950 research outputs found

    Ensemble based on randomised neural networks for online data stream regression in presence of concept drift

    Get PDF
    The big data paradigm has posed new challenges for the Machine Learning algorithms, such as analysing continuous flows of data, in the form of data streams, and dealing with the evolving nature of the data, which cause a phenomenon often referred to in the literature as concept drift. Concept drift is caused by inconsistencies between the optimal hypotheses in two subsequent chunks of data, whereby the concept underlying a given process evolves over time, which can happen due to several factors including change in consumer preference, economic dynamics, or environmental conditions. This thesis explores the problem of data stream regression with the presence of concept drift. This problem requires computationally efficient algorithms that are able to adapt to the various types of drift that may affect the data. The development of effective algorithms for data streams with concept drift requires several steps that are discussed in this research. The first one is related to the datasets required to assess the algorithms. In general, it is not possible to determine the occurrence of concept drift on real-world datasets; therefore, synthetic datasets where the various types of concept drift can be simulated are required. The second issue is related to the choice of the algorithm. The ensemble algorithms show many advantages to deal with concept drifting data streams, which include flexibility, computational efficiency and high accuracy. For the design of an effective ensemble, this research analyses the use of randomised Neural Networks as base models, along with their optimisation. The optimisation of the randomised Neural Networks involves design and tuning hyperparameters which may substantially affect its performance. The optimisation of the base models is an important aspect to build highly accurate and computationally efficient ensembles. To cope with the concept drift, the existing methods either require setting fixed updating points, which may result in unnecessary computations or slow reaction to concept drift, or rely on drifting detection mechanism, which may be ineffective due to the difficulty to detect drift in real applications. Therefore, the research contributions of this thesis include the development of a new approach for synthetic dataset generation, development of a new hyperparameter optimisation algorithm that reduces the search effort and the need of prior assumptions compared to existing methods, the analysis of the effects of randomised Neural Networks hyperparameters, and the development of a new ensemble algorithm based on bagging meta-model that reduces the computational effort over existing methods and uses an innovative updating mechanism to cope with concept drift. The algorithms have been tested on synthetic datasets and validated on four real-world datasets from various application domains

    Machine Learning Based Defect Detection in Robotic Wire Arc Additive Manufacturing

    Get PDF
    In the last ten years, research interests in various aspects of the Wire Arc Additive Manufacturing (WAAM) processes have grown exponentially. More recently, efforts to integrate an automatic quality assurance system for the WAAM process are increasing. No reliable online monitoring system for the WAAM process is a key gap to be filled for the commercial application of the technology, as it will enable the components produced by the process to be qualified for the relevant standards and hence be fit for use in critical applications in the aerospace or naval sectors. However, most of the existing monitoring methods only detect or solve issues from a specific sensor, no monitoring system integrated with different sensors or data sources is developed in WAAM in the last three years. In addition, complex principles and calculations of conventional algorithms make it hard to be applied in the manufacturing of WAAM as the character of a long manufacturing cycle. Intelligent algorithms provide in-built advantages in processing and analysing data, especially for large datasets generated during the long manufacturing cycles. In this research, in order to establish an intelligent WAAM defect detection system, two intelligent WAAM defect detection modules are developed successfully. The first module takes welding arc current / voltage signals during the deposition process as inputs and uses algorithms such as support vector machine (SVM) and incremental SVM to identify disturbances and continuously learn new defects. The incremental learning module achieved more than a 90% f1-score on new defects. The second module takes CCD images as inputs and uses object detection algorithms to predict the unfused defect during the WAAM manufacturing process with above 72% mAP. This research paves the path for developing an intelligent WAAM online monitoring system in the future. Together with process modelling, simulation and feedback control, it reveals the future opportunity for a digital twin system

    Generalizing, Decoding, and Optimizing Support Vector Machine Classification

    Get PDF
    The classification of complex data usually requires the composition of processing steps. Here, a major challenge is the selection of optimal algorithms for preprocessing and classification. Nowadays, parts of the optimization process are automized but expert knowledge and manual work are still required. We present three steps to face this process and ease the optimization. Namely, we take a theoretical view on classical classifiers, provide an approach to interpret the classifier together with the preprocessing, and integrate both into one framework which enables a semiautomatic optimization of the processing chain and which interfaces numerous algorithms

    Automatic and adaptive preprocessing for the development of predictive models.

    Get PDF
    In recent years, there has been an increasing interest in extracting valuable information from large amounts of data. This information can be useful for making predictions about the future or inferring unknown values. There exists a multitude of predictive models for the most common tasks of classification and regression. However, researchers often assume that data is clean and far too little attention has been paid to data pre-processing. Despite the fact that there are a number of methods for accomplishing individual pre-processing tasks (e.g. outlier detection or feature selection), the effort of performing comprehensive data preparation and cleaning can take between 60% and 80% of the whole data mining process time. One of the goals of this research is to speed up this process and make it more efficient. To this end, an approach for automating the selection and optimisation of multiple preprocessing methods and predictors has been proposed. The combination of multiple data mining methods forming a workflow is known as Multi-Component Predictive System (MCPS). There are multiple software platforms like Weka and RapidMiner to create and run MCPSs including a large variety of pre-processing methods and predictors. There is, however, no common mathematical representation of MCPSs. An objective of this thesis is to establish a common representation framework of MCPSs. This will allow validating workflows before beginning the implementation phase with any particular platform. The validation of workflows becomes even more relevant when considering the automatic generation of MCPSs. In order to automate the composition and optimisation of MCPSs, a search space is defined consisting of a number of preprocessing methods, predictive models and their hyperparameters. Then, the space is explored using a Bayesian optimisation strategy within a given time or computational budget. As a result, a parametrised sequence of methods is returned which after training form a complete predictive system. The whole process is data-driven and does not require human intervention once it has been started. The generated predictive system can then be used to make predictions in an online scenario. However, it is possible that the nature of the input data changes over time. As a result, predictive models may need to be updated to capture the new characteristics of the data in order to reduce the loss of predictive performance. Similarly, preprocessing methods may have to be adapted as well. A novel hybrid strategy combining Bayesian optimisation and common adaptive techniques is proposed to automatically adapt MCPSs. This approach performs a global adaptation of the MCPS. However, in some situations, it could be costly to update the whole predictive system when maybe just a little adjustment is needed. The consequences of adapting a single component can, however, be significant. This thesis also analyses the impact of adapting individual components in an MCPS and proposes an approach to propagate changes through the system. This thesis was initiated due to a joint research project with a chemical production company, which has provided several datasets with common raw data issues in the process industry. The final part of this thesis evaluates the feasibility of applying such automatic techniques for building and maintaining predictive models for real chemical production processes

    Automating Large-Scale Simulation Calibration to Real-World Sensor Data

    Get PDF
    Many key decisions and design policies are made using sophisticated computer simulations. However, these sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine\u27s capabilities. This dissertation\u27s goal is to address these simulation deficiencies by presenting a general automated process for tuning simulation inputs such that simulation output matches real world measured data. The automated process involves the following key components -- 1) Identify a model that accurately estimates the real world simulation calibration target from measured sensor data; 2) Identify the key real world measurements that best estimate the simulation calibration target; 3) Construct a mapping from the most useful real world measurements to actual simulation outputs; 4) Build fast and effective simulation approximation models that predict simulation output using simulation input; 5) Build a relational model that captures inter variable dependencies between simulation inputs and outputs; and finally 6) Use the relational model to estimate the simulation input variables from the mapped sensor data, and use either the simulation model or approximate simulation model to fine tune input simulation parameter estimates towards the calibration system. The work in this dissertation individually validates and completes five out of the six calibration components with respect to the residential energy domain. Step 1 is satisfied by identifying the best model for predicting next hour residential electrical consumption, the calibration target. Step 2 is completed by identifying the most important sensors for predicting residential electrical consumption, the real world measurements. While step 3 is completed by domain experts, step 4 is addressed by using techniques from the Big Data machine learning domain to build approximations for the EnergyPlus (E+) simulator. Step 5\u27s solution leverages the same Big Data machine learning techniques to build a relational model that describes how the simulator\u27s variables are probabilistically related. Finally, step 6 is partially demonstrated by using the relational model to estimate simulation parameters for E+ simulations with known ground truth simulation inputs

    IoT Data Analytics in Dynamic Environments: From An Automated Machine Learning Perspective

    Full text link
    With the wide spread of sensors and smart devices in recent years, the data generation speed of the Internet of Things (IoT) systems has increased dramatically. In IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches have shown their capacity for IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many difficulties and challenges, specifically, effective model selection, design/tuning, and updating, which have brought massive demand for experienced data scientists. Additionally, the dynamic nature of IoT data may introduce concept drift issues, causing model performance degradation. To reduce human efforts, Automated Machine Learning (AutoML) has become a popular field that aims to automatically select, construct, tune, and update machine learning models to achieve the best performance on specified tasks. In this paper, we conduct a review of existing methods in the model selection, tuning, and updating procedures in the area of AutoML in order to identify and summarize the optimal solutions for every step of applying ML algorithms to IoT data analytics. To justify our findings and help industrial users and researchers better implement AutoML approaches, a case study of applying AutoML to IoT anomaly detection problems is conducted in this work. Lastly, we discuss and classify the challenges and research directions for this domain.Comment: Published in Engineering Applications of Artificial Intelligence (Elsevier, IF:7.8); Code/An AutoML tutorial is available at Github link: https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytic

    Towards designing AI-aided lightweight solutions for key challenges in sensing, communication and computing layers of IoT: smart health use-cases

    Get PDF
    The advent of the 5G and Beyond 5G (B5G) communication system, along with the proliferation of the Internet of Things (IoT) and Artificial Intelligence (AI), have started to evolve the vision of the smart world into a reality. Similarly, the Internet of Medical Things (IoMT) and AI have introduced numerous new dimensions towards attaining intelligent and connected mobile health (mHealth). The demands of continuous remote health monitoring with automated, lightweight, and secure systems have massively escalated. The AI-driven IoT/IoMT can play an essential role in sufficing this demand, but there are several challenges in attaining it. We can look into these emerging hurdles in IoT from three directions: the sensing layer, the communication layer, and the computing layer. Existing centralized remote cloud-based AI analytics is not adequate for solving these challenges, and we need to emphasize bringing the analytics into the ultra-edge IoT. Furthermore, from the communication perspective, the conventional techniques are not viable for the practical delivery of health data in dynamic network conditions in 5G and B5G network systems. Therefore, we need to go beyond the traditional realm and press the need to incorporate lightweight AI architecture to solve various challenges in the three mentioned IoT planes, enhancing the healthcare system in decision making and health data transmission. In this thesis, we present different AI-enabled techniques to provide practical and lightweight solutions to some selected challenges in the three IoT planes

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems
    • …
    corecore