresponds to the 
output of the highest bit position. In our previous 
example that was~. We notice that the given device 
symbolls a 7491. 

7.27 



REGISTERS (5) 
• 4- bit universal register 

with bidirectional shift option 

Clear .R SRG4 

OLM.!! 
If 3 

---.--I>C4 
Clock 1 .... /2 .... 

SrSer 
Da 
Db 
Dc 
Dd 

SISer 

3,4D 
3,4D 
3.4D 
2,4D 

(=74194) 

Mode: 0 = Hold. 
1 = Shift Right 
2 = Shift Left 
3 = Parallel Load 

Combining a number of items we arrive in figure 
7.37 at the symbol of a 4-bit universal register, 
where we can shift the data in two directions 
(bidirectional). The upper part of the symbol 
represents the common control part. There we have 
the clear input that asynchronously puts the flip­
flops in their 0 state. Then we have the two mode­
inputs, expressed with So and S1. With MO/3 we 
show that using these two inputs, 4 different modes 
can be selected. These modes are: hold, shift right, 
shift left and parallel load. As a fourth input we have 
finally the clock input, an edge-sensitive input with 
several functions. There is first the command 
dependency C4. 

7.28 

-7.37-

Next we see that in mode 1 and 2 a shift operation 
is performed in one of both directions. Traditionally 
these directions are called "right" and "left". The 
lower part of the symbol shows the 4 flip-flops. 
Notice that the D inputs of these flip-flops only 
function in mode 3 and on an active clock edge. 
The higher and lower flip-flops both have an extra 
input, "shift right serial" SrSer for the highest flip-flop 
which is active in mode 1, and the input "shift left 
serial" S1 Ser for the lower flip-flop which is active in 
mode 2. Note that the symbol shown in figure 7.37 
is the 74194 building block. 



REGISTERS - EXAMPLE (1) 
• Realization of parallel loadable 

bidirectional shift register 

• Behavioural description of 
1-bit section 

SYSTEM SRG 1; 
TYPE MODES = (Hold, lshift, Rshift, Load); 

BIT :: 0 . .1; 
VAR Out: BIT: 

ParIn, LeftIn, RightIn: BIT; 
Mode : MODES; 
Clock: EVENT; 

BEGIN 
REPEAT 

WAIT_FOR_EVENT (Clock); 
CASE Mode OF 

Hold : Out : = Out; 
Lshift: Out : = LeftIn; 
Rshift: Out. RightIn; 
Load : Out ParIn 

END 
FOREVER 

END. 
-7.38-

We now want to briefly address the question of how 
such a shift-register can be realized. In figure 7.38 
an example has been worked out. The example 
shows the realization of a parallel loadable 
bidirectional shift-register. Notice that we have a 
small problem with shift-registers. A shift action 
cannot be easily described on a high symbolic level. 
Indeed shifting has effect on bits: on binary coded 
signals in binary systems. These we can not easily 
translate to operations on value sets or on symbol 
sets. The fact that we cannot give a higher symbolic 
description of the bottom binary building block layer 
is not a shortcoming of the general theory, but is to 
be expected. 

We can give a good behavioural description of a bit 
section of a shift-register, however. This is done in 
figure 7.38. Notice that we have first defined the first 
4 modes in one type declaration. We have also 
given the value set of inputs and outputs in the BIT 
type. Subsequently we have declared the necessary 
variables for the inputs and outputs. Notice that this 
is a synchronous system: we have a clock input of 
type EVENT. The behaviour of one bit section can 
now be described as follows: we wait for an active 
clock edge. What has to be done afterwards is 
depending on the mode. In the Hold mode the value 
of the output Out must remain unchanged. In the 
Lshift mode the output is equal to the value on the 
serial input Leftl n. Similarly in the Rshift mode the 
output is made equal to the value on the Rightln 
input. Finally, if we are in the Load mode the output 
value is obtained by loading the value on the parallel 
Input Parln. This is the behaviour of a l-bit shift· 
register. We could now sketch an ASM-chart based 
on this behavioural description and make a state 
table. In this case this is completely unnecessary. 

7.29 



REGISTERS - EXAMPLE (2) 
• CASE statement = multiplexer 

behaviour 

• Coding of input 

Hold:: 00 
Lshift:: 01 

• Schematic 
MUX 

Mod 0 - O}GO 
Mod 1 -1 3 

ParIn _ 3 
RightIn -.2 

LeftIn '"11 

1 '--0_---' 

-7.39-

Rshift = 10 
Load = 11 

I 
Clock 

If we look at the behavioural description again we 
recognize in the CASE statement the description of 
a multiplexer (figure 7.39). We could include this 
behavioural description in a separate procedure. 
What remains is the behaviour of a simple register. 
such as we have seen in the beginning of the 
previous chapter. The system is then composed of 
a multiplexer followed by a 1-bit register. In figure 
7.39 we see that we still have to consider the coding 
of the modes. With the coding shown in figure 7.39 
we find the illustrated realization. Notice the 
correspondence of the output Out to input 0 of the 
multiplexer. Here the Hold mode is realized. 
Furthermore. we still have three other data inputs for 
the parallel load mode, the right shift mode and the 
left shift mode. The use of these Inputs can only be 
demonstrated if we expand our shift-register to 
several bits. 

7.30 

REGISTERS - EXAMPLE (3) 

• Extension to 4 bits 

uux 

Da-----I 
SrSer 

SISer 

OlG.Q. 
lJ 3 

Clock 
-7.40-

In figure 7.40 we have done this for an expansion to 
4 bits. Notice that we have now 4 times a 4-to-1 
multiplexer. Furthermore, we have brought the 
notation of the inputs in correspondence with the 
symbol shown in figure 7.37. 

On top we first see the 2 inputs So and S1 for the 
selection of the modes. Further we see that inputs 0 
of the 4 multiplexers are connected with the outputs 
of the corresponding bits of the flip-flops. The inputs 
1 are the inputs for the left shift mode, and these are 
related to the flip-flops that have a lower position. 
Notice that for the last multiplexer input there is no 
lower flip-flop anymore. This is the shift left serial 
input. The multiplexer inputs 2 form the inputs of the 
right shift mode. These outputs are connected with 
the next higher positioned flip-flops. The input of the 
highest multiplexer forms the shift right serial input. 
The Inputs 3 of the multiplexers form finally the 4 
parallel load inputs. Notice that only with an addition 
of an asynchronous clear input this could be an 
implementation for the 74194. 



REGISTERS - EXAMPLE (4) 

• Application: 

Serial communication 

Data 

~ 

-7.41-

Using figure 7.41 we want to discuss an important 
application of the shift-register: serial bit­
communication between two systems, for example 
a computer and a terminal. Between both of these 
systems information must be exchanged. This 
information generally comprises a series of symbols 
coded as binary tuples. Such a symbol can for 
example consist of 8 bits. These symbols can now 
be exchanged using eight parallel wires, 1 bit per 
wire. This is a good possibility if the speed of 
information exchange has to be high. The 
disadvantage is a result of speed differences in the 
different wires: the distance to be crossed can only 
be relatively short. In serial communication the 
information is exchanged along a single wire. Here 
we load the symbol at the sender side (in parallel) 
into a shift-register and transmit it in serial, bit by bit, 
to the other side. At the receiver side these bits are 
put behind each other in a shift-register, after which 
the 8 bits of the symbol are available. 

We have obtained a communication method via one 
wire. For this purpose we can use the world-wide 
telephone network or the future ISDN-network. 

REGISTER FILE 

Write 
Enable 

Data 

Registers 

1.2D 
M2 
C1 

Clock 

-7.42-

},tux 

Out 

Read Read 
Address Enable 

Finally we should have made some regulations to be 
sure that the sender and the receiver run exactly at 
the same speed; this is beyond the scope of this 
course. however. 

In figure 7.42 we have expressed that we also can 
combine several registers (each of them may be 
several bits wide) in a register file. Several 
implementations of such register files are possible. 
In figure 7.42 we have drawn an Implementation that 
allows us to write new data into a register and read 
another register at the same time. To do that it is 
necessary to provide 2 separate addresses. A 
writing address at the left side. indicating the register 
where we want to write data. and a read address at 
the right side to select the register that we want to 
read. We have used a multiplexer for the selection of 
reading the register. Notice that we have given this 
multiplexer a three-state output, so that we can 
connect several registers in parallel. 

With the read enable input we can select the wanted 
register to be read out. 

7.31 



RANDOM ACCESS MEMORY (RAM) 

Din.O Din.l Din.2 Din.3 

Bit cell 

Enable 
Dout.O Dout.1 Dout,2 Dout,3 

-7.43-

A register file generally contains hundreds of 
registers. If we need to save more information we 
should consider memories. In figure 7.43 the 
principle scheme of a read/write memory, a random 
access memory (RAM), is shown. Such a circuit 
comprises a large number of identical flip-flops 
called bit cells, grouped in rows. By offering an 
address to the address decoder we can select such 
a row. 

7.32 

Each address selects a word in the memory. The 
bits in the selected word can be read or written. 
Compare this with the ROM discussed in the 
previous chapter. We notice that at this moment 
RAM ICs with 16 million bits are obtainable. This 
number is doubled each year. 



7.4 Summary 

In this chapter we considered the realization of finite 
state machines. For this realization we first need a 
memory function. We have seen that we can use 
flip-flops for this. The flip-flop is a bistable circuit, i.e. 
a circuit with two stable states. As an example we 
have seen the set-reset latch. For our purpose we 
need a flip-flop with a clock input. To this end we 
considered the edge-sensitive flip-flop or the master­
slave flip-flop. Next we have distinguished different 
types of flip-flops: the 0 flip-flop, the T flip-flop and 
the JK flip-flop. 

With the help of these types of flip-flops we can 
realize finite state machines. We have seen that next 
to the memory function we still must realize two 
combinational binary functions. An important new 
aspect here is the state assignment or the code that 
we use for the states of a machine. We have 
discussed four methods of doing that. We have 
noticed that none of the four methods can produce 
an optimal result in all cases. There is no known 
general methodology for doing this. The 
replacement of the next state and next output 
functions by the excitation function of the flip-flop is 
important for the realization. 

1n the second part of this chapter we have directed 
ourselves to the implementation of two standard 
functions, the counter function and the register 
function. We have discussed various options and 
given examples of the used symbols. Also we have 
given realizations of both types of fUnctions. In the 
case of the register functions we introduced the 
grouping of registers in a register file. and the 
following step, the use of a random access memory. 

7.33 



Appendix A 

Examinations 

A.1 



TECHNISCHE UNIVERSITEIT 

TENTAMEN DIGITALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

EINDHOVEN 

TOTAL: 8 sheets 
of which 4 answersheets 

SHEET 1 

Questions should be answered on special added answersheets. You only have to hand in these 
answersheets. 

1. Convert the next expressions to the form given, where for every x an inverted or normal variable should 
be substituded. Fill in your answers on the place provided in the answersheets. 

a) a + bcd (x + x)(x + x)(x +x) 

b) a(b+c') + (b+c)' = xx + xx 

c) (ab + a'c + b'c)' = (x + x)x 

d) ab E9 ac xxx + xxx 

e) «a' + b)' + (a + b')')' = xx + xx 

2. The behaviour of a combinational function can be described in the next way: 

A2 

TYPE FUNC (PLUS1, PLUS2); 
VAR In, Out: 0 . .7; 

Command: FUNC; 
BEGIN 

IF Command == Plus 1 
THEN Out :== (In + 1) MOD 8 
ELSE Out : = (In + 2) MOD 8; 

END. 

It 1s decided to realise this function as a 3-iterative circuit. Answer the next questions on the places 
provided in the answersheets. 

a) Draw on the place provided in the answersheets a schematic diagram of the architecture of this 3-
iterative circuit. Mention explicitly what signals with what set of values are on the different inputs and 
outputs. 

b) if for the values of the variable Command the next coding will be used: 
PLUS1 = 0, PLUS2 = 1 

then give in a truth table on the place provided the function of each of the blocks in your diagram. 



TECHNISCHE UNIVERSITEIT 

TENTAMEN DIGITALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time; 09.00 - 12.00 hours 

EINDHOVEN 

TOTAL: 8 sheets 
of which 4 answersheets 

SHEET 2 

3. tn the next figure 2 functions f1 and f2 are realised with a PLA with 4 inputs and 2 outputs. 

a~~>-~~-r~+­

b ~-<C)-----"'~+-+---'­
Ccr~~~-r.-r+­

d c::J--<I.--<f:>-+-I--I-+-l-1--

Answer the next questions in the place provided on the answerforms. 
For the numeric values of the minterms it is assumed that a has the highest weight and d the lowest. 

a) Calculate for both functions f1 and f2 the sum of minterms form, and put these in numeric format on 
the place provided in the answersheets. 

b) The same question for the product of maxterms form of both functions. 

c) Calculate for both dual functions f1d and f2d the sum of minterms form, and put these in numeric format 
on the place provided in the answersheets. 

d) In the answersheets you will find the same PLA, but now unprogrammed. Draw the programming 
information for the PLA to realise both functions f1d en f2d in the same time. 

4. A counter for which the state table is given below. can function as a modul0-5 or modul0-6 counter under 
control of an input m. 

m 
state 0 

0 1 1 
1 2 2 
2 3 3 
3 4 4 
4 0 5 
5 1 0 

(continued on next page) 

A.3 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGITALE SYSTEMEN II 
5A010 

TOTAL: 8 sheets 
of which 4 answersheets 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

SHEET 3 

4. continued 

In realising the counter, use is made of the binary code, while the flipfJops are of the J-K type. In determing 
the numeric values of the minterms it is assumed that m has the highest weight, followed by the most 
significant bit of the state code, etc. 

Write down in the place provided on the answersheets as a sum of minterms the functions needed on the 
J and K inputs of the flipfJops. Use underlining to indicate the minterms that are don't care. 

5. ln the next figure a schematic of the realisation of a finite state machine is drawn. 

c 
a 

~ 

c b 
a b 
b a 

a a 
c 
Clock 

Answer in the places provided on the answersheets the next questions: 

a) Determine for this machine the consecutive states and write these down in the state table given. 

b} After some clockpulses the circuit will get into a cycle. How many states contains this cycle? 

6. On the next page the behaviour description of a finite state machine with 4 states. 1 input and 1 output 
is given. On one of the answersheets you will find a skeleton ASM-chart for this machine. Questions: 

a) Complete the ASM-chart for this machine. 

b} Write down in the place provided what values the output Out can have in the different states. 

c) Fill in the state table of this machine that is given in one of the answersheets. 

A4 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGITALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

6 continued. 

TYPE MODI = (M1, M2); 
STATES == (SO, S1, S2, S3); 
OUTVAL = 0 . .7; 

VAR Clock: EVENT; 
State: STATES; 

Out : OUTVAL; 
Choice: MODI; 

BEGIN 
State:= SO; 
Out := 0; 
REPEAT 

WAIT_FOR_EVENT( Clock); 
CASE State OF 

SO: BEGIN 
IF Choice = M1 

THEN State := S1; 
Out:= 1; 

END; 
S1: BEGIN 

State ;= S2; 
IF Choice = M2 

THEN Out:= 2 
ELSE Out: = 7; 

END; 
S2: BEGIN 

IF Choice = M1 
THEN State : = S3 
ELSE State: = SO; 

Out := 4; 
END; 

S3: BEGIN 
State := S1; 
Out:= 1; 

END 
END (* CASE *) 

UNTIL FOREVER 
END. 

TOTAL: 8 sheets 
of which 4 answersheets 

SHEET 4 

A.5 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGIT ALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

ANSWERSHEETS 
NAME: _____________________________________ __ 

J.D. NUMBER:, ____________ _ 

1. a) 

b) 

c) 

d) 

e) 

2. a) space for drawing the schematic diagram 

A.6 

TOTAL: 8 sheets 
of which 4 answersheets 

ANSWERINGSHEET 1 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGITALE SYSTEM EN II 
5AD1D 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

ANSWERSHEETS 
NAME: -----------------------------------
1.0. NUMBER: _____________ _ 

Answer 2 continued 

b) 

Command In Out 

3. a) fl = L ----------------------------------
12 = L -------------------------------

b) fl = II ------------------------------
~=II __________________________________ ____ 

c) fld = L -------------------------------

d) 

1
2d 

= L ___________________________ _ 

a c-J-...&.--.d>--+--+-+-+-t--t-­

b c:::J-<I ...... ,t>-+--t-t-+­

Cc=r-I.-<D-+--+-+-+-+--+­
d c:::J-I-<I>-+--f--t---I--I-+--

TOTAL: 8 sheets 
of which 4 answersheets 

ANSWERINGSHEET 2 

A.7 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGITALE SYSTEMEN II TOTAL: 8 sheets 
5A010 of which 4 answersheets 

Saturday 10 november 1990 ANSWERINGSHEET 3 
time: 09.00 - 12.00 hours 

ANSWERSHEETS 
NAME: __________________________________ _ 

J.D. NUMBER:c ____________ _ 

4. For the most significant state bit must hold: 

J = E, ____________________ _ 

K = E, ___________________________________ _ 

For the next state bit must hold: 

J=E ----------------------------------------
K E ------------------------------------------

And for the least significant state bit must hold: 

J=E _______________________ _ 

K = E, ___________________________________ _ 

5. a) 

current state next state 
cba cba 

000 

001 

010 

o 1 1 

100 

101 

1 1 0 

111 

b) The cycle contains states. ----

A.8 



Eindhoven International Institute 
1992-11-13 

EXAMINATION "DESIGN OF DIGITAL SYSTEMS" 

Wednesday,1991-03-13; 8.45 -11.45 hours 

Only the survey "Design of Digital Systems· (volume 1, 2 and 3) is allowed during examination. 

A10 Examination 008-91 



1 Switching functions 

Show by means of switching algebra and postulates the validity of the following. All subproblems have 3 
variables a,b and c; concerning numerical representation of minterms and maxterms, a has the highest 
weight and c has the lowest one. 

a ab + a'c + bc = ab + a'c 

b. (a E9 b)' = a E9 b' 

Co (a'(b + c'»'· (a + b' + c) . (a'b'c')' = a + b'c 

d. a + b'c = II(O,2,3) 

e. E (0,1,2,4,5,6,7) = a + b' + c' 

. 2 Iterative combinational networks 

Consider a system MulDiv2 with: 

inputs 

output 
function 

Din 
Mode 
Dout 
F: 

E {0 .. 7} 
E {MuI1,MuI2,Div2} 
E {0 .. 7} 
Dout = Din 
Dout = (Din * 2) MOD 8 
Dout = (Din DIV 2) 

a. Make a behavioural description in Pascal. 

if SEL = Mul1 
if SEL = Mul2 
if SEL = Div2 

MulDiv2 should be realized as a binary system, with Din and Dout coded as binary numbers. 

b. Show with Din = 1, 2, 3, 5 that: 

- Mode = Mul2 corresponds with a shift left operation 
- Mode = Div2 corresponds with a shift right operation 

Examination DDS-91 A.11 



MuIOiv2 should be realized as a 3-iterative network with the following structure: 

Mode 
:::::::=-

E {Mu11 ,MuI2, Din 2 Dout2 

Div2} BSect 

Din E {O .. 7} Din 1 Dout1 Dout E {O •• 7} 

BSect 

Din 0 ! DoutO 

BSect 

J 

The dotted lines show possible interconnections between the 3 bit-sections BSect. 

c. Make a more detailed drawing of the system. showing all interconnections between the bit sections. 
Show also how the Mode input is connected within the system. 

The internal structure of the BSect sections should not be included. 

d. Make a behavioural description of BSect as a Pascal function "BSect": 

FUNCTION BSect (Din: ...•...• Mode: ... ): ... : 

Make also a drawing of BSect (not the internal structure) with named input and output lines. 

e. Make a behavioural description in Pascal of the whole system. making use of the Pascal function 
declared in (d). 

A. 12 Examination 00S-91 



I 
3 Counter realization 

One of the Ell students has a girl friend. He phones her quite frequently, but forgets her telephone number 
(which is 462310 by the way) all the time. In order to save the work of searching for the number and dial it 
each time, he decides to construct an auto-dial circuit. As a part of this circuit he needs a special-purpose 
counter. It should have binary coded outputs; the counting sequence should correspond to the telephone 
number, and when finished, the counter should again return to the first digit in the number. being ready to 
start all over again for a next time. If the counter - due to malfunctioning - enters an unused state. this is 
viewed as an error situation, and the counter should be frozen. 

Your colleague asks you to help him with the deslgn of this counter. Of course you agree; you like that kind 
of work and it also gives you some training for the examination of -Design of Digital Systems-I 

a. Construct a coded state table. 

b. The counter should be realized using T(oggle} flip-flops. Add to the state table in (a) exitation vectors 
t2t1tO for the T flip-flops. 

c. Write the Boolean functions for ~. tl and to-

d. Realize the exitation functions ~. t1 and to using the PLA on answer sheet 3d. 
Indicate signal names on all used inputs and outputs. 

e. Discuss a possible use of Multiple Output Mimimization (MOM) to t2• tl and to. 

f. Would you recommend the use of a PAL (as opposed to a PLA) for this problem? Explain. 

4 Finite State Machine 

A one-bit pattern generator PAT has the following lEG-like symbol: 

PAT 

Enl 

10IV2 Out 

Lo 10IVJ 

lC 

NB! The digits in the names DIV2jDIV3 are parts of their names and do not indicate any dependencies. 

Examination ODS-91 A13 



PAT is defined by the following behavioural description: 

SYSTEM PAT; 
TYPE States = (Low,High1,High2); 
VAR En,DIV2,DIV3: BOOLEAN; { Inputs} 

Out: BOOLEAN; { Output } 
C: EVENT; 
State: States; 

BEGIN 
Out := 0; 
State: = Low; 
DIV3 : = NOT (DIV2); 
REPEAT 

WAIT FOR EVENT (C); 
CASE State OF 
Low: IF En 

THEN BEGIN 
Out:= 1; 
State := High1 
END; 

High 1: IF DIV3 
THEN BEGIN 

Out:= 1; 
State := High2 
END 

ELSE BEGIN 
Out := 0; 
State:= Low 
END; 

High2: BEGIN 

FOREVER 
END. 

END 
END 

a. Draw a state diagram for PAT. 

Out := 0; 
State:= Low 

b. Show the output pattern and the period length for the following input conditions: 

En' 
En' DIV2 
En'DIV3 

c. Explain the significance and dependencies of the four inputs of the IEC-like device symbol. 
Why are the names 0lV2 and 0lV3 given? 

PAT should be realized as a Moore machine. 

d. Make a state code assignment "by inspection", minimizing the register size. Explain. 

e. Make a coded state table. 
Solve possible state problems arising during power-up and in transient error situations. Explain. 

A14 Examination 008-91 



Student name 

ANSWER SHEET FOR PROBLEM 3d 

I .... 
y 

r • .. 
_I ... ,.. 

1 .. .. 
r A I A I A IT} l).). 1(1 It I},) •••••••••••• 

-- .....,l-
.. 
1 

..f"'oo..... 1 ~ r-L -
1 - I - ~ .. 
.... 
I 

Examination 00S-91 A. 15 



Eindhoven International Institute 
1992-11-13 

EXAMINATION "DESIGN OF DIGITAL SYSTEMS" 

Allowed during examination: 
"Design of Digital Systems' 
English dictionary 
Pascal book 

Monday 1992-03-09; 8.45 - 11.45 hours 

All other material, such as personal notes, solutions to problems etc. is prohibited. 

A16 Examination 00S-92 



Switchin functions 

Given the following functions of four variables: 

F(w,x,y,Z) = w'y'z + wyz + x'yz' + wx'z 
G(w,x.y,z) ::: w(y'z' + xy') + x(z' + y E9 w) + w'yz + x'y'z' 

Regarding numeric representation of minterms: w has the highest weight and Z the lowest one. 

Questions 
a. Write function F in numeric form as a sum of minterms; show how the result is obtained. 
b. Same for function G. 
C. Show that F = G'. 
d. Give a function table specifying the combined function F • G. 

Jterative combinational networks 

Consider a system INCR8 with: 

inputs: In E {0 .. 7} 
Command E {AD DO, ADD1, ADD2} 

output: 
function: 

Out E {0 .. 7} 
INCR8 Out = In 

Out = (I n + 1) MOD 8 
Out = (In + 2) MOD 8 

In E {O .. 7 

if Command = ADDO 
if Command = ADDl 
if Command ::: ADD2 

1----"" 
E {O .. 7} 

Command E {ADDO, ADD1, ADD2} 

Questions 
In your solution, the Command input should never be coded in binary. but given its symbolic values: 
{ADDO. ADD1. ADD2}. 

a. Make a behavioural description of INCR8 in Pascal. 
b. Specify a truth table of the system 

(without coding Command!). 

In subproblems (c) - (f) below, this system should be realized as a 3-iterative circuit, with 3 identical 
modules INCR2. 

c. Make a block diagram of the 3-iteratlve circuit. clearly showing all inputs. outputs and inter-module 
connections. labeled with variable names and their domains/ranges. 

d. Make a drawing of a single INCR2 module, labeling inputs and outputs. Give a truth table for INCR2. 
Specify its operation with a truth table (do not decode the command!) 

e. Give a behavioural description in the form of a Pascal function INCR2. 
f. Give a behavioural description of the whole 3-iterative network, making use of the INCR2 function 

declared in question (d). 

Examination ODS-92 A.17 



In the figure below two functions f, and f2 have been realized by means of a PLA with 4 inputs and 2 
outputs. Concerning the numeric value of minterms and maxterms. w has the highest weight and z the 
lowest one. 

Questions 

Wr-l-'--(1 "':>----1Ir-1o-__!_ 

Xc:::J--'---CI 

Yr:::::::J-L-C 
.---------1-

Z C:::J-L--G "':>----1>-+--!-I-+--I-

f1 
f2 

a. Derive for both functions f, and f2 the sum-of-minterms form. and specify these in numeric format. 
b. Same for the product-of-maxterms form for each of the functions. 
C. Determine the sum-of-minterm form of the dual functions f

'd 
and f2d, and give their numeric 

representation. 
d. Program the PLA in order to realize both functions f

'd 
and f2d• 

Use for your solution answer sheet 3d. 

4 Finite state machine. 

In the figure below a Finite State Machine (FSM) has been drawn. 

so------------~ 

Questions 

'So 

Clock 

& 

& 

a. Determine the exitation functions of this machine. 
b. Work out a state table. 
C. Draw the complete state diagram. specifying all different states and transitions. 

(The diagram consists of a number of initial states and a cycle.) 

A. 18 Examination DDS-92 



Student name 

x 
y 
z 

ANSWER SHEET FOR PROBLEM 3d 

Examination 008-92 

f1d 
f2d 

A. 19 



Appendix B 

Literature 

8.1 



Below. literature can be found related to subjects covered in this course. 

General 
Lewin D., 
Design of Logic Systems. 
Van Nostrand Reinhold, 1985. ISBN 0-442-30606-7. 

Dietmeyer D.L, 
Logic Design of Digital Systems. Second Edition. 
Allyn and Bacon, 1978. ISBN 0-205-06122-2. 

Algorithmic model 
Ercegovac M.D. and Lang T., 
Digital Systems and Hardware/Firmware Algorithms. 
John Wiley & Sons, 1985. ISBN 0-471-63368-2. 

Davio M., Deschamps J.-P. and Thayse A, 
Digital Systems with Algorithmic Implementation. 
John Wiley & Sons. 1983. ISBN 0-471-10414-0. 

Algorithmic State Machines 
Wiatrowski CA and House C.H., 
Logic Circuits and Microcomputer Systems. 
McGraw-Hili. 1980. ISBN 0-07-066632-6. 

Clare C.R., 
Designing Logic Systems Using State Machines. 
McGraw-Hili, 1973. 

B.2 



Appendix C 

IEC-Symbols 

C. 1 



Logic Symbology and dependency notation; (Frederic A. Mannt) 
From: Digital Hardware Design (John Peatman) 

A1-1 INTRODUCTION 

The International Electrotechnical Commission (IEC) has been developing a very powerful symbolic language 
that can show the relationship of each input of a digital logic circuit to each output without showing explicitly 
the internal logic. At the heart of the system is dependency notation, which will be explained in Sec. A 1-4. 

The system was introduced in the United States in a rudimentary form in IEEE/ ANSI Standard Y32.14-1973. 
lacking at that time a complete development of dependency notation, it offered little more than a substitution 
of rectangular shapes for the familiar distinctive shapes for representing the basic functions of AND, OR, 
negation, etc. This is no longer the case. 

t Manager, Commercial Product Specificatfons, Semiconductor Group, Texas Instruments Incorporated, MS84, P.O. Box 225012, 
Dallas, Texas 75265. Member, IEEE Committee sec 11.9 and IEEE representative to IEC Technical Committee IG-3, Working 
Group 2. 

:; Taken by permission from Texas Instruments' m Data Book for Design Engineers, 3rd edition, now in preparation. To purchase 
the symbol standards (as they become available), write to the American National Standards Institute, Inc. (1430 Broadway, 
New York, NY 10018) for IEC Publication 617-12 and to the Instftute of Electrical and Electronics Engineers, Inc. (345 East 
47th Street, New York, NY 10017) for the revised IEEE Std 91/ANSI Y32.14. 

Internationally. Working Group 2 of IEC Technical Committee TC-3 is preparing a new document (Publication 
617-12) that will consolidate the original work started in the mid-l960s and published in 1972 (Publication 117-
15) and the amendments and supplements that have followed. Similarly for the United States, IEEE Committee 
SCC 11.9 is revising the publication IEEE Std 91/ ANSI Y32.14. Texas I nstruments is participating in the work 
of both organizations and this third edition of the TIL Data Book introduces new logic symbols in antiCipation 
of the new standards. When changes are made as the standards develop, future editions of this book will take 
those changes into account. Unfortunately, time and publication schedules have prevented the preparation of 
symbols for all the devices. This work will continue. 

The following explanation of the new symbolic language is necessarily brief and greatly condensed from what 
the standards publications will finally contain. This is not intended to be sufficient for those people who will be 
developing symbols for new devices. It is primarily intended to make possible the understanding of the symbols 
used in this book; comparing the symbols with functional block diagrams and/or function tables will further help 
that understanding. 

A 1-2 SYMBOL COMPOSITION 

A symbol comprises an outline or a combination of outlines together with one or more qualifying symbols, The 
shape of the symbols is not significant. As shown in Fig. A 1-1, general qualifying symbols are used to tell 
exactly what logical operation is performed by the elements. Table Al-1 shows the general qualifying symbols 
used in this data book. Input lines are placed on the left and output lines are placed on the right. When an 
exception is made to that convention, the direction of signal flow is indicated by an arrow, as shown in Fig. 
Al-l1. 

All outputs of an element always have identical internal logic states determined by the function of the element 
except when otherwise indicated by an associated qualifying symbol inside the element. The outlines of 
elements may be joined or embedded, In which case the following conventions apply. There is no logic 
connection between the elements when the line common to their outlines is in the direction of information flow. 
There is at least one logic connection between the elements when the line common to their outlines is 
perpendicular to the direction of information flow. The number of logic connections between elements will be 
clarified by the use of qualifying symbols and this is discussed further under that topic. If no indications are 
shown on either side of the common line, it is assumed there is only one connection. 

When a circuit has one or more inputs that are common to more than one element of the circuit, the common­
control block may be used. This is the only distinctively shaped outline used in the IEC system. Fig. A 1-2 shows 
that, unless otherwise qualified by dependency notation, an input to the common-control block may be used. 
This is the only distinctively shaped outline used in the lEe system. Fig. A 1-2 shows that, unless otherwise 
qualified by dependency notation, an input to the common-control block is an input to each of the elements 
below the common-control block. 

C.2 



b 

c 

d 

Outline 

~** Input 
lines 

* * ' . 

General qualifying 
symbol 

**} 
it * 

Output 
lines 

• Possible po,itions for qualifying symbols relating to inputs and outpUIS. 

Figure A t-1. Symbol composition. 

Common,control block 

a 

b--+---I 

c--+---I 

d-----i 

Figure At -2. Illustration of common-contwl block. 

a 

b 

c 

Cornman-output 
element 

d 

e 

g 

(must. like other elements, 
have a qualifying symbol 

ta denote its logic function) 

a 

-

b 

c----------~ 

Figure Al-J. lIIustration of common-output element. 

d 

e 

\I 

A common output depending on all elements of the array can be shown as the output of a common-output 
element. Its distinctive visual feature is the double line at its top. In addition the common-output element may 
have other inputs as shown in Fig. A 1-3. The function of the common-output element must be shown by use 
of a general qualifying symbol. 

C.3 



A1-3 QUALIFYING SYMBOLS 

Table A1-1 shows the general qualifying symbols used in this data book. Qualifying symbols for inputs and 
outputs are shown in Table A 1-2 and will be familiar to most users, with the possible exception of the logic 
polarity indicators. The older logic negation indicator means that the external 0 state produces the internal 1 
state. The internal 1 state means the active state. Logic negation may be used in pure logic diagrams; in order 
to tie the external 1 and 0 logic states to the levels H (high) and L (low), a statement of whether positive logic 
(1 = H, 0 = l) or negative logic (1 = L, 0 = H) is being used is required or must be assumed. Logic polarity 
indicators eliminate the need for calling out the logic convention and are used in this data book in the 
symbology for actual devices. The presence of the triangular polarity indicator indicates that the L logic level 
will produce the internal 1 state (the active state) or that, in the case of an output. the internal 1 state will 
produce the external L level. Note how the active direction of transition for a dynamic input is indicated in 
positive logic, negative logic. or with polarity indication. 

Table At-t. General Qualifying Symbols 

2:1 
Be 
=t 
= 
2k 
2k+1 
1 
f> 

.IT 
X,Y 
i'-IUX 
m.[uX 

p.Q 
CPG 

1_'L 
G 

IL..iL 
!G 

-,"'l-.fL 
G! 

-'L...rL 
$RGm 
CfRm 
CfRDlVm 
ROM 
RAM 

OR 
AND 
Exclusive-OR 
All inputs at same state 
Even number of inputs active 
Odd number of inputs active 
One input active 
Buffer. driver. amplifier 
Schmitt trigger 
Coder. code convcrter, BCD/DEC, BIN/BCD. etc. 
:\Iultiplexer 
Demultiplexer 
Adder 
Subtracter 
Look-aIH~ad carry generator 
~!ltltiplier 
~fagnitude comparator 
Arithmetic logic unit 
Retrigger:Jble lI1onostable 
Nonretriggerable monostable 

Astable element. Showing.Jl.....Jl- is optionaL 

Sj'nchronously starting astable 

Astable element stopping with completed pulse 

Shift register 1m = number of bits) 
Counter (m = number of bits) 
Counter with cycle length = m 
Read-only memory 
Random-access memory 

The internal connections between logic elements abutted together in a symbol may be indicated by the symbols 
shown. Each logic connection may be shown by the presence of qualifying symbols at one or both sides of 
the common line and if confusion can arise about the numbers of connections. use can be made of one of the 
internal connection symbols. 

CA 



The internal (virtual) input is an input originating somewhere else in the circuit and is not connected directly 
to a terminal. The internal (virtual) output is likewise not connected directly to a terminal. The application of 
internal inputs and outputs requires an understanding of dependency notation, which is explained in Sec. A 1-4. 

In an array of elements, if the same general qualifying symbol and the same qualifying symbols associated with 
inputs and outputs would appear inside all the elements of the array, these qualifying symbols are usually 
shown only in the first element. This is done to reduce clutter and to save time in recognition. 

Table Al-2. Qualifying Symbols for Inputs and Outputs 

-+ 
---t 

logic negation at input 

logic negation at output 

logiC polaritv 

Positive 
logic 

not used 

Negative 
logic 

not used 

external 0 • internal 1 

H 

internal 1 ,. external 0 

external LOW produces internal' 

Polarity 
indication 

not used 

L 

H 

= internal 1 

= in tefflal I 

-+ " or °1 or 
0--.1 L, L 

'!;:' internal 1 

---1---
.. __ 1 __ _ 
---1---
___ 1_ _ 
---1:--___ r __ _ 

E~ 
~]-

'nfetri;]1 connection 

fn{f!ftltll connection with neqation 

Internal d'(narnic connection 

Internal input (virtual inputl 

Internal output (virtual output) 

A1-3.1 Symbols Inside the Outline 

Table A1-3 shows some symbols used inside the outline. Note particularly that open-collector, open-emitter. 
and three-state outputs have distinctive symbols. Also note that an EN input affects all of the outputs of the 
circuit and has no effect on inputs. When an enable input affects only certain outputs and/or does affect one 
or more inputs. a form of dependency notation will indicate this. The effects of the EN input on the various 
types of outputs are shown. 

C.5 



C.B 

TabJe Al-3. Symbols Inside the OutJine 

J, K.R,S, T 

-1D 
-i-m -1-m 
~.m -1-m 

It} 
CT"9~ 

Postponed output lof a pulse· triggered flip. flop'. 
The output changes when input initiating change 
le.g., a C input) returns to its initial external 
state or level. 

B ithreshold input !input with hysteresis) 

NPN open-eollector or similar output that can 
supply a relatively low·impedance l level when 
not turned off. Requires ex ternal pull·up. 
Capable of positive·logic wired·AND connection. 

NPN open-emitter or similar output that can 
supply a relatively low·impedance H level when 
not turned off. Requires external pull-down. 
Capable of positive·logic wired·OR connection. 

3·stat~ output 

Enable input 

I-
r 

T 
When at its internal I·state. all outputs are enabled. 
When at its internal Q·state, o outputs are off. 
'\! au tputs are at normally defined internal logic 

states and at external high.impedance state, and 
all other outputs le.g., totem·poles) are at the 
internal Q·state. 

Usual meanings associated with flip· flops. 

-ri S

R 
Data input to a storage element equivalent to: y 

Shift right lIeft) inputs 
m" 1.2.3. etc. 

Counting up (down) inputs 
m ~ 1,2. 3. etc. 

Binary grouping. m is the highest power of 2. 

Content equals le.g., 91 

Input line grouping ••.• indicates 2 or more 
terminals used to implement a single logic input, 

. e.g., a differential input: =lJ 
Nonlogic input (output) 



It is particularly important to note that a D input is always the data input of a storage element. At its internal 
1 state, the D input sets the storage element to its 1 state, and at its internal 0 state it resets the storage 
element to its 0 state. 

The binary grouping symbol is important. Binary-weighted inputs are arranged in order and the binary weights 
of the least-significant and the most-significant lines are indicated by numbers. In this data book weights of 
input and output lines will be represented by powers of 2 only when the binary grouping symbol is used; 
otherwise, decimal numbers will be used. The grouped Inputs generate an Internal number on which a 
mathematical function can be performed or that can be an identifying number for dependency notation. See 
Fig. A1-24. A frequent use is in addresses for memories. 

Reversed in direction, the binary grouping symbol can be used with outputs. The concept is analogous to that 
for the inputs. and the weighted outputs will indicate the internal number assumed to be developed by the 
circuit 

Other symbols are used inside the outlines in this catalog in accordance with the IEC/IEEE standard but are 
not shown here. Generally these are associated with arithmetic operations and are self-explanatory. 

When nonstandardized information is shown inside an outline, it is usually enclosed in square brackets [like 
these]. 

A1-4 DEPENDENCY NOTATION 

A 1-4.1 General Explanation 

Dependency notation is the powerful tool that sets the IEC symbols apart from previous systems and makes 
compact, meaningful symbols possible. It provides the means of denoting the relationship between inputs, 
outputs, or inputs and outputs without actually showing all the elements and interconnections involved. The 
information provided by dependency notation supplements that provided by the qualifying symbols for an 
element's function. 

In the convention for the dependency notation, use will be made of the terms "affecting" and "affected". In the 
case where it is not evident which inputs must be considered as being the affecting or the affected ones (e.g., 
if they stand in and AND relationship), the choice may be made in any convenient way. 

So far, ten types of dependency have been defined and all of these are used in this data book. They are listed 
below in the order in which they are presented and are summarized in Table A1-4 in Sec. A1-4.11. 

Section 

Al-4.2 
Al-4.3 
Al-4.4 
Al-4.5 
Al-4.6 
Al-4.7 
Al-4.8 
Al-4.9 
Al-4.10 
AI-4.11 
.:\1-4.12 
Al-4.13 
Al-4.H 
AI-4.15 

Dependency type or other subject 

G,AND 
General rules for dependency notation 
V.OR 
N. negate. exclusive-OR 
Z. interconnection 
C. control 
S. set and R. reset 
EN. enable 
M. mode 
A. address 
Use of a coder to produce affecting inputs 
Use of binary grouping to produce affecting inputs 
Sequence of input labels 
Sequence of output labels 

C.7 



A1-4.2 G (AND) Dependency 

A common relationship between two signals is to have then ANDed together. This has traditionally been shown 
by explicitly drawing an AND gate with the signals connected to the inputs of the gate. The 1972 IEC 
publication and the 1973 IEEE/ ANSI standard showed several ways to show this AND relationship using 
dependency notation. While nine other forms of dependency have since been defined, the ways to invoke AND 
dependency are now reduced to one. 

In Fig. Al-4 input b is ANDed with input a and the complement of b is ANDed with c. The letter G has been 
chosen to indicate AND relationships and is placed at input b. inside the symbol. An arbitrary number (1 has 
been used here) is placed after the letter G and also at each affected input. Note the bar over the 1 at input 
c. 

In Ag. Al-5. output b affects input a with an AND relationship. The lower example shows that it is the internal 
logic state of b. unaffected by the negation sign, that is ANDed. Fig. Al-6 shows input a to be ANDed with a 
dynamic Input b. 

~
--

, I 

b ~I 
C I 

a:k: b . 

c 

Figure /\ 1-4. G dependency between inputs. 

The rules for G-dependency can be summarized thus: When a Gm input or output (m is a number) stands at 
lts Internal 1 state. all inputs and outputs affected by Gm stand at their normally defined internal logic states. 
When the Gm input or output stands at its 0 state. all inputs and outputs affected by Gm stand at their internal 
o states. 

~
-

.-[~t-b ==' & __ 1 b '~b 

Fiflure A 1·5. G depelHlcncy hl!tweclI outputs and inputs. 

A1-4.3 Conventions for the Application of Dependency Notation in General 

The rules for applying dependency relationships in general follow the same pattern as was illustrated for G­
dependency. 

Application of dependency notation is accomplished by: 
1 Labeling the input (or output) affecting other inputs or outputs with a letter symbol indicating the 

relationship involved (e.g .• G for AND) followed by an identifying number. arbitrarily chosen. 
2 Labeling each input or output affected by that affecting input (or output) with that same number. 

If it is the complement of the internal logic state of the affecting input or output that does the affecting. then 
a bar is placed over the identifying numbers at the affected inputs or outputs. See Fig. A 1-4. 

If the affected input or output requires a label to denote its function (e.g .• D), this label will be prefixed by the 
identifying number of the affecting input. See Fig. A1-12. 

If an input or output is affected by more than one affecting input. the identifying numbers of each of the 
affecting inputs will appear In the label of the affected one, separated by commas. 

C.B 



Figure A I -6. C dependenc;' 
with a dynamic input. 

The 1eft-to-right sequence of these numbers is the same as the sequence of the affecting relationships. See Fig. 
A1-12. 

If the labels denoting the functions of affected inputs or outputs must be numbers. the identifying numbers to 
be associated with both affecting inputs and affecting inputs or outputs will be replaced by another character 
selected to avoid ambiguity (e.g., Greek letters). See Fig. A1-8. 

a 
& 

b Gl b 
Figure AI-i. OR'ed affecting 
inputs. 

a =£1-
c 1 c-------\ 

Fill.ure .-\ 1·8. S!.!nstitution for numbp.r~. 
=[

--
a (l( 

b ~a 
c a =[

--
a 1 

b Gl 

c T 

A 1-4.4 V (OR) Dependency 

The symbol denoting OR-dependency is the letter V. See Fig. A 1-9. 

When a Vm input or output stands at its internal 1 state. all inputs and outputs affected by Vm stand at their 
internal 1 states. When the Vm input or output stands at its internal 0 state. all inputs and outputs affected by 
Vm stand at their normally defined internal logic states. 

3-a 

__ j-b =ro=: 
Figure AI-9. V{OR) dependency 

3£=: 

C.9 



A 1-4.5 N (Negate) (X-OR) Dependency 

The symbol denoting negate dependency is the letter N. See Fig. A1-10. Each input or output affected by an 
Nm input or output stands in an exclusive-OR relationship with the Nm input or output. 

'-EJ:::: - . .Q5}: ,. . [] 55=: 
If a· 0, c = b 
Ifa-', c .. il 

Figure A 1-10. N(Negole) (X-oro dependency. 

When an Nm input or output stands at its Internal 1 state. the Internal logic state of each input and each output 
affected by Nm is the complement of what it would otherwise be. When an Nm input or output stands at its 
internal 0 state. all inputs and outputs affected by Nm stand at their normally defined internal logic states. 

A 1-4.6 Z (Interconnection) Dependency 

The symbol denoting interconnection dependency is the letter Z. 

where 

where 

c 

Figure A j·U. Z (inlerconnection) dependency. 

C.10 



Interconnection dependency is used to indicate the existence of internal logic connections between inputs, 
outputs, internal Inputs, and/or internal outputs. 

The internal logic state of an input or output affected by a Zm input or output will be the same as the internal 
logic state of the 2m input or output. See Fig. A 1-11. 

A1-4.7 C (Control) Dependency 

The symbol denoting control dependency is the letter C. 

Control inputs are usually used to enable of disable the D (data) inputs of storage elements. They may take on 
their internal 1 states (be active) either statically or dynamically. In the latter case the dynamic Input symbol is 
used as shown in the third example of Fig. Al-12. 

When a em input or output stands at its internal 1 state, the inputs affected by em have their normally defined 
effect on the function of the element (i.e .• these inputs are enabled). When a Cm input or output stands at its 
internal 0 state, the inputs affected by em are disabled and have no effect on the function of the element. 

a-fc~-
b-tD 

~
-- l--a Cl a Gl 

b C2 = b lC2 == 
e 1.20 e 20 

;,- -

iSS
_-

a. s 
a 

a. R 
b 

Be 

a~a.s--
b a. 
c R 

\ Nore AND relationship of a and b 

~--a GI .~--b 1.20 - b Be S 

e C2 e & R 

A a 1.20 a & .. 1 

B b 1.20 Be Be S 
- b 

Ali; c Gl Be R 
c 

C d C2 d 

Alii selects which 01 A or B is stored when C goes low. 

Figure Al-12. C (control I dependency. 

A1-4.8 S (Set) and R (Reset) Dependencies 

The symbol denoting set dependency is the letter S. The symbol denoting reset dependency is the letter R. 
Set and reset dependencies are used if it is necessary to specify the effect of the combination R = S :: 1 on 
a bistable element. Case 1 in Fig. Al-13 does not use S or R dependency. 

When an Sm input is at its internal 1 state, outputs affected by the Sm input will react, regardless of the state 
of an R input, as they normally would react to the combination S == 1, R :: O. See cases 2, 4, and 5 in Fig. 
Al-13. 

C.11 



When an Rm input is at its internal 1 state, outputs affected by the Rm input will react, regardless of the state 
of an S input. as they normally would react to the combination S = 0, R = 1. See cases 3, 4 and 5 in Fig. 
Al-13. 

When an Sm or Rm input is at its internal 0 state, it has no effect. Note that the noncomplementary output 
patterns in cases 4 and 5 are only pseudo stable. The simultaneous return of the inputs to S == R = 0 produces 
an unforeseeable stable and complementary output pattern. 

A1-4.9 EN (Enable) Dependency 

The symbol denoting enable dependency is the combination of letters EN. 

An ENm input has the same effect on outputs as an EN input (see Sec. A1-3.1). but it can affect less than all 
of the outputs. It can also affect inputs. By contrast, an EN input affects all outputs and no inputs. The effect 
of an ENm input on an affected input is identical to that of a em input. See Fig. A 1-14. 

When an ENm input stands at its internal 1 state, the inputs affected by ENm have their normally defined effect 
on the function of the element and the outputs affected by this input stand at their normally defined internal 
logic states, i.e., these inputs and outputs are enabled. 

When an ENm input stands at its internal 0 state. the inputs affected by ENm are disabled and have no effect 
on the function of the element, and the outputs affected by ENm are also disabled. Open-collector outputs are 
turned off, three-state outputs stand at their normally defined internal logic states but externally exhibit high 
impedance. and all other outputs (e.g., totem-pole outputs) stand at their internal 0 states. 

C.12 

Figure A 1·13. S (set) and R (reset) depen· 
dencies. 

Case 1 

s-f1-: 
R-L}-a 

Case 2 

s-fl-: 
R-ljrO 

Case 3 

s--rta 
R~O 

Case 4 

s-fl-a 
R-tJ-O 

Cate 5 

s-fl-a 
R-tJ-n 

S 
0 
0 
1 
1 

S 
0 
0 
1 
1 

S 
0 
0 
1 
1 

S 

0 
0 
1 
1 

S 
0 
0 
1 
1 

R 

0 
1 
0 
1 

R 

0 
1 
0 
1 

R 

0 
1 
0 
1 

R 

0 
1 
0 
1 

R 
0 
1 
0 
1 

o • ex ternal 0 state 
1 • external 1 state 
nc - 1'10 change 
1 - unspecified 

Q Q 

nc nc 
0 1 
1 0 
7 7 

a Q 

nc nc 
0 1 
1 0 
1 0 

a Q 

nc nc 
0 1 
1 0 
0 1 

Q Q 

nc nc 
0 1 
1 0 
1 1 

a a 
nc nc 
0 1 
1 0 
0 0 



A1-4.10 M (Mode) Dependency 

The symbol denoting mode dependency is the letter M. 

Mode dependency is used to indicate that the effects of particular inputs and outputs of an element depend 
on the mode in which the element is operating. 

If an input or output has the same effect In different modes of operation, the identifying numbers of the relevant 
affecting Mm inputs will appear in the label of that affected input or output between parentheses and separated 
by commas. See Fig. A 1-19. 

1V 
b 

a EN1 
II a .. 0, b disabled and d = c 

d 
If a = 1, c disabled and d" b 

EN V 
c 

Figure" 1- r 4. EN {mHlole I dependency. 

M Dependency Affecting Inputs. M dependency affects inputs the same as C dependency. When an Mm input 
or Mm output stands at its internal 1 state, the inputs affected by this Mm input or Mm output have no effect 
on the function of the element. When an affected input has several sets of labels separated by slashes, any set 
in which the identifying number of the Mm input or Mm output appears has no effect and is to be ignored. This 
represents disabling of some of the functions of a multifunction input. 

The circuit in Fig. A 1-15 has two inputs. band c. that control which one of four modes (0.1.2 or 3) will exist at 
any time. Inputs d,e, and fare 0 inputs subject to dynamic control (clocking) by the a input. The numbers 1 
and 2 are in the series chosen to indicate the modes so inputs e and f are only enabled in mode 1 (for parallel 
loading) and input d is only enabled in mode 2 (for serial loading). Note that input a has three functions. It is 
the clock for entering data. In mode 2. it causes right shifting of data. which means a shift away from the 
control block. In mode 3, it causes the contents of the register to be incremented by one count. 

a - C4/2·./J ~ 

b 
c 

d 

e 
2,40 
1.40 

1,40 

Note that all operations are synchronous. 

In mode 0 (b ~ 0, c .. 01, the outputs 
remain at their existing states as none 
of the inputs has an effect. 

In mode I (b = I, C = 01, parallel/loading 
takes place through inputs e and f. 

In mode 2 (b .. O. C .. II. shifting down 
and serial loading through input d t3k!? place. 

In mode J (b .. c .. II, counting up by 
increment of 1 per clock pulse take place. 

figure AI-15. M (mode) dependency affecting inputs. 

M (Mode) Dependency Affecting Outputs. When an Mm input or Mm output stands at its internal 1 state. the 
affected outputs stand at their normally defined internal logic states. I.e .• the outputs are enabled. 

When an Mm input or Mm output stands at its internal 0 state. at each affected output any set of labels 
containing the identifying number of that Mm input or Mm output has no effect and is to be ignored. When an 
output has several different sets of labels separated by slashes (e.g., C4/2-+/3+). only those sets in which the 
identifying number of this Mm output appears are to be Ignored. 

C.13 



Figure 11.1-16. Type of Jlip-Jlop determined by mode. 

In Fig. Al-16. mode 1 exists when the a input stands at its internal 1 state. The delayed output symbol is 
effective only in mode 1 (when input a = 1) in which case the device functions as a pulse-triggered flip-flop. 
See Sec. Al-5. When input a = O. the device is not in mode 1 so the delayed output symbol has no effect and 
the device functions as a transparent latch. 

In Fig. A1-17, if input a stands at its internal 1 state establishing mode 1. output b will stand at its internal 1 
state when the content of the register equals 9. Since output b is located in the common-control block with no 
defined function outside of mode 1, this output will stand at its internal 0 state when input a stands at its internal 
o state, regardless of the register content 

Figure A 1·17. Disabling an output of the 
common·control block. 

1 
I 
I 

~ 

'CT'9~' 
I , 
I 

r 

In Fig. A 1-18, if input a stands at its internal 1 state establishing mode 1, output b will stand at its internal 1 
state when the content of the register equals 15. If input a stands at its internal 0 state, output b will stand at 
its internal 1 state when the content of the register equals O. 

Figure 11.1·18. Determining an output'S' func­
tion. 

I 
I 
1 

~ 

'CT'15P-' 
lCTsO 

I 
I 
I 

~ 

In Fig. A 1-19 inputs a and b are binary weighted to generate the numbers 0.1,2, or 3. This determines which 
one of the four modes eXists. 

At output e the label set causing negation (if c = 1) is effective only in modes 2 and 3. In modes 0 and 1 this 
output stands at its normally defined state as if it had no labels. 

C.14 



At output f the label set has effect when the mode is not 0 so output e is negated (if c = 1) in modes 1,2, and 
3. In mode 0 the label set has no effect so the output stands at its normally defined state. In this example, 0,4 
is equivalent to (1/2/3)4. 

At output g there are two label sets. The first set, causing negation (if c = 1), is effective only in mode 2. The 
second set, subjecting g to AND dependency on d. has effect only in mode 3. 

Note that in mode 0 none of the dependency relationships have any effect on the outputs, so e.f. and g will 
all stand at the same state. 

figure At·t9. Dependent relaUonsbips a/­
fected by mode. 

A 1-4.11 A (Address) Dependency 

The symbol denoting address dependency is the letter A. 

Address dependency is used to obtain a clear representation of those elements, particularly memories. that use 
address control inputs to select specified sections of a multidimensional array. Such a section of a memory 
array is usually called a word. The purpose of address dependency Is to allow a symbolic presentation of only 
a single general case of the sections of the array. rather than requiring a symbolic presentation of the entire 
array. An input of the array shown at a particular element of this general section is common to the 
corresponding elements of all selected sections of the array. An output of the array shown at a particular 
element of this general section is the result of the OR function of the outputs of the corresponding elements 
of selected sections. If the label of an output of the array shown at a particular element of this general section 
indicates that this output is an open-circuit output or a three-state output. then this indication refers to the 
output of the array and not to those of the sections of the array. 

. I A1 ill ENI 
b A2 b EN2 
c A3 - c EN3 
d C4 d C4 

'; r >1 
II A,40 A e 1.40 1 

9 h ~ 2.40 2-

'--- 3,40 3r--
;;'1 

1,40 1 h 9 

~ 2.40 2r--

'-- 3,40 3t--

Figure ,\1-20 . .r\ {addrp.ss! dependenq.·. 

Inputs that are not affected by any affecting address input have their normally defined effect on all sections of 
the array, whereas inputs affected by an address input have their normally defined effect only on the section 
selected by that address input. 

An affecting address input is labeled with the letter A followed by an identifying number that corresponds with 
the address of the particular section of the array selected by this input. 

Within the general section presented by the symbol. inputs and outputs affected by an Am input are labeled 
with the letter A. which stands for the identifying numbers, i.e., the addresses, of the particular sections. 

C.1S 



Fig. A 1-20 shows a 3-word by 2-bit memory having a separate address line for each word and uses EN 
dependency to explain the operation. To select word 1. input a is taken to its 1 state. which establishes 
mode 1. Data can now be clocked into the inputs marked 1,40. Unless words 2 and 3 are also selected. data 
cannot be clocked in at the inputs marked 2.40 and 3,40. The outputs will be the OR functions of the selected 
outputs. i.e., only those enabled by the active EN functions. 

The identifying numbers of affecting address inputs correspond with the addresses of the sections selected by 
these inputs. They need not necessarily differ from those of other affecting dependency-inputs (e.g .• G.V.N .... ). 
because in the general section presented by the symbol they are replaced by the letter A. 

If there are several sets of affecting A inputs for the purpose of independent and possibly simultaneous access 
to sections of the array. then the letter A is modified to 1 A.2A.... Because they have access to the same 
sections of the array. these sets of A inputs may have the same identifying numbers. Fig. Al-21 Is another 
illustration of the concept. Table Al-4 summarizes the dependency notation. 

figure Al·2l. Arwy of 16 sections of four lransparen! 
latches with thn:e·slale olltpuls. This comprises a 16·word x 
4·bi! random·access memor}'. 

A 1-4.12 Use of a Coder to Produce Affecting Inputs 

RAM 16 x 4 
EN 

CI 

A.1D A\l 

It often occurs that a set of affecting inputs is produced by decoding the signals on certain inputs to an 
element. In such a case one can use the symbol for a coder as an embedded symbol. See Fig. Al-22. 

figure Al·22. Producing various !}'Pf~S of dep.;m/encies. 

If all affecting inputs produced by a coder are of the same type and their identifying numbers correspond with 
the numbers shown at the outputs of the coder. Y On the qualHying symbol XIV) may be replaced by the letter 
denoting the type of dependency. The indications of the affecting inputs should then be omitted. See Fig. A 1-23. 

C.16 

Figure Al·23. Producing one 
Iype of dependency. 

2 

X/M 

o 
1 

2 

x/v 

o MO 

2 
1 Ml 

2 M2 



Table A 1-4. Summary of Dependency Notation 

Type of 
dependency 

Address 
Control 
Enable 

AND 
Mode 
Negate [X.OR) 
Reset 

Set 

OR 
Interconnection 

Letter 
symbol" 

A 
C 

EN 

G 
1\1 
N 
R 

S 

V 
Z 

Affecting input 
at its 1 slale 

Permits action laddmss sulectud) 
Permits adion 
Permits action 

Permits action 
P(!rmits ilctlon (mode selt:t:ledJ 
Compluments state 
Affected output rtl<lcts CiS it wou Id 

to S = o. j{ = 1 

Affcch~d output I"Cf.lctS ilS it would 
to S = 1. l{ = () 

impos(!s 1 state 
Imposes 1 state 

Affecting inpul 
al its [) state 

Prevcnts action (address not selected) 
PnWtlllt::l action 
Prevents action or inputs 
(> Outputs otT 
'V Outputs ut external high impedance. 

lUI change ill illtflrnal logic stllte 
OtlWI' outputs ilt internal 0 slate 
Imposes II state 
Jlrm'lmts action (mode not selected) 
No eHm;1 
No effect 

No effect 

Permits aelioll 
Imposes (I staw 

• These leltcr symbols appear al Ih" afJm:rillll inpul (or Olllpllllllnd 11m fulluwcd hy a Illlmlwr. Eadl in\lut Inr OUlput) offllCIfl(1 by that input is 
labeled with Ihnl same number, Whull lim labels EN. I{. ilnd S tlJlI'"ar "I iUIHlls withoul IIII' fullow:n!.: numhurs. the descriptions above do 
not apply. The action of these inpuls is described under "Symuols Inside the Oullilw," Suu Table At·:!, 

A 1-4.13 Use of Binary Grouping to Produce Affecting Inputs 

If all affecting inputs produced by a coder are of the same type and have consecutive identifying numbers not 
necessarily corresponding with the numbers that would have been shown at the outputs of coder, use can be 
made of the binary grouping symbol (Table A 1-3). It is followed by the letter denoting the type of dependency 
followed by 

mt The m1 is to be replaced by the smallest identifying number and 
m2 the m2 by the largest one, as shown in Fig. A 1·24. 

Figure Al-24. Use of the 
binary grouping symbol. 

$---:}-j -

XiV 

2 

4 

XIV 

2 

0 AO 
1 Al 
2 A2 
3 A3 
4 A4 
5 AS 
6 A6 
7 A7 

o GS 

1 G6 

2 G7 
3 G8 

C.17 



If an output needs several different sets of labels that represent alternative functions (e.g., depending on the 
mode of action), these sets may be shown on different output lines that must be connected outside the outline. 
See Fig. A1-27. However, there are cases in which this method of presentation is not advantageous. In those 
cases the output may be shown once with the different sets of labels separated by slashes. 

Two adjacent identifying numbers of affecting inputs in a set of labels that are not already separated by a 
nonnumeric character should be separated by a comma. 

If a set of labels of an output not containing a slash contains the identifying number of an affecting Mm input 
standing at its internal 0 state, this set of labels has no effect on that output. 

Figure At-27. Output/abe/so 

A1·5 BISTABLE ELEMENTS 

The dynamic input symbol, the postponed output symbol. and dependency notation provide the tools to 
differentiate four main types of bistable elements and make synchronous and asynchronous inputs easily 
recognizable. See Fig. A 1-28. The first column shows the essential distinguishing features; the other columns 
show examples. 

Transparent latches have a level-operated control input. The D input is active as long as the C input is at its 
internal 1 state. The outputs respond immediately. Edge-triggered elements accept data from D,J,K,R, or S 
inputs on the active transition of C. Pulse-triggered elements require the setup of data before the start of the 
control pulse; the C input is considered static since the data must be maintained as long as C is at its 1 state. 
The output is postponed until C returns to its 0 state. The data-lockout element is similar to the pulse-triggered 
version except that the C input is considered dynamic in that shortly after C goes through its active transition, 
the data inputs are disabled and data does not have to be held. However, the output is still postponed until the 
C input returns to its initial external level. 

Notice that synchronous inputs can be readily recognized by their dependency labels (1 D,1J,l K,1 S, 1 R) 
compared to the asynchronous inputs (S,R), which are not dependent on the C inputs. 

C.19 



G.20 

r---., 
I I 

~Cm ~ 
I 
I , L ___ -l 
T ra"sparent 

latches 

r---, 
I I 
I I 

-tcrn t-
I I 
I I L ___ -l 

Edge-triggered 

I 
I I 
L ___ -l 
Pul~e-tri9gered 

r- --., 
I I 
I I 

-tcm'r-
I I 
I , L ___ -l 
Data-lock-out 

10 

~SN741S 

5 

10 

--I>Cl 

R 

jSN7474 

S 

& 
IS 

Cl 

& 
IR 

R 

SN74L71 

Figure AI·28. Four types of bistable circuits. 

1J 

CI 

iSN14LS107 

1J 

CI 

lK 

R 

~SN74101 

Cl 

~SN74111 



Eindhoven International Institute 

Course In Electronic Engineering 

Survey 
Nr 276/2 

Subject 

Lecturer 

Author 

Copy 

Solutions to exercises of 
: INTRODUCTORY SEMESTER 1993 
- Electronic Engineering -

: DESIGN OF DIGITAL SYSTEMS 

: Ir M.J.M. van WEERT 

: Ir M.J.M. van WEERT 

Copyright Ir M.J.M. van Weert 

Reproduction in any form 
whatsoever is forbidden without 
written consent of the author. 



Table of Contents 

In the appendices, solutions are given to the exercises in the DESIGN OF DIGITAL SYSTEMS SURVEY. 

Appendix A. Solutions to examinations .................................... A.1 

Appendix B. Solutions to problems ....................................... B.1 

iii 



Appendix A 

Solutions to Examinations 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGITALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

ANSWERSHEETS 
NAME! __________________________________ _ 

1.0. NUMBER: _______________________ _ 

1. a) (a +b)(a +c)(a +d) 

b) ab+b'c' 

c) (a'+b)c 

d) abc'+ab'c 

e) ao'+ab 

2. a) space for drawing the schematic diagram 

TOTAL: 8 sheets 
of which 4 answersheets 

ANSWERINGSHEET 1 

Solution 1 InOe{O,1 J In1 e{O,1 J In2e{O,1 J 

with Out le{O,1} 

Solution 2 
Command 

e{O!::::::. 1~=#===--" 
In2 with In i e{O.1 J 

o 

Out2 with Out le{O,1} 

2 So/utionbook, Appendix A 



TENTAMEN DIGITALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

ANSWERSHEETS 
NAME:. __________________________________ _ 

1.0. NUMBER: --------------------------
Answer 2 continued 

b) 

Command In i Carry Out; 

PLUS 1 0 0 1 

PLUS 1 1 0 0 

PLUS 1 0 1 0 

PLUS 1 1 1 1 

PLUS 2 0 0 0 

PLUS 2 1 0 1 

PLUS 2 0 1 1 

PLUS 2 1 1 0 

3. a) f1 == E(2,3,4,5,6,7,9, 11, 12, 13) 

f2 = E(o, 1,4,5,6,7,9, 11,14,15) 

b) f1 = IT(O, 1,8.10, 14, 15) 

f2 == IT(2,3,8,10, 12, 13) 

c) f1d = E(o, 1,5,7, 14, 15) 

f2d == E(2,3,5,7, 12, 13) 

d) 

a 
b 
c 
d 

Solutionbook, Appendix A 

TOTAL: 8 SI. 
of which 4 answershee. 

ANSWERINGSHEET 2 

Command Carry 

PLUS 2 0 

PLUS 2 1 

PLUS 2 1 

PLUS 2 1 

PLUS 1 0 

PLUS 1 0 

PLUS 1 0 

PLUS 1 1 

f1 
f2 

3 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENTAMEN DIGITALE SYSTEMEN II 
5A010 

Saturday 10 november 1990 
time: 09.00 - 12.00 hours 

ANSWERSHEETS 
NAME: __________________________________ _____ 

1.0. NUMBER: ____________ _ 

4. For the most significant state bit must hold: 

J = E31~ti.(§.lJ,11,1Z~(H,1§} 

K = 'EQ,1..Z,3..4,5,(§.lJ,l1.i.:&1.:L 13,(H,1§} 

For the next state bit must hold: 

J = E1,Z,3..(§.lJ,9,1.Q.1.:L(H,111J 

K = 141..3,~ti.(§.lJ,fl.i.11.1Z~(H,111J 

And for the least significant state bit must hold: 

J = Eo.1..2,3..ti.(§.lJ.8.i. 10.1.:L 12,~(H,1§} 

K = 141.Z,3,~(§.lJ,fl.9,1!J..11,1Z 13,(H,1§} 

5. a) 

current state next state 
cba cba 

000 001 

001 010 

010 100 

011 010 

100 001 

1 0 1 001 

1 1 0 100 

111 000 

b) The cycle contains _3__ states. 

4 SolutJonbook, Appendix A 

TOTAL: 8 sheets 
of which 4 answersheets 

ANSWERINGSHEET 3 



TECHNISCHE UNIVERSITEIT EINDHOVEN 

TENT AMEN DIGIT ALE SYSTEM EN II 
5A010 

Saturday 10 november 1990 
time: 09.00·12.00 hours 

ANSWERSHEETS 
NAME: ___________________________________ _ 

1.0. NUMBER: ---------------------------

6. a) Finish the next ASM-chart. 

b) In state SO: Out = 0,1,4 

In state S1 : Out = 1 

In state S2 : Out 2,7 

In state S3 : Out = 4 

c) The state table: 

State 

SO 

S 1 

S2 

S3 

S1,1 

82,7 

83,4 

S1,1 

Choice 

M1 M2 

SO, 1 

82,2 

SO,4 

S1,1 

SoJutionbook, Appendix A 

TOTAL: 8 sheets 
of which 4 answersheets 

ANSWERINGSHEET 4 

5 



Eindhoven International Institute 
1993-01-09 

EXAMINATION "DESIGN OF DIGITAL SYSTEMS" 

Wednesday, 1991-03-13 

REVISED SOLUTIONS 

ex DDS-91 

SoIutionbook, Appendix A 7 



1 Switching functions 

a. ab + a'c + (be) = 
ab + a'c + (bc) ·(a + a') = 
ab + a'c + (abc + a'bc) = 
(ab + abc) + (a'c + a'bc) = 
ab + a'c 

b. (a E9 b)' = 
(ab' + a'b)' = 
(a' + b)(a + b') = 
a'a + ab + a'b' + bb' = 
ab + a'b' = 
a(b')' + a'(b') = 
a E9 b' 

c. (a'(b + c'))" (a + b' + c) • (a'b'c'), = 
(a" + b'c) • (a + b' + c) . (a + b + c) = 
(a + b'c) . «a + c) + b') . «a + c) + + b) = 
(a + b'c) . (a + c + b'b) = 
(a + b'c) . (a + c) = 
(a + ab'c + ac + b'c) = 
a + b'c 

d. a + b'c = 
(a + b') . (a + c) = 
(a + b' + c)· (a + b' + c')· (a + b + c)· (a + b' + c) 
(a + b' + c)· (a + b' + c')· (a + b + c) = 
M2 . Ma • Mo == 
II(O,2,3) 

e. E (0,1 ,2.4,5,6,7) 

8 

(E (remaining minterms»), = 
(E (3»)' = 
(a'bc)' == 
a + b' + c' 

Solutionbook, Appendix A 



Solution 2 

2 a. System MuIDIv2; 

2 b. 

2 c. 

TYPE 

VAR 

BEGIN 

Modes == (MuI1,MuI2,DIv2); 
Octal Digit == 0 .. 7; 

Mode: Modes; 
Din,Dout:OctaIDigit; 

CASE Mode OF 
Mul1 : Dout : = Din; 
Mul2 : Dout : == (Din * 2) MOD 8; 
Div2 : Din DIV 2 

END 
END. 

Daut 
Din Mul2 Div2 

1=001 2=010 0=000 
2=010 4=100 1=001 
3=011 6=110 1=001 
5=101 2=010 2=010 

'----r---J '----r---J 
shift shift 
left right 

Din 2 
E{0.1} 

Din 1 
E{0.1 } 

Din 0 
E{0.1} 

'0' 

f------
Dout 2 E{0,1} 

f------ Dout 1 E{O.1} 

1--"-__ Dout 0 E{O,1} 

, I 

SoIutionbook, Appendix A 9 



2 d. 

TYPE 
FUNCTION 

10 

Mode 
Din 

Dhi 

BSect 

~ 
010 

Modes = (MuI1,MuI2,Div2); Bit = 0 .. 1; 
Bsect (Din,Dhi,Dlo: Bit; Mode: Modes): Bit; 
CASE Mode OF 

END; 

Mu11: BSect: = Din; 
Mu12: BSect: = 010; 
Div2: BSect: = Dhi; 

Soiutionbook, Appendix A 

Dout 



2 e. 
System MulDIv2 

TYPE Bit = 0 .. 1; 
Modes = (Mull,MuI2,DIv2); 

VAR Mode: Modes; 
DIn2,Dlnl,DlnO : Bit; 
Dout2,Doutl,DoutO : Bit; 

FUNCTION BSect (Din,Dhl,Dlo : Bit; Mode: Modes) : Bit; 
CASE ..... END; {see 2d} 

BEGIN 
Dout2 : = BSect(Din2,0,Din1,Mode); 
Doutl := BSect(Dinl,DIn2,DinO,Mode); 
DoutO : = BSect(DlnO,Din1,O,Mode) 

END. 

Solution 3 

3a+b. 

State Next State Exitation 
functions 

12 tl to 
1 ° 0 

1 1 0 0 
1 ° 

1 1 0 0 1 0 1 o ° 
0 1 0 0 1 1 o 0 1 

0 1 1 0 0 1 0 1 0 

° 0 1 0 ° ° ° 0 
1 

0 ° ° 1 0 0 10O 

1 ° 1 1 0 1 ° ° ° 
1 1 1 1 1 1 000 

3 c. 12 = ~'Sl'SO' + ¥lSo' = 1:(0,6) 
tl = ~'SlS0 + ~Sl 'so' == 1:(3,4) 
to = ~'Sl 'so + ~'SlSo' == 1:(1,2) 

3 d. PtA: see answer sheet. 

3 e. MOM applies the sharing of product terms. 
As all productterms are minterms, and none of them can be shared (see 3c), no MOM is possible. 

3 f. A PAL Is cheaper than a PtA because of its fairty fixed structure. A PtA can be advantageous for large, 
complex circuits with possibilities for product term sharing. In this case we deal with a simple circuit 
without product term sharing; hence a PAL is to be preferred. 

SoIutionbook, f.ppendix A 11 



solution 4 

4 a. State diagram 

En 

DIV2 

4 b. Output patterns 

4 c. 

En' 
En.DIV2 
En.DIV3 

En 

Div2 

Diva 

C 

Pattern 
:000 ... 
:0101 ... 
:011011... 

Period length 
1 
2 
3 

Enable Input· The circuit gives a constant 0 output if not enabled. 
The 1 behind the name indicates "command input no. 1". 
The output waveform has a frequency of half the clock frequency. The 1 in front of the 
name indicates dependency of En : if EN',DIV2 is disabled. 
The output waveform has a frequency of one third of the clock frequency (see further 
DIV2). DIV3 = DIV2' is actually a single signal with a double function. 
Clock, positive edge triggered; disabled for En'. 

4 d. We can reduce the register size by combining state and output bits. This is possible with the following 
state code assignment: 

State code Current oytgut: Out 
Low 00 0 
Highl 01 1 
Hjgh2 11 1 

We see that Out So 

4 e. State table 

12 

En DIV2 SISo ns1nsO 

0 X 00 = Low 00 = Low 
1 X 00 = Low 01 = High1 
X 1 01 = High1 00 = Low 
X 0 01 = High1 11 = High2 
X X 11 = High2 00 = Low 
X X 10 = Undef 00 = Low ->NB! 

NB! During power-up and when transient errors occur the system could enter the undefined state -10". 
By making an unconditional transition to ·00· (Low). we make sure that we enter a defined state 
next. 

So/utJonbOOk, Appendix A 



Stucant name 

h: la, 
1.). 14 , 

~~ Ie 
I j , 

I ... .. 
I,. 

_1 ... .. 
I ..... .. 

ANSWER SHEET FOR PROBLEM 3d 

I 
-

l Jl 1. A 1. ft.}..)..) lAA Jl 1. Jl 1. 1. J •••••••••••• ) 

-- ~~ 

--. 
I 

~ 
. -- I~ 

-- " 

Solution book, Appendix A 

... 
1 
l -
1 
I 

.... 
1 
I 
Lc,..c 'Of 
~ 

13 



Eindhoven Intemationallnstitute 
1993-01-09 

EXAMINATION "DESIGN OF DIGITAL SYSTEMS" 

VVednesday, 1992-03-09 

SOLUTIONS 

ex DDS-92 

Solutionbook, Appendix A 15 



1 Switching functions 

a. F(w,x,y,z) = w'y'z + wyz + x'yz' + wx'z 
= 2: (OX01,lx11,X010,10x1) 
= 2: (0001,0101,1011,1111,0010,1010,1001,1011) 
= 2: (1,5,11,15,2,10,9,11) = 2: (1,2,5,9,10,11,15) 

b. G(w,x,y,z) = w(y'z' + xy') + x(z' + yEaw) + w'yz + x'y'z' 
= 2: (wy'z' + wxy' + xz' + xy'w + xyw' + w'yz + x'y'z') 
= 2: (lXOO,110X,X1XO,110X,011x,OX11,XOOO) 
= 2: (1000,1100, 1100,1101,0100,0110,1100,1110,1100, 1101,0110,0111,0011,0111,0000,1000) 
= 2: (1000,1100,1101,0100,0110,1110,0111,0011,0000) 
= 2: (8,12,13.4,6,14,7,3.0) = 2: (0.3.4.6.7.8.12.13,14) 

c. After having determined G it is easy to determine G, because the following holds: 
G' = 2: (remaining minterms) = L (1.2.5.9.10,11,15) 
This is precisely the sum of mlnterms for F. 
Accordingly: 

F = G' 

d. Because F = G', it follows that F· G = G" G = O. 
A fuctlon table then becomes quite simple: 

wxyz F·G 

xxxx o 

16 SoIutJonbook, Appendix A 



2 Iterative combinational networks 

a. TYPE Func = (ADOO.ADD1.ADD2); 
VAR In. Out : 0 .. 7; 

Command: Func; 
BEGIN 

CASE Command OF 
ADDO: Out: = In; 
ADD1: Out:== On + 1) MOD 8; 
ADD2: Out: = On + 2) MOD 8 

END {CASE} 
END. 

b. c. 

lin I Command I Out I 
0 ADOO 0 
0 ADD1 1 
0 ADD2 2 

1 ADDO 1 
1 ADD1 2 Ine{O .. 7} 
1 ADD2 3 

2 ADDO 2 
2 ADD1 3 
2 ADD2 4 

- - - .. - - --
5 ADDO 5 
5 ADD1 6 
5 ADD2 7 

6 AD DO 6 
6 ADD1 7 
6 ADD2 0 

7 ADDO 7 
7 ADD1 0 
7 ADD2 1 

d. 

ComOut E: {ADDO. ADD1. ADD2} 

Comln E {ADDO. ADD1, ADD2} 

Com[3] 

In[2] e{O, 1 } 
INCR2 

Out[2] e{O, 1 } 

Com [2] 

In[1 ] e{O,1} 
INCR2 

OU![1 ]e{O, 1} Out 
.-

e{O •. 7] 

Com[1] 

In[O] e{O, 1} 
INCR2 

Out[O]e{O,1 } 
.; 

ComlO] 

Command e {ADDO, ADD1, ADD2] 

Dataln Comln INCR2 ComOut 

0 ADOO 0 ADDO . 

0 ADD1 1 AD DO 

0 ADD2 0 ADD1 

1 ADDO 1 ADDO 

1 ADD1 0 ADD1 

1 ADD2 1 ADD1 

SoIutionbook. Appendix A 17 



e. TYPE Bit = 0 .. 1; 

f. 

18 

Func = (ADDO,ADD1,ADD2); 

FUNCTION INCR2 (Dataln: Bit; Comln: Func; VAR ComOut: Func): Bit; 
{ Function value = data output } 

CASE Comln OF 

ADDO: BEGIN 
INCR2 := Dataln 
ComOut : = ADDO 

END; 

ADD1: BEGIN 
INCR2 := (Dataln + 1) MOD 2; 
IF Dataln = 0 

THEN ComOut : = ADDO 
ELSE ComOut : = ADD1 { Carry! } 

END; 

ADD2: BEGIN 
INCR2 : = Dataln; 
ComOut :;:; ADD1 

END 

END { CASE and function body}; 

TYPE Bit 
Func 

= 0 .. 1; 
= (ADDO,ADD1,ADD2); 

FUNCTION INCR2 ( .... ): Bit; 
- see solution for problem e. --

VAR In, Out ARRAY [0 .. 2] OF Bit; 
Com : ARRAY [0 .. 3] OF Func; 
i : 0 .. 2; 

BEGIN 
FOR i : = 0 TO 2 DO 

Out [i] := INCR2 (In[i]; Com[i]; Com[i+1]) 
END. 

Solutionbook, Appendix A 



3 Programmed Logic Array 

a. We derive from the PLA: 

f1 = w'x'y + w'x + wxy' + wx'z == 2: (001x,OlXX,l10x,10xl) 
f2 = w'x'y' + w'x + wxy + wx'z = 2: (OOOx,01xx,l11x,10Xl) 

Accordingly: 

f1 = 2: (2,3.4,5,6,7,12,13,9,11) = 2: (2.3,4.5.6.7,9.11,12,13) 
f2 = 2: (0,1,4,5,6,7.14,15.9.11) = 2: (0,1,4,5,6,7,9,11.14,15) 

b. The product of maxterms can be found from the missing mlnterms: 

f1 = II (0,1,8.10,14.15) 
f2 = II (2,3,8,10,12,13) 

c. The dual function f1d can be found by exchanging the + operators and (not explicitly shown) • 
operators: 

f1d = (w' + x' + y)' (w' + x)· (w + x + y'). (w + x' + z) 
= II (110x, 10xx. 00lx, 01XO) 
= II (12,13.8,9,10,11,2,3,4,6) == II (2,3.4.6,8.9,10,11.12,13) 

Accordingly: 

f'd == 2: (0.1,5,7,14,15) 

In a similar way we find: 

f2d = 2: (2,3,5,7,12,13) 

d. The PLA for f td and f2d is shown below: 

Solutlonbook, Appendix A 19 



4 Finite State Machine 

a. According to the given block diagram the following functions hold for the Inputs of the 0 flip-flops. 
Because we have applied 0 flip-flops, these are also the next state functions: 

O2 = nS:! = S1 + So' 
0 1 = nS1 = So . (S:!' + s,') 
Do = nSo = ¥o' + S1'S:!' 

b. By means of these functions we can simply fill in the state table: 

Current Exitation Next state 
state function 

S:!s,So 020 100 ¥1So 

000 101 1 01 

001 01 1 ' 01 1 

010 100 100 

011 1 1 0 1 1 0 

100 1 01 1 01 

1 0 1 01 0 010 

1 1 0 101 1 0 1 

111 100 100 

c. Below the complete state diagram is drawn. 
We can clearly see that the cycle consists of 3 states: 001, 010 and 100. 

001 

20 SoIutionbook, Appendix A 



Appendix B 

Solutions to Problems 



· 2.1. a. 

n = r1092 991 = r6.62 ••• 1 = 7 

b. Unused code words: 

2D - #S = 128 - 100 = 28 

c. # Coding schemes: 

( 2D n)! = 128! 
( 2D - #S)! 28 ! 

= 29 * 30 * 31 * .... * 128 ::: 10186 

d. Max # elements in set with 7-bit coding: 

2' = 128 

e. # Coding schemes with 128 elements: 

( 2D ) I = 1281 = 128! = 4 * 10215 
( 2D - #S ) ! 0 I 

2.2. a. 

n = 10g2 4 = 2 

b. # Coding schemes: 

( 2D) ! 

( 2 n - #S) ! 

c. All coding schemes: 

= ( 2n) I = 4 = 24 

{00,01,10,11}, {00,Ol,11,10}, {00,10,01,ll}, {00.10,11,Ol}, 
{00,11,01,10}, {00,ll,10,Ol} 
{01,OO,10,ll}, {01,OO,ll,10}, {01,10,OO,11}, {01,10,ll,OO} 
{01,11,OO,10}, {01.11,10,OO} 
{10,OO,Ol,ll}, {10,OO,ll,Ol}, {10,Ol,OO,ll}, {10,Ol,11,OO}, 
{10.ll,OO.01}, {10,ll.01,OO} 
{ll,OO,Ol,10}. {11,OO.lO,Ol}. {ll,Ol,OO,10}, {11.0l.l0.00}. 
{11, 10,OO.01}. {11.10,01 ,OO} 

All schemes ilm different. If no weights are assigned to the bits, (01 is equal to 10) 3 bits are needed; 
code words = 000, 001, 011, 111. 
Here also: 4 codewords assigned to 4 elements: 
# Coding schemes: 

4 I = 24 

2 SolutJonbook, Appendix B 



.3. a. 

~.4. 

1.5. 

I 

I 

b. 

c. 

a. 

Greatest value If all bits are 1: 

2n -1 + 2n -2 + •... + 22 + 21 + 2 0 

= 1 * ( 1 - 2n ) / ( 1 - 2 ) = 2n - 1 

(formula of geometrical series) 

n = 8 greatest value = 2 8 - 1 = 25510 

n = 16 greatest value = 2 16 - 1 = 6553510 

a. 10110101 = « « «1 * 2+0) * 2+1) * 2+0) * 2+1) * 2+0) * 2+1 = 
b. 01101100 = ««(1 * 2+1)* 2+0)* 2+1)* 2+1)* 2+0)* 2+0 = 

216/4 = 
54/4 = 
13/4 = 
3/4 = 

div4 

216 

54 
13 

3 

54 rem. 0 
13 rem. 2 

3 rem. 1 
o rem. 3 I or: 

mod 4 

0 
2 
1 
3 

Solutionbook, Appendix B 3 



------ ---_._---

b. 

div 4 mod 4 

99 3 

24 0 

6 2 

1 

99 10 = 12034 

c./d. We spilt each hex digit in 2 quaternary digits: 

base 16 base 2 base 4 

0 00 00 0 0 

1 00 01 0 1 

2 00 10 0 2 

3 00 11 0 3 

4 01 00 1 0 

5 01 01 1 1 

6 01 10 1 2 

7 01 11 1 3 

8 10 00 2 0 

9 10 01 2 1 

A 10 10 2 2 

B 10 11 2 3 

C 11 00 3 0 

0 11 01 3 1 

E 11 10 3 2 

F 11 11 3 3 

Hence: 

c. A716 = 2213 4 
d. 83 16 = 20034 

4 Solutionbook. Appendix B 



.6. 
a. 

div2 mod 2 

10985 1 
5492 8 2746 
1373 1 
686 0 
343 1 
171 1 
85 1 
42 0 
21 1 
10 0 
5 1 
2 0 
1 1 

1098510 = 101010111010012 

b. 

div5 mod 5 

2~! ! ~ 

Solutionbook, Appendix B 5 



2.7. 

3.1. 

3.2. 

3.3. 

1 1 1 1 1 

011011 

110110+ 

1010001 

The result is one bit longer than the operands. 

VAR A,B: 0 .. 15; 
MUL: 0 .. 255; 

BEGIN 
MUL: = A*B 

END 

VAR A,B: -9 .. 9; 
SEL: (Add. Subtract); 
RES: -19 .. 19; 

BEGIN 
IF (SEL = Add) 

THEN RES: = A + B 
ELSE RES: = A - B 

END 

TYPE Inval 
Outval 
Choice = 

VAR A,B: Inval; 
SEL: Choice; 
RES: Outval; 

-9 .. 9; 
-19 .. 19; 
(Add, Subtract); 

FUNCTION ADD (X,Y: Inval) : Outval; 
BEGIN ADD: = X + Y END; 

FUNCTION SUB (X,Y: Invel) : Outval; 
BEGIN SUB: = X - Y END; 

FUNCTION MUX (InO,ln1 : Outval; S : Choice) : Outval; 
BEGIN 

8 

IF (S = Add) 
THEN MUX : = InO 
ELSE MUX : = In1 

. END; 
BEGIN 

RES: = MUX (ADD (A, B) , SUB (A,B), SEL) 
END. 

Solutionbook, Appendix B 



.4. 

. 5. 

CMP4 module: 

TYPE Quit = 0 .. 3; 
CmpRes = (greater, equal, less) 

FUNCTION 
CMP4 ( u,v: Quit; Prey: CmpRes) : CmpRes; 

BEGIN 
IF (Prev = equal) 
THEN IF (u > v) 

THEN CMP4 : = greater 
ELSE IF (u = v) 

THEN CMP : = equal 
ELSE CMP : = less 

ELSE CMP : = Prey: 
END; 

Whole system: 

VAR A,B: ARRAY [0 .. 3] OF Quit; 
OUT, Tmp: CmpRes; 
I : Integer; 

BEGIN 
Tmp: = equal; 
FOR I: = 3 DOWNTOO DO 

Tmp : = CMP4 ( Arl]. BII], Tmp); 
OUT : = Tmp 

END . 

ci u v u+v+ci SM= 
(u+v+ci)MOD2 

0 o 0 0 0 

0 o 1 1 1 

0 1 0 1 1 

0 1 1 2 0 

1 o 0 1 1 

1 o 1 2 0 

1 1 0 2 0 

1 1 1 3 1 

CO; 
(u+v+ci)DIV2 

0 

0 

0 

1 

0 

1 

1 

1 

So/utionbook, Appendix B 7 



3.6. Both inputs have as domain {0 .. 15} 
One-to-one mapping to {0 .. 3}2 is possible. 
A 2-layer tree structure could therefore be possible: 

Description of COMP4: 

TYPE Hit ::::: 0 .. 15; 
Quit ::::: 0 .. 3; 
Com pRes = (greater, equal, less); 

FUNCTION 
COMP4( u,v: Quit): CompRes; 
BEGIN 

IF (u>v) 
THEN COMP4 : = greater 
ELSE IF (u=v) 
THEN COMP4 :::::: equal 
ELSE COMP4 : = less 

END; 

Description of the new COMP16: 

TYPE CodedHit = ARRAY[0 .. 1] OF Quit; 
FUNCTION 

COMP16( u.v: CodedHit): CompRes; 
BEGIN 

COMP16 

COMP16: = COMBINE(COMP4(u[1],V[1]). COMP4(U[O].v[0])) 
END; 

Each COMP16 in Fig. 3.56 is replaced by this 2-layer tree structure. Resulting structure: corresponds 
to Fig. 3.44 (three layers). 

8 Solutionbook, Appendix B 



.7. 2-layer tree structure (we expand to 3 later): 
ADD16 : adds 2 numbers 0 .. 15 
COMB16: combines result of these 

r{0 •• 151 EtO •• 151 

TSI1] 
Al1] 

8{1) 
ADD16 I TC(1] 

e{O,1) 

AlO) 
18[0) 

ADD16 I TC{OI 
BIOI 

TS[i] = Temporary Sum [i] E {0 .. 15} 
TOV[j] = Temporary Carry [I] E {0 .. 15} 

ADD16 module: 

TYPE Hit = 0 .. 15; 
Bit = 0 .. 1; 

} 
} 

COMB16 

t-- SUM ttl e{0 •• 15} 

t-- SUM (01 e{0 •• 15) 

t--Overftow E{O,1} 

VAR A,B,TS,SUM,TOV: ARRAY[O,1] OF Hit; 
TC: ARRAY[O,1] OF Bit; 

}global variables 
} 

OverFlow: Bit; 
PROCEDURE 

ADD16( X,Y: Hit; VAR S: Hit; VAR C: Bit); 
BEGIN 

S := (x+y)MOD16; (* sum *) 
C := (X+ y)DIV16 (* overflow *) 

END; 

} 

So/utionbook, Appendix B 9 



COMB16 module: 

PROCEDURE 

HiE{O .• 1S} 
ChEIO.1} 

LOE{O .• 15} 
CIEIO.1 } 

COMB16( HI,Lo: Hit; Ch,CI: Bit; 
VAR Sh,SI: Hit; VAR Ov: Bit); 

BEGIN 

COMB 
/1'6 , 

" , 

,-
,/ , ,-, 

I 

,-, 

ShE{O .. 1S} 
SIE{O .. 15} 

OvE{O .• 1} 

SI : = Lo; (* Least significant nibble *) 
Sh := (Hi+CI)MOD16; 

} nibble = 4-blt number 

Ov:= Ch+(Hi+CI)DIV16; 
END; 

N.B.! SI: = Lo passes Lo unmodified through COMB16. 

Combination of modules in 2 layers: 

BEGIN 
ADD16(A[1 ],B[1 ],TS[1 ],TC[1]); 
ADD16(A[O],B[O],TS[O] ,TC[O]); 
COMB16(TS[1].TS[O].TC[1],TC[O].SUM[1],SLlM[O],OverFlow) 

END. 

alc Development of 3 layers: ADD16 is spilt in 2 layers 

Al1]e{O • .3} 

B(1J 

iTS[1]6{O •• S}r-----, 

ADD4ITC[1Ie(O.1} r--SUM(11 e{O •• 3J 

,A--:- SUM(OJ e(0..3J 

~I 
----r=:lTS(O]€{O . .3 / i =: ~TC(O]e(O.1)r r Ovel1low e(O.1} 

ADD16 

(ADD16 has been built up in a similar way as the 2-layer adder we staned with ADD256; 
however, the domains of the variables have been restricted) 

10 SoJutJonbook, Appendix B 



. 7. 
b. 

Behavioural description: 
TYPE Olt = 0 .. 3; 

Bit = 0 .. 1; 
VAR A,B,TS,SUM.TOV: ARRAY[O,1] OF Olt; 

TC: ARRAY[O,1] OF Bit; 
PROCEDURE 

ADD4( X. Y: Oit; VAR S: Olt; VAR C: Bit); 
BEGIN 

S:= (X+Y)MOD4; (* sum *) 
C : = (X + Y)DIV4 (* overflow *) 

END; 
PROCEDURE 
COMB4( HI.Lo: Olt; Ch,O: Bit; 

VAR Sh,SI: Oit; VAR Ov: Bit); 
BEGIN 

SI : = Lo; (* Least significant part *) 
Sh := (HI+CI)MOD4; 
Ov:= Ch+(Hi+CI)DIV4 

END; 

BEGIN 
ADD4(A[1],B[1J,TS[1],TC[1]); 
ADD4(A[0] ,B[O] ,TS[O] .TC[O]); 
COMB4(TS[1 ],TS[0],TC[1 ],TC[0],SUM[1 ],SUM[O].OverFlow) 

END. 

Block diagram of whole system: 

A[3] 

B[3] 

A(2] 
8(2) 

A[1] 

8(1] 

Isyer2 /syer 1 

Overflow 

MB1 SUM{3] 

SUM [2) 

A[O) 
8[0] I T.§. __ ===:t_-_ -_ -_ ~.l}T~S~[O~] ====== SUM[1) 

"----------,r-:- SUM[O) 

A[l].B[ij,SUMPJ e{O ... 3} 

Remarks: - Signals which are passed through COMB4 or COMB16 without modification have been 
drawn outside these blocks. For this reason the resulting tree-structure is not quite pure . 

-+ - Blocks on layer 1 and layer 2 have the same functionality. but are not identical. This is 
In contradiction with the architecture scheme covered earlier (Fig. 3.34 - all F blocks are 
identical) 

Solufionbook, Appendix 8 11 



3.8. 

3.9. 

Block diagram: given in Fig. 3.41 

Behavioural description: 

TYPE BIt=(0,1); 
VAR SEL: ARRAY[0 .. 2] OF Bit; 

10,11,12,13,14.15,16,t7,OUT: AnyType; 

FUNCTION MUX2( .... ): AnyType: 
(* Behavioural description: see Fig. 3.38 *) 

BEGIN (* 8-input multiplexer *) 
OUT: = MUX2( MUX2( MUX207,16,SEL[0]), 

MUX2(15,14,SEL(0]), 
SEL[1]), 

END 

MUX2( MUX2(13,12,SEL[0)). 

SEL[2]); 

MUX2(11,10,SEL[0]). 
SEL[1]), 

Yes, It is possible to realize an a-input multiplexer by means of an Iterative architecture; its derivation, 
however, is slightly different from the one covered so far. 

Block diagram: 

SEL e{O ... 7} -+-+ (S7,S6.S5.S4.S3.S2.S1) with SI e{O,1} 

SEL has been coded as a M1-out-of-7 code": 

SEL §73s S5 S4 S3 S2 S1 
00000000 
10000001 
20000010 
30000100 
40001000 
50010000 
60100000 
71000000 

We see that the ·O·-blts to the right of the ·1" In each code-word are of no importance; they could 
have been replaced by any other bit pattern. 

12 SolutJonbook, Appendix B 



.10. 
VAR In,OO,01,02,03,04.05.06,07: AnyType; 

SEL: 0 .. 7; 
BEGIN 

CASE SELOF 
0: 00:= In; 
1 : 01 := In; 
2: 02:= In; 
3: 03:= In; 
4: 04:= In; 
5: 05:= In; 
6: 06:= In; 
7: 07:= In 

END (* CASE *) 
END 

.11. Realization of an 8-output demultiplexer in a 3-layer tree structure: 

In 

SELlO] 

layer 1 

SELl1] 

Isyer2 

SELl2] 

Isyer3 

The tree structure is the opposite of the one for the multiplexer: its Uroot" on layer 1 Is at the input. and 
its "branches" (with the highest number of circuits) at the output . 

. 12. Behavioural description 
TYPE Com pRes = (greater,equal,less): 
FUNCTION 

COMB(Cmp3.Cmp2.Cmp1,CmpO: CompRes): Com pRes; 
BEGIN 

IF (Cmp3 = equal) 
THEN 

IF (Cmp2 = equal) 
THEN 

IF (Cmp1 = equal) 
THEN COMB := CmpO 
ELSE COMB: = Cmp1 

ELSE COMB: = Cmp2 
ELSE COMB: = Cmp3 

END; 

Solutionbook, Appendix B 13 



4.1. 

4.2. 

4.3. 

a: 
b: 

c: 

d: 
e: 

f: 

g: 

Cmp3 .. CmpO are the outputs of the COMP4 circuits in Fig. 3.47 from top to bottom, each having a 
value E {greater, equal, less}. 

a'b + a'(b'+c) + a'b'c = {P3} a'b + a'(b'+c+b'c) = {Th4} a'b + a'(b'+c) qed. 
abc' + a'be + a'be' + abe + a'b'c + ab'c = {Th2} (abc' + abe) + (a'bc+a'bc') + (abc+ab'c) 
+ (a'bc+a'b'c) = {P3,P5} ab'l + a'b'l + ac·l + a'c'l = {P3,P5} b + c qed. 
«(xy)'z)' + x'yz')' = {Th7} «(xy)'z),),· (x'yz')' = {Th7} «xy)'z)' (x" +y' +z") = {Th7,Th6} 
«x'+y')z)'(x+y'+z) = (x'+Y')'z'(z+(x+y'» == {Th4} (x'+y')·zqed. 
x +)(y + z(x+y) = {Th5} x + Y + z(x+y) = {Th4} x+y qed. 
(a+c')'(a+b)'(b+c) == {P4,P5} (a+c')'{a+b+c"c)'(b+c) == {P3} 
(a+c')·(a+b+c')·(a+b+c)·{b+c) = {Th4} (a+c')'(b+c) qed. 
xy + x'z + yz == {P4,P5} xy + x'z + yz{x+x') = xy + xyz + X'z + x'yz == {Th4} xy + x'z qed. 

We see from this deviation that the dual expression of e is f. 
wx. + xy + x'z' + wy'z == {f: add redundant term wz'} xy + wx. + x'z' + wz' + wy'z = {ThS} 
xy + wx. + x'z' + wz' + wy' ={f: redundant term wz'} xy + wx. + x'z' + wy' 
== {f:redundant term wx.} xy + x'z' + wy' qed. 

m10 = "'w·x"Y'z' 
m10' == (v'·w·x'·y·z')' = v"+w'+x"+y'+z" (De Morgan) 

== v+w'+x+y'+z == m10 according to standard maxterm numbering) 

a: Observe that f2 already exists in its sum-of-minterms form. For this reason we shall also convert fl into 
this form: 
f 1 = (xy' + x'y)' = (x' + y) . (x + y') = )(x + x'y' + xy + yy' = 0 + x'y' + xy = x'y' + xy = f2 

b: We observe that: 

w x z = w x (y+ y) z = w x y z + w x y Z = 1010 + 1000 
= 10xO (x can be 0 or 1) 

Using this technique we can write: 
fl = ~(10XO, l1xx, 010x) = ~(8,10,12,13,14,15,4,5) = ~(4,5,8,10,12,13,14,15) 
f2 = n(XOX1, OOxx,OXlx) = n(l,3,9,11,O,l,2,3,2,3,6,7) == n(0,l,2,3,6,7,9,11) 

We write f2 as a sum of missing minterms: 
f2 = ~(4,5,8,10,12,13,14,15) = fl 

c: If we write: 
f,' = 2:(XOx, Ox1) = 2:(0,1,4,5,1,3) = 2:(0,1,3,4,5) 

then fl is the sum of missing mlnterms: 
fl= ~(2,6,7) = 2:(010,110,111) = x'yz' + xyz' + xyz = f2 

d: We write fl as a product of maxterms: 
fl = n(Olx, 000, 001) = n(O,l,2,3) 

The follOWing now holds: 
f1 = ~(4,5,6,7) = ~(100,101.110,111) = ~(10x, llx) = 2:(lxx) = x = f2 

14 SoIutfonbook, Appendix B 



4. 
a. T:: I(OOOX. X1x1. OX(1) :: I(0.1. 5.7.13.15.1.5) 

= I(0.1.5.7,13.15) 

b: We derive: 
l' = I(2,3.4.6.B,9.10,11,12,14), accordingly: 
T :: ll(2,3,4,6.B.9,10,11,12,14) 

c: The expressions for T' are the sums of missing min- or maxterms: 
l' :: I (2.3,4,6,B.9,1 0,11.12,14) 

= ll(O,1,5.7,13.15) 

d: A Q.ue! function Is obtained by replacing: 
+ by' 
. by + 
1 by 0 
o by 1 

In the given function: 
Td :: (w'+x'+Y')'(x+z)'(w'+y'+z) 

We can now directly derive the product-of-maxterms: 
Td = ll(111X, XOXO, 1X10) = ll(14,15,O,2,B,10.10,14) 

::;; ll(O,2,B, 10, 14, 15) 
Accordingly: 
Td = I(1 ,3.4,5.6,7,9,11,12,13) 

Remark: 
The product-of-maxterms of the dual function can also be directly derived from 1's minterms. The 
following holds: 
The maxterms of T d are equal to the 1's complement of the minterms of T. The 1's complement is given 
by: 

(2n - 1 - minterm) 
where n is the function's number of variables. 
Check that this method gives the correct results In this problem. 
An analog expression can be formed for the sum of minterms. 

a. We start with the product of maxterms, which Is easier: 

b. 

c. 

b: T = ll(1,2,3.5,6.10,12) 
a: T = I(0,4,7.B,9,11,13.14,15) 
c: l' = I(1,2,3,4.5,10,12) :: ll(O,4.7.B.9.11,13,14,15) 
d: Td = I(0,1,2.4.6.7.B,11.15) = ll(3.5.10,11,12.13.14) 

a: T :: I(5,6.7,9,11) 
b: T = ll(O,1,2,3,4,B,10,12,13,14,15) 
c: l' :: I (O,1,2,3.4,B,1 0,12,13,14,15) = ll(5,6, 7,9,11) 
d: Td = I(4,6,B,9,10) = ll(O,1,2,3,5,7,11.12.13.14,15) 

a: T = I(2,3.6,7,9.10.11.13,14.15) 
b: T :: ll(O,1.4,5,B,12) 
c: l' :: I(0,1,4,5,B,12) :: ll(2.3,6.7,9,10,11.13,14,15) 
d: Td :: I(0,1,2,4,5.6,B,9,12,13) = ll(3,7,10,11,14,15) 

Solutionbook, Append/I( 8 15 



5.1. 

5.2. 

5.3. 

The coding of the comparator has been specified in the problem; the input coding has not, however. 
We make the apparent choice of using 2-bit binary numbers. 
The truth table Is as follows: 

u, Uo VI Vo COMP4 u1 Uo v1 Vo COMP4 

o 0 o 0 010 1 0 o 0 100 

o 0 o 1 001 1 0 o 1 100 

o 0 1 0 001 1 0 1 0 010 

o 0 1 1 001 1 0 1 1 001 

0 1 o 0 100 1 1 0 0 100 

0 1 0 1 010 1 1 0 1 100 

0 1 1 0 001 1 1 1 0 100 

0 1 1 1 001 1 1 1 1 010 

This table can be directly translated to a ROM implementation. We agree to use u1' Uo, VI and Vo as the 
ROM address bits in decreasing order of significance. 
The ROM implementation and the corresponding IEC symbol is shown below: 

u1 
uO 
v1 
vO 

0--. 

0----: address 

~ 
decoder 

I 
I 

m15 'c 

.L 

~ 

( 

COMP4 

--~ ~ 

) 

V{ 
u{ 

lOlA 

[1)A 

[2)A 

greater 

equal 

less 

a. We first add variable a: 

b. 

bd = bd'1 = bd(a'+a) = a'bd + abd 

c is afterwards added to each term: 
bd = a'bd'1 + abd'1 = a'bd(c'+c) + abd(c'+c) = a'bc'd + a'bed + abc'd + abed 

We just specify the result: 
a = ab'c' + ab'c + abc' + abc 

The function table comprises 8 product terms only. We code SEL with the binary triple (~, S1' So). The 
multiplexer function can now be described by the following sum-of-product-terms: 

OUT = lo~'s,'So' + 11~'S,'So + 12~'SISo' + 13~'SlSo + 14~S,'So' + 15~S,'So + 
IH1So' + I~SISo 

This expression can be realized with 8 and-gates and 1 or-gate. 

16 SolutJonbook, Appendix B 



The resulting block diagram is shown below: 

10 
s2' 
s1' 
sO' 

~ 
s1' 
sO 

12 
~~' 
sO' 

13 
82' 
s1 
sO 

14 
s2 
s1' 
sO' 

!~ 
s1' 
sO 
16 
s2 
s1 
sO' 

:= 
~ 

----:= .... 

:= 
!-

:= 
!-.-.-.-• .-.-.-.-.-.-• 
1-
I-

I-

17. 
s2. 
s1 • 
sO· 

& 

& 

& 

& 

& 

& 

& 

& 

I 

I 

We directly derive from the block diagram of Fig. 2.28: 
F = X:!X1' + ~'X1 + Xo 

~1 

The function table in Fig. 5.27 specifies the function f as the following sum of product terms: 
f = X1'Xo + ~'X1 + X:!X1' + ~1& 

The don't care term has been undertined. 

-out 

We show that F = f by adding variables to f; we start with Xo because the other terms already exist in 
f: ~'X1 + Xo = ~'X1 + Xo"(X1'+X1) = ~'X1 + x,'Xo + X1Xo'(~'+~ 

= ~'X1'(1+Xo) + X1'Xo + X:!X1Xo = ~'X1 + X1'Xo + X:!X1Xo 
so that F = X:!X,' + ~'X1 + x,'Xo + X:!X1Xo 

We see that F = f if the don't care term gives a function value f(1,1,1) = 1. Accordingly the don't care 
term X:!X1Xo Is Included in the diagram. 

Remark: 
We can also compare the functions by rewriting them In a sum-of-minterms form, or by converting the 
function table to a truth table. 

Solution book, Appendix B 17 



5.5. 

6.1. 

If ~ Is used as selection variable. we can rewrite the truth table as follows: 

~ x, Xc, f 

0 00 0 

o 1 1 => fo 

1 0 1 

1 1 1 

~ x, Xc, f 

1 00 0 

o 1 1 = > f, 

1 0 0 

1 1 

We derive: 
fo = x, + Xc, 
11 = Xl' + ~,& 

11 Xc, is used as selection variable. we get: 

Xc, ~ X, 1 

0 00 0 

o 1 1 = > fo 

1 0 1 

1 1 0 

Xc, ~ Xl 1 

1 00 1 

o 1 1 => f, 

1 0 1 

1 1 

We derive: 
10 = Xl E9 Xl 

f, = ~'+ Xl' + ~1 

The missing parts are shown below: 
CASE State OF 

20: IF Number = 4 
THEN State: = 3D 
ELSE State: =00; 

3D: IF Number = 8 
THEN State: =40 
ELSE State: =00; 

END; 

18 Solutionbook, Appendix B 



12. 

I 
I 
I 
I 

The Pascal behavioural description Is given below: 

SYSTEM Mod 5 Counter; 
TYPE RANGE-= -0 .. 4; 

MODE = (start, stop); 
VAR Clockpuls: EVENT; 

Countermode: MODE; 
CounterOutput: RANGE; 

BEGIN 
REPEAT 

WAIT FOR EVENT(ClockPulse); 
IF Countermode = start 

THEN CounterOutput: = (CounterOutput + 1) MOD 5; 
FOREVER 

END. 

Solutionbook, Appendix B 19 



6.3. The simplified ASM chart is shown below. The output boxes for the states "Watr and "DispDrlnk" have 
been removed; instead, the state boxes for "Wait" and "DropCup· have got output value specifications. 

No 

Yes 

.--------( Choice-Up 

Yes 

No 

20 SoiutJonbook, Appendix. B 



I 
!.1. 

Here we shall only give a state table with Input conditions and not with Input values. 
The following state abbreviations have been introduced: 

SO :: Wait 
S1 = DropCup 
S2 = DispDrlnk 

Cur. Coin = False or 
state Choice = None 

SO SO; Off, Off 

S1 -. - -• , 

S2 SO; Off, Off 

Input condition 

Coin = True & Coin = True & Coin:: True & 
Choice = Up Choice :: Coke Choice = Orange 

S1; On, Off S1; On, Off S1; On, Off 

S2;Off,Up S2; Off. Coke S2; Off. Orange 

~Off SO;Off,Off SO; Off, Off 

Note that we have not specified what should happen In state S1 for the first input condition. According 
to the specification. this combination can never arise; this means that the ASM can never enter S1 as 
long as Coin = False or Choice = None. This degree of freedom could be used to obtain a simpler 
Implementation. Also notice that the other input conditions in reality are less complex than shown here: 
input Coin could also have the value False. 

a. S :: R = 1 

R __ --1~_--, 0 

.>-e--Q 

o Q 

The output of a NOR-gate Is 0 when one of the Inputs 
Is a one. For the situation S == R = 1 holds that both 
flip-flop outputs are O. Accordingly these outputs are 
not (as usually) complementary. 

Solutionbook, Appendix B 21 



7.2. 

b. 8 goes to 0 

R..--_°-r---' 
1Q 

° Q 

The above situation is not stable. If one of the inputs 
(here: 8) goes to 0, the corresponding output goes to 
one, and one of the stable states (here: set-state) are 
entered. 

c. 8 and R goes to 0 simultaneously 
If both 8 and R become 0 at the same time, both outputs become 1. The 1 s are fed back to the inputs, 
hence the outputs again become 0 .... and so on. The flip-flop would oscillate. This situation only arises, 
however, if both gate delays are identical. Because this never happens in a practical situation, the flip­
flop will ultimately reach either the set or reset state. One cannot foresee in which state the system 
settles. 

There are many Gray codes with 10 code-words. Below we show 2 of them: 

1 111 o 0 0 0 

1 1 1 0 1 o 0 0 

1 100 1 o 0 1 

1 000 000 1 

1 001 o 0 1 1 

o 001 o 0 1 0 

0 101 0 1 1 0 

0 100 0 1 1 1 

0 1 1 0 0 1 0 1 

0 1 1 1 0 1 o 0 

22 SolunonbOOk, Appendix B 



The state table is given In Fig. 7.20 of the survey. Because there are no inputs or Input conditions, this 
table can also be interpreted as a truth table for the Next State function. The table directly gives the 
boolean expressions for n~. nS1 and nSo. The unused state codes lead to don't cares: 

n~ = ~'S1So + ~s,'So + ~1~ + Y1§o = So 
nS1 = ~'s,'So' + ~'SlSo' = ~'So' 
nSo = ~'S1So' + ~'S1S0 + Y1§o' + i2§l§o = S1 

The circuit diagram hence becomes very simple: . 

sO .. 
La& 

s2 -""' 
""" 

s1 

The and-gate can be replaced by a nor-gate: 

sO 
s2 

ns2 

ns1 

nsO 

o-ns1 

Solutionbook, Appendix B 23 



r,.4. 
I 
i 

7.5. 

Before we draw the circuit diagram, we derive the functions for the j- and k-inputs of the flip-flops from 
the exitation table in Fig. 7.22 of the survey. 
By making good use of the don't cares we obtain: 

k2 == S1' 

k1 == S:.! 
ko "" S1 

Below a circuit diagram is shown. A PAL is used with two product terms per sumterm output. This will 
do for our purpose: 

~ ~ 

12 :----
1J 

~=k2 r--~.f1 
, ........-

S2 

'------

$1 ~J1 
r---

1J 

~k1 
I->C1 

1K 

JO 1J Ft jD 
~ >C1 ts=J=okO 1K 

-

so 

dock-

Below we have combined the state table and the table for the exitation function. The table itself is self-
explanatory: 

S:.! Sl So nS:.! ns, nSo j2 J, jo k2 k, ko 
0 0 0 0 1 0 0 0 

0 1 0 0 1 1 o - 1 - 0 -
0 1 1 1 0 1 - 1 0 

1 0 1 1 0 0 - 0 - 0 - 1 

1 0 0 0 0 0 - 0 0 1 

Regarding output noo we remark that the determination of the exitation function Is not that simple. This 
is because no direct Information is available about the current output value. This Information could of 
course be derived from the state machine behaviour. In this specific case, each state has only one 
current output value; for that reason there is no problem. In the general case also input values playa 
role in determining the current and next output values. 

24 Solutionbook, Appendix B 



16• 

I 
I 
I 
I 

We shall not give a complete worked-out solution for this problem; we skip the state diagram or ASM 
chart, and also the symbolic state table. . 
We begin with the coding step, chooSing binary code for the state and output bits. The coded state 
table Is given below; for a modul0-8 counter we remark that 3 state bits are needed, realized as 3 flip­
flops. The Next State part of the table has 2 columns, one for each value of the clear input. 

clear = 0 clear = 1 
~ SI So n~ nS l nSo n~ nSl nSo 

000 001 000 

001 010 000 

010011000 

011100000 

100101000 

101110000 

110111000 

111000000 

For each flip-flop type we shall derive an exitation table, all combined in the table below. The D-flip­
flops are straight-forward; the d-inputs are identical to the corresponding ns-values. The other flip-flops 
are more complex. 

000 0 

000 1 

001 0 

001 1 

o 100 

o 1 0 1 

o 1 1 0 

o 111 

100 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 111 

o 0 1 0 0 1 

o 1 0 0 1 0 

o 1 1 0 1 1 

100 100 

1 0 1 1 0 

1 1 0 1 1 0 

1 1 1 1 1 1 

o 00 000 

o 00 000 

o 0 0 0 0 0 

o 00 000 

o 00 000 

o 00 000 

o 00 000 

o 00 000 

o 00 000 

001 001 

01- - - 1 0 1 1 

o - 1 - 0 - 0 0 1 

1 - 1 1 1 1 1 

- 0 1 o 001 

- 1 - 0- 1 011 

1 00- 001 

1 1 1 1 1 1 

000 000 

o 0 -

0-0 

o - -
- 0 0 

- 0 -

- - 0 

- - 1 001 

-1- 010 

- 1 1 0 1 1 

1 100 

1-1101 

1 1 - 1 1 0 

1 1 1 1 1 1 

The following minimized exitation functions can be derived from the table: 
d2 = cI"~'+cI"¥I'+clt'~'SISo ::: cl··(~E9s1So) dl = cl',(slE9sJ 
12 = CI"SISo 11 = cI'·So 
~ = SISo+ cI kl = So+cI 
~ = cl'~+cI"s1So t1 = cI·s1+cI'·So 

Solutionbook, Appendix B 

do = cI"So' 
jo = cI' 
leo = 1 
to = cI'+So 

25 



7.7. 
a. 

b. 

We skip the circuit diagram; the functlons are self-explanatory. We remark that the complexity of the 
solutions for the different flip-flop types do not differ significantly. Only for bit 0 we would clear1y choose 
a jk-flipflop; here no gates would be needed. 

Below both (a part of) the ASM-chart and its simplified counterpart has been drawn. The states not 
drawn are similar. 

Remark that the ASM-chart will be passed throllgh to the left or to the right depending on the Direction 
input. 

The states have been named TO - T7. 
The related output values are labeled 0 - 7. The state table now looks as follows: 

Direction 

Cur. Up Down 
state 

TO T1,1 T7,7 

T1 T2,2 TO,O 

T2 T3,3 T1,1 

T3 T4,4 T2,2 

T4 T5,5 T3,3 

T5 T6,6 T4,4 

T6 T7,7 T5,5 

T7 TO,O T6,6 

I I 
I 

Next state, Next Output 

26 Solutionbook, Appendix B 



We use the same Gray code for the output code and the state code. 
We choose Up = 1 and Down = 0 for the Direction code. 

The following exitation table Is valid for a certain Gray code: 

Di ~ s, So nS:! ns, nSo ~ t, to Di S:! s, So nS:! ns, nso ~ t, to 
0 000 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 

0 o 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 

0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 

0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 

0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 

0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 

0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 

0 1 o 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 

We determine the following expressions for the toggle flip-flop exitation functions: 
~ = (Di E9 S:! E9 s,)' 
t, = So (Di E9 S:! E9 S,) 
t, = Di E9 S:! E9 s, E9 So 

We easily see that we get exclusive-or functions, because the value of the xor-expressions in question 
are 1 for any combinations of its variables of which an odd number has the value 1. 

The circuit diagram is given below: 

2k+1 
1 

P-

& 
f--

- 2k+1 
f--

-

So/utionbook, Appendix. B 27 


	Voorblad

	Table of contents Appendices A and B

	Appendix A

	Appendix B

	Table of contents 

	1. Introduction

	2. Digital systems

	3. Combinational systems

	4. Binary systems and Boolean algebra

	5. Realization of switching functions

	6. Sequential systems behaviour and architecture

	7. Realization of finite state machines

	Appendices


