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Abstract

The classification of complex data usually requires the composition of processing

steps. Here, a major challenge is the selection of optimal algorithms for preprocessing

and classification (including parameterizations). Nowadays, parts of the optimization

process are automized but expert knowledge and manual work are still required. We

present three steps to face this process and ease the optimization. Namely, we take

a theoretical view on classical classifiers, provide an approach to interpret the clas-

sifier together with the preprocessing, and integrate both into one framework which

enables a semiautomatic optimization of the processing chain and which interfaces

numerous algorithms.

First, we summarize the connections between support vector machine (SVM) vari-

ants and introduce a generalized model which shows that these variants are not to

be taken separately but that they are highly connected. Due to the more general

connection concepts, several further variants of the SVM can be generated including

unary and online classifiers. The model improves the understanding of relationships

between the variants. It can be used to improve teaching and to facilitate the choice

and implementation of the classifiers. Often, knowledge about and implementations

of one classifier can be transferred to the variants. Furthermore, the connections also

reveal possible problems when applying some variants. So in certain situation, some

variants should not be used or the preprocessing needs to prepare the data to fit to

the used variant. Last but not least, it is partially possible to move with the help

of parameters between the variants and let an optimization algorithm automatically

choose the best model.

Having complex, high dimensional data and consequently a more complex pro-

cessing chain as a concatenation of different algorithms, up to now it was nearly

impossible to find out what happened in the classification process and which com-

ponents of the original data were used. So in our second step, we introduce an ap-

proach called backtransformation. It enables a visualization of the complete pro-

cessing chain in the input data space and thereby allows for a joint interpretation

of preprocessing and classification to decode the decision process. The interpretation

can be compared with expert knowledge to find out that the algorithm is working as

expected, to generate new knowledge, or to find errors in the processing (e.g., usage

of artifacts in the data).

The third step is meant for the practitioner and hence a bit more technical. We

propose the signal processing and classification environment pySPACE which en-

ables the systematic evaluation and comparison of algorithms. It makes the afore-

mentioned approaches usable for the public. Different connected SVM models can be

compared and the backtransformation can be applied to any processing chain due to

a generic implementation. Furthermore, this open source software provides an in-

terface for users, developers, and algorithms to optimize the processing chain for the

data at hand including the preprocessing as well as the classification.

The benefits and properties of these three approaches (also in combination) are

shown in different applications (e.g., handwritten digit recognition and classification

of brain signals recorded with electroencephalography) in the respective chapters.





Zusammenfassung

Die Klassifizierung komplexer Daten erfordert für gewöhnlich die Kombination

von Verarbeitungsschritten. Hierbei ist die Auswahl optimaler Algorithmen zur

Vorverarbeitung und Klassifikation (inlusive ihrer Parametrisierung) eine große Her-

ausforderung. Teile dieses Optimierungsprozesses sind heutzutage schon automa-

tisiert aber es sind immer noch Expertenwissen und Handarbeit notwendig. Wir

stellen drei Möglichkeiten vor, um diesen Optimierungsprozess besser handhaben zu

können. Dabei betrachten wir etablierte Klassifikatoren von der theoretischen Seite,

stellen eine Möglichkeit zur Verfügung, den Klassifikator zusammen mit der Vorver-

arbeitung zu interpretieren, und wir integrieren beides in eine Software welche

die semiautomatische Optimierung der Verarbeitungsketten ermöglicht und welche

zahlreiche Verarbeitungsalgorithmen zur Verfügung stellt.

Im ersten Schritt, fassen wir die zahlreichen Varianten der Support Vector

Machine (SVM) zusammen und führen ein verallgemeinerndes (generalizing) Mo-

dell ein, welches zeigt, dass diese Varianten nicht für sich allein stehen sondern

dass sie sehr stark verbunden sind. Mit Hilfe der Betrachtung dieser Verbindun-

gen ist es möglich weitere SVM-Varianten zu generieren wie zum Beispiel Online-

und Einklassenklassifikatoren. Unser Model verbessert das Verständnis über die

Zusammenhänge zwischen den Varianten. Es kann in der Lehre verwendet wer-

den und um die Wahl und Implementierung eines Klassifikators zu vereinfachen.

Oftmals können Erkenntnisse und Implementierungen von einem Klassifikator auf

eine andere Variante übertragen werden. Desweiteren, können die entdeckten

Verbindungen mögliche Probleme offenbaren, wenn man bestimmte Varianten an-

wenden möchte. In bestimmten Fällen sollten einige der Varianten nicht verwendet

werden oder aber die restliche Verarbeitungskette müsste angepasst werden um mit

dieser Variante verwendet werden zu können. Nicht zuletzt ist es teilweise möglich

mit Hilfe von Parametern sich zwischen den verschiedenen Varianten zu bewegen

und ein Optimierungsalgorithmus könnte dadurch die Bestimmung des besten Algo-

rithmusses übernehmen.

Wenn man mit komplexen und hochdimensionalen Daten arbeitet, verwendet

man oft auch komplexe Verarbeitungsketten. Bisher war es daher meist nicht

möglich herauszufinden, welche Teile der Daten für den gesamten Klassifikations-

prozess entscheidend sind. Um dies zu beheben, führen wir in unserem zweiten

Schritt die “Backtransformation” (Rücktransformation) ein. Sie ermöglicht die

Darstellung der kompletten Verarbeitungskette im Raum der Eingangsdaten und

lässt damit eine gemeinsame Interpretation von Vorverarbeitung und Klassifikation

zu, um den Entscheidungsprozess zu entschlüsseln (decode). Die anschließende In-

terpretation kann mit existierendem Expertenwissen abgeglichen werden um her-

auszufinden, ob sich die verwendete Verarbeitung erwartungsgemäß verhält. Sie

kann auch zu neuen Erkenntnissen führen oder Fehler in der Verarbeitungskette

aufdecken, wenn zum Beispiel sogenannte Artefakte in den Daten verwendet wer-

den.

Der dritte Schritt ist für den Praktiker gedacht und daher etwas mehr technisch.

Wir stellen unsere Signalverarbeitungs- und Klassifikationsumgebung pySPACE



vor, welche die systematische Auswertung und den Vergleich von Verarbeitungsal-

gorithmen ermöglicht. Es stellt die zuvor genannten Ansätze der Öffentlichkeit

zur Verfügung. Die verschiedenen, stark verbundenen SVM-Varianten können ver-

glichen werden und die Backtransformation kann auf beliebige Verarbeitungsketten

in pySPACE angewandt werden, dank einer generischen Implementierung. Des-

weiteren, stellt diese quelloffene Software eine Schnittstelle dar für Algorithmen,

Entwickler und Benutzer um Vorverarbeitung und Klassifikation für die jeweils vor-

liegenden Daten zu optimieren.

Die Vorteile und Eigenschaften unserer drei Ansätze (auch in Kombination) wer-

den in verschiedenen Anwendungen gezeigt, wie zum Beispiel der Handschrifterken-

nung oder der Klassifikation von Gehirnsignalen mit Hilfe der Elektroenzephalo-

grafie.
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Chapter 0

Introduction

0.1 General Motivation

Humans are able to detect the animal in the wood, to separate lentils thrown into

the ashes, to look for a needle in a haystack, to find the goal and the ball in a sta-

dium, to spot a midge on the wall, . . . . In everyday life, humans and animals often

have to base decisions on infrequent relevant stimuli with respect to frequent ir-

relevant ones. Humans and animals are experts for this situation due to selection

mechanisms that have been extensively investigated, e.g., in the visual [Treue, 2003]

and the auditory [McDermott, 2009] domain. In their book on signal detection the-

ory, Macmillan and Creelman argue that this comparison of stimuli is the basic psy-

chophysical process and that all judgements are of one stimulus relative to another

[Macmillan and Creelman, 2005].1

In short, humans and animals are the experts for numerous classification tasks

and their classification skills are important for their intelligence. It is a major chal-

lenge, to provide artificial systems like computers and robots with such a type of

artificial intelligence to automatically discover patterns in data [Bishop, 2006]. Es-

pecially when striving for longterm autonomy of robots, such capabilities are needed

(besides others) because a robot will certainly encounter new situations and should

be able to map them to previous experience.

The focus of this manuscript will be on computer algorithms for classifying data

into two categories (binary classification). Given some labeled data for a classifier, the

difficulty is not to generate any appropriate model but the model should be generated

quickly, provide a classification result quickly, be as simple as possible, and most

importantly generalize well to so far unseen data.

There is a tremendous number of classification applications (e.g., terrain classifi-

cation for robots [Hoepflinger et al., 2010, Filitchkin and Byl, 2012], image classifica-

1 This paragraph contains text snippets from [Straube and Krell, 2014] by Dr. Sirko Straube.

1
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tion [LeCun et al., 1998, Golle, 2008, Le et al., 2012], color distinction for robot soccer

[Röfer et al., 2011], email spam detection [Blanzieri and Bryl, 2009], and analysis of

brain signals as input for intelligent man machine interfaces [Kirchner et al., 2013,

Kirchner et al., 2014a, Kim and Kirchner, 2013]).

There is also a very large number of approaches to solve these problems. Often

the original data (raw data) cannot be used by the classifier to build a model, but

an additional preprocessing is required which transforms the raw data to so-called

feature vectors which better describe the data, e.g., mean values, frequency power

spectra, and amplitudes after a low pass filtering.2 When dealing with classification

tasks of complex data, the generation of meaningful features is a major issue. This is

due to the fact that the data often consists of a superposition of a multitude of signals,

together with dynamic and observational noise. Hence, the data processing usually

requires the combination of different preprocessing steps in addition to a classifier.

In fact, the generation of good features is usually more important than the actual

classification algorithm [Domingos, 2012].3

Unfortunately, the challenge to define an appropriate processing of the data is

so complicated, that expert knowledge is often required and that even with the help

of this knowledge, the optimal processing might not be found due to the variety of

possible choices of algorithms and parameterizations.4 Testing every possible choice

is completely impossible.

The General Research Question

In this thesis, we present three related approaches to make this process easier. It is a

small step into requiring less manual work and expert knowledge and automatizing

this tuning process. It can be motivated by a general question. In this context, a

machine learning expert might ask:

“How shall I use which classifier (depending on the data at hand) and

what features of my data does it rely on?”

The “which” refers to the variety of possible algorithms. Even after choosing

the classifier, an implementation is required and the data needs to be preprocessed

(“how”) and after the processing the expert wants to know if the processing worked

correctly and if it is even possible to learn something from it (“what”).

2 In Section 2.2.1 more examples will be given and it will be shown, how algorithms are combined

for the feature generation to processing chains.
3 Without an appropriate preprocessing, a classifier is not able to build a general model, which will

give good results on unseen data.
4 To distinguish model parameters of algorithms from the meta-parameters, which customize the

algorithm, the latter are usually called hyperparameters.
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Unfortunately, there is no fully satisfactory answer to the first part

of this question according to the “no free lunch theorem” of optimization

[Wolpert and Macready, 1997].5 The answer to the second part depends on the com-

plexity of the applied processing algorithms and might be very difficult to provide, es-

pecially when different algorithms are combined or adaptive or nonlinear algorithms

are used.

Besides the no free lunch theorem, the difficulty of choosing the “right” classifier

and answering the “which” is complicated by the dependence of the classifier on the

preprocessing and the high number of existing algorithms.6 Advantages of certain

classifiers often depend on the application but also on the chosen way of tuning hy-

perparameters and implementing the algorithm (e.g., stop criterion for convergence).

A common approach to compare classifiers is to have a benchmarking evaluation with

a small subset of classifiers on a special choice of datasets. This can give a hint on

the usefulness of certain classifiers for certain applications/datasets but does not pro-

vide a deeper understanding of the classifiers and how they relate to each other. A

different approach is to clearly determine the relations between classifiers in order

to facilitate the choice of an appropriate one. Unfortunately, only few connections

between classifiers are known and, since they are spread all over the literature, it is

quite difficult to conceive of them as a whole. Hence, summarizing the already known

connections and deriving new ones is required to ease the choice of the classifier. This

even holds for the numerous variants of the support vector machine (SVM). We will

focus on that classifier, because it is very powerful and understanding the connection

to its variants is already helpful. It is reasonable to pick a group which has a certain

common ground, because it is impossible to connect all classifiers.

Additionally to looking at classifiers it is important to look at their input: the

feature vectors, which are used as data for building the classifier (training sam-

ples). For finding the relevant features in the data, there are several algorithms

in the context of feature selection [Guyon and Elisseeff, 2003, Saeys et al., 2007,

Bolón-Canedo et al., 2012]. Even though these algorithms can improve classification

accuracy and interpretability, they do not give information about the relevance of the

features for the classifier finally used in a data processing chain. The answer to the

question, “what features of my data does my classifier rely on”, can be difficult to pro-

vide because of three issues. First, the classifier might have to be treated as a black

box. Second, it might have nonlinear behavior, meaning that the relevance of certain

features in the data is highly dependent on the sample which is classified. The third

5 For our case, the theorem states that for every classification problem, where classifier a is better

than classifier b, there is a different problem where the opposite holds true.
6 With a different preprocessing a different classifier might be appropriate, e.g., with a nonlinear

instead of a linear model.
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and most important point is, that the classifier is not applied to the raw data but pre-

processed data. Hence, the classifier should not be regarded as a single algorithm,

but instead the complete decision algorithm consisting of preprocessing algorithms

and classifier and their interplay with the data need to be considered. For example,

in the extreme case where a classifier is not even really required because the features

are sufficiently good, it is important to look at the generation of the features to decode

the decision algorithm.

Last but not least, the question of “how” to apply the data processing is probably

the most time consuming part of designing a good data processing chain. Perform-

ing hyperparameter optimization and large scale evaluations is cumbersome. A lot

of time for programming and waiting for the results is required. Furthermore, when

trying to reproduce results from other persons there is no access to the used imple-

mentations and the details of the evaluation scheme. The most complicated part

might be to configure the processing for the needs of the concrete application and to

generate optimal or at least useful features.

To fix all these problems completely is impossible but it is possible to tackle parts

of them and go a step further towards a solution as outlined in the following section.

Despite this more general and abstract motivation, we will provide a more con-

crete motivation by an application in Section 0.4.

0.2 Objectives and Contributions

The main objective of this thesis is to provide (theoretical, practical, and techni-

cal) insights and tools for data scientists to simplify the design of the classi-

fication process. In contrast to other work, the goal is not to derive new algorithms

or to tweak existing algorithms.

Here, a “classification process” also includes the complete evaluation process with

the preprocessing, tuning of hyperparameters, and the analysis of results. Three

subgoals can be identified, derived from the previously discussed question: “How

shall I use which classifier and what features of my data does it rely on?”

1 Theoretical aspect: Analyze the connections between SVM variants to derive a

more “general” picture.

2 Practical aspect: Construct an approach for decoding and interpreting the deci-

sion algorithm together with the preprocessing.

3 Technical aspect: Implement a framework for better automatizing the process of

optimizing the construction of an appropriate signal processing chain including

a classifier.
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Subgoal 1 targets the question of “which” classifier to use. The question of “what

features of my data does it (the classifier) rely on” is covered by the second subgoal.

The last subgoal requires us to answer the question of “how” to apply the classifier

and supports Subgoal 1 by providing a platform to compare and analyze classifiers.

It also supports Subgoal 2 as an interface for implementing it.

Note that this introduced numbering will also be used concerning the achieve-

ments of this thesis and the respective chapter numbers. Furthermore, it is impor-

tant to note that there are connections between the goals, because the respective

approaches can (and often have to) be combined. To face the three subgoals, the

following approaches are taken.

Contribution 1: Generalizing Due to the ever-growing number of classifica-

tion algorithms, it is difficult to decide which ones to consider for a given applica-

tion. Knowledge about the relations between the classifiers facilitates the choice

and implementation of classifiers. As such, instead of further specializing existing

classifiers we take a unifying view. Considering only the variants of the classical

support vector machine (C-SVM) [Vapnik, 2000, Cristianini and Shawe-Taylor, 2000,

Müller et al., 2001, Schölkopf and Smola, 2002], some connections are already known

but the knowledge about these connections is distributed over the literature.

We summarize these connections and introduce the following three general con-

cepts building further intuitive connections between these classifiers.

The C-SVM belongs to the group of batch learning classifiers. These classifiers

operate on the complete set of training data to build their model consuming large

resources of memory and processing time. In contrast, online learning algorithms

update their model with each single sample and, later on, forget the sample. They

are very fast and memory efficient which is required for several applications but they

usually perform less well. The single iteration approach describes a way to transfer

batch learning to online learning classifiers. If the solution algorithm of the batch

learning classifier is repeatedly iterated over the single training samples to update

a linear classification function, an online learning algorithm can be generated by

performing this update only once for each incoming sample.

The second concept, called relative margin, establishes a connection between

the more geometrically motivated SVM and the regularized Fisher’s discriminant

(RFDA) coming from statistics.

The third concept, the origin separation approach, allows defining unary classi-

fiers with the help of binary classifiers by taking the origin as a second class.7

7 Unary classifiers use only one class for building a model but they are usually applied to binary

classification problems, where the focus is to describe the more relevant class, or where not enough

training samples are available from the second class to build a model.



6 Chapter 0. Introduction

Together with the existing more formal connection concepts (especially normal

and squared loss, kernel functions, and normal and sparse regularization), these

connections span the complete space of established SVM variants and additionally

provide new not-yet discovered variants.

Knowing the theory of these novel connections simplifies the implementation of

the algorithms and makes it possible to transfer extensions or modifications from

one algorithm to the other connected ones. Thus, it enables to build a classifier that

fits into the individual research aims. Furthermore, it simplifies teaching and getting

to know these classifiers. Note that the connections are not to be taken separately

but in most cases they can be combined.

Contribution 2: Decoding Having the knowledge about the relations between

classifiers is not always sufficient for choosing the best one. It is also important to

understand the final processing model to find out what lies behind the data and to

ensure that the classifier is not relying on artifacts (errors in the data). Existing

approaches visualize the data and the single processing steps, but this might not

be sufficient for a complete picture, especially when dimensionality reduction algo-

rithms are used in the preprocessing. This is often the case for high-dimensional

and noisy data. Hence, a representation of the entire processing chain including both

classification and preprocessing is required. Our novel approach to calculate this rep-

resentation is called backtransformation. It iteratively transforms the classification

function back through the signal processing chain to generate a representation in the

same format as the input data. This representation provides weights for each part

of the data to tell which components are relevant for the complete processing and

which parts are ignored. It can be directly visualized, when using classical data visu-

alization approaches as they are for example used for image, electroencephalogram

(EEG), and functional magnetic resonance imaging (fMRI) data. This practical con-

tribution opens up the black box of the signal processing chain and can now be used

to support the “close collaboration between machine learning experts and application

domain ones” [Domingos, 2012, p. 85]. It can provide a deeper understanding of the

processing and it can help to improve the processing and to generate new knowledge

about the data. In some cases even new expert knowledge might be generated.

Contribution 3: Optimizing For a generic implementation of the backtransfor-

mation an interface is required. Furthermore, it is still required to optimize the

hyperparameters of the classifiers and the preprocessing for further improvement

of the processing chain. Hence, it is necessary to have “an infrastructure that

makes experimenting with many different learners, data sources, and learning prob-

lems easy and efficient” [Domingos, 2012, p. 85]. To solve this problem, we de-
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veloped the Signal Processing And Classification Environment written in Python

(pySPACE) [Krell et al., 2013b]. It provides functionality for a systematic and au-

tomated comparison of numerous algorithms and (hyper-)parameterizations in a sig-

nal processing chain. Additionally, pySPACE enables the visualization of data, al-

gorithms, and evaluation results in a common framework. With its large number of

supporting features this software is unique and a major improvement to the existing

open source software.

0.3 Structure

In this thesis, we present our steps to improve and automatize the process of de-

signing a good processing chain for a classification problem (classifier connections,

backtransformation, pySPACE). This thesis is structured as follows.

First, the different SVM variants are introduced including the known connec-

tions and in the following three more general concepts are introduced which connect

them (Chapter 1). Second, the backtransformation concept is presented in Chapter 2.

Third, the pySPACE framework, the more technical part of this thesis, and its use

for optimization is shown in Chapter 3. All three main parts are also displayed in

Figure 1 using the same numbering. Finally, a conclusion and an outlook is given in

Chapter 4. In the appendix, all my publications are summarized. Furthermore, the

appendix contains detailed proofs, information on the used data, and some configu-

ration files used for the evaluations in the different chapters.

The related work and our proposed approaches are often highly connected and

consequently presented separately in the respective chapters and not in an extra

chapter about literature at the beginning of this thesis. Each approach integrates at

least a part of the related work.

Even though the contributions of this thesis are separated into three chapters,

they are still connected. For the evaluations in Chapter 1 and Chapter 2, the respec-

tive algorithms are integrated into pySPACE and the framework is used to perform

the evaluations using the concepts described in Chapter 3. Furthermore, the back-

transformation concept from Chapter 2 will be applied to the different classifiers from

Chapter 1 and additional knowledge about the classifiers will be incorporated into a

variant of the concept. Last but not least, all three parts should be combined to get

the best result when analyzing data.
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interprete decision process
(classifier, preprocessing, and data)

Decoding
f(x) = 〈(w

b ) , A ( x
1 )〉

=
〈
AT (w

b ) , ( x
1 )

〉

2

understand relations between
Support Vector Machine variants

Generalizing
classifier connections

(incl. single iteration, relative 
margin, origin separation)1

Optimizing
pySPACE: Signal Processing And 

Classification Environment
3

optimize classifier & preprocessing;
evaluate & share approaches

Optimizing
pySPACE: Signal Processing And 

Classification Environment
3

optimize classifier & preprocessing;
evaluate & share approaches t

Figure 1: Graphical abstract of this thesis. The numbering is also used for the

corresponding subgoals and respective chapters. The first part provides a more gen-

eral picture of SVM variants by connecting them. The second part introduces the

backtransformation concept to decode data processing chains. Finally, the third part

presents our framework pySPACE which is an interface for optimizing signal pro-

cessing chains. Furthermore, the previous two parts can be used and analyzed with

this software.

Disclaimer: Text Reuse

Single sentences but also entire paragraphs of this thesis are taken from my own pub-

lications without explicit quotation because I am the main author8 or I contributed

the used part to them.9 Except for my summary paper [Krell et al., 2014c, see also

Section 2.4.4], which is somehow scattered over some introductory parts, I explicitly

mention these sources at the beginning of the respective chapters or sections where

they are used. Often parts of these papers could be omitted by referring to other

sections or they had to be adapted for consistency. On the other hand, additional

information, additional experiments, the relation to the other parts of this thesis, or

personal experiences are added.

8 [Krell et al., 2013b, Krell et al., 2014a, Krell et al., 2014c, Krell and Straube, 2015,

Krell and Wöhrle, 2014]
9 [Feess et al., 2013, Straube and Krell, 2014]
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Notation

In this thesis mostly the “standard notation” is used and it should be possible to infer

the meaning from the context. Nevertheless, there is a list of acronyms and a list

of used symbols at the end of this document. If some notation is unclear we refer to

these lists. It will be directly mentioned, if the standard symbols are not used.

0.4 Application Perspective: P300 Detection

Even though the approaches derived in this thesis are very general and can be

applied in numerous applications, they were originally developed with a concrete

dataset/application in mind. We will first describe the general setting, continue with

a description of the experiment which generated the data, and finally highlight the

connection of the dataset to this thesis to provide an additional less abstract motiva-

tion.

0.4.1 General Background of the Dataset

Current brain-computer interfaces (BCIs) rely on machine learning techniques

as the ones discussed in this thesis. They can be used to detect the P300

event-related potential (ERP)10 for communication purposes (e.g., for P300 based

spellers [Farwell and Donchin, 1988, Krusienski et al., 2006] or for controlling a vir-

tual environment [Bayliss, 2003]), to detect interaction errors for automated cor-

rection [Ferrez and Millán, 2008, Kim and Kirchner, 2013], or to detect movement

preparation or brain activity that is related to the imagination of movements for

communication or control of technical devices [Bai et al., 2011, Blankertz et al., 2006,

Kirchner et al., 2014b].

The P300 is not only used to implement active BCIs for communication and

control but can furthermore be used more passively as it was investigated in

the dataset described in the following. For example, in embedded brain reading

(eBR) [Kirchner, 2014] the P300 is naturally evoked in case an operator detects and

recognizes an important warning during interaction. Thus, the detection of the P300

is used to infer whether the operator will respond to the warning or not and to adapt

the interaction interface with respect to the inferred upcoming behavior. A repeti-

tion of the warning by the interaction interface can be postponed in case a P300 is

detected after a warning was presented since it can be inferred that the operator

will respond to the warning. In case there is no P300 detected, the warning will be

10 This is a special signal in the measurement of electrical activity along the scalp (electroencephalo-

gram). The name refers to a positive peak at the parietal region which occurs roughly 300 ms (or with a

larger latency) after the presentation of a rare but important visual stimulus (see also Section 0.4.2).
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repeated instantly since it can be inferred that the operator did not detect and recog-

nize the warning and will therefore not respond [Wöhrle and Kirchner, 2014]. Since

in the explained case we are able to correlate the brain activity with the subject’s

behavior, the detected behavior can be used as a label to control for the correctness

of the predicted brain states and hence to adapt the classifier by online learning to

continuously improve classification performance [Wöhrle et al., 2013b] (Section 1.2).

The previous description was created with the help of Dr. Elsa Andrea Kirch-

ner, who headed the experiments for the dataset. The following rather short dataset

description is adapted from [Feess et al., 2013] where the data was used to compare

different sensor selection algorithms. A very detailed description of the experiment

and related experiments is provided in [Kirchner et al., 2013].

0.4.2 Description of the Dataset

The data described in this section has been acquired from a BCI system that

belongs to the class of passive BCIs: the purpose is the gathering of informa-

tion about the user’s mental state rather than a voluntary control of a sys-

tem [Zander and Kothe, 2011, Kirchner, 2014]. Therefore, no deliberate participation

of the subject is required.

The goal of the system is to identify whether the subject distinctively perceived

certain rare target stimuli among a large number of unimportant standard stimuli.

It is expected that the targets in such scenarios elicit an ERP called P300 whereas

the standards do not [Courchesne et al., 1977].

Five subjects participated in the experiment and carried out two sessions on dif-

ferent days each. A session consisted of five runs with 720 standard and 120 target

stimuli per run. EEG data were recorded at 1 kHz with an actiCAP EEG system

(Brain Products GmbH, Munich, Germany) from 62 channels following the extended

10–20 layout. (This system usually uses 64 channels. Electrodes TP7 and TP8 were

used for electromyogram (EMG) measurements and are excluded here.)11

The data was recorded in the Labyrinth Oddball scenario (see Figure 2), a testbed

for the use of passive BCIs in robotic telemanipulation. In this scenario, partici-

pants were instructed to play a simulated ball labyrinth game, which was presented

through a head-mounted display. The insets in the photograph show the labyrinth

board as seen by the subject. While playing, one of two types of visual stimuli was

displayed every 1 second with a jitter of ±100 ms. The corners arranged around the

board represent these stimuli. As can be seen, the difference in the standard and tar-

get stimuli is rather subtle: in the first case the top and bottom corners are slightly

larger and in the latter the left and right corners are larger. The subjects were in-

11 The electrode layout with 64 electrodes is depicted in Figure C.6.
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structed to ignore the standard stimuli and to press a button as a reaction to the rare

target stimuli.

Both standard and target stimuli elicit a visual potential as seen in the averaged

time series in Figure 2 (strong negative peak at around 200 ms after the stimuli). Ad-

ditionally, target stimuli induce a positive ERP, the P300, with maximum amplitude

around 600 ms after stimulus at electrode Pz. It is assumed that the P300 is evoked by

rare, relevant stimuli that are recognized, and cognitively evaluated by the subject.

Targets

0

P300

300 600 ms

2-2

-4 Pz

V

0 300 600 ms

2

-2

4

-4

V

Pz

Averaged ERP: Targets

Standards 
(n = 720)

Averaged ERP: Standards

Targets 
(n = 120)

2

4

Figure 2: Labyrinth Oddball: The subject plays a physical simulation of a ball

labyrinth game. He has to respond to rare target stimuli by pressing a buzzer and

ignore the more frequent standard stimuli. The insets show the shape of the stimuli,

which can be distinguished by the length of the edges. The graphs to the left depict

the event-related potentials (ERPs) evoked by both stimulus types at electrode Pz.

Both stimuli elicit an early negative potential attributed to visual processing, but

only targets evoke an additional strong, positive potential around 600 ms after the

stimulus. Visualization and description taken from [Feess et al., 2013].

The BCI only needs to passively monitor whether the operator of the labyrinth

game correctly recognized and distinguished these stimuli. There is an objective

affirmation of the successful stimulus recognition, because a button has to be pressed,

whenever a target is recognized. No feedback is given to the user.

0.4.3 Relevance for this Thesis

Even though this data is not (yet) open source, it was used in this thesis for several

reasons as listed in the following.

• It provides numerous datasets to have a comparison of algorithms.12

• EEG data classification is a very challenging task where the applied signal pro-

cessing chain usually performs much better than the human.

12 Up to 50 datasets/recordings, depending on the evaluation scheme.
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• The data has a very bad signal to noise ratio. Thus it is a challenge to optimize

the processing chain.

• The data was recorded in a controlled and somehow artificial scenario but in

fact it targets a much more promising application of a BCI where the humans

intentions are monitored with the help of the EEG during a teleoperation task

with many robots where robots act more autonomously. This task can be very

challenging and the monitoring can be used to avoid malfunction in the inter-

face. When analyzing the P300 data and tuning processing chains, we kept this

more complex application in mind.

• The dataset was the motivation for all findings in this thesis as described in the

following.

• The aforementioned more practical application requires online learning to in-

tegrate new training data for performance improvement and to account for the

different types of drifts in the data (see Section 1.2).

• Support vector machine and Fisher’s discriminant were common classifiers on

this type of data [Krusienski et al., 2006] (see Section 1.3).

• Depending on the application, which uses the P300, it might be very difficult

to acquire data from a second class and consequently a classifier is of interest,

which only works with one class (see Section 1.4). Altogether, a more general

model of classification algorithms and their properties and connections is help-

ful here.

• There is always the danger of relying on artifacts (e.g., muscle artifacts, eye

movement) and there is an interest from neurobiology to decode the processing

chain, which is built to classify the P300 (see Chapter 2). For the given dataset,

we could show that eye artifacts are not relevant.

• Finding a good processing chain for such demanding data requires a lot of hy-

perparameter optimization and comparison of different algorithms. Further-

more, it is useful to exchange processing chains between scientist to find flaws,

communicate problems and approaches, and help each other improving the pro-

cessing (see Chapter 3).

• There is an interest in using as few sensors and time points for the processing to

make the set up easier and the processing faster (see Section 3.4.3). To derive

such selection algorithm it can be helpful to combine the tools and insights,

derived in this thesis.

A reference processing chain for this data is depicted in Figure 3.4. In the eval-

uations in this thesis, only the difference to this processing scheme is reported. The

processing chain assumes that the data has already been segmented in samples of

one second length after the target or standard stimulus.
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The aim of this chapter is to summarize known and novel connections between SVM

variants to derive a more general view on this group of classifiers. This shall facilitate

the choice of the classifier given certain data or applications at hand.

Given some data-value pairs (xj , yj) with xj ∈ R
m and j ∈ {1, . . . , n} a common

task is to find a function F which maps F (xj) = yj as good as possible and which

should also perform well on unseen data. If yj is from a continuous space like R, an

algorithm deriving such a function f is called regression algorithm. If yj is from a

discrete domain, the algorithm is a classifier. In this thesis, we will focus on the case

of binary classification with yj ∈ {−1, +1}. In most cases, linear classifiers will be

used with f(xj) = 〈w, xj〉 + b, where w is the classification vector and b the offset. To

finally map the classification function to a decision ({−1, +1}), the signum function

is applied (F (x) = sgn(f(x))).

The classical support vector machine (C-SVM) [Vapnik, 2000,

Cristianini and Shawe-Taylor, 2000, Müller et al., 2001, Schölkopf and Smola, 2002]

is a well-established binary classifier.1 Good generalization properties, efficient

implementations, and powerful extensions like the kernel trick or possible sparsity

properties (explained in Section 1.1), make the SVM attractive for numerous vari-

ants and applications [LeCun et al., 1998, Guyon et al., 2002, Lal et al., 2004,

LaConte et al., 2005, Golle, 2008, Tam et al., 2011, Filitchkin and Byl, 2012,

Kirchner et al., 2013]. The most important variants are

• ν support vector machine (ν-SVM) [Schölkopf et al., 2000, Section 1.1.1.3],

• support vector regression (SVR) [Vapnik, 2000, Smola and Schölkopf, 2004, Sec-

tion 1.1.1.4],

• least squares support vector machine (LS-SVM) [Van Gestel et al., 2002, Sec-

tion 1.1.2],

• relative margin machine (RMM) [Shivaswamy and Jebara, 2010,

Krell et al., 2014a, Section 1.1.4 and 1.3],

• passive-aggressive algorithm (PAA) [Crammer et al., 2006, Sec-

tion 1.1.5, 1.1.6.2, and 1.2.4],

• support vector data description (SVDD) [Tax and Duin, 2004, Section 1.1.6.1],

• and classical one-class support vector machine (νoc-SVM)

[Schölkopf et al., 2001b, Section 1.1.6.3].

• Furthermore, regularized Fisher’s discriminant (RFDA) can be seen as a SVM

variant, too [Mika, 2003, Krell et al., 2014a, Section 1.1.3 and 1.3].

In the literature these algorithms are usually treated as distinct classifiers. This also

holds for the evaluations. Some connections between these classifiers are known but

scattered erratically over the large body of literature. First, in Section 1.1 the models

1 The C in the abbreviation probably refers to the hyperparameter C in the classifier definition and

is used to distinguish it from other related classifiers (see also Section 1.1.1).
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and these connections will be summarized. In the following, general concepts for a

unifying view are proposed to further connect these classifiers and ease the process

of choosing a fitting classifier:

• The single iteration concept creates online learning classifiers like PAA from

batch learning classifiers to save computational resources (Section 1.2).

• The relative margin concept intuitively connects SVM, SVR, RMM, LS-SVM,

and RFDA (Section 1.3).

• The origin separation concept transforms binary to unary classifiers like νoc-

SVM for outlier detection or to data description (Section 1.4).

By combining these three approaches, a large number of additional variants can be

generated (see Fig. 1.1). In Section 1.5 the connections between the aforementioned

classifiers will be summarized and possible scenarios explained where the knowledge

of the connections is helpful (e.g., implementation, application, and teaching).
relative
m
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PAA

PAA
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Figure 1.1: 3D-Cube of our novel connections (commutative diagram). Com-

bining the approaches, introduced in Chapter 1: relative margin (vertical arrows)

to generate the balanced relative margin machine (BRMM) which is the connection

to the regularized Fisher’s discriminant (RFDA), single iteration (horizontal arrows)

to generate online classifiers like the passive-aggressive algorithm (PAA), and the

origin separation (diagonal arrows) to generate unary classifiers from binary ones.

Each approach is associated with one dimension of the cube and going along one edge

means to apply or remove the respective approach from the classifier at the edge.



16 Chapter 1. Generalizing: Classifier Connections

1.1 Support Vector Machine and Related Methods

In this section, we introduce all the aforementioned SVM variants including some

basic concepts and known connections which are pure parameter mappings and no

general concepts. For further reading, we refer to the large corpus of books about

SVMs. Readers who are familiar with the basics of support vector machines and its

variants can continue with the next section.

The models will be required in the following sections which introduce three gen-

eral concepts to connect them. Putting everything together in Section 1.5, we will

show that the SVM variants, introduced in this section, are all highly connected.

1.1.1 Support Vector Machine

In a nutshell, the principle of the C-SVMs is to construct two parallel hyperplanes

with maximum distance such that the samples belonging to different classes are sep-

arated by the space between these hyperplanes (see also Figure 1.2). Such space

between the planes is usually called margin—or inner margin in our context.

Commonly, only the Euclidean norm

(
‖v‖2 =

√∑
v2

i

)
is used for measuring

the distance between points but it is also possible to use an arbitrary p-norm(
‖v‖p = p

√∑
vp

i

)
with p ∈ [1, ∞].2

For getting the distance between two parallel hyperplanes or a point and a hy-

perplane instead, the respective dual p′-norm has to be used with 1
p

+ 1
p′ = 1

[Mangasarian, 1999]. If p = ∞, p′ is defined to be 1. Having the two hyperplanes

H+1 and H−1 with

Hz = {x|〈w, x〉 + b = z} , (1.1)

their distance is equal to 2
‖w‖p′

according to Mangasarian. (In case of the Euclidean

norm, this effect is also known from the Hesse normal form.) The resulting model

reads as:

Method 1 (Maximum Margin Separation).

max
w,b

1
‖w‖p′

s.t. yj(〈w, xj〉 + b) ≥ 1 ∀j : 1 ≤ j ≤ n.
(1.2)

For new data, the respective linear classification function is:

f(x) = 〈w, xj〉 + b. (1.3)

2 Due to convergence properties it holds ‖v‖∞ := max |vi|.
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x1

x2

f(x) = 0f(x) = -1 f(x) = 1

maximum
distance

f(x) = <w,x>+b

Figure 1.2: Support vector machine scheme. The blue dots are training samples

with y = −1 and the red dot with y = +1 respectively. Displayed are the three parallel

hyperplanes H+1, H0, and H−1.

To get a mapping to the class labels −1 and +1 we use the decision function

F (x) = y(x) = sgn(f(x)) :=

{
+1 if f(x) > 0,

−1 otherwise.
(1.4)

For better solvability, Method 1 is reformulated to an equivalent one. The fraction is

inverted, and the respective minimization problem is solved instead. Furthermore,

the root is omitted to simplify the optimization process and further calculations. An

additional scaling factor is added for better looking formulas when solving the opti-

mization problem. These superficial modifications do not change the optimal solution.

The resulting reformulated model reads:

Method 2 (Hard Margin Separation Support Vector Machine).

min
w,b

1
p′ ‖w‖p′

p′

s.t. yj(〈w, xj〉 + b) ≥ 1 ∀j : 1 ≤ j ≤ n.
(1.5)

Since strict separation margins are prone to overfitting or do not exist at all, some

disturbance in the form of samples penetrating the margin is allowed denoted with

the error variable tj .

When speaking of the C-SVM, normally the Euclidean norm is used (p = p′ = 2):
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Method 3 (L1–Support Vector Machine).

min
w,b,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n,

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.6)

The hyperparameter C defines the compromise between the width of the margin(
regularization term 1

2 ‖w‖2
2

)
and the amount of samples lying in or on the wrong

side of the margin (tj > 0).3 This principle is called soft margin, because the margins

defined by the two hyperplanes H+1 and H−1 can be violated by some samples (see

also Figure 1.3). In the final solution of the optimization problem only these samples

and the samples on the two hyperplanes are relevant and provide the SVM with its

name.

x1

x2

f(x) = 0f(x) = -1 f(x) = 1

maximum
distance

f(x) = <w,x>+b

Figure 1.3: Soft margin support vector machine scheme. In contrast to Fig-

ure 1.2, some samples are on the wrong side of the hyperplanes within the margin.

Definition 1 (Support Vector). The vectors defining the margin, i.e., those data ex-

amples xj where tj > 0 or where identity holds in the first inequality constraint

(Method 3), are the support vectors.

The L1 in the method name of the SVM (Method 3) refers to the loss term

‖t‖1 =
∑

tj for tj ≥ 0 in the target function. A L2 variant that uses ‖t‖2
2 instead

was suggested but is rarely used in applications, especially when kernels are used.

When using kernels, it is important to have as few support vectors as possible and

the L2 variant often has much more support vectors [Mangasarian and Kou, 2007]

(see also Section 1.1.1.2).

3 C is called regularization constant, cost factor, or complexity.
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1.1.1.1 Lagrange Duality

For deriving solution algorithms for the optimization problem of the C-SVM and

for the introduction of kernels—presently one of the most important research top-

ics in SVM theory— it is useful to apply duality theory4 from optimization, e.g.,

[Burges, 1998]. Solving the dual instead of the primal (original) optimization prob-

lem can be easier in some cases and if certain requirements are fulfilled, then

the solutions are connected via the Karush-Kuhn-Tucker (KKT) conditions, e.g.,

[Boyd and Vandenberghe, 2004]. Finally, duality theory enables necessary optimality

conditions, which can be used to solve the optimization problems. Even though the

following calculations will be only performed for the C-SVM, the concepts also apply

for numerous variants and the respective calculations are similar (as partially shown

in the appendix).

To avoid a degenerated optimization problem, it is required to check if at least

one point fulfills all restrictions (feasible point), if there is a solution of the optimiza-

tion problem, and if the problem can be “locally linearized”, i.e., fulfills a constrained

qualification, e.g., [Boyd and Vandenberghe, 2004]. These points are usually ignored

in the SVM literature probably because they seem obvious from the geometrical per-

spective. Nevertheless, they are the basis of most optimization algorithms for SVMs.

Theorem 1 (The C-SVM Model is well defined). The C-SVM optimization problem

has feasible points and a solution always exists, if there is at least one sample for each

class. Additionally when using the hard margin the sets of the two classes need to be

strictly separable. Furthermore, Slater’s constraint qualification is fulfilled.5

The question of how to determine the solution is a main topic of Section 1.2. The

benefit of this theorem is twofold. We proofed that the model is well defined and that

we can apply Lagrange duality. The advantage of Lagrange duality for Method 3 is a

reformulation of the optimization problem, which is easier to solve and which allows

replacing the original norm by much more complex distance measures (called kernel

trick). This advantage does not hold for the variants based on other norms (p 
= 2).

For obtaining the dual optimization problem, first of all the respective Lagrange

function has to be determined. For this, dual variables are introduced for every in-

equality (αj , γj) and the inequalities are rewritten to have the form g(w, b, t) ≤ 0. The

Lagrange function is the target function plus the sum of the reformulated inequality

functions weighted with the dual variables:

L1(w, b, t, α, γ) =
1

2
‖w‖2

2 +
∑

Cjtj −
∑

αj(yj(〈w, xj〉 + b) − 1 + tj) −
∑

γjtj . (1.7)

4 This should not be mixed up with the previously mentioned duality of the norms. The dual opti-

mization problem can be seen as an alternative/additional view on the original optimization problem.
5 The proof is given in Appendix B.1. Other constraint qualifications do exist, but Slater’s was most

easy to check for the given convex optimization problem.
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For the L2–SVM this yields:

L2(w, b, t, α) =
1

2
‖w‖2

2 +
∑

Cjt2
j −

∑
αj(yj(〈w, xj〉 + b) − 1 + tj). (1.8)

To consider the label or the time for the weighting of errors, C has been chosen sample

dependent (Cj).

With a case study, it can be shown that the original optimization is equivalent to

optimizing:

min
w,b,t

sup
α≥0,γ≥0

L1(w, b, t, α, γ). (1.9)

Infeasible points in the original optimization problem get a value of infinity due to

usage of the supremum and for the feasible points the original target function value

is obtained. According to Theorem 1, the optimization problem has a solution and

Slater’s constraint qualification is fulfilled. Consequently the duality theorem can be

applied [Burges, 1998]. It states that we can exchange minimization and “suprem-

ization” and that the solutions for both problems are the same:

min
w,b,t

sup
α≥0,γ≥0

Lq(w, b, t, α, γ) = max
α≥0,γ≥0

min
w,b,t

Lq(w, b, t, α, γ), q ∈ {1, 2} . (1.10)

The advantages of the new resulting optimization problem, called dual optimization

problem, are twofold. First, the inner part is an unconstrained optimization problem

which can be analytically solved. Second, the remaining constraints are much easier

to handle than the constraints in the original (primal) optimization problem.

For simplifying the dual optimization problem, the minimization problem is

solved by calculating the derivatives of the Lagrange function for the primal variables

and setting them to zero. This is the standard solution approach for unconstrained

optimization.

∂Lk

∂w
= w −

∑
j

αjyjxj ,
∂Lk

∂b
= −

∑
j

αjyj ,
∂L1

∂tj
= Cj −αj −γj ,

∂L2

∂tj
= 2tjCj −αj . (1.11)

The most important resulting equations are

w =
∑

j

αjyjxj , (1.12)

which gives a direct relation between w and α, and

∑
j

αjyj = 0, (1.13)



1.1. Support Vector Machine and Related Methods 21

which is a linear restriction on the optimal α. For the L1 variant, the equation

Cj − αj = γj (1.14)

results in the side effect that γj can be omitted in the optimization problem and αj

gets the upper bound Cj instead, due to the constraint γ ≥ 0. Finally, substituting

the equations for optimality into Lq and multiplying the target function with −1 to

obtain a minimization problem results in the following theorem:

Theorem 2 (Dual L1– and L2–SVM Formulations). The term

min
Cj≥αj≥0,

∑
αjyj=0

1

2

∑
i,j

αiαjyiyj 〈xi, xj〉 −
∑

j

αj (1.15)

is the dual optimization problem for the L1–SVM and

min
αj≥0,

∑
αjyj=0

1

2

∑
i,j

αiαjyiyj 〈xi, xj〉 −
∑

j

αj +
1

4

∑
j

α2
j

Cj
(1.16)

for the L2–SVM.

The dual of the hard margin SVM is given in Theorem 18 and for the L2 variant

a more detailed calculation is provided in Appendix B.1.3.

In the dual formulation, only the pairwise scalar products of training samples are

required. This is exploited in the kernel trick (Section 1.1.1.2). Note that only in the

L1 case there is an upper bound on the dual variables. Furthermore, when looking

more detailed into the calculations we realize that the additional equation in the dual

feasibility constraints is a result of b being a free variable which is not minimized in

the target function. These observations will be again relevant in Section 1.2.

The αj are connected to the primal problem via Equation (1.12) but also via the

complementary slackness equations [Boyd and Vandenberghe, 2004]:

αj > 0 ⇒ yj(〈w, xj〉 + b) ≤ 1. (1.17)

Consequently, only samples on the margin or on the wrong side of the margin con-

tribute to the classification function according to Equation (1.12). All the other sam-

ples are irrelevant and do not “support” the decision function. Hence the name.

For the L1 case, it additionally holds

tj > 0 ⇒ γ = 0 ⇒ αj = Cj . (1.18)

This immediately tells us that every sample which is on the wrong side of the margin

gets the maximum weight assigned and that every xj with αj > 0 is a support vector.
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Sometimes αj > 0 is used instead to define the term support vector.

So a specialty of the SVM is that only a fraction of the data is needed to describe

the final solution. Interestingly, w could be split into the difference of two prototypes

where each corresponds to one class:

w =
∑

j:yj=1,αj>0

αjxj −
∑

j:yj=−1,αj>0

αjxj = w+1 − w−1 . (1.19)

So especially for the L1 case, the prototypes are in its core only the average of the

samples of one class which are difficult to distinguish from samples of the other class.

In the L2 case, it is a weighted average. When looking at the implementation details

in Section 1.2, it turns out that weights are higher if it is more difficult to distinguish

the sample from the opposite class.

Additionally to implementation aspects in Section 1.2, the results of this section

will be also used in the following to introduce kernels. Here, the weighted average of

samples is not used anymore. It is replaced by a weighted sum of functions.

1.1.1.2 Loss Functions, Regularization Terms, and Kernels

This section introduces three important concepts in the context of SVMs which are

also used in other areas of machine learning like regression, dimensionality reduc-

tion, and classification (without SVM variants). They are already a first set of (known

but loose) connections in the form of parameter mappings between SVM variants.

They will be repeatedly referred to in the other sections.

Loss Functions First, we will have a closer look at the tj in the C-SVM models.

Instead of using tj , it is also possible to omit the side constraints by replacing tj in

the target function of the model with the function

max {0, 1 − yj(〈w, xj〉 + b)} . (1.20)

The underlying function l(t) = max {0, 1 − ys} is called hinge loss, where y ∈ {−1, +1}
is the class label and s is the classification score. The respective squared function for

the L2–SVM is called squared hinge loss. In case of the hard margin SVM a tj or a

respective replacing function could be introduced by defining

tj =

{
∞ if 1 − yj(〈w, xj〉 + b) > 0,

0 else.
(1.21)

Definition 2 (Loss Function). The term summing up the model errors tq
j is called loss

term (sometimes also empirical error). The respective function defining the error of the
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algorithm model in relation to a single sample is called loss function.

There are several ways of choosing the loss function, each resulting in a new clas-

sifier. A (not complete) list of existing loss functions is given in Table 1.1. For some

of them, there is a corresponding underlying density model [Smola, 1998]. Three

choices have already been introduced and many more will be used in the following

sections.

name function

hinge loss max {0, ξ}
squared hinge loss max {0, ξ}2

Laplacian loss |ξ|
Gaussian loss 1

2ξ2

ε insensitive loss max {0, ξ − ε, −ξ − ε}

Huber’s robust loss

{
1

2σ
ξ2 if |ξ| ≤ σ,

|ξ| − σ 1
2 if |ξ| > σ

polynomial loss 1
p

|ξ|p

piecewise polynomial loss

⎧⎨
⎩

1
pσp−1 |ξ|p if |ξ| ≤ σ,

|ξ| − σ p−1
p

if |ξ| > σ

LUM loss [Liu et al., 2011]

⎧⎨
⎩ 1 − ξ if ξ < c

1+c
,

1
1+c

(
a

(1+c)ξ−c+a

)a
if ξ ≥ c

1+c

0 − 1 loss

{
0 if ξ ≥ −1,

1 if ξ < −1

logistic loss log(1 + exp(ξ + 1))

Table 1.1: Loss functions with ξ := 1 − ys. y ∈ {−1, +1} is the class label and s is

the classification score. For some functions additional hyperparameters are used (σ,

p, c, a, ε).

Regularization Terms If for a classification algorithm only the loss function were

minimized, chances are high that it will overfit to the given data. This means that it

might perfectly match the given training data but might not generalize well and that

it will perform worse on the testing data. To avoid such behavior, often a regulariza-

tion term is used — like 1
p′ ‖w‖p′

p′ in the C-SVM definition. Sometimes, this term is

also called prior probability [Mika et al., 2001]. The target function of the respective

algorithm is always the weighted sum of loss term and regularization term.

An advantage of using 1
2 ‖w‖2

2 as regularization function is its differentiability

and strong convexity. When using a convex regularization and loss function, every

local optimum is also a global one. Furthermore, together with the convexity of the
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optimization problem the strong convexity results in the effect that there is always

a unique w solving the optimization problem [Boyd and Vandenberghe, 2004]. This

does not hold for 1-norm regularization (p′ = 1, ‖w‖1 =
∑ |wi|) where there could

be more than one optimal solution. p′ ∈ {1, 2} are the most common choices for

regularization. The most common case is p′ = 2, due to its intuitiveness and its nice

properties in the duality theory setting (see Section 1.1.1.1 and Section 1.2). The

advantage of the regularization with p′ = 1 is its tendency to sparse solutions.6 Some

more information about this behavior is given in Section 1.3.3.4. If w can be split

into vectors w(1), . . . , w(k) the terms ‖w‖1,2 :=
∑∥∥∥w(i)

∥∥∥
2

and ‖w‖1,∞ :=
∑∥∥∥w(i)

∥∥∥
∞

are

sometimes used to induce grouped sparsity [Bach et al., 2012]. This means, that the

classifier tends to completely set some components w(i) to zero vectors.

Kernels In Theorem 2 it could be shown in the case of p′ = 2 that the C-SVM

problem can be reformulated to only work on the pairwise scalar products of the

training data samples xj and not the single samples anymore. This is used in the

kernel trick, where the scalar product is replaced by a kernel function k. This results

in a nonlinear separation of the data which is very advantageous, if the data is not

linearly separable. The respective classification function becomes

f(x) = b +
n∑

i=1

αjk(x, xi). (1.22)

The most common kernel functions are displayed in Table 1.2. For some applica-

tions like text or graph classification, a kernel function is directly applied to the data

without the intermediate step of creating a feature vector.

name function

linear kernel 〈xi, xj〉
polynomial kernel (γ 〈xi, xj〉 + b)d

sigmoid kernel tanh(γ 〈xi, xj〉 + b)

Gaussian kernel (RBF) exp

(
−‖xi−xj‖2

2
2σ2

)
Laplacian kernel exp

(
−‖xi−xj‖2

σ

)
Table 1.2: Kernel functions applied to the input (xi, xj). The other variables in

the functions are additional hyperparameters to customize/tune the kernel for the

respective application.

The use of the kernel can be compared with the effect of lifting the data to a

higher dimensional space before applying the separation algorithm. Instead of defin-

6 More components of w are mapped to zero.
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ing the lifting, only the kernel function has to be defined. As a direct mathematical

consequence, a kernel function is usually required to be a symmetric, positive semi-

definite, and continuous function. These requirements are also called Mercer condi-

tions. By furthermore restricting this function to a compact space (e.g., each vector

component is only allowed to be in a bounded and closed interval) the Mercer theorem

can be applied.

Theorem 3 (Mercer Theorem [Mercer, 1909]). Let X be a compact set and k : X×X →
R be a symmetric, positive semi-definite, and continuous function. Then there exists

an orthonormal basis ei ∈ L2(X) and non-negative eigenvalues λi such that

k(s, t) =
∞∑

j=1

λjej(s)ej(t) . (1.23)

Now using Φ = diag(
√

λ) (e1, e2, . . .), we get

k(a, b) = 〈Φ(a), Φ(b)〉 ∀a, b. (1.24)

Consequently, Φ is a mapping in a high dimensional space, were the standard scalar

product is used. The proof of the Mercer Theorem also gives a rule on how to con-

struct the basis. This rule uses the derivatives of the kernel function. Hence, for

the linear and polynomial kernel a finite basis can be constructed but especially for

the Gaussian kernel, which is also called radial basis function (RBF) kernel, only a

mapping into an infinite dimensional space is possible because the derivative of the

exponential function never vanishes.

Instead of the previous argument using the dual optimization problem, the fol-

lowing representer theorem is also used in the literature to introduce kernels.

Theorem 4 (Nonparametric Representer Theorem [Schölkopf et al., 2001a]). Sup-

pose we are given a nonempty set X, a positive definite real-valued kernel k on X × X,

a training sample (x1, y1), . . . , (xn, yn) ∈ X × R, a strictly monotonically increasing

real-valued function g on [0, ∞), an arbitrary cost function c : (X × R
2)n → R ∪ {∞},

and a class of functions

F =

{
f ∈ R

X

∣∣∣∣∣f(·) =
∞∑

i=1

βik(·, zi), βi ∈ R, zi ∈ X, ‖f‖ < ∞
}

. (1.25)

Here, ‖·‖ is the norm in the reproducing kernel Hilbert space (RHKS) Hk associated

with k, i.e. for any zi ∈ X, βi ∈ R (i ∈ N),

∥∥∥∥∥
∞∑

i=1

βik(·, zi)

∥∥∥∥∥
2

=
∞∑

i=1

∞∑
j=1

βiβjk(zi, zj). (1.26)
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Then any f ∈ F minimizing the regularized risk functional

c((x1, y1, f(x1)), . . . , (xn, y2, f(xn))) + g(‖f‖) (1.27)

admits a representation of the form

f(·) =
n∑

i=1

αjk(·, xi). (1.28)

For the C-SVM, the decision function f is optimized in contrast to the classifi-

cation vector w. The cost function c is used for the loss term and g is used for the

regularization term 1
2 ‖f‖2. The theorem states that f can be replaced in the opti-

mization problem with a finite sum using only the training samples. The result is the

same as the previous approach for introducing the kernel.

No matter which way is chosen to introduce the kernel, the kernel trick can be

applied to most of the SVM variants with 2-norm regularization introduced in the

following except the online passive aggressive algorithm, because it does not keep

the samples in memory.

Even after building its model, the SVM has to keep the training data (only the

support vectors) for the classification function when using nonlinear kernels. In this

case the size of the solution (usually) grows with the size of the training data. Such

a type of model is called non-parametric model. In contrast, when using the linear

kernel the SVM provides a parametric model of the data with the parameters w and

b, because the number of parameters is independent from the size of the training

data. The usage of linear and RBF kernel is not unrelated but there is an interesting

connection.

Theorem 5 (RBF kernel generalizes linear kernel for the C-SVM). According to

[Keerthi and Lin, 2003], the linear C-SVM with the regularization parameter C ′ is

the limit of a C-SVM with RBF kernel and hyperparameters σ2 → ∞ and C = C ′σ2.

This theorem was used by [Keerthi and Lin, 2003] to suggest a hyperparameter

optimization algorithm, which first determines the optimal linear classifier and then

uses the relation C = C ′σ2 to reduce the space of hyperparameters to be tested for the

RBF kernel classifier. It could be also used into the other direction. If the optimal C

and σ2 become too large, the linear classifier with C ′ = C
σ2 could be considered instead.

Consequently, the connection between the two variants can be directly used to speed

up the hyperparameter optimization and also to somehow optimize the choice of the

best variant.
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1.1.1.3 ν-Support Vector Machine

The hyperparameter C in the L1-SVM model influences the number of support vec-

tors but this influence cannot be mathematically specified.7 The ν support vector ma-

chine (ν-SVM) has been introduced with a different parametrization of the C-SVM to

be able to provide a lower bound on the number of support vectors in relation to the

number of training samples [Schölkopf et al., 2000, Crisp and Burges, 2000]:

Method 4 (ν-Support Vector Machine (ν-SVM)).

min
w,t,ρ,b

1
2 ‖w‖2

2 − νρ + 1
n

∑
tj

s.t. yj (〈w, xj〉 + b) ≥ ρ − tj and tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(1.29)

The additional hyperparameter ν ∈ [0, 1] which replaces the C ∈ (0, ∞) is the

reason for the name of the algorithm. The original restriction ρ′ ≥ 0 is omitted for

simplicity as suggested in [Crisp and Burges, 2000]. For the problem to be feasible,

ν ≤
min

{ ∑
yj=+1

yj , − ∑
yj=−1

yj

}

n
(1.30)

has to hold [Crisp and Burges, 2000]. Similar to the calculations in Section 1.1.1.1

the dual optimization can be derived (Theorem 19):

min
α

1
2

∑
i,j

αiαjyiyj 〈xi, xj〉
s.t. 1

n
≥ αj ≥ 0 ∀j : 1 ≤ j ≤ n,∑

j
αjyj = 0,

∑
j

αj = ν .

(1.31)

Due to the restrictions, ν defines the minimum percentage of support vectors used

from the training data. If there is no α ∈
(
0, 1

n

)
, then ν is the exact percentage of

support vectors and not just a bound.

Theorem 6 (Equivalence between C-SVM and ν-SVM). If α(C) is an optimal solution

for the dual of the C-SVM with hyperparameter C > 0, the ν-SVM has the same

solution with ν = 1
Cl

∑
αi(C) despite a scaling with Cl.

On the other hand, if ρ is part of the optimal solution of a ν-SVM with ν > 0 and

a negative objective value, by choosing C = 1
ρl

the C-SVM provides the same (scaled)

optimal solution.

The proof and further details on this theorem can be found in

[Chang and Lin, 2001].

7 Especially since this parametrization largely depends on the scaling/normalization of the data.
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1.1.1.4 Support Vector Regression

Parallel to the C-SVM, the support vector regression (SVR) has been developed

[Vapnik, 2000, Smola and Schölkopf, 2004]. In the literature, the name Support Vec-

tor Machine is sometimes also used for the SVR. For a better distinction, the name

Support Vector Classifier (SVC) is sometimes used for the C-SVM. As the name

indicates, SVR is a regression algorithm (yj ∈ R) and not a classifier. The formal

definition is:

Method 5 (L1–Support Vector Regression (SVR)).

min
w,b,t

1
2 ‖w‖2

2 + C
∑

sj + C
∑

tj

s.t. ε + sj ≥ 〈w, xj〉 + b − yj ≥ −ε − tj ∀j : 1 ≤ j ≤ n

sj , tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.32)

The additional hyperparameter ε defines a region, where errors are allowed. Due

to this ε-tube the SVR tends to have few support vectors which are at the border

or outside of this tube. Using a squared loss or “hard margin” loss, other regular-

ization, or kernels works for this algorithm as well as for the C-SVM. According to

[Smola and Schölkopf, 2004], the dual optimization problem is

min
α,β

1
2

∑
i,j

(αi − βi)(α − β) 〈xi, xj〉 −∑
j

yj(αj − βj) + ε
∑
j

(αj + βj)

s.t. 0 ≤ αj ≤ C ∀j : 1 ≤ j ≤ n

0 ≤ βj ≤ C ∀j : 1 ≤ j ≤ n∑
(αj − βj) = 0.

(1.33)

It is connected to the primal optimization problem via

w =
∑

j

(αj − βj) = 0. (1.34)

Apart from the underlying theory from statistical learning (using regularization,

loss term, and kernels) and the fact that the solution also only depends on a subset

of samples called support vectors, there seems to be no direct intuitive connection

between SVR and C-SVM. Nevertheless, the existence of a parameter mapping could

be proven by [Pontil et al., 1999] in the following theorem:

Theorem 7 (Connection between SVR and C-SVM). Suppose the classification prob-

lem of the C-SVM in Method 3 is solved with regularization parameter C and the

optimal solution is found to be (w, b). Then, there exists a value a ∈ (0, 1) such that

∀ε ∈ [a, 1), if the problem of the SVR in Method 5 is solved with regularization param-

eter (1 − ε)C, the optimal solution will be (1 − ε)(w, b).
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Proof. The proof by [Pontil et al., 1999] will not be repeated, here. Instead, in Sec-

tion 1.3 this theorem will become immediately clear by introducing a third classi-

fier (balanced relative margin machine) which is connected intuitively to SVR and

C-SVM. As a consequence the choice of a will be geometrically motivated.

As already demanded by [Pontil et al., 1999], there is also a ν-SVR similar to the

ν-SVM in Section 1.1.1.3 [Schölkopf et al., 2000, Smola and Schölkopf, 2004].

Method 6 (ν-Support Vector Regression).

min
w,b,t

1
2 ‖w‖2

2 + C (nνε +
∑

sj +
∑

tj)

s.t. ε + sj ≥ 〈w, xj〉 + b − yj ≥ −ε − tj ∀j : 1 ≤ j ≤ n

sj , tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.35)

ν-SVR and SVR are connected similar to ν-SVM and C-SVM

[Chang and Lin, 2002]. Interestingly, this time ν is not replacing C. Instead,

it is indirectly replacing ε which is now a model parameter and not a hyperparameter

anymore. ν provides a weighting for the automatic selection of ε. This is reasonable,

because in the SVR model, ε has the main influence on the number of support

vectors.8 In contrast to the ν-SVM model, the proof for the existence of solutions for

the C-SVM can be directly transferred to the ν-SVR.

We recently suggested a novel “variant” of the SVR for creating a regres-

sion of the upper/lower bound of a mapping with randomized real-valued output

[Fabisch et al., 2015]. It is called positive upper boundary support vector estimation

(PUBSVE). Further details are provided in Appendix B.5.

1.1.2 Least Squares Support Vector Machine

Using the Gaussian loss (which is also called least squares error) in the SVM model

instead of the (squared) hinge loss directly results in the least squares support vector

machine (LS-SVM) [Suykens and Vandewalle, 1999]. This change in the loss function

is substantial and results in a very different classifier:9

Method 7 (Least Squares Support Vector Machine LS-SVM).

min
w,b,t

1
2 ‖w‖2

2 + C
2

∑
t2
j

s.t. yj(〈w, xj〉 + b) = 1 − tj ∀j : 1 ≤ j ≤ n.
(1.36)

Note that this classifier is the exact counterpart to ridge regression10

8 A smaller ε-tube where model errors are allowed, result in more errors and each of the correspond-

ing samples is a support vector.
9 The difference will become clear in Section 1.3.

10 More details are provided in Appendix B.2.1.
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[Hoerl and Kennard, 1970, Saunders et al., 1998]. The motivation of this classifier

was to solve a “set of linear equations, instead of quadratic programming for classical

SVM’s” [Suykens and Vandewalle, 1999, p. 1]. This comes at the prize of using all

samples for the solution (except the ones with xj ∈ Hyj
) in contrast to having few

support vectors. Consequently, the method might be disadvantageous when working

with kernels on large datasets, because the kernel function needs to be applied to

every training sample and the new incoming sample which shall be classified.

For solving the optimization problem of the classifier the use of Lagrange multi-

plier is not necessary, but it enables the use of kernels and the comparability with

the C-SVM. The application of it can be justified analogously to Theorem 1. The

respective Lagrange function is

L(w, b, t, α) =
1

2
‖w‖2

2 +
C

2

∑
t2
j −

∑
αj(yj(〈w, xj〉 + b) − 1 + tj). (1.37)

In contrast to the formulation of the L2–SVM, it holds αj ∈ R. Setting the derivative

of L to zero results in the equations:

w =
∑

j

αjyjxj , (1.38)

0 =
∑

j

αjyj , (1.39)

tj =
αj

C
∀j : 1 ≤ j ≤ n , (1.40)

1 = yj(〈w, xj〉 + b) + tj ∀j : 1 ≤ j ≤ n , (1.41)

which are sufficient for solving the problem [Suykens and Vandewalle, 1999]. Substi-

tuting the first and third equation into the fourth equation and introducing a kernel

function k reduces the set of equations to a set of (n + 1) equations with (n + 1) vari-

ables:

0 =
∑

j

αjyj , (1.42)

1 = yjb +
αj

C
+
∑

i

αiyiyjk(xi, xj) ∀j : 1 ≤ j ≤ n. (1.43)

With a very large n this set of equations might become too difficult to solve and

a special quadratic programming approach might be required as suggested for the

C-SVM (see Section 1.2), which does not require to compute and store all k(xi, xj).
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1.1.3 Regularized Fisher’s Discriminant

The LS-SVM is also closely connected to the regularized Fisher’s discriminant as

outlined in this section. In Section 1.3 we will show that are a special cases of a more

general classifier.

Originally, the Fisher’s discriminant (FDA) is defined as the optimal vector w that

maximizes the ratio of variance between the classes and the variance within the

classes after applying the linear classification function:

w ∈ arg max
a

(aT (μ2 − μ1))2

aT (Σ2 + Σ1)a
. (1.44)

Here, μi and Σi are the mean and variance of the training data from class i, respec-

tively. We can see that every positive scaling of w is a solution, too. Further, in terms

of the linear classification functions f(x) = 〈w, x〉 + b, the definition of the FDA does

not impose any constraints on the choice of the offset b. These ambiguities are the

reason why different reformulations of the original problem can be found in the lit-

erature. For a good comparison with the C-SVM we need the following equivalent

definition [Van Gestel et al., 2002, Mika, 2003]:

min
w,b

n∑
j=1

(〈w, xj〉 + b − yj)2 (1.45)

where the offset b is integrated into the optimization and where a scaled w is not a

solution anymore.. This method is also called Minimum Squared Error method or

Least Squares method. In [Duda et al., 2001] a similar model was derived but with a

fixed offset.

For normal distributed data with equal covariance matrices for both classes

but different mean, the FDA is known to be the Bayes optimal classifier

[Mika et al., 2001]. Motivated by the concept of Bayesian priors, Mika suggests to

have an additional regularization term in the target function [Mika, 2003]:

Method 8 (Regularized Fisher’s Discriminant (RFDA)).

min
w,b,t

Reg(w, b) + C ‖t‖2
2

s.t. 〈w, xj〉 + b = yj + tj ∀j : 1 ≤ j ≤ n.
(1.46)

Here the variable t is used to describe the loss with the help of restrictions as

in the C-SVM model. For the RFDA this is not necessary but it will help us for the

comparison with other methods.

Theorem 8 (Equivalence of LS-SVM and RFDA). Using Reg(w, b) = 1
2 ‖w‖2

2 as regu-

larization results in the least squares support vector machine.
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Proof. Direct consequence of the definitions.

Mika also suggests to introduce kernels for the kernel Fisher discriminant with

regularization (KFD) by replacing w with
∑
j

αjyjxj (α ∈ R) and by replacing the re-

sulting scalar products with a kernel function. For the regularization Mika suggests

to apply a regularization directly on α. Using ‖α‖1 for example as regularization term

results in sparse solutions in the kernel space [Mika et al., 2001]. A similar approach

was also mentioned for SVMs [Mangasarian and Kou, 2007].11

In [Mika, 2003] it is also mentioned that non-Gaussian distribution assumptions

result in other loss terms. Further choices like Laplacian loss (for Laplacian noise)

will be examined in Section 1.3.

1.1.4 Relative Margin Machine

The following classifier is the basis of a novel classifier which generalizes most of the

already introduced classifiers (see Section 1.3).

The relative margin machine (RMM) from [Shivaswamy and Jebara, 2010] ex-

tended the C-SVM by an additional outer margin that accounts for the spread of

the data and adds a data dependent regularization:

Method 9 (Relative Margin Machine (RMM)).

min
w,b,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n
1
2(〈w, xj〉 + b)2 ≤ R2

2 ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.47)

The additional hyperparameter R in this method constrains the maximum dis-

tance a sample can have from the decision plane in relation to the length of the clas-

sification vector w; R is called range in the following. The real distance is R · 1
‖w‖ .12

Thus, it provides an additional outer margin at the hyperplanes HR and H−R, which

is dependent on the inner margin.

Definition 3 (Relative Margin). The relative margin is the combination of the inner

and the outer margin.

The range has to be either chosen manually or automatically, and we always as-

sume R ≥ 1, as by definition ±1 are the borders of the inner margin. The classifier

scheme is depicted in Figure 1.4. Further details on motivation and variants of this

classifier are the content of Section 1.3.

11 The C-SVM regularization term with kernels is:
∑
i,j

αiαjyiyjk(xi, xj).

12 Note, 2
‖w‖

is the distance between the aforementioned maximum margin hyperplanes.
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x1

x2

0-1 1

maximum
distance

R-R

Figure 1.4: Relative margin machine scheme. There are two new hyperplanes,

HR and H−R, to define the outer margin in contrast to Figure 1.2.

1.1.5 Online Passive-Aggressive Algorithm

The passive-aggressive algorithm (PAA) was motivated by the loss functions of the

C-SVM and the use of a regularization term [Crammer et al., 2006]. All three ver-

sions of the loss term were considered: hard margin, hinge, and squared hinge

loss. The resulting algorithms are denoted by PA, PA-I, and PA-II respectively

[Crammer et al., 2006]. In contrast to the C-SVM, the PAA is an online learning

classifier (see also Section 1.2). It uses one single sample at a time, adapts its classi-

fication function parameter w and then it forgets the sample.

In the single update step of the PAA the loss function to be minimized is a function

of only one incoming training sample and instead of the norm of the classification

vector w the distance between the old and new classification is minimized which was

an idea taken from [Helmbold et al., 1999]:

wt+1 = argminw∈Rm

1

2
‖w − wt‖2

2 + Cl(w, xt, yt). (1.48)

The loss function l is the same as used for the C-SVM with hard margin, hinge, or

squared hinge loss. Note that no offset is used. To incorporate one, Crammer suggests

to use an extra component in w for the b and also extend the data to homogeneous

coordinates with an additional 1 which results in the classification function f(x) =

〈(w, b), (x, 1)〉. Consequently, the offset is also subject to minimization in the target

function. The introduced optimization problem is always feasible even with hard

margin loss and Lagrange duality can be applied. In contrast to the C-SVM, concrete

solution formulas can be derived for the different losses [Crammer et al., 2006]. The
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detailed algorithm description is provided in Figure 1.5.

INPUT: aggressive parameter C > 0

INITIALIZE: w1 = (0, . . . , 0)

For t = 1, 2, . . .

• receive instance: xt ∈ R
m

• predict: ŷt = sgn 〈wt, xt〉
• receive correct label: yt ∈ {−1, +1}
• suffer loss: lt = max {0, 1 − yt 〈wt, xt〉}
• update:

1. set:

αt =
lt

‖xt‖2 (PA)

αt = min

{
C,

lt

‖xt‖2

}
(PA-I)

αt =
lt

‖xt‖2 + 1
2C

(PA-II)

2. update: wt+1 = wt + αtytxt

Figure 1.5: Online passive-aggressive Algorithm (PAA) as described in

Section 1.1.5 and [Crammer et al., 2006].

The PAA is even more connected to the C-SVM as it seems at first sight. This is

shown in Section 1.2.4.

1.1.6 Unary Classification

Instead of a classification with two classes (binary classification) some classifiers

focus only on one class (unary classification) even though a second class might be

present from the application point of view. The reason for omitting this second class

might be the desire to model only the properties of one class and not of a second one

or the lack of data as it is the case for outlier or novelty detection [Aggarwal, 2013].

A more detailed motivation for unary classification will be given in Section 1.4. In

the following, we will discuss three SVM variants for unary classification algorithms

1.1.6.1 Support Vector Data Description

For constructing a classifier with the data from a single class and not two classes,

the support vector data description (SVDD) is a straightforward approach. Its con-

cept is to find a hypersphere with minimal radius which encloses all samples of one
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class. It is assumed that samples outside this hypersphere do not belong to the class

[Tax and Duin, 2004].

Method 10 (support vector data description (SVDD)).

min
R′,c,t′

R′2 + C ′∑ t′
j

s.t. ‖c − xj‖2
2 ≤ R′2 + t′

j and t′
j ≥ 0 ∀j : 1 ≤ j ≤ n .

(1.49)

R′ is the radius of the enclosing hypersphere with center c. The decision function is

F (x) = sgn
(
R′2 − ‖c − x‖2

2

)
. (1.50)

The SVDD could be also seen as a SVM variant [Tax, 2001, Tax and Duin, 2004]

and it can be used with kernels, too. In case of using kernels, the set of support

vectors also tends to be small, because samples inside the hypersphere are no support

vectors.

1.1.6.2 Unary Online Passive-Aggressive Algorithm

The concept of the SVDD to enclose the data with a hypersphere was also used to

define the unary PAA [Crammer et al., 2006]. Instead of the hinge loss with its hard

margin and squared version (see Section 1.1.5), the “SVDD loss” is considered:

lR(c, x) =

{
0 if ‖c − x‖ ≤ 0,

‖c − x‖ − R otherwise.
(1.51)

The same optimization problem is solved as for the binary PAA to determine a new

center c with a new incoming sample:

ct+1 = argminc∈Rm

1

2
‖c − ct‖2

2 + Cl(ct, xt) (1.52)

where l forces lR to be zero (hard margin, respective algorithm denoted with unary

PA), or l = lqR with q ∈ {1, 2} (soft margin, unary PAq). The processing scheme

is similar to the method reported in Figure 1.5. But with the different loss, the

respective update factors are:

αt = lR(ct, xt) (PA0), αt = min {C, lR(ct, xt)} (PA1), αt =
lR(ct, xt)

1 + 1
2C

(PA2), (1.53)

and the update formula is:

ct+1 = ct + αt
xt − ct

‖xt − ct‖ . (1.54)
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In contrast to the SVDD, the hyperparameter R has to be chosen beforehand. For

extending the method with an automatic tuning of R an upper bound Rmax has to be

defined instead. The radius R is now indirectly optimized by extending the center c

with an additional component c(m+1) which is initialized with Rmax. It is then related

to the optimal R by R =
√

R2
max − (c(m+1))2. The respective data gets an additional

component with the value zero. For further details we refer to [Crammer et al., 2006,

section 6].

1.1.6.3 Classical One-Class Support Vector Machine

The classical one-class support vector machine (νoc-SVM) has been intro-

duced as a tool for “estimating the support of a high-dimensional distribution”

[Schölkopf et al., 2001b, title of the paper].

Method 11 (One-Class Support Vector Machine (νoc-SVM)).

min
w,t,ρ

1
2 ‖w‖2

2 − ρ + 1
νl

∑
tj

s.t. 〈w, xj〉 ≥ ρ − tj and tj ≥ 0 ∀j
(1.55)

with the decision function

F (x) = sgn (〈w, x〉 − ρ) . (1.56)

Again, there is a hidden binary classification included via the decision function,

namely whether a sample belongs to the one class or not. The dual of the νoc-SVM

[Schölkopf et al., 2001b],

min
α

1
2

∑
i,j

αiαj 〈xi, xj〉
s.t. 0 ≤ αi ≤ 1

νl
∀i and

∑
αi = 1 ,

(1.57)

is quite similar to the dual of the ν-SVM after a scaling of the dual variables with ν.

Only the equation
∑
j

αjyj = 0 is missing. This equation cannot be fulfilled for a unary

classifier, because it holds yj = 1 ∀j : 1 ≤ j ≤ n. This similarity and its consequences

will be analyzed in detail in Section 1.4.
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1.2 Single Iteration:

From Batch to Online Learning

This section contains my findings from:

Krell, M. M., Feess, D., and Straube, S. (2014a). Balanced Relative Margin Machine –

The missing piece between FDA and SVM classification. Pattern Recognition Letters,

41:43–52, doi:10.1016/j.patrec.2013.09.018

and

Krell, M. M. and Wöhrle, H. (2014). New one-class classifiers based

on the origin separation approach. Pattern Recognition Letters, 53:93–99,

doi:10.1016/j.patrec.2014.11.008.

No text parts are taken from these publications.

So far, we only defined the optimization problem for the C-SVM and its numerous

variants. To really use these models, there is still an approach required to at least

approximately solve the optimization problems which will be covered in this section.

It is not straightforward, because there is no closed form solution.13 Furthermore, it

is important to have algorithms which scale well with the size of the dataset to make

it possible to build a model with the help of an arbitrarily large set of training data.14

The implementation approaches are transferred to other classifiers in the following

sections but they also provide a connection between C-SVM and PAA.

Similar to the number of SVM variants, there are also several approaches for

solving the optimization problem. In this section, we focus on a few approaches

which finally lead, with the help of the single iteration approach, to an algo-

rithm that operates on an arbitrary large set of training data at the price of accu-

racy. The drop of accuracy results from simplifications of the original optimization

problem. These simplifications are required to speed up the solution algorithms.

For example, the use of kernels will be finally omitted, because with increasing

size of the data an increasing size of support vectors is expected [Steinwart, 2003,

Steinwart and Christmann, 2008]. This also increases the amount of required mem-

ory and time for the prediction which in some applications might be inappropriate.

The C-SVM is categorized as a batch learning algorithm. This means that it

requires the complete set of training data to build its model. The opposite category

would be online learning classifiers like the PAA in Section 1.1.5. These classifiers

incrementally update their classification model with the incoming single training

samples and do not use all training data at once. With each sample, they perform

an update of their model parameters which have a fixed size and do not increase with

13 A single formula which allows to calculate the model parameters at once.
14 In most cases, the performance of classifiers improves with an increasing amount of training data.
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an increasing number of samples.

The advantage for the application is not only to have an algorithm which can

be trained on arbitrarily large datasets but it also gives the possibility to adapt the

model at runtime when the model is used and to update the model with new training

samples (online application). In this scenario, samples are classified with the help

of the current classifier model and the classification has some impact on a system.

Due to resulting actions of the system or other verification mechanisms, the true

label of the sample is determined a posteriori.15 This feedback is then used for up-

dating the online learning algorithm. Consequently, online learning algorithms are

expected to work sufficiently fast in the update step and the classification step, such

that both steps can be used during an application. A big advantage of online learning

algorithms in such online applications is that they can adapt to changing conditions

which might result in drifts in the data. Those drifts might not have occurred when

acquiring the initial training data [Quionero-Candela et al., 2009].

Assume for example an algorithm running on a robot with a camera, which uses

images to detect the soil type of the environment to avoid getting stuck or wet. It

is impossible to have a complete training set which accounts for every situation, e.g.,

light condition, temperature, color of the underground, or a water drop on the camera.

So the respective classification algorithm might make wrong predictions. Now as the

robot is walking or driving over the ground it might detect the underground very

accurately by measuring pressure on the feet and slippage. Consequently, it could

adapt the image classification algorithm with the help of the afterwards detected

labels.16 For this adaption an online learning algorithm would be required with strict

limitations on the resources because it has to run on the robot. If the classification

or the adaptation is too slow the robot might have to stop to wait for the results to

decide where to go. Furthermore, the computational resources on a robot are usually

low to save space and energy and provide longterm autonomy.

Another application is the (longterm) use of EEG in embedded brain read-

ing [Kirchner and Drechsler, 2013, Kirchner, 2014] where the operator shall not be

limited in his movement space. Here, a BCI is used to infer the behavior of the hu-

man and to adapt an interface to the human. Thereby it is taking false predictions

into account. For example, an exoskeleton can lessen its stiffness when the EEG clas-

sifier predicts an incoming movement [Kirchner et al., 2013, Seeland et al., 2013a],

or a control scenario can repeat warnings less often if the classifier detects that the

warning has been cognitively perceived. EEG data is known to be non-stationary. So

15 Not in every application such a verification is possible. Sometimes unsupervised approaches are

used which for example assume that the classified label was correct and can be used for the update.
16 Note that a simultaneous localization and mapping (SLAM) algorithm is required for the matching

between images, positions, and sensors.
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online-learning can improve the system as shown in [Wöhrle et al., 2015]. Getting

true labels is ensured by the concept of embedded brain reading. The real behavior

of the subject can be compared with the inferred behavior and the classification pro-

cess can be adapted. Furthermore, it is useful to have the complete processing on

a small mobile device with low power consumption [Wöhrle et al., 2014] to ease the

applicability. So here again the properties of efficient online learning are needed.

A reason to look at an online version of the C-SVM in this context was that in our

practical experience the batch learning algorithm performed well on the data in the

offline evaluation due to its good generalization properties. In the application, we

could show that an online classifier can have performance comparable to the original

algorithm [Wöhrle et al., 2013b, Wöhrle and Kirchner, 2014]. It can even improve in

the application [Tabie et al., 2014, Wöhrle et al., 2015] since the fast updates can be

used for online adaptation. With the batch algorithm this is impossible if new sam-

ples come in too fast or if too much memory is consumed when all training samples

are kept.

One approach to give a SVM online learning properties is not to start the learn-

ing of the model from scratch but to use a warm start by initializing an optimiza-

tion algorithm with the old solution from a previous update step [Laskov et al., 2006,

Steinwart et al., 2009]. This approach also works with kernels. Unfortunately, an in-

creasing amount of time for calculating the decision function is required if the num-

ber of support vectors is increasing. Furthermore, the memory consumption increases

linearly with each incoming data sample. Another approach to cope with this issue is

to use the warm start approach but also include a decreasing step to the update step

where the amount of data, which is kept, is reduced to keep memory consumption

constant [Gretton and Desobry, 2003, Van Vaerenbergh et al., 2010]. Nevertheless, a

high amount of memory and processing is still required for these approaches and

an evaluation is required in the future to compare the different approaches and to

analyze there properties in online applications.

The motivation of this section is to provide a more general approach to derive

online learning algorithms not only for the C-SVM but also for its variants and to

understand the relations between the different solvers and the different underlying

classifier models. A short summary on the approaches and the respective section

where they are discussed is given in Table 1.3. For a detailed analysis of the ben-

efits of online learning in the context of the P300 dataset (Section 0.4), we refer to

[Wöhrle et al., 2015]. In the experiment in Section 2.4.6 it can be seen clearly that

online learning can improve classification performance, when using the online SVM

introduced in Section 1.2.4.
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Approach

Samples

Per

Update

Step

Repeated

Iterations References

Newton

optimization all yes [Chapelle, 2007], Section 1.2.1

SMO 2 yes [Platt, 1999a], Section 1.2.2

successive

overrelaxation, 1 yes [Mangasarian and Musicant, 1998],

dual gradient

descent, 1 yes [Hsieh et al., 2008],

omit offset 1&2 yes [Steinwart et al., 2009], Section 1.2.3

PAA, 1 no [Crammer et al., 2006],

single iteration 1 no [Krell et al., 2014a], Section 1.2.4

Table 1.3: Overview on SVM solution approaches grouped by similarity. They

are required because they lead to the single iteration approach. All the algorithms

basically consist of an update step, where the classifier model is updated to be more

optimal concerning the chosen samples, and in some cases (batch learning) they have

an iteration loop over the complete set of samples with certain heuristics.

1.2.1 Newton Optimization

This section introduces a straightforward solution approach for the C-SVM optimiza-

tion problem as a summary of [Chapelle, 2007].

For solving the C-SVM optimization problem directly, it is advantageous to di-

rectly put the side constraints into the target function to get an unconstrained opti-

mization problem:

min
w,b

1

2
‖w‖2

2 + C
∑

j

(max {0, 1 − yj(〈w, xj〉 + b)})q , q ∈ {1, 2} . (1.58)

This approach is slightly different to penalty methods because the hyperparameter

C remains fixed and is not iteratively increased. The second step by Chapelle was to

introduce a kernel into the primal optimization problem:

min
a

1

2

∑
i,j

aiajk(xi, xj) + C
∑

j

(
max

{
0, 1 − yj

(∑
i

aik(xi, xj) + b

)})q

. (1.59)

This can be either done directly, with the representer theorem (Theorem 4), or by

transforming the dual problem with kernel back to the primal problem. Note that

there is no restriction on the weights ai in contrast to the dual variables αi in Theo-
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rem 2. The classification function is: f(x) =
∑
i

aik(xi, x) + b.

The third step is to repeatedly calculate the gradient (∇) and the

Hessian (H) of the target function and perform a newton update step

[Boyd and Vandenberghe, 2004]:

a → a − γH−1∇ (1.60)

with step size γ. For the detailed formulas of the derivatives refer to [Chapelle, 2007].

Note that the loss functions are pieced together by other functions and there is no

second derivative at the intersection points. So in this method, the one sided second

derivative is used for the Hessian which makes it a quasi-Newton method. Further-

more, the algorithm also exploits results from the optimality conditions by setting

the weights to zero if the respective sample is classified without any error (zero loss).

If γ 
= 1 is chosen, this trick is required. Otherwise, all samples in the training data

could become support vectors which would increase computational complexity and

slow down convergence. The matrix inversion is usually replaced with the solution of

linear equation and it is possible to use a sparse approximation of H to save process-

ing time. But this method might have memory problems if the number of samples is

too large. Furthermore, the hinge loss has to be replaced with the approximation

L(y, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if − ξ > h,
(ξ+h)2

4h
if |ξ| ≤ h

ξ if ξ > h with ξ = 1 − yt

(1.61)

and the offset b is omitted [Chapelle, 2007] although it might be possible to derive the

respective formulas with the offset. A special treatment of the offset is also common

for other solution approaches (see Section 1.2.3).

Chapelle also states that “from a machine learning point of view there is no reason

to prefer the hinge loss anyway” but does not provide a proof or reference to support

this claim. A special argument for working with the hinge loss is that it tends to

work on a smaller set of support vectors in contrast to using the squared hinge loss.

This has not been analytically proven but there are indicators from statistical learn-

ing theory [Steinwart, 2003], and in fact Chapelle proved empirically that using his

version, the SVM tends to use more support vectors and is inferior to Sequential

Minimal Optimization (introduced in Section 1.2.2). Having fewer support vectors is

important when working with kernels because it speeds up the processing in the clas-

sification step. Furthermore, when online learning is the goal, having fewer support

vectors can speed up the update steps.
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1.2.2 Sequential Minimal Optimization

The C-SVM optimization problem is traditionally solved with sequential min-

imal optimization (SMO) [Platt, 1999a] as implemented in the LibSVM li-

brary [Chang and Lin, 2011]. It is briefly described in this section.

Its principle is to reduce the dual optimization problem as good as possible and

then iteratively solve the reduced problems. The dual optimization problem reads:

min
C≥αj≥0,

∑
αjyj=0

1

2

∑
i,j

αiαjyiyjk(xi, xj) −
∑

j

αj . (1.62)

At the initialization all αj are set to zero. The smallest optimization problem re-

quires to choose two dual variables
(
e.g., αold

1 , αold
2

)
for an update to keep the equa-

tion
∑

αjyj = 0 valid in the update step. Now, all variables are kept fixed except

these two and the respective optimization problem is solved analytically considering

all side constraints. Due to the equation in the constraints, one can focus on the

update of αold
2 and later on calculate

αnew
1 = αold

1 + y
(
αold

2 − αnew
2

)
(1.63)

where y = y1y2. The borders for αnew
2 are

L = max

{
0, αold

2 + yαold
1 − 1 + y

2
C

}
and H = min

{
C, αold

2 + yαold
1 − 1 − y

2
C

}
. (1.64)

Following [Platt, 1999a], the first step is to solve the unconstrained optimization

problem which results in:

αopt
2 = αold

2 −
y2

(
fold(x1) − y1 − fold(x2) + y2

)
2k(x1, x2) − k(x1, x1) − k(x2, x2)

with fold(x) =
∑

j

αold
j yjk(xj , x) + b .

(1.65)

A final curve discussion shows that this unconstrained optimum has to be projected

to the borders to obtain the constrained optimum:

αnew
2 :=

⎧⎪⎪⎨
⎪⎪⎩

L if αopt
2 < L,

αopt
2 if L ≤ αopt

2 ≤ H,

H if αopt
2 > H.

(1.66)

Now, the two variables are changed to their optimal value. Then a new pair is chosen

and the optimization step is repeated until a convergence criterion is reached.

The expensive part in the calculation is to get the function values fold(xi). When

working with the linear kernel, this step can be simplified by tracking w (initialized
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with zeros):

wnew = wold + y1

(
αnew

1 − αold
1

)
x1 + y2

(
αnew

2 − αold
2

)
x2. (1.67)

Now fold(x1) − fold(x2) can be replaced by
〈
wold, x1 − x2

〉
.

The remaining question is on how to choose the pair of dual variables for each

update. Instead of repeatedly iterating over all available pairs, different heuris-

tics can be used which rely on the error fold(xi) − yi, and which try to maxi-

mize the expected benefit of an update step. Note that this method only requires

to store the weights and access the training data sample wise. Nevertheless for

speed up, caching strategies are used which store kernel products and error val-

ues, especially for samples with 0 < αj < C. For further details, we refer to

[Platt, 1999a, Chen et al., 2006]. The SMO principle can be also applied to other

SVM variants like for example SVR [Smola and Schölkopf, 2004] or L2–SVM instead

of L1–SVM which was handled in this section. A similar approach has also been

applied for RMM [Shivaswamy and Jebara, 2010].

1.2.3 Special Offset Treatment

This section discusses simplifications of the SMO approach which only require the

choice of a single index for an update and not a heuristic for choosing a pair of dual

variables for an update. The approach also operates on the dual optimization prob-

lem. The simplifications are an important preparative step for the single iteration

approach in Section 1.2.4. Furthermore, the same approach will be applied to other

classifiers in the following sections.

When working with kernels there are simplifications where the offset b in

the decision function is omitted [Steinwart et al., 2009] as also mentioned in

Section 1.2.1, or it is integrated in the data space using homogenous coordi-

nates [Mangasarian and Musicant, 1998, Hsieh et al., 2008]. The approach is advan-

tageous in case of linear separation functions as implemented in the LIBLINEAR

library [Fan et al., 2008]. In this case, the solution algorithm iterates over single

samples and updates the classification function parameters w and b of the decision

function sgn(〈w, x〉 + b) to the optimal values in relation to this single sample. We

mainly follow the dual gradient descent approach from [Hsieh et al., 2008] in this

section. The resulting formulas are the same as by the successive overrelaxation ap-

proach in [Mangasarian and Musicant, 1998] or the one-dimensional update step in

[Steinwart et al., 2009, Cristianini and Shawe-Taylor, 2000].17

The reason for the simplification of the offset treatment is to get rid of the equa-

17 This equivalence has not yet been reported.
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tion
∑

αjyj = 0 in the dual optimization which resulted from the differentiation of

the Lagrange function with respect to the offset b (Equation (1.11)). Without this

equation in the dual optimization problem, a similar approach as presented in Sec-

tion 1.2.2 could be used but only one dual variable has to be chosen for one update

step. If the offset is omitted (b ≡ 0), the dual becomes

min
Cj≥αj≥0

1

2

∑
i,j

αiαjyiyjk(xi, xj) −
∑

j

αj for the L1 loss and (1.68)

min
αj≥0

1

2

∑
i,j

αiαjyiyjk(xi, xj) −
∑

j

αj +
1

4

∑
j

α2
j

Cj
for the L2 loss. (1.69)

To regain the offset in the simplified primal model with (b ≡ 0), the regularization
1
2 ‖w‖2

2 is replaced by 1
2 ‖w‖2

2 +H2 1
2b2 with an additional hyperparameter H > 0 which

determines the influence of the offset to the target function. A calculation shows that

this approach can be transformed to the previous one where the offset is omitted:

‖w‖2
2 + H2b2 = ‖(w, Hb)‖2

2 , f(x) = 〈w, x〉 + b =

〈
(w, Hb),

(
x, H

1

H2

)〉
. (1.70)

Only w is replaced by (w, Hb) and x by
(
x, 1

H

)
. The formula for the decision function

and the optimal w remain the same as in SMO. So at the end, the kernel function

k(xi, xj) has to be replaced by k(xi, xj) + 1
H2 in the aforementioned dual problem and

b can be obtained via

b =
1

H2

∑
j

yjαj which is a result of (w, Hb) =
∑

j

yjαj

(
xj ,

1

H

)
. (1.71)

In short, from the model perspective solving the dual when the offset b is part of the

regularization is equivalent to omitting it. In the following, we focus on the latter.

The optimization problem can be reduced to updates which refer only to one sam-

ple in contrast to SMO, which requires two samples but due to the additional equa-

tion was also reduced to a single variable problem. Let fq be the target function of the

dual optimization problem (q ∈ {1, 2}) and let ej be the j-th unit vector. For updating

αold
j , we first determine the quadratic function gq(d) = fq(α + dej):

g1(d) =
d2

2
k(xj , xj) + d

(
−1 +

∑
i

yiyjαold
i k(xi, xj)

)
+ const. and (1.72)

g2(d) =
d2

2

(
k(xj , xj) +

1

2Cj

)
+ d

(
−1 +

αold
j

2Cj
+
∑

i

yiyjαold
i k(xi, xj)

)
+ const. (1.73)

In a second step, the optimal d is determined analytically
(
dopt = − g′

q(0)

g′′
q (0)

)
and as
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in SMO the unconstrained optimum αold
j + dopt is projected to its feasible interval.

This finally results in the update formula:

αnew
j = max

{
0, min

{
αold

j − 1

k(xj , xj)

(
−1 +

∑
i

αold
i yiyjk(xi, xj)

)
, Cj

}}
(1.74)

in the L1 case and for the L2 case it is:

αnew
j = max

⎧⎨
⎩0, αold

j − 1

k(xj , xj) + 1
2Cj

(
αold

j

2Cj
− 1 +

∑
i

αold
i yiyjk(xi, xj)

)⎫⎬
⎭ . (1.75)

In some versions of this approach, there is an additional factor γ on the descent

step part18 but as the formula shows, choosing a factor of one is the optimal choice.

This approach is also similar to stochastic gradient descent (SGD)

[Kivinen et al., 2004] but here the regularization term of the SVM model is

considered additionally to the loss term.

For choosing the sample of interest in each update, different strategies are

possible. For example, different heuristics could be used again as compared in

[Steinwart et al., 2009].19 A more simple approach is to sort the weights, random-

ize them, or leave them unchanged and than have two loops. The first, outer loop

iterates over all samples and updates them until a convergence criterion is reached

like a maximum number of iterations or a too little change of the weights. After each

iteration over all samples the inner loop is started. The inner loop is the same as the

outer loop but iterates only over a subset of samples with positive dual weight. In

case of L1 loss, the subset is sometimes restricted to weights αj with 0 < αj < Cj .

Similar approaches are used for choosing the first sample in the SMO approach (Sec-

tion 1.2.2) but due to the simplification presented in this section, the more complex

heuristic for the second sample in the SMO algorithm is not needed anymore. The

storage requirements of both approaches are the same and the update formula can

again be simplified in the linear case by replacing

yj

〈
wold, xj

〉
=
∑

i

αold
i yiyjk(xi, xj) (1.76)

and also updating w in every step with

wnew = wold +
(
αnew

j − αold
j

)
yjxj . (1.77)

18 For example, the term 1
k(xj ,xj )

is replaced by γ

k(xj ,xj )
in Equation (1.74).

19 Inspired by the heuristics for SMO, Steinwart mainly compares strategies for selecting pairs of

samples.
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1.2.4 Single Iteration: From Batch SVM to Online PAA

In this section, we introduce a possibility to derive online learning algorithms from

SVM variants.

Definition 4 (Single Iteration Approach). The single iteration approach creates a

variant of a classification algorithm with linear kernel by first deriving an optimiza-

tion algorithm, which iterates over single samples to optimize the target function as

in Section 1.2.3, and by second performing the update step only once. This directly

results in an online learning algorithm.

Consequently, we first plug Equation (1.76) into the update formula from Equa-

tion (1.74) or (1.75), respectively, and replace the kernel product k(xj , xj) by ‖xj‖2
2

which results in:

αnew
j = max

{
0, min

{
αold

j − 1

‖xj‖2
2

(
−1 + yj

〈
wold, xj

〉)
, Cj

}}
(1.78)

or αnew
j = max

⎧⎨
⎩0, αold

j − 1

‖xj‖2
2 + 1

2Cj

(
αold

j

2Cj
− 1 + yj

〈
wold, xj

〉)⎫⎬
⎭ . (1.79)

Since the update step is performed only once, the α weights are always initialized

with zero and do not have to be kept in memory but only w has to be updated when a

new sample xnew with label ynew and loss punishment parameter C comes in:

δ = max

{
0, min

{
− 1

‖xnew‖2
2

(
−1 + ynew

〈
wold, xnew

〉)
, C

}}
(1.80)

or δ = max

{
0, − 1

‖xnew‖2
2 + 1

2C

(
−1 + ynew

〈
wold, xnew

〉)}
(1.81)

and wnew = wold + δynewxnew. (1.82)

Theorem 9 (Equivalence between passive-aggressive algorithm and online classical

support vector machine). The PAA can be derived from the respective SVM with the

single iteration approach.

Proof. This is a direct consequence, because the derived formulas are the same as for

PA-I and PA-II (defined in Section 1.1.5). The equivalence for PA is derived by setting

C := ∞ and 1
2C

:= 0.

Note that the single iteration approach can be also applied to related classifiers

to derive online versions (see also Section 1.3 and 1.4). Another advantage is that

now it is even possible to have a variant which combines batch and online learning.

First, the classifier is trained on a larger dataset with batch learning (offline). In
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the second step, only the classification function parameter w is stored and all other

modeling parameters (but not the hyperparameters) can be removed from memory to

save resources. It is even possible to transfer the classifier in this step to a mobile

device with limited resources [Wöhrle et al., 2013b, Wöhrle et al., 2014] and use this

device in the online application. Finally, the connected online learning algorithm can

be used in the application when for every new incoming sample the online update

formula is applied to update w.

This approach could be also applied to other combinations of batch and online

learning classifiers, but can lead to unexpected behavior due to different properties

of the classifiers (e.g., the online classifier has a different type of regularization or

different underlying loss).

In contrast to SGD [Kivinen et al., 2004], the update formula should not be ap-

plied repeatedly on the same data samples, because it is always treated like new

data. The old weights α cannot be considered, because they have not been stored. As

a consequence, repeated iteration might put a weight of 2C to a sample even though

C should be the maximum from the modeling perspective.

When using the single iteration approach, it is also important to keep in mind that

with the updates, the influence of a sample to the classification vector w is permanent

and that there is no decremental step to directly remove the sample. A possibility for

compensation would be to introduce a forgetting factor γ < 1 in the update:

wnew = γwold + δynewxnew. (1.83)

This has also been suggested in [Leite and Neto, 2008] to avoid a growing of ‖w‖2

which occurred because a fixed margin approach was used in an online learning al-

gorithm instead of approximating the optimal margin as in our approach.

1.2.5 Practice: Normalization and Threshold Optimization

When dealing with SVM variants, it is always important to normalize the features of

the input data. The classifier relies on the relation between the features and with-

out normalization one feature can easily dominate the others if it provides too large

absolute values.

The presented special treatment of the offset assumes that a small offset or even

no offset is a reasonable choice, which is for example the case when using the the

RBF kernel, which is invariant under any translation of the data. Consequently, the

approach of using no offset has shown comparable performance to the SMO approach

[Steinwart et al., 2009]. When normalizing the data, the offset treatment should be

considered. If the features are normalized to be in the interval [0, 1], a negative offset

is more expected than with a normalization to the interval [−1, 1] . With increasing
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dimension of the data (n) in the linear case, the influence of the offset becomes less

relevant when calculating
∥∥(w, b)2

∥∥ because w has the main influence. If there are

only few dimensions (less than 10), the offset treatment might cause problems when

a linear kernel is used and a nonzero offset is required for the optimal separation of

positive and negative samples. This can be partially compensated by using a small

hyperparameter H (e.g., 10−2). But if it is too small, there is the danger of rounding

errors when its squared inverse is added to the scalar product of samples as men-

tioned in Section 1.2.3.

If the usage or evaluation of the classifier does not rely on the classification

score but on the decision function it is often good to tune the decision thresh-

old. This can also compensate for a poorly chosen offset. Furthermore, de-

pending on the metric a different threshold will be the optimal choice. There

are several algorithms for changing the threshold and also modifying the clas-

sification score [Platt, 1999b, Grandvalet et al., 2006, Metzen and Kirchner, 2011,

Lipton et al., 2014, Kull and Flach, 2014].

To summarize, we presented the single iteration approach to derive online learn-

ing from batch learning algorithms like the PAA from the C-SVM. The benefit in

memory and processing efficiency comes at the cost of accuracy and additional effort

in normalizing the data appropriately and optimizing the decision threshold.

1.3 Relative Margin:

From C-SVM to RFDA via SVR

This section is based on:

Krell, M. M., Feess, D., and Straube, S. (2014a). Balanced Relative Margin Machine –

The missing piece between FDA and SVM classification. Pattern Recognition Letters,

41:43–52, doi:10.1016/j.patrec.2013.09.018.

All theoretic discoveries of this publication were my own work. My coauthors helped

me very much by discussing my approaches and repeatedly reviewing my texts to

improve the comprehensibility. Hence, they also provided a few text parts. David

Feess additionally contributed the synthetic data and the respective visualizations.

In this section, we approach the class of relative margin classification algo-

rithms from the mathematical programming perspective. We will describe and

analyze our suggestions to extend the relative margin machine (RMM) concept

[Shivaswamy and Jebara, 2010] introduced in Section 1.1.4 This will result in new

methods, which are highly connected to other well known classification algorithms

as depicted in Figure 1.6.

The main idea is that outliers at the new outer margin are treated in the same
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Figure 1.6: Overview of balanced relative margin machine (BRMM) method

connections. The details can be found in Section 1.3. Visualization taken from

[Krell et al., 2014a].

way as in the inner margin. Due to this balanced handling of outliers by the proposed

method, it is called balanced relative margin machine (BRMM).

After further motivating the relative margin (Section 1.3.1) and introducing bal-

anced relative margin machine (BRMM) (Section 1.3.2), we show that this model is

equivalent to SVR (with the dependent variables Y = {−1, 1}) and connects C-SVM

and RFDA. Though these methods are very different, they have a common rationale,

and it is good to know how they are connected. Our proposed connection shows that

there is a rather smooth transition between C-SVM and RFDA even though both

methods are motivated completely differently. The original FDA is motivated from

statistics (see Section 1.1.3) while the C-SVM is defined via a geometrical concept

(see Section 1.1). Using BRMM, it is now possible to optimize the classifier type in-

stead of choosing it beforehand. So, our suggested BRMM interconnects the other two

methods and in that sense generalizes both of them at the same time.

Due to this relation, the way of introducing kernels, squared loss, or sparse vari-

ants is the same for this classifier as for C-SVM in Section 1.1.1.2. Additionally, we

developed a new geometric characterization of sparsity in the number of used features

for the BRMM, when used with a 1–norm regularization (Section 1.3.3.4). This find-

ing can be transferred to RFDA and C-SVM. On the other side, the implementation

techniques from Section 1.2 can be directly transferred from C-SVM to BRMM.

We finally verify our findings empirically in this section by the means of simulated

and benchmark data. The goal of these evaluations is not to show the superiority of

the method. This has already been mainly done in [Shivaswamy and Jebara, 2010].
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The sole purpose is to show the properties of the BRMM with special focus on the

transition from C-SVM to RFDA.

1.3.1 Motivation of the Relative Margin

There are also other motivations for using a relative margin additionally to the pur-

pose of connecting classifiers.

1.3.1.1 Time Shifts in Data

The following example shows how RMM might be advantageous in comparison to

C-SVM when there are drifts in particular directions in feature space. Data drifts

in applications are quite common, e.g., drifts in sensor data due to noise or spa-

tial shifts [Quionero-Candela et al., 2009]. One example of such data are EEG data,

which are highly non-stationary, and often influenced by high noise levels. Another

could be a changing distribution of data from a robot due to wear.

Let us assume that drifts occur mostly in directions of large spread and that the

relevant information has a lower spread. In fact, drifts during the training phase

increase the effective spread in the training samples themselves. Consider therefore

two Gaussians in R
2 with means (0, −0.5) and (t, 0.5) where t changes in time. Hence,

the second distribution drifts along the x axis in some way. Suppose both distribu-

tions have the same variances of σ2
x = 1 in x direction and σ2

y = 0.1 in y direction.

Figure 1.7 depicts an associated classification scenario where t changes from 8 to 6

during the training data acquisition and from 4 to 2 during the test phase. It can be

observed how the limitation of the outer spread of the data turns the classification

plane in a direction nearly parallel to the main spread of the samples. The number of

misclassifications under an ongoing drift is thus considerably smaller for RMM than

for C-SVM.

We will come back to this dataset and perform an evaluation of classifiers with it

in Section 1.3.4.3.

1.3.1.2 Affine Transformation Perspective

To give another different motivation for maximum relative margins, in

[Shivaswamy and Jebara, 2010] an entirely reformulated classification problem is

considered. Instead of learning an optimal classifier, it was argued that it is possible

to learn an optimal affine transformation of the data such that a given classifier (w

and b fixed) performs well and such that the transformation produces a small scatter

on the data. The authors proved that such optimal transformations can be chosen to

have rank one, yielding an optimization problem equivalent to a linear classification
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Figure 1.7: Classification problem with drift in one component of class B. The

samples of class B are drawn from distributions with the mean of the x component

drifting from 8 to 6 during training and from 4 to 2 during test. The solid lines show

the decision planes, the dashed lines nearby show the ±1 margins. For the RMM, the

outer lines define the outer margin that limits the spread of distances to the decision

plane to 2 in this case. Visualization taken from [Krell et al., 2014a].

with large margin and small spread of the output at the same time. We showed that

the fixation of the classifier can even be omitted and the results remain the same:

choosing a suitable restricted transformation is similar to using RMM. Further de-

tails are provided in Appendix B.3.2.

1.3.2 Deriving the Balanced Relative Margin Machine

A major shortcoming of the basic RMM method is the handling of outliers at the outer

margins. Such samples can in principle dominate the orientation of any separating

plane, as no classification results outside the range of ±R are allowed. When working

with very noisy data that might contain artifacts such outliers are very common. Two

modified versions were introduced by [Shivaswamy and Jebara, 2010] to handle this

insufficiency.
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Method 12 (Equation (13) from [Shivaswamy and Jebara, 2010]).

min
w,b,t

1
2 ‖w‖2

2 + C
∑

tj + Dr

s.t. r ≥ yj(〈w, xj〉 + b) ≥ −r ∀j : 1 ≤ j ≤ n

yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.84)

Method 13 (Equation (14) from [Shivaswamy and Jebara, 2010]).

min
w,b,s,s′,t,r

1
2 ‖w‖2

2 + C
∑

tj + D(r + ν
n

∑
(sj + s′

j))

s.t. r + sj ≥ yj(〈w, xj〉 + b) ≥ −r − s′
j ∀j : 1 ≤ j ≤ n

yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.85)

These methods, however, require additional variables and hyperparameters and

are rather unintuitive. In the following, we propose a new variant, which is effectively

similar to Shivaswamy and Jebara’s variant, but at the same time considerably less

complex because of fewer parameters. This makes it comparable against other clas-

sification methods and thus easier to understand. Consider at first the reformulation

of Method 9:

min
w,b,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. R ≥ yj(〈w, xj〉 + b) ≥ −R ∀j : 1 ≤ j ≤ n

yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.86)

If the lowest border −R is reached, tj becomes 1 + R. As tj is subject to the minimiza-

tion, this lowest border should normally not be reached. Such a high error is quite

uncommon. Therefore we drop it. If without this border a tj became larger than 1 + R

it either has to be considered an outlier from the modeling perspective—it has to be

deleted from the data—or R has been chosen too low. Both cases should not be part

of the method.

After this consideration, we can introduce an outer soft margin without new vari-

ables or restrictions:

Method 14 (L1–Balanced Relative Margin Machine (BRMM)).

min
w,b,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. R + tj ≥ yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.87)
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Notice that this method has one restriction less and no additional method vari-

ables or hyperparameters.20 At the same time, it provides the same capabilities

as the original method and a consistent handling of outliers. The simplicity of the

method yields a high comparability to other large margin classifiers and makes it

easier to implement. The name balanced follows from the idea to treat outliers in the

outer margin in the same way as outliers in the inner margin. From our perspective,

this approximation is reasonable. Depending on the application, however, this might

not be appropriate. If there are reasons for different inner and outer loss, e.g., more

expected outliers in the outer margin or if they are less important, the method can

be adapted as follows with an additional hyperparameter but without more method

variables or constraints:

min
w,b,t

1
2 ‖w‖2

2 +
∑

tj

s.t. C(yj(〈w, xj〉 + b) − 1) ≥ −tj ∀j : 1 ≤ j ≤ n

C ′(yj(〈w, xj〉 + b) − R) ≤ tj ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.88)

The proposed balanced version can be seen as a reasonable first approach. It is also

possible to use squared loss (L2–BRMM) or a hard margin for the inner and the outer

margin. It might be useful to use different ranges for the two classes if there are dif-

ferent intrinsic spreads. The only modification to the BRMM method is to replace

the range by a class-specific hyperparameter R (yj). Furthermore, it is possible use

the range as a variable with a new weight as hyperparameter in the target function.

Both changes lead to additional hyperparameters, which complicates the hyperpa-

rameter optimization and makes the method less intuitive and less comparable to

other methods.

With Method 13 Shivaswamy and Jebara introduced a variant of the ν-SVM to

provide a lower limit on the support vectors for the “outer margin” but it is much more

reasonable to use the ν for the total number of support vectors. This can be achieved

by exploiting the relation between the proposed BRMM and SVR (see Section 1.3.3.3).

1.3.3 Classifier Connections with the BRMM

1.3.3.1 Connection between BRMM and C-SVM

The difference between C-SVM and BRMM (Methods 3 and 14) is the restriction

on the classification by the range. For large values of R, however, this constraint

becomes inactive. Hence, one can always find an Rmax such that BRMM and C-SVM

20 When applying duality theory, it is more convenient to use different variables for outer and inner

margin. this change has no effect on the optimal w and b.
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become identical for all R ≥ Rmax. One approach to find this upper bound on the

useful ranges from a set of training examples is to train a C-SVM on the training set.

Rmax is the highest occurring absolute value of the classification function applied on

samples in the training set; every R above Rmax has no influence whatsoever. So for

hyperparameter optimization, only the interval [1, Rmax] has to be observed.

Theorem 10 (BRMM generalizes C-SVM). A BRMM with R ≥ Rmax is equivalent to

the C-SVM.

As a direct consequence, values of R always exist for which the BRMM, by defi-

nition, performs at least as well as the C-SVM. Depending on the available amount

of training data, a good choice of R might nevertheless be troublesome. The same

connection to the C-SVM has already been shown for the RMM (Method 9) but not

connections to the RFDA and SVR, because they do not exist. Therefore, the BRMM

is necessary as discussed in the following sections.

1.3.3.2 Connection between BRMM and RFDA

The RFDA model (Method 8) has been introduced in Section 1.1.3. Let us focus on

regularization functions of 1
2 ‖w‖2 and ‖w‖1 since we have the same regularization

in BRMM and SVM approaches. Nevertheless, other regularization functions can be

considered without loss of generality.

Consider now the BRMM (Method 14) with hyperparameter R = 1, the smallest

range allowed. In this case, the inequalities of the method can be fused:

R + tj ≥ yj(〈w, xj〉 + b) ≥ 1 − tj R = 1

⇔ 1 + tj ≥ yj(〈w, xj〉 + b) ≥ 1 − tj −1

⇔ tj ≥ yj(〈w, xj〉 + b) − 1 ≥ −tj

⇔ tj ≥ |yj(〈w, xj〉 + b) − 1| |yj | = 1

⇔ tj ≥ |(〈w, xj〉 + b) − yj | .

(1.89)

As tj is subject to minimization, we can assume that equality holds in the last in-

equality:

tj = |(〈w, xj〉 + b) − yj | . (1.90)

Hence, the resulting method is the same as the RFDA, except for the quadratic term∑
t2
j in the loss function of the soft margin. This difference, however, is equivalent

to different noise models—linear loss functions in a RFDA correspond to a Laplacian

noise model instead of a Gaussian one [Mika et al., 2001]. Conversely, a L2–BRMM

can be derived from the L2–SVM.

Theorem 11 (BRMM generalizes RFDA and LS-SVM). A BRMM with R = 1 is equiv-

alent to the RFDA with Laplacian noise model (Laplacian loss, see also Table 1.1).
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A BRMM with R = 1 and squared loss is equivalent to the RFDA with Gaussian

noise model (Gaussian loss, see also Table 1.1). Consequently, it is also equivalent to

the LS-SVM.

In summary, both C-SVM and RFDA variants can be considered special cases of

the BRMM variants, or, from a different perspective, BRMM methods interconnect

the more well-established C-SVMs and RFDA, as depicted in Figure 1.6.

In [Shivaswamy and Jebara, 2010], there was a broad benchmarking of classifiers

to show that in many cases the RMM performs better. The comparison also included

the C-SVM and the RFDA with kernel, called regularized kernel linear discriminant

analysis in this paper. With this relation it becomes now clear, why the RMM always

showed comparable or better performance.

1.3.3.3 Connection between BRMM, ε-insensitive loss RFDA, and SVR

As already mentioned at the end of Section 1.1.3, depending on certain assumptions

on the distribution of the data, one may want to replace the loss term of the RFDA(∑
t2
j = ‖t‖2

2

)
with a different one. We already had a look at the case of assuming

Laplacian noise, which results in the loss term ‖t‖1. We will now consider a RFDA

with ε-insensitive loss function [Mika et al., 2001]

min
w,b,t

1
2 ‖w‖2

2 + C ‖t‖ε

s.t. yj(〈w, xj〉 + b) = 1 − tj ∀j : 1 ≤ j ≤ n.
(1.91)

to compare it with the BRMM. Here, ‖.‖ε means no penalty for components smaller

than a predefined ε ∈ (0, 1) and ‖.‖1 penalty for everything outside this region:

‖t‖ε =
∑

max {|tj | − ε, 0}. This loss term is well known from support vector regres-

sion (SVR). In fact, applying SVR to data with binary labels {−1, 1} exactly results

in the ε-insensitive RFDA. We argue that this version of RFDA or SVR is effectively

equivalent to the BRMM. This also shows that not the C-SVM but rather the BRMM

is the binary version of the SVR.

Theorem 12 (Equivalence between RFDA, SVR, and BRMM). RFDA with ε-

insensitive loss function and 2–norm regularization (or SVR reduced to the values

1 and −1) and BRMM result in an identical classification with a corresponding

function, mapping RFDA (SVR) hyperparameters (C, ε) to BRMM hyperparameters

(C ′, R′) and vice versa.

Proof. By use of the mappings

(C ′, R′) =

(
C

1 − ε
,
1 + ε

1 − ε

)
and (ε, C) =

(
R′ − 1

R′ + 1
,

2C ′

R′ + 1

)
(1.92)
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the method definitions become equal. The mappings effectively only scale the op-

timization problems. The calculation is straightforward and can be found in Ap-

pendix B.2.2. So every ε-insensitive RFDA can be expressed as BRMM and vice

versa.

A direct consequence of Theorem 12 and Theorem 10 is Theorem 7 (C = (1− ε)C ′).

In fact, we can directly calculate the respective border for ε in Theorem 7:

a =
Rmax − 1

Rmax + 1
= 1 − 2

Rmax + 1
. (1.93)

Another positive effect is, that the ν-SVR (Method 6) can be used to define a ν-BRMM:

Method 15 (ν-Balanced Relative Margin Machine (ν-BRMM)).

min
w,b,t

1
2 ‖w‖2

2 + C (nνε +
∑

sj +
∑

tj)

s.t. ε + sj ≥ yj(〈w, xj〉 + b) − 1 ≥ −ε − tj ∀j : 1 ≤ j ≤ n

sj , tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(1.94)

The replacement of ε in this case by R is not possible because ε is subject to min-

imization and not a hyperparameter anymore. When looking at the (rescaled) dual

optimization problem (derived in Appendix B.3.4), it becomes immediately clear, that

ν is now a lower border on the total number of support vectors in the same way as it

was the case for the ν-SVM:

min
α

1
2

∑
(αi − βi)(αj − βj) 〈xi, xj〉 yiyj − 1

Cn

∑
j

(αj − βj)

s.t. 1
n

≥ αj ≥ 0, ∀j : 1 ≤ j ≤ n,
1
n

≥ βj ≥ 0, ∀j : 1 ≤ j ≤ n,∑
j

αjyj =
∑
j

βjyj ,

∑
j

αj + βj = ν .

(1.95)

1.3.3.4 Sparsity

So far, all considered methods shared the 2–norm in the regularization

term. Particularly for C-SVM, a 1–norm regularization has been proposed

[Bradley and Mangasarian, 1998]. In comparison to their 2–norm counterpart, a

C-SVM with 1–norm regularization is known to operate on a reduced set of features.

It can thus be regarded as a classifier with intrinsic feature selection mechanism.

Omitting unimportant features can in turn render a classifier more robust. From a

more practical point of view, less features might imply less sensors in the applica-

tion and thus simplify the data acquisition. To achieve the same sparsity properties
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for BRMM, we propose to adapt the 1–norm approach to it. The resulting mathe-

matical program can be casted to a linear one and so be solved by the Simplex al-

gorithm [Nocedal and Wright, 2006]. For implementation, we used the GNU Linear

Programming Kit [Makhorin, 2010] and directly inserted the raw model of the clas-

sifier.

Therefore, the classification function parameters are split into positive and neg-

ative components (w = w+ − w− and b = b+ − b− ) and inequality constraints are

eliminated by introducing additional slack variables gj and hj .

Method 16 (1–norm Balanced Relative Margin Machine).

min
w±,b±,t,g,h∈Rm

+

∑
(w+

i + w−
i ) + C

∑
tj

s.t. yj(
〈
w+ − w−, xj

〉
+ b+ − b−) = 1 − tj + hj ∀j : 1 ≤ j ≤ n

yj(
〈
w+ − w−, xj

〉
+ b+ − b−) = R + tj − gj ∀j : 1 ≤ j ≤ n

(1.96)

Interestingly, with this method description and the properties of the Simplex al-

gorithm [Nocedal and Wright, 2006], we proved the following:

Theorem 13 (Feature Reduction of 1–norm BRMM). A solution of 1–norm BRMM

with the Simplex algorithms always uses a number of features smaller than the num-

ber of support vectors lying on the four margins:

{x|〈w, x〉 + b ∈ {1, −1, R, −R}} . (1.97)

The formula explicitly excludes support vectors in the soft margin. This theorem

is of special interest, when the dimension of the data largely exceeds the number of

given samples. In this case, it can be derived that the maximum number of used

features is bounded by the number of training samples.

The property of 1–norm C-SVM to work on a reduced set of features has so far only

been shown empirically [Bradley and Mangasarian, 1998]. In fact, it is not possible

to provide a general proof which is independent from the properties of the dataset.

This can be illustrated with the help of a toy example: Consider m orthogonal unit

vectors in R
m with randomly distributed class labels. For the resulting parameters w

and b of the 1–norm BRMM classification function we get

|wi| = 1 ∀1 ≤ i ≤ m and b = 0, (1.98)

with a sufficiently large C and arbitrary R. So each feature is used. Without further

assumptions, better boundaries on the number of used features cannot be given.

The application of Theorem 13 to SVM and RFDA and a detailed proof are shown

in Appendix B.3.1.
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1.3.3.5 Kernels

If the common 2–norm regularization is used, the introduction of kernels is exactly

the same as for C-SVM (refer to Section 1.1.1.2). The required dual optimization

problem is given in Section 1.3.4.1. Interestingly, the relation between linear and

RBF kernel is the same as for C-SVM in Theorem 5.

Theorem 14 (RBF kernel generalizes linear kernel for BRMM and SVR). The linear

BRMM and SVR with the regularization parameter C ′ are the limit of the respective

BRMM and SVR with RBF kernel and hyperparameters σ2 → ∞ and C = C ′σ2. In

both cases the same range R or tolerance parameter ε are used.

Proof. The proof is the same as in [Keerthi and Lin, 2003] for Theorem 5 but mainly

α − β instead of α and the respective dual optimization problems (see Appendix B.1.5

and Section 1.1.1.4) are used. Note that the proof highly relies on the additional

equation in the dual constraints and as such cannot be applied to the algorithms

versions with special offset treatment as suggested in Section 1.2.3.

For the 1–norm approach, the restrictions are treated the same way as in the

2–norm case, but the target function has to be changed to preserve the sparsity ef-

fect. 〈w, x〉 is replaced by
∑

αjk(xj , x), where k(., .) is the kernel function, and the

1–norm of w is replaced by the 1–norm of the weights αi. This results in a sparse

solution, though sparse does not mean few features in this context but fewer kernel

evaluations [Mangasarian and Kou, 2007]:

Method 17 (1–norm Kernelized BRMM).

min
w,b,t

‖α‖1 + C ‖t‖1

s.t. R + tj ≥ yj(b +
m∑

i=1
αik(xi, xj)) ≥ 1 − tj ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n,

(1.99)

where k : Rn × R
n → R is the kernel function.

For the special case of R = 1, Method 17 is equivalent to the “linear sparse ker-

nelized Fisher’s discriminant” [Mika et al., 2001].

1.3.4 Practice: Implementation and Applications

In this section, we will discuss the choice of the hyperparameters of BRMM, some im-

plementations issues by also using results from Section 1.2 to derive online versions,

and finally show some properties of the related classifier variants in some applica-

tions.
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The BRMM has two hyperparameters: the range R and the C-SVM regularization

parameter C. Both hyperparameters are highly connected and need to be optimized.

When reducing the range R from Rmax to 1 to transfer the classifier from C-SVM

over the BRMM to the RFDA, it can be observed that the number of support vectors

is increasing, because in the extreme case, every sample becomes a support vector.

This slows down the convergence of the optimization problem solver. To speed up the

optimization in this case it is better to stick to special optimization algorithms tai-

lored to the respective RFDA models or choose R slightly larger than 1. Furthermore,

it might be a good approach to start with a large R and decrease it stepwise, e.g., with

a pattern search algorithm [Eitrich and Lang, 2006]. For too small C the number of

support vectors also becomes very large and the solution algorithm is slow. Further-

more, the performance of the respective classifier usually is not that good. Hence it

is always good to start with a large C, e.g., 1.

Normally, cross-validation21 is used for hyperparameter optimization to save

time. For an improved automatic optimization, it is efficient to start with

high values and iteratively decrease the values with a pattern search algo-

rithm [Eitrich and Lang, 2006]. To save resources, this could be combined with

warm start principle to adapt the batch learning algorithms to the changed param-

eters [Steinwart et al., 2009]. Here the old solution is reused. With such a hyperpa-

rameter optimization, it is no longer necessary to choose between C-SVM and RFDA,

because this is automatically done. Note that for the original RFDA a squared loss is

required where for the C-SVM the non squared hinge loss is more common.

Using the Simplex algorithm [Nocedal and Wright, 2006] from the GNU Linear

Programming Kit [Makhorin, 2010] for the sparse version of the BRMM is only pos-

sible if the problem matrix is not too large. It is possible to use other optimization

algorithms but here a problem might be that these algorithms might not converge

to the optimal solution or might not provide the most sparse solution. Here, some

more research is needed to find a good optimization algorithm specifically tailored to

the classifier model to also handle large datasets. This seems to be not that easy,

because even for the 1–norm regularized, hinge loss SVM there is no implemen-

tation in the established LIBLINEAR package [Fan et al., 2008] which implements

all the other linear SVM methods (with the special offset treatment trick from Sec-

tion 1.2.3) and several variants. Maybe it is possible to modify the Simplex algorithm

and tailor it to the sparse BRMM, use a decomposition technique as suggested in

[Torii and Abe, 2009], or apply one of the many suggested algorithms for “Optimiza-

tion with Sparsity-Inducing Penalties” [Bach, 2011].

21 For a k fold cross-validation, a dataset is divided into k equal sized sets (folds), and then iteratively

(k times) one set is chosen as testing data and the remaining k − 1 folds are used for training the

algorithm.
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1.3.4.1 Implementation of BRMM with 2–norm regularization

A straightforward way to use a BRMM with 2–norm without implementation is di-

rectly given by the constructive proof of Theorem 12. Using the formula

(ε, C) =

(
R′ − 1

R′ + 1
,

2C ′

R′ + 1

)
(1.100)

the SVR implementation of the LIBSVM can be directly interfaced as 2–norm BRMM

algorithm. This implementation is following the SMO concept (Section 1.2.2). For

implementing BRMM one can also follow the concepts from Section 1.2.3 and 1.2.4,

as in the following. This will finally result in an online classifier.

For implementing the algorithm directly for BRMM models with 2–norm regular-

ization, the dual optimization problems are used. After reintroducing separate loss

variables for inner and outer loss and multiplication with −1, the dual problem of

Method 14 reads:

min
α,β

1
2(α − β)T Q(α − β) −∑αj + R

∑
βj

s.t. 0 ≤ αj ≤ C, 0 ≤ βj ≤ C ∀j : 1 ≤ j ≤ n∑
(αj − βj) = 0,

with Qkl = ykyl 〈xk, xl〉 ∀k, l : 1 ≤ k ≤ n, 1 ≤ l ≤ n.

(1.101)

The respective dual optimization problem of L2–BRMM (squared loss) is:

min
α,β

1
2(α − β)T Q(α − β) −∑αj + R

∑
βj + 1

4

∑ α2
j

C
+ 1

4

∑ β2
j

C

s.t. 0 ≤ αj , 0 ≤ βj ∀j : 1 ≤ j ≤ n∑
(αj − βj) = 0,

with Qkl = ykyl 〈xk, xl〉 ∀k, l : 1 ≤ k ≤ n, 1 ≤ l ≤ n.

(1.102)

Class dependent ranges (Rj) and cost parameters (Cj) or different regularization con-

stants for inner and outer margin (C, C ′) can be applied to this formulation corre-

spondingly. For using kernels, only the scalar product in Q has to be replaced with

the kernel function.

As the calculation is similar to the C-SVM calculation, a similar solu-

tion approach can be used, e.g., sequential minimal optimization [Platt, 1999a,

Shivaswamy and Jebara, 2010]. To follow the concept from Section 1.2.3, a classi-

fier without the offset can be generated by dropping equation
∑

(αj − βj) = 0. For

having an offset in the target function, additionally to skipping this equation, ykyl

has to be added to Qkl.

The following algorithm now uses update formulas for αj and βj , though after

each update at least one of them will be zero. Following the similar calculations in
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Section 1.2.3 the update formulas are:

αi+1
j = Pj

(
αi

j − 1

Qjj

(
Qj. · (αi − βi) − 1

))

Pj(x) = max {0, min {x, Cj}}

βi+1
j = P ′

j

(
βi

j − 1

Qjj

(
Rj − Qj. · (αi − βi)

))

P ′
j(x) = max

{
0, min

{
x, C ′

j

}}
. (1.103)

To get these formulas, the hyperparameters C and R are replaced by the aforemen-

tioned class dependent variants Cj and Rj . For the L2 variant, the same approach

leads to:

αi+1
j = P

⎛
⎝αi

j − 1

Qjj + 1
2Cj

(
Qj. · (αi − βi) − 1 +

αj

2Cj

)⎞⎠

βi+1
j = P

⎛
⎝βi

j − 1

Qjj + 1
2C′

j

(
Rj − Qj. · (αi − βi) +

β

2C ′
j

)⎞⎠
P (x) = max {0, x} . (1.104)

Independent of the chosen variant, the resulting classification function is:

f(x) =
∑

yj(αj − βj)(〈xj , x〉 + 1). (1.105)

In the linear case, the formulas for optimal w and b

(w =
∑

yj (αj − βj) xj , b =
∑

yj (αj − βj) xj) can be plugged into the update for-

mulas [Hsieh et al., 2008]:

αi+1
j = Pj

(
αi

j − 1

Qjj

(
yj

(〈
xj , wi

〉
+ bi

)
− 1
))

βi+1
j = P ′

j

(
βi

j − 1

Qjj

(
Rj − yj

(〈
xj , wi

〉
+ bi

)))
(
wi+1, bi+1

)
=
(
wi, bi

)
+
(
αi+1

j − αi
j

)
yj (xj , 1) −

(
βi+1

j − βi
j

)
yj (xj , 1) , (1.106)

and for L2–BRMM correspondingly. Now, only the diagonal of Q and the samples

have to be stored/used and not the complete matrix, which makes this formula par-

ticularly useful for large scale applications.

For choosing the index j, there are several possibilities [Steinwart et al., 2009].

For implementation, we chose a simple one [Mangasarian and Musicant, 1998]: in

an outer loop we iterate over all indices in random order and in an inner loop we just
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repeatedly iterate over the active indices. An index j is active, when either αj or βj is

greater than zero. The iteration stops after some maximum number of iterations, or

when the maximum change in an iteration loop falls below some predefined thresh-

old. For initialization all variables (w0, b0, α0, β0) are set to zero. In the linear case,

the “single iteration” approach could be used here, too. To simulate RMM we used

a simplification by setting C ′
j = ∞ ∀j. Further details on deriving the formulas and

solvability are given in Appendix B.3.3.

1.3.4.2 Synthetic Data: Visualization of the Relations

To illustrate the relations between BRMM, C-SVM, and RFDA by means of clas-

sification performance and to analyze the influence of the range R, we apply all

classifiers to a synthetic dataset. Additionally, the performance difference between

the original RMM with hard outer margin and BRMM with soft outer margin

is investigated. For comparability, the data model is the same as employed in

[Shivaswamy and Jebara, 2010]. Data are sampled from two Gaussian distributions

representing two classes. The distributions have different means, but identical co-

variance: μ1 = (1, 1), μ2 = (19, 13), Σ = ( 17 15
15 17 ) . It shall be noted that the Gaussian

nature of the sample distributions clearly favors RFDA-like classification techniques.

Evaluation was done using a 5–fold cross-validation on a total of 3000 samples

per class. For simplicity we used 1–norm RMM/BRMM and fixed the regularization

parameter C at 0.003. Using 2–norm RMMs or other values for C results in similar

graphics.

Figure 1.8a shows the classification performance as a function of the range R. The

first observation is that the performance does not change for R ≥ 8. For these values

of R, no sample lies inside the outer margin. Hence, they already have a distance

less than R from the separating plane, and a further increase of R has no influence

anymore—RMM and BRMM effectively become a C-SVM. With decreasing range the

error rate drops because the classifier can better adapt to the distributions. Without

outer soft margin the data are pressed into the inner soft margin. This results in

worse performance for small ranges and the regularization term looses importance.

In the BRMM case, i.e., with soft outer margin, the classifier gets closer and closer to

a RFDA-type classifier when the range decreases. Note: The RFDA variant presented

here uses a Laplacian noise model whereas the RFDA normally uses a Gaussian one.

Nevertheless, we can see that the BRMM can mimic both C-SVM and RFDA. In some

cases a well-chosen range can in fact constitute better classifiers somewhere between

the two popular methods. The following section provides an example for this case.
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1.3.4.3 Synthetic Data with Drift

We now have a look at the behavior on data with drift and the feature reduction

ability. For this, we used synthetic data from the same model as used to motivate

the RMM principle in Section 1.3.1.1. The data consist of samples from two two-

dimensional, Gaussian distributions μ1 = (0, −0.5), μ2 = (t, 0.5), Σ = ( 1 0
0 0.1 ) with

the same variance but different means. For the second distribution, the mean t of

the x component changes linearly over time: from 8 to 6 during training and from 4

to 2 during the test phase. A total of 1000 samples were computed per class in the

training phase, and another 1000 as test case. To additionally investigate how the

different classifiers handle meaningless noise features, the dataset was extended by

50 additional noise components. Each sample of these components was drawn from

a uniform distribution on the unit interval. The first two components of the data,

however, still resemble what is shown in Figure 1.7, only with more samples. Lastly,

we generated some additional variation and outliers in the data by adding Cauchy-

distributed noise (x0 = 0, γ = 0.1) to each component. To omit too large outliers, we

replaced noise amplitudes larger than 10 by 10.

For the classification, we used the RMM and BRMM implementations with

regularization (1–norm, 2–norm) and loss (L1, L2) variants as introduced in Sec-

tion 1.3.3.4 and 1.3.4.1. RFDA (R = 1) and SVM (R = 8) variants appear in the

results as special cases of the BRMM methods as previously discussed.

The range R was varied between 1 and 8. Due to the high noise, the hyperparam-

eter C had a big influence on the error and its optimal choice was highly dependent

on the chosen range. Since we wanted to show the effect of the range, we kept C

fixed over all ranges (0.03 for the 2–norm and 0.002 for the 1–norm approaches). Fig-

ure 1.8b shows the classification performance in terms of the error rate on the testing

data as a function of R. The relatively high error rates (cf. Figure 1.8a) are due to the

drift in the data and the high noise.

The 2–norm approaches operate on the complete set of features and therefore

perform worse than the 1–norm approaches (e.g., minimum error of 22% for 2-norm

L1–BRMM). Even lower performances (not shown) were observed using a RBF ker-

nel. The systematic drift can only be observed in two feature dimensions, but for

2–norm regularized, RBF kernel, or polynomial kernel approaches every feature has

an impact on the classification function, due to the model properties. So these mod-

els are worse in handling the drift and building a good classifier, because the given

classification problem clearly favors strategies, which ignore the irrelevant features.

Since they do not reduce features, these approaches are very sensitive to the noise in

the data.

Generally, RMMs perform worse than BRMMs because of the bad treatment of
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Figure 1.8: Classifier performance as function of R on synthetic data. RMM

and BRMM (1–norm approaches in (a)) are compared and the transitions to corre-

sponding RFDA and SVM variants are highlighted at the respective values of R
(R = 1 at the lower end; R ≥ 8 (a) and R ≥ 6.2 (b) at the upper end). Visualiza-

tions taken from [Krell et al., 2014a].

outliers at the outer margin. For different choices of the hyperparameter C, the

results look similar.

With changing range, the errors of the 1–norm approaches show a smooth transi-

tion with clear minima around 5% error rate at a range of 1.5 for BRMM and 2.0 for

RMM. As expected, the number of features used by the 1–norm approaches is notably

reduced. With ranges larger than 3 for BRMM and 4 for RMM, only one feature is re-

tained. The number monotonically increases with decreasing range: while RMM uses

five features for ranges lower than 2.4, BRMM uses only the two relevant features for

the lower ranges. For higher values of the hyperparameter C this relation remains

the same but especially for the RFDA case with R = 1 the numbers increase up to

the total number of 52 features. So the feature reduction ability might get lost and

the classifier apparently tends to more and more overfitting and less generalization

on the path from C-SVM via BRMM to RFDA.

1.3.4.4 MNIST: Handwritten Digit Classification

In this section, we describe a dataset which will not only be used in the following

section for an evaluation but also in several other parts of this thesis.

The MNIST dataset consists of pictures of handwritten digits (0-9) of differ-

ent persons with predefined train and test sets (around 60000 and 10000 samples)

[LeCun et al., 1998]. The images in the dataset are normalized to have the numbers

centered and with same size and intensity. It is an established benchmark dataset
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where the meaning of the data is directly comprehensible. Since it is freely avail-

able, we use it to enable reproducibility of our evaluations. Other arguments for

its usage are, that it enables simple, intuitive visualizations (for the backtransfor-

mation) and provides a large set of training samples. The currently best classifica-

tion result with 0.23% test error rate is with a multi-column deep neural networks

[Schmidhuber, 2012]. Note that this algorithm is tuned to this type of data and it

cannot be seen as a pure classifier anymore because it intrinsically also learns a good

representation of the data which corresponds to preprocessing, feature generation,

and normalization. Hence, this algorithm tries to learn all ingredients of the decision

process at once and is not comparable to classical classification algorithms which rely

on a good preprocessing. Despite that, for our evaluations we are not interested in

the absolute performance values but in the differences between the SVM variants.

Figure 1.9: Examples of normalized digits (1 and 2). The original feature vector

data has been mapped to the respective image format.

1.3.4.5 Benchmark Data: Visualization of the RFDA–SVM Relations

In this section, we verify that BRMM behaves as expected also on real world data.

For this, we use the MNIST data (see Section 1.3.4.4) and a selection of IDA bench-

mark datasets described by [Rätsch et al., 2001]. The selection has the sole purpose

of generating a comprehensible figure: we show a selection with similar error levels,

so that the curve shapes are distinct.
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Figure 1.10: Classifier performance as function of R on benchmark data. For

the MNIST data (b) the individual results (0 vs. 1, 0 vs. 2, . . . 8 vs. 9) are displayed

with the percentage change of the error relative to the error of the corresponding

C-SVM classifier. Visualizations taken from [Krell et al., 2014a].

We used RBF kernels and determined its hyperparameter γ as proposed

by [Varewyck and Martens, 2011]. For the IDA data classification, the regulariza-

tion parameter C was chosen using a 5–fold cross-validation tested with the three

complexities suggested by Varewyck (0.5, 2, 8). On the MNIST data we fixed the C

to 2 due to high computational load. As before, we visualize the performance as a

function of the range parameter R.

For the IDA data evaluation we did a 5–fold cross-validation with five repetitions.

The results are shown in Figure 1.10a. For the MNIST data, train and test data are

predefined. Since BRMM is a binary classifier, we performed separate evaluations

for each possible combination of two different digits, resulting in 45 classification

problems for which the results are shown individually in Figure 1.10b. The results

are illustrated as relative error changes compared to a C-SVM classifier to obtain

comparable values for the effect of the range. This relative change in performance

shown in Figure 1.10b is given by

Error(BRMM) − Error(SVM)

Error(SVM)
· 100. (1.107)

When looking at the performance on both the IDA results and the individual

MNIST comparisons reveal that the influence of the range is highly dataset spe-

cific. For the IDA datasets the improvement using BRMM is marginal. For the

MNIST data, all classifiers with a range larger than 7 were equivalent to C-SVM.

A performance improvement using the appropriate R can be observed in many cases.
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(a) MNIST data with number 5

(b) MNIST data with number 9

Figure 1.11: Classifier performance as function of R on MNIST data for two

special numbers. “NX” stands for the binary classification of X with 5 or 9 respec-

tively.

However, there are cases where the performance does not change or even decreases.

Figure 1.11 displays the single results with the real error for the binary compar-

ison with the digit 9 and the digit 5. For the digit 9 there is mostly no change in

performance but for the digit 5 there is great potential for performance improvement

using BRMM.

1.3.4.6 Application of the BRMM to EEG Datasets

EEG data is known to be highly non-stationary due to constantly changing processes

in brain and changing sensor electrode impedances [Sanei and Chambers, 2007]. To
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investigate the usability and the feature reduction properties of 1–norm BRMM ap-

proach in this context, we used five preprocessed EEG datasets from the P300 ex-

periment as described in Section 0.4. No spatial filtering was used to really let the

classifier do the dimensionality reduction and make this task more challenging. The

signal amplitudes for each time point at each electrode were used as features, which

resulted in 1612 features, which we normalized to have zero mean and variance one.

For each of the remaining 5 subjects, we had two recording days with 5 repetitions

of the experiment. For each of the 5 subjects and for each of the two recording days,

we took one of the 5 sets for training and the remaining 4 of one day for testing. This

procedure was repeated for each dataset. Each set having between 700 and 800 data

samples.

For comparison, we used the classical 2–norm SVM, a 1–norm SVM and 1–norm

BRMM as classifiers. Since the datasets contain an unbalanced number of samples

per class (ratio 6 : 1), we assigned the weight 8 to the underrepresented class which

was good on average (cross-validation on training data). This weighting was achieved

by using class specific Cj . The classification performance is measured by means of

balanced accuracy (BA) (Figure 3.5). The BRMM range was fixed at R = 1.5. This

value was found to be adequate for these datasets in a separate optimization on the

training data. C was optimized by first using a 5–fold cross validation to find a

rough range of values for each classifier. The optimal hyperparameters were then

automatically chosen on each individual training set, and the trained classifier was

evaluated on the corresponding test set.

Table 1.4: Classification performance on EEG data

1–norm BRMM 1–norm SVM 2–norm SVM

balanced accuracy 0.872 0.854 0.857

standard error 0.006 0.008 0.007

standard deviation 0.028 0.036 0.032

The results (mean of balanced accuracy) are shown in Table 1.4. Our suggested

1–norm BRMM outperforms the other classifiers significantly (p < 0.05, paired t-test

corrected for 3 comparisons), the SVMs in turn perform on par. This indicates that a

relative margin which accounts for the drifts in the data might be a better choice on

EEG data. As expected, the number of features the 1–norm approaches used was no-

tably smaller than for 2–norm SVM. 1–norm SVM used only 66–102 features, 1–norm

BRMM used 101–255. This corresponds to less than 16% of the available features used

by 2–norm SVM, and less than 30% of the number of examples. The increased num-

ber of features by 1–norm BRMM is expected for two reasons. The relative margin

and the respective needs to be modeled with more variables. Furthermore, it is possi-
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ble to have a larger number of training samples at the hyperplane of the outer margin

which increases the possibility of more features being used due to Theorem 13.

1.3.4.7 Summary

In the applications, we could show that the BRMM is a reasonable classifier which

generalizes RFDA and C-SVM and provides a smooth transition between both clas-

sifiers, which can be easily fetched from the geometrical perspective. The increased

performance comes with the price of the additional hyperparameter R which needs

to be optimized.

If a 2–norm regularization is used, the implementation of this new algorithm is

straightforward by using the approaches from Section 1.2 or interfacing the existing

highly efficient implementation of the equivalent SVR in the LIBSVM package.

1.4 Origin Separation:

From Binary to Unary Classification

This section is based on:

Krell, M. M. and Wöhrle, H. (2014). New one-class classifiers based

on the origin separation approach. Pattern Recognition Letters, 53:93–99,

doi:10.1016/j.patrec.2014.11.008.

All theoretic discoveries of this publication were my own work. Hendrik Wöhrle

helped me with a few text parts, multiple reviews, and discussions.

Focusing the classification on one class is a common approach if there are

not enough examples for a second class (e.g., novelty and outlier detec-

tion [Aggarwal, 2013]), or if the goal is to describe a single target class and its distri-

bution [Schölkopf et al., 2001b]. Some unary (one-class) classifiers are modifications

of binary ones like k-nearest-neighbours [Aggarwal, 2013, Mazhelis, 2006], decision

trees [Comité et al., 1999], and SVMs [Schölkopf et al., 2000, Tax and Duin, 2004,

Crammer et al., 2006]. This section focuses on the connections between SVM vari-

ants, and their unary counterparts.

The νoc-SVM (see Section 1.1.6.3) was presented in [Schölkopf et al., 2001b] as

a model for “Estimating the support of a high-dimensional distribution” just one

year after the publication of the ν-SVM [Schölkopf et al., 2000]. In both cases, the

algorithms are mainly motivated by their theoretical properties and a hyperparam-

eter ν is introduced which is a lower bound on the fraction of support vectors. It is

shown in [Schölkopf et al., 2001b] that the νoc-SVM is a generalization of the Parzen

windows estimator [Duda et al., 2001]. Furthermore, in the motivation of the νoc-
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SVM [Schölkopf et al., 2001b] the authors state that their “strategy is to map the

data into the feature space corresponding to the kernel and to separate them from

the origin with maximum margin”. The important answer of how this strategy leads

to the final model description and if there is a direct connection to the existing C-SVM

or ν-SVM is not given, despite similarities in the model formulations. A more con-

crete geometric motivation is published in [Mahadevan and Shah, 2009, p. 1628] as

a side remark. They argue that “the objectives of 1-class SVMs are 2-fold:” “Develop

a classifier or hyperplane in the feature space which returns a positive value for all

samples that fall inside the normal cluster and a negative value for all values outside

this cluster.” and “Maximize the perpendicular distance of this hyperplane from the

origin. This is because of the inherent assumption that the origin is a member of the

faulty class.” However, they did not provide a proof that the νoc-SVM fulfills these

objectives and indicate that the C-SVM is the basis of this model, which is wrong. It

turns out that this concept can be used as a generic approach to turn binary classi-

fiers into unary classifiers, which is the basis of this section.

Definition 5 (Origin Separation Approach). In the origin separation approach, the

origin is added as a negative training example to a unary classification problem with

only positive training samples. With this modified data, classical binary classifiers

are trained.22

In Figure 1.12 the concept is visualized in the context of SVM classification. We

will prove that, when applying this generic concept to the ν-SVM, solutions can be

mapped one-to-one to the νoc-SVM (Section 1.4.1).

Additionally to figuring out the relations between already existing unary classi-

fiers, it is also possible to combine the origin separation with the previously intro-

duced relative margin (see Section 1.4.2) and/or the single iteration approach (see

Section 1.4.4) and generate entirely new unary classifiers.

The geometric view of the SVDD, where a hypersphere with minimal radius is

constructed to include the data, is inherently different from the origin separation ap-

proach, which creates a separating hyperplane instead. Nevertheless, we will show

and visualize a relation between SVM and SVDD with the help of the origin separa-

tion approach (see Section 1.4.3).

The connection between C-SVM and PAA via the single iteration approach is

of special interest here. The original unary PAA (see Section 1.1.6.2) was moti-

vated from the SVDD and not from the C-SVM which was the original motivation

of the binary PAA. Based on the connection of the PAA to the C-SVM (and thus the

BRMM), we apply the origin separation approach to derive new unary classifiers

from C-SVM, BRMM, and RFDA for online learning which can be used to apply the

22 A strict (hard margin) separation of the origin is required to avoid a degeneration of the classifier.
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x1
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f(x) = 0

f(x) = -1
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maximum
distance

f(x) = <w,x>+b

Figure 1.12: Origin separation scheme. An artificial sample (blue dot) for a second

class (y = −1) is added to the origin.

algorithms when resources are limited. This completes the picture on PAAs given in

[Crammer et al., 2006].

Figure 1.13 visualizes the variety of resulting classifiers and their relations, which

will be explained in detail in the following sections. We will focus on the main meth-

ods and give the details on further models in Appendix B.4.

In Section 1.4.5, the properties of the classifiers will be analyzed at the example of

handwritten digit recognition. Another application, where unary classification might

be useful, is EEG data analysis as explained in Section 1.4.6.

1.4.1 Connection between ν-SVM and νoc-SVM

It has been proven under the assumption of separability and hard margin separation

that the νoc-SVM defines the hyperplane with maximum distance for separating the

data from the origin [Schölkopf et al., 2001b, Proposition 1]. This concept is similar to

the well known maximum margin principle in binary classification. In the following,

we will generalize this proposition to arbitrary data and maximum margin separation

with a soft margin, e.g., as specified for the ν-SVM.

Theorem 15 (Equivalence between ν-SVM and νoc-SVM via origin separation). Ap-

plying the origin separation approach to the ν-SVM results in the νoc-SVM.
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Figure 1.13: Scheme of relations between binary classifiers (yellow) and

their one-class (red) and online (blue) variants. The new variants introduced

are in bold. The details are explained in Section 1.4. Visualization taken from

[Krell and Wöhrle, 2014].

Proof. The ν-SVM (Method 4) is defined by the optimization problem

min
w′,t′,ρ′,b′

1
2 ‖w′‖2

2 − νρ′ + 1
n′

∑
t′
j

s.t. yi

(〈
w′, x′

j

〉
+ b′

)
≥ ρ′ − t′

j and t′
j ≥ 0 ∀j .

(1.108)

n′ is the number of training samples. w′ and b′ define the classification function

f(x) = sgn (〈w′, x〉 + b′). The slack variables t′
j are used to handle outliers which do

not fit the model of linear separation.

In the origin separation approach, only the origin (zero) is taken as the negative

class (y0 = −1). In this case, the origin must not be an outlier (t0 = 0), because it is the

only sample of the negative class.23 Consequently, the respective inequality becomes:

− (〈w′, 0〉 + b′) = ρ′. Accordingly, b′ can be automatically set to −ρ′. To achieve class

balance, as many samples as we have original samples of the positive class are added

to the origin for the negative class. This step only affects the total number of samples

which is doubled (n′ = 2n ), such that n only represents the number of real positive

training samples and not the artificially added ones. Putting everything together

23 Also known as hard margin separation.
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(yj = 1, b′ = −ρ′, n′ = 2n), results in

min
w′,t′,ρ′

1
2 ‖w′‖2

2 − νρ′ + 1
2n

∑
t′
j

s.t. 〈w′, xi〉 ≥ 2ρ′ − t′
j and t′

j ≥ 0 ∀j .
(1.109)

By applying the substitutions:

w′ → ν

2
w, ρ′ → ν

4
ρ, and t′

j → ν

2
tj (1.110)

in Equation (1.109) and by multiplying its inequalities with 2
ν

and its target function

with 4
ν2 , this model is shown to be equivalent to:

min
w,t,ρ

1
2 ‖w‖2

2 − ρ + 1
νl

∑
tj

s.t. 〈w, xj〉 ≥ ρ − tj and tj ≥ 0 ∀j
(1.111)

with the decision function f(x) = sgn
(〈w, x〉 − ρ

2

)
. This is the model of the νoc-SVM

(Method 11). There is only a difference in the offset of the decision function which

should be −ρ instead of −ρ
2 . This difference can be geometrically justified as ex-

plained in the following and the function can be changed accordingly. Additionally to

the decision hyperplane, a SVM is identified with its margin, additional hyperplanes

for the positive and the negative class. The difference in the offsets corresponds to

choosing the hyperplane of the positive class as the decision criterion instead. This is

reasonable, because for the SVM models the training data is assumed to also include

outliers which are on the opposite side of the respective hyperplane. Furthermore,

the decision criterion might be changed in a postprocessing step or varied in the eval-

uation step [Bradley, 1997].

1.4.2 Novel One-Class Variants of C-SVM, BRMM, and RFDA

Since the BRMM generalizes the C-SVM and RFDA, it is sufficient to apply the origin

separation approach directly to the BRMM (Method 14).

With the same argumentation as for the ν-SVM in Theorem 1.4.1 we insert the

origin (zero sample) into the inequality

y0 (〈w, x0〉 + b) ≥ 1 − t0 (1.112)

and enforce t0 = 0 which results in − (〈w, 0〉 + b) = 1 and consequently b = −1.

Subtracting the inequality with 1 finally results in the
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Method 18 (One-Class Balanced Relative Margin Machine).

min
w,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. 1 + R + tj ≥ 〈w, xj〉 ≥ 2 − tj and tj ≥ 0 ∀i .
(1.113)

Modifying the decision function f(x) = sgn (〈w, x〉 − 1) in the same way as we did

for the ν-SVM results in f(x) = sgn (〈w, x〉 − 2). Note that the offset is now fixed,

which enables the application of the single iteration approach from Section 1.2.4

without any changes to the offset treatment. With the extreme case, R = ∞, we ob-

tain a new one-class SVM (Coc-SVM) It is expected to be very similar to the νoc-SVM

because they were derived from C-SVM and ν-SVM which are equivalent according

to Theorem 6. However, the new model provides a better geometric interpretation

and a simplified implementation.

Due to the single iteration approach it would be possible to use the implementa-

tions of the binary counterparts with linear kernel. Only the hard margin separation

for the artificially added sample has to be realized. Nevertheless, it helps to take

a deeper look into implementation strategies to adapt them to the special setting of

unary classification with the origin separation approach. Furthermore, for the use of

nonlinear kernels special care has to be taken, because the origin of the underlying

RHKS might not have a corresponding sample in the original data space anymore.

Especially the zero sample is not at the origin.

For solving the optimization problem in Equation (1.113), it is no longer required

to update pairs of samples [Platt, 1999a]. Because of the special offset treatment

the approach from Section 1.2.3 can be directly applied. Considering the fixed offset

(b = −1), the respective update formulas can be derived (see also Appendix B.4.2):

α
(k+1)
j = P

(
α

(k)
j − 1

‖xj‖2

(〈
w(k), xj

〉
− 2
))

β
(k+1)
j = P

(
β

(k)
j + 1

‖xj‖2

(〈
w(k), xj

〉
− (R + 1)

))
w(k+1) = w(k) + ((α

(k+1)
j − α

(k)
j ) − (β

(k+1)
j − β

(k)
j )) xj

with P (z) = max {0, min {z, C}} .

(1.114)

Comparing these formulas with the formulas of the binary classifier in Section 1.3.4.1

shows that the implementations of binary classifiers require only minor modifications

to be also used for unary classification: The offset has to be fixed to −1 and its update

has to be suppressed.
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Squared Loss and Kernels

The origin separation approach can also be used for variants of the discussed algo-

rithms if squared loss variables (t2
j ) in the target function or kernels are used as

introduced in Section 1.1.1.2. The formulas can be derived in the same way as for the

binary classifiers (see Appendix B.4.2).

Kernels are motivated by an implicit mapping of the data to a higher dimensional

space (RHKS). Consequently, the separation from the origin is applied in the RHKS

and not in the originally data space. For example, using a Gaussian kernel (k(x, y) =

eγ‖x−y‖2
2) results in a separation of points on an infinite dimensional unit hypersphere

from its center at the origin in the RHKS, because

‖x‖k := k(x, x) = 1 ∀x ∈ R
m . (1.115)

Strict Separation from the Origin for SVM: C = ∞

For a different geometric view on the new one-class SVM, consider the extreme case

of hard margin separation (C = ∞), which enforces the slack variables to be zero. Let

X denote the set of training instances xj with the convex hull conv(X). The origin

separation approach reveals that the optimal hyperplane (for the positive class) is

tangent to conv(X) in its point of minimal norm x′ (Theorem 23). The hyperplane is

orthogonal to the vector identified with x′ and w = x′ 2
‖x′‖2

2

.

1.4.3 Equivalence of SVDD and One-Class SVMs on the Unit Hyper-

sphere

The approach of SVDD (Method 10) is different from the origin separation. Here, the

goal is to find a hypersphere with minimal radius R around a center c such that the

data is inside this hypersphere and the outliers are outside

min
R,c,t′

R2 + C ′∑ t′
i

s.t. ‖c − xi‖2
2 ≤ R2 + t′

i and t′
i ≥ 0 ∀i .

(1.116)

Theorem 16 (Equivalence of SVDD and νoc-SVM on the Unit Hypersphere). If the

data is on the unit hypersphere (normalized to a norm of one),

w = c, ti =
t′
i

2
, ρ =

‖c‖2
2 + 1 − R2

2
, C ′ =

1

νl
(1.117)

gives a one-to-one mapping between the SVDD and the νoc-SVM model.

For a proof refer to [Tax, 2001] or Appendix B.2.3 but not to [Tax and Duin, 2004],

where the proof is incomplete. The equivalence of the models is also reasonable from
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Figure 1.14: Geometric relation between SVDD with a separating hyper-

sphere (red) with radius R and center c and one-class SVM with its hy-

perplane (blue) and classification vector w when the data lies on a unit

hypersphere (black). Samples outside the red hypersphere are outliers in the

SVDD model and samples below the blue hyperplane are outliers for νoc-SVM.

The remaining data belongs to the class of interest. Visualization taken from

[Krell and Wöhrle, 2014].

our new geometric perspective as visualized in Figure 1.14. Intersecting the data

space (unit hypersphere) with a SVM hyperplane separates the data space into the

same two parts as when cutting it with the SVDD hypersphere. From the geometric

view, R2 + d2 = 1 should also hold true, where d is the distance of the origin to the

separating hyperplane of the SVM. So maximizing this distance in the SVM model is

equivalent to minimizing the radius of the hypersphere in the SVDD model. If the

data is not normalized to a norm of one, the models differ. Note that when using

Gaussian kernels, data is internally normalized to unit norm (see Equation (1.115)

or [Tax, 2001]).

Theorem 17 (From νoc-SVM to the New One-Class SVM). Let ρ(ν) denote the op-

timal value of the νoc-SVM model. If ρ(ν) > 0, νoc-SVM is equivalent to our new

one-class SVM by substituting

w̄ =
2w

ρ(ν)
, t̄i =

2ti

ρ(ν)
, C̄ =

2

νlρ(ν)
(1.118)

even if the data is not normalized. So both models are similar, too.

The proof can be found in Appendix B.2.3.
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1.4.4 Novel Online Unary Classifier Variants of the C-SVM

In Section 1.4.2, formulas for the weight update belonging to a single sample have

been derived. According to Section 1.2.3 and Section 1.2.4 the application of the single

iteration approach is straightforward and leads to the update formulas for an online

classifier version:

Method 19 (Online One-Class BRMM).

α = max

{
0, min

{
1

‖xnew‖2
2

(
2 −

〈
wold, xnew

〉)
, C

}}

β = max

{
0, min

{
1

‖xnew‖2
2

(〈
wold, xnew

〉
− (R + 1)

)
, C

}}
wnew = wold + (α − β) xj .

(1.119)

This model combines, the single iteration, the relative margin, and the origin

separation approach. For an online one-class SVM variant, only α is used (β ≡ 0).

Update formulas for variants with different loss can be defined respectively (see Ap-

pendix B.4.3).

This direct transfer of the introduced unary classifiers to online classification com-

pletes the picture on the binary PAA, which are connected to the C-SVM by the single

iteration approach. It results in online versions for the unary variants of the batch

algorithms: C-SVM (R = ∞), BRMM, and RFDA (R = 1).

1.4.5 Comparison of Unary Classifiers on the MNIST Dataset

To get a first impression of the new unary classifiers, a comparison on the MNIST

dataset (see Section 1.3.4.4) was performed. We chose a one vs. rest evaluation

scheme, where classifiers were trained only on one digit (target class) and tested

on all other digits (rest, outliers). Using unary classifiers on this data has three

advantages: First, the classifiers describe how to detect a single digit and not how

to detect the difference to all the other digits. Second, the classifiers do not have to

handle class imbalance. And third, the classifiers can better detect new outliers like

bad handwriting or letters (which are not part of this dataset).

1.4.5.1 Comparison of Classifiers with different Range or Radius

For dimensionality reduction, a principal component analysis [Lagerlund et al., 1997,

Rivet et al., 2009, Abdi and Williams, 2010] (PCA) was applied (with training on the

given training data), keeping the 40 most important principal components.24 Fur-

thermore, all resulting feature vectors were normalized to unit norm. The regular-

24 The PCA implementation of scikit-learn was used here [Pedregosa et al., 2011].
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ization parameter C was individually optimized using a grid search with 5-fold cross-

validation on the training data. As performance metric, the average of the area under

the ROC curve [Bradley, 1997] (AUC) over all possible digits was used, to account for

class imbalance (ratio 1 : 9) and sensitivity on the decision boundary that was not

optimized [Swets, 1988, Bradley, 1997, Straube and Krell, 2014]. The pySPACE con-

figuration file is provided in the appendix in Figure C.2. The results are depicted in

Figure 1.15.
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Figure 1.15: Comparison of different unary classifiers on the MNIST dataset

with varying radius (unary PAAs PA0 and PA1, Rmax = s
10) or range (BRMM

variants, R = s
4)) parameter. Both hyperparameters are calculated with the help

of the scaling parameter s. The average AUC with standard error is displayed in a

scenario, where the classifier has been trained on one digit out of ten. The binary

BRMM is displayed for comparison, too. For the BRMM variants, the border at R = 1
(s = 4) corresponds to a RFDA variant and the upper border (s = 20) is equivalent to

the respective C-SVM variant. Visualization taken from [Krell and Wöhrle, 2014].

For the unary BRMM variants, different range parameters were tested, but no

influence on the performance can be observed. In this application, the online unary

BRMM performs as well as the batch algorithm (unary BRMM), although it requires

less training time (600ms instead of 30min average time) and memory (O(n) instead

of O(n · l)). This is a clear advantage of the online classifier, since it allows to train

the algorithm on large datasets and potentially increase performance with constantly

low processing resources.

For the binary BRMM, there is a performance increase on the way from RFDA to

C-SVM. C-SVM performs better than the unary classifiers, but requires all digits for

the training (nine times more samples). Consequently, using the C-SVM instead of a
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unary classifier requires more computing resources.

For the unary PAAs (online classifiers) PA0 and PA1, which were motivated by

SVDD as described in Section 1.1.6.2, different values for the maximal radius were

tested. The PAAs optimize their radius parameter, but need a predefined maximum

value. By increasing the maximum radius, first performance increases and then

monotonically decreases. PA1 clearly outperforms PA0, because it allows for mis-

classifications in its model, which improves its generalization capability. This effect

is quite common and has been observed also for numerous other classifiers. With the

optimal choice of the radius, PA1 performs as well as the BRMMs. This is possibly

the same effect as the equivalence of the SVDD and the one-class SVMs on data on a

unit hypersphere, as used in this example. Unfortunately, the intrinsic optimization

of the radius is not working sufficiently well and the maximum radius parameter

needs additional tuning. This is a clear disadvantage compared to the other classi-

fiers, especially since hyperparameter tuning is often difficult in one-class scenarios

like outlier detection.

To summarize, despite the slightly worse performance value in comparison to

C-SVM (R = 20), in this application unary classifiers are useful due to reduced com-

puting resources and because they might better generalize on unseen data like hand-

written letters. For online learning, the new online unary SVM is better than the

already existing online one-class algorithms (PA0 and PA1), because it does not re-

quire the optimization of the hyperparameter Rmax.

1.4.5.2 Equivalence of νoc-SVM and the novel one-class C-SVM

To visualize the equivalence between νoc-SVM and our new version of a one-class

SVM, which is directly derived from C-SVM, an additional evaluation was conducted

by varying the hyperparameters ν and C (see Figure 1.16). This results in one per-

formance curve for each digit, the classifier has been trained on. Everything else was

kept as in the previous evaluation in Section 1.4.5.1 (e.g., testing on all remaining

digits). The pySPACE configuration file is provided in the appendix in Figure C.1.

The performance of the new one-class SVM is constant when the regularization

parameter C is chosen to be very high or very low. Both performance curves show

the same increase in performance, the same maximum performance, and then the

same decrease. Only the scaling between the hyperparameters is different and con-

sequently the curves look differently. The similarity of the curves indicates an equiv-

alence of the solutions. This equivalent behavior is also expected from the theory

(see Section 1.4.1) and was the motivation to derive the other classifiers, because the

derivation requires the C-SVM modeling and is not applicable to ν-SVM. For very

low ν, the performance of νoc-SVM decreases drastically. Reasons for this might be
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Figure 1.16: Performance comparison of νoc-SVM (blue) and new one-class

SVM (red) trained on different digits (0-9) with varying hyperparameters ν and C.

Visualization taken from [Krell and Wöhrle, 2014].

differences in implementation, rounding errors, or a degeneration of the optimization

problem.

1.4.5.3 Generalization on Unseen Data and Sensitivity to Normalization

In the following, the effect of different normalization techniques and the generaliza-

tion on unseen data are analyzed. Normalization techniques change the position of

the data in relation to the origin. Consequently, an effect on the origin separation

is expected. One-class classifiers are not dependent on the second class and should

better handle changes in this class.

In comparison to the evaluation in Section 1.4.5.1, the PCA is omitted and only

0.25% of the training data are used for pretraining and calibration of the algorithms.

In the testing phase, each sample is first classified and if it is the label of interest,

an external verification is assumed, which allows to have an incremental training

for the unary online algorithms (unary PA1 and online unary SVM). To show the

generalization capability, only the label/digit of interest (one of 1 – 9) was used as

positive class and 0 as opposing class for calibration and second class for the binary

classifier (new one-class SVM). For testing, all digits were used. For normalization,

three approaches are compared: no normalization (No), normalization of the feature

vector to unit norm (Euclidean), and finally determining mean and variance of each

feature on the training data and normalizing the data to zero mean and variance of

one (Gaussian). For the unary PA1, the optimization of the hyperparameter Rmax was

included in the 5-fold cross-validation (which optimizes the hyperparameter C) using

the same range of values for the hyperparameter as in Section 1.4.5.1. To account

for the random selection of training samples and the splitting in the cross-validation

step, the experiment was repeated 100 times. The results are shown in Figure 1.17.

Three conclusions can be drawn from the results:
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Figure 1.17: Comparison of different normalization techniques and online

classifiers on the MNIST dataset. The box plots show the median of the performance

values (AUC) with the 25% and 75% quantile.

1. The one-class classifiers are highly dependent on the chosen normalization.

As already mentioned, this was expected, because the normalization largely

changes the position of the data to the origin in this example. For the binary

C-SVM classifier there are no large differences in performance between the dif-

ferent normalization techniques but the unary classifiers largely differ. For the

online unary SVM, the Gaussian feature normalization is best and for the unary

PA1 Euclidean feature normalization is best.

2. The unary PA1 shows the worst performance.

One reason for this might be that the small calibration dataset was not suffi-

cient for a tuning of Rmax. If it were chosen to small, the incremental learning

would change the center of the circle to much. Furthermore, the approach of just

putting a circle around the samples of interest might not be the right approach

in this example, because it does not generalize enough.

3. The online unary SVM clearly outperforms the other classifiers.

This was expected due to the incremental training and because of the focusing

on the class of interest. Hence, it does not overfit on the “outliers” (irrelevant



82 Chapter 1. Generalizing: Classifier Connections

class) and performs better when other types of “outliers” come in.

1.4.6 P300 Detection as Unary Classification Problem

In this Section, we evaluate the application of unary classification on the P300

dataset which is described in Section 0.4.

Normally, P300 detection is treated as a binary classification prob-

lem [Krusienski et al., 2006], and sometimes even as a multi-class prob-

lem [Hohne et al., 2010]. The important class is the P300 ERP. As the second

class, the brain signal which corresponds to the unimportant more frequent stimulus

is taken or other noise samples, which are not related to the important stimulus. In

such a classification task, the classifier might therefore not learn the characteristics

of the P300 signal but how to differentiate the important class from the unimportant

class. To simplify the use in the application and from the modeling perspective, we

suggest to focus on the important class and use a unary classification. This reduces

the training effort and the classifier models the signal of interest. Furthermore, the

problem of class imbalance in P300 detection in a two class approach can be avoided.

It is caused by the fact that the important stimulus is rare and has to be treated

from the algorithm and evaluation point of view [Straube and Krell, 2014].

Processing In the following, we introduces the methods used for processing and

classifying the EEG data.

The preprocessing was as described in [Feess et al., 2013] and displayed in Fig-

ure 3.4. For the normalization we again compared Euclidean, Gaussian, and no

(“Noop”) feature normalization. For classification, we compared binary and unary,

online and batch BRMM including the special cases of R = 1 (RFDA) and R = ∞
(C-SVM). Furthermore, we included the unary PAAs, PA1 and PA2. The online clas-

sifiers were kept fixed on the testing data. For our investigation, the threshold was

optimized on the training data [Metzen and Kirchner, 2011] because unary classifiers

are very sensitive to it.

For all classifiers, the regularization parameter C has to be optimized. We tested

with the following range: [10−4, 10−3.5, . . . , 102]. A second hyperparameter is only

relevant for the BRMM (with a tested range of 1 + 10−1, 1 + 10−0.8, . . . , 1 + 101) and

the unary PAAs, PA1 and PA2 (with a maximum radius of 10−0.5, 10−0.7, . . . , 101.5). To

determine the optimal hyperparameters, a grid search with a 5-fold cross validation

was performed on the training data.

In each session, 5 datasets were recorded. For evaluation, we trained the algo-

rithms on one of five sets and tested on the remaining 4 datasets. This is a typi-

cal cross-validation scheme. Although not given to the unary classifiers, the data of
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the second class (frequent irrelevant standard stimuli) were used for evaluation and

training the other supervised algorithm: the xDAWN algorithm uses data which does

not belong to the ERP of interest to determine the noise in the data. For Gaussian

feature normalization, the label of the data is irrelevant. Only the threshold opti-

mization really needs the second class. As discussed in Section 3.3, the BA was taken

as performance metric [Straube and Krell, 2014].

Results and Discussion The results of the evaluation are depicted in Figure 1.18.

The above mentioned classifiers and normalization methods are compared.

Figure 1.18: Comparison of the different classifiers and normalization tech-

niques. Unary and binary classifier variants are compared as well as online and

batch learning variants. In the box plots, median and 75% quantiles are displayed.

When using Euclidean feature normalization, the performance of PA1 and PA2

is comparable to the performance of the unary online SVM. This is reasonable, be-

cause the respective batch algorithms (one-class SVM and SVDD) are equivalent,

when applied on data with a norm of one. Nevertheless, the performance of PA1 and

PA2 with Euclidean feature normalization is inferior to the performance of the other

classifiers with Gaussian feature normalization. This shows, that for the observed

data, the approach of linear separation with hyperplanes is superior to the approach

of separation with the help of surrounding hyperspheres. Another problem might be
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Figure 1.19: Comparison of classifiers (except PA1 and PA2) after Gaussian

feature normalization. In the box plots, median and 75% quantiles are displayed.

the choice of the optimal maximum range of PA1 and PA2 as in the experiment in

Section 1.4.5.1

The processing with Gaussian feature normalization always performs slightly bet-

ter or equal to the other normalization techniques (except for PA1 and PA2). Again,

the unary classifiers are more sensitive to the type of normalization, which is rea-

sonable due to the origin separation approach. The results for using the Gaussian

feature normalization only are displayed in Figure 1.19. It can be observed that

when using this normalization, all (other) classifiers show comparable performance

results. This holds for the comparison of online and batch learning algorithms but

most importantly the binary classifiers do not outperform the variants of the investi-

gated unary classifiers in Figure 1.19. A reason for this behavior is, that the xDAWN

algorithm already reduced dimensionality a lot and has the main influence. If it were

left out, the performance would drop especially for the unary classifiers (results here

not reported).

1.4.7 Practice: Normalization and Evaluation

As the experiments show, the choice of normalization is crucial. This is similar to

the considerations as in Section 1.2.5. One has to consider, if the approach of sep-
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arating the data from the origin is reasonable. For example, separating the data

{(0, 1), (1, 0), (0, −1), (−1, 0)} from (0, 0) would not make any sense and is not even

possible with a hard margin separating unary one-class SVM or SVDD. In this case,

it is always good to reflect, if the origin can be considered as an outlier. For P300 de-

tection, a zero sample (without Gaussian normalization) corresponds to no relevant

signal in the data and is the perfect opposite class. In fact, if the preprocessing were

perfect it would map all the other data to zero. For unnormalized MNIST data, a zero

vector can identified be with an empty image which corresponds to no digit, which is

definitely an outlier or can be seen as the opposing class.

With increasing dimensionality of the data it is easier to separate the training

dataset from the origin but this might also decrease the capability of the unary clas-

sifier to describe the data.

From the intuition the geometric idea behind SVDD seems more appropriate than

the origin separation approach but the experiments indicated the opposite.

Taking everything together, the origin separation requires careful consideration

before application. This is probably the reason, why it is used seldom in the direct

way. On the other side, when using the RBF kernel, which is quite common, most

problems disappear. First of all, still data should be normalized but the separabil-

ity to the origin is not relevant any more. Second, in this case, the data is lying in

an infinite dimensional sphere and the positive orthant and consequently the data

is always separable from the origin, which is the center of the sphere. Third, SVDD

and the application of the origin separation to C-SVM result in the same classifica-

tion and it does not matter anymore which approach is considered more reasonable.

Last but not least, the νoc-SVM generalizes nicely the Parzen windows estimator as

shown in [Schölkopf et al., 2001b], which is a reasonable approach to approximate

probabilities. Consequently, using the RBF kernel together with the origin separa-

tion approach is a good choice and according to Theorem 5 it also generalizes the

linear version.

The usage of unary classifiers is difficult to evaluate and hyperparameters are

difficult to optimize. In some cases, a visualization might be useful but will not give a

quantification. From our point of view, the best way out is to use another class. Since

the introduced unary classifiers all come with a decision function which determines,

if new incoming data belongs to the given data or not, this approach is reasonable.

The second class can be:

• the large number of irrelevant samples (e.g., unrelated EEG data in P300 de-

tection or other digits or letters in case of the MNIST data),

• a small number of outliers (e.g., data from a (simulated) crashed robot or data

from missed targets in P300 classification), or
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• synthetic data by adding noise to the given training samples, which is often

used in the literature but which might not be representative for future incoming

data.

In any case, class imbalance should be considered in the evaluation (see Section 3.3).

Furthermore, the offset should be carefully optimized or an evaluation should be

used, which is not dependent on a decision criterion.

To summarize, we could show that the origin separation approach is an intuitive

way to derive unary classifiers from binary classifiers like the numerous SVM vari-

ants in Section 1.1. The respective implementations from the binary classifiers can be

used. On the other side, unary classification comes with difficulties of offset tuning,

data normalization, and appropriate evaluation. With our presented geometric intu-

ition it becomes immediately clear that the origin separation approach is only work-

ing when it is reasonable to have a linear hyperplane (for modeling the data), and to

consider the origin as the opposite class. Knowing that the approach is equivalent to

the possibly more intuitive SVDD concept when using a fitting kernel or normaliza-

tion technique even improves our geometric concept. It is now easy to understand,

why different models perform quite similar and why it is important to also have a

look at evaluation techniques, decision criterion optimization, feature normalization

in the preprocessing, and the use of kernels which is probably most important.

1.5 Discussion

In this chapter, numerous classifiers were introduced and their new and old rela-

tions were summarized for the first time. For the experts, most knowledge might be

already known or trivial but for the normal user of these algorithms, the given re-

lations remain mostly unknown because they are not reported or just distributed in

the literature. But how does this summary of classifier connections help to answer

the question of “which” classifier to use? This will be discussed in the following with

three different perspectives/use cases.

Learning and Teaching Perspective The first requirement to answer this ques-

tion is to know the classifiers. Hence, summarizing them is a first approach. But still

getting to know them might be difficult. Here, our set of relations can probably help

more than just learning about regularization and loss functions. It is not required

to learn the single models but to understand the concepts on how the models are

derived. This can be directly used in teaching as outlined in the following.

Assuming the concept of a squared loss, kernel, SVR, and the related ridge re-

gression are already known, it is very intuitive and straightforward to look at the
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simplification of binary classification by considering only two possible values for re-

gression: {−1, +1}. This directly results in BRMM and RFDA/LS-SVM. Since, RFDA

is the special case of BRMM with R = 1 a good next step is to look for R = ∞ and get

C-SVM. This can be supported by respective visualizations and formal descriptions

of the algorithms. So with the help of the relative margin concept (Section 1.3) a first

set of classifiers can be derived without much effort. With C-SVM and relative mar-

gin, one should give a short introduction to the geometric background of maximum

margin separation.

The next step in teaching would be to answer the question of how to implement

the algorithms as done in Section 1.2. This can be connected to practical questions as

in robotics, where limited memory and processing power have to be considered. Here,

one answer can be the online algorithms, derived by the single iteration approach.

Finally, unary classification can be seen as a tool to handle multi-class classifica-

tion, large class imbalance, or simply just to describe one class. The origin separation

approach from Section 1.4 can then be used to derive the unary classifiers again

geometrically. As a “better” justification, the relation of the νoc-SVM to the probabil-

ity modeling Parzen windows estimator and the maybe geometrically more intuitive

SVDD can be used.

This teaching approach can be supported by several visualizations of the classi-

fiers as already given in the previous sections but also with a more general overview

graphic as provided by Figure 1.20 to highlight, how the different approaches are

connected.

Application Perspective Another interesting point of view is the application. As-

suming, a (linear) C-SVM turned out to be a very good choice due to its generalization

capabilities even on a small number of samples in some preliminary data analysis.

If the data shall now be processed on a robot or an embedded device with limited

resources, one could directly transfer the linear decision function. If later on a veri-

fication of new data becomes possible and drifts in the data are expected, the single

iteration approach provides a direct way to adapt the classifier with low effort of

implementation, low processing power, and no additional memory usage.

If more data is acquired, it makes sense to model statistical properties of the

data and drifts. Here, the relative margin concept is a first direct and smooth ap-

proach which transfers C-SVM to RFDA. The transfer can be automatically achieved

by using BRMM and tuning its hyperparameter R. If the amount of available data

becomes very large and hyperparameter optimization showed, that R = 1 is a reason-

able choice and that the regularization parameter C can be chosen very large than it

might be a good step to switch to the limit, which is the FDA. An advantage of this

step is, that this classifier allows for very fast online updates [Schlögl et al., 2010].
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Figure 1.20: Simplified overview of connections of support vector machine

(SVM) variants. The details and several further connections can be found dis-

tributed in Chapter 1. The red color highlights the new connections, provided by

the new generalized model. For every classifier it is possible to use squared or a non-

squared loss. Except for the online classifiers (green box), a kernel function can be

always used. Last but not least, the three introduced approaches can be combined as

depicted in Figure 1.1.

On the other hand, one might realize, that only one class is relevant in the data

and so uses the zero separation approach to only work with one classifier as was

suggested for the P300 detection in Section 1.4.6. Alternatively, if the application

might request the capability to work and many classes and might even require to

be extensible for new classes. This is for example the case when first only the goal

is to predict movements, where data with no movement planing can be taken as

(“artificial”) second class but later this goal is changed to also distinguish different

movement types. Another example might be soil detection for a robot by images and

verification over sensors. During runtime, an arbitrary number of new underground

types could occur. A set of already defined classifiers says, that a new image does not

seems to belong to already observed soil types and this is verified by other sensors.

Hence, a new unary classifier could be generated to determine this soil type for future

occurrence.

Such automatic behavior will be required for longterm autonomy and for con-

structing intelligent robots. For completeness, it should be mentioned that such a

problem could be also tackled with unsupervised algorithms (clustering) or even bet-

ter with a mixture of unsupervised and supervised algorithm. Last but not least, it is

important to mention, that all these considerations from the application point of view
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most often do not occur separately but this is not a problem, because the introduced

approaches can be easily combined.

Implementation and Optimization Perspective Luckily, with the implementa-

tion of the BRMM with special offset treatment, all the mentioned approaches and

variants can be handled within just one implementation. For the single iteration

approach, the number of maximum iterations could be set to the total number of

trainings samples and in the online learning case, the update formulas can be di-

rectly reused. For getting the border cases for the relative margin approach, R can

be set to the respective values. And for integrating the origin separation approach it

is only required to keep the offset fixed at −1 after an update step.

A similar view can be taken, when optimizing the classifier using the generalized

BRMM model with its variants. The number of iterations can be taken as a hyper-

parameter which is tuned and if it gets close to the number of samples, the online

learning version should be used instead. When switching between L1 and L2 loss the

old support vectors are a first good guess for the new classifier and can be reused.

Especially if the linear kernel is used, sparsity of the number of support vector is less

relevant and with an increasing number of samples it might make sense to switch

from L1 to L2 loss.

If the range parameter R is optimized it is good to start with high values, espe-

cially when only few samples are available. When optimized, it might turn out that

the maximum Range Rmax should be used, to avoid an outer margin or R should be

taken very small to model drifts in the data and so the respective C-SVM or RFDA

variants should be used. In case of few data it is probably impossible to determine a

good R for the beginning the maximum value is a good choice, which could be later

on adapted.

The one-class approach cannot be directly part of the optimization because it is

more a conceptual question of how to model the data. Nevertheless, when starting

with unary classification, samples of the opposite class (e.g., outliers) might occur,

which raise the desire to be integrated into the classifier. This is in fact possible in

the model. Furthermore, there is even the possibility to remove the zero separation

if enough data of real outliers is available but still use the old model and adapt it.

From our practical experience, the models often perform very similar. This is now

reasonable due to their strong connections. Consequently, the less complex version is

the best choice for the application.

Summary This chapter showed that all the SVM variants are strongly connected

and it is possible to somehow move between them. This collection of connections

draws a more general picture of the different models and can be also seen as a very
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general classifier model. It can be used for different views on data classification from

the teaching, learning, application, implementation, and the optimization perspec-

tive. Hence, these views should (hopefully) simplify the choice of the classifier and

increase the understanding by not looking at a single variant but considering the

complete graph/net of classifiers.

In future, the benefits of the new algorithms need to be investigated in detail

in further applications. It would be good, to also have a smooth transition between

solution algorithms of BRMM with R equal or close to 1 and the larger values. (Maybe

there is a solution for the SVR which can be transferred or vice versa.) Last but

not least, algorithms for improved (online) tuning of the hyperparameters and the

decision boundary need to be developed and analyzed.
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This chapter presents our backtransformation approach to decode complex data pro-

cessing chains.

The basis of machine learning is understanding the data [Chen et al., 2008],

and generating meaningful features [Domingos, 2012, “Feature Engineering Is The

Key”, p. 84]. Looking at the pure values of data and the implementation and

parameters of algorithms does usually provide no insights. Consequently, for nu-

merous data types and processing algorithms, visualization approaches have been

developed [Rieger et al., 2004, Rivet et al., 2009, Le et al., 2012, Haufe et al., 2014,

Szegedy et al., 2014] as a better abstraction to enhance the understanding of the be-

havior of the applied algorithms and of the data. Here, the visualization of an algo-

rithm is often realized in a similar way as for the input data. Sometimes knowledge

about the algorithm or the data is used to provide a visualization which is easier to

interpret or which provides further insights. For example, for frequency filters, the

frequency response is a much more helpful representation than the pure weights of

the filter. Furthermore, internal parts of an algorithm can give additional helpful

information, too, like the support vectors of a SVM, the signal template matrix A of

the xDAWN1, the covariance matrices used by the FDA, or the characteristics of a

single neuron in an artificial neural network [Szegedy et al., 2014].

To come up with a representation/visualization gets way more complicated

when algorithms are combined for a more sophisticated preprocessing before ap-

plying a final decision algorithm [Verhoeye and de Wulf, 1999, Rivet et al., 2009,

Krell et al., 2013b, Kirchner et al., 2013, Feess et al., 2013], i.e., for processing

chains. Under these circumstances, understanding and visualization of single al-

gorithms does only explain single steps in the processing chain that are typically not

independent from each other as outlined in the following examples.

• If the data of intermediate processing steps is visualized, the ordering of two

filters will change the visualization but might have no effect on the result.

• If a dimensionality reduction algorithm like the PCA is used, visualizations

will differ when different numbers of dimensions are retained. But reducing

the feature dimension to 75% or 25% will make no difference on the whole de-

cision process, if the classifier uses only 10% of the highest ranked principal

components (e.g., a C-SVM with 1-norm regularization).

• Two completely different dimensionality algorithms are used, and exactly the

same or completely different classifiers are added to the processing chain, but

1 The xDAWN is a dimensionality reduction algorithm and spatial filter for time series data, where

the goal is to enhance an underlying signal, which occurs time locked [Rivet et al., 2009]. The common

dimensionality algorithms linearly combine features to create a new set of reduced and more meaning-

ful features. A spatial filter, like the xDAWN, combines the data of sensors/channels to new pseudo-

channels but applies the same processing at every time point. A typical temporal filter is a decimator

which combines low-pass filtering and downsampling.
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the effect on the data might be the same.

• In the worst case, a dimensionality reduction algorithm is applied, but leaving

it out does not change the overall picture of the algorithm, because the classifier

or the data does not require this reduction.

Hence, one is often interested in knowledge about the whole data transformation in

the processing chain but a general approach for solving this problem is missing. This

situation gets even worse the more complex the data and the associated processing

chains become. If dimensionality reduction algorithms are used for example to reduce

the complexity of the data and to get rid of the noise, the structure of the output data

is usually very different from the original input after the reduction step. In such

a case, it is very difficult to understand the connection between decision algorithm,

preprocessing, and original data even if single parts can be visualized. Consequently,

a concept for representing the complete processing chain in the domain and format

of the original input data is required.

State of the Art Several approaches are described in the literature to visualize

the outcome and transformation of classification algorithms, but again, taking the

perspective of a single processing step neglecting the processing history (i.e., the pre-

ceding algorithms).

A very simple approach for data in a two-dimensional space is given in the scikit-

learn documentation2 [Pedregosa et al., 2011]. We adapted the provided script (see

Figure C.5) to a visualization of SVM variants in Figure 2.1.

If the classifier provides a probability fit as classification function, the approach

from [Baehrens et al., 2010] can be applied. Its main principle is to determine the

derivative of the probability fit to give information about the classifier dependent on

a chosen sample. The result is the local importance of the data components concern-

ing the sample of interest. Unfortunately, this calculation of the derivative is quite

complex, difficult to automatize, computationally expensive, and does not consider

any processing before the classification and is restricted to a small subset of clas-

sifiers. Nevertheless, in [Baehrens et al., 2010] a very good overview about existing

methods is given and the benefits of their suggested approach but also the limitations

are shown, which will also hold for our (general) approach.

The visualization of the FDA is discussed in [Blankertz et al., 2011] in the con-

text of an EEG based BCI application with different views on the temporal, spatial,

and spatio-temporal domain. Here, the classifier is applied on spatial features and

visualized as a spatial filter together with an interpretation in relation to the original

data and other spatial filters. For other visualizations, the classifier weights are not

2 http://scikit-learn.org/stable/auto_examples/plot_classifier_comparison.

html
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Figure 2.1: Visualization of different classifiers trained on different datasets.

Displayed are (from left to right) the training data with positive (red) and negative

(blue) samples, the C-SVM with linear, RBF, and polynomial kernel, the PAA with

hinge loss (PA1), and the FDA. The contour plots show the values of the classification

function, where dark red is used for high positive values which correspond to the

positive class and dark blue means very low negative values for the opposite class.

From top to bottom three different datasets are used.

directly used. Furthermore, no complex signal processing chain is used, even though

spatial filters are very common for the preprocessing of this type of data. The FDA

was applied to the raw data and largely improved with a shrinkage criterion. As a

side remark, they mention the possibility to visualize the FDA weights directly, when

applied to spatio-temporal features [Blankertz et al., 2011, paragraph before section

6, p. 18].

This direct visualization of weights of a linear C-SVM has already been suggested

in [LaConte et al., 2005].3 This approach is intuitive, easy to calculate, and enables

a combination with the preprocessing. Furthermore, it can be generalized to other

data and other classifiers [Blankertz et al., 2011].

Contribution Our concept, denoted as backtransformation, incorporates the afore-

mentioned approaches, but with the fundamental difference that it takes all prepro-

cessing steps in the respective chain into account. With this approach, we are able to

extract the complete transformation of the data from the chain, so that, e.g., changes

in the order of algorithms or the effect of insertions/deletions of single algorithms

3 Further methods are presented but they are tailored to fMRI data.
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become immediately visible. Backtransformation also considers processing chains,

where the original (e.g., spatio-temporal) structure of the data is hidden. The data

processing chain is identified with a (composed) function, mapping the input data to

a scalar. In its core, backtransformation is only the derivative of this function, calcu-

lated with the chain rule or numerically. The derivative is either calculated locally for

each sample of interest (general backtransformation) or globally when the processing

chain consists of affine transformations only (affine backtransformation). While the

general backtransformation gives information on which components in the data have

a large (local) influence on the decision process and which components are rather

unimportant, the affine backtransformation is independent from the single sample.4

Numerous established data processing algorithms are affine transformations and

it is often possible to combine them to process the data. In Section 2.2, a closer look

is taken at this type of algorithms and it is shown that it is possible to retrieve the

information on how the data is transformed by the complete decision process, even

if a dimensionality reduction algorithm or a temporal filter hide information. The

affine backtransformation iteratively goes back from the decision algorithm through

all processing steps to determine a parameterization of the composed processing func-

tion and to enable a semantic interpretation. This results in a helpful representation

of the processing chain, where each component in the source domain of the data gets

a weight assigned showing its impact in the decision process. In fact, summing up

the products of weights and respective data parts is equivalent to applying the single

algorithms on the data step-by-step.

General Setting The requirement to apply the proposed backtransformation as

outlined in the following is that the data processing is a concatenation of differen-

tiable transformations (e.g., affine mappings) and that the last algorithm in the chain

is a (decision) function which maps the data to a single scalar. The mapping to the

label (F (x)) is not relevant, here.

For each processing stage, the key steps of the backtransformation are to first

choose a mathematical representation of input and output data and then to deter-

mine a parameterization of the algorithm which has to be mapped to fit to the chosen

data representations. Finally, the derivatives of the resulting transformations have

to be calculated and iteratively combined. In its core it is the application of the chain

rule for derivatives (see Section 2.1). For the case of using only affine mappings, it

is just the multiplication of the transformation matrices, as shown in Section 2.2.

Details on the implementation are given in Section 2.3. For an example of a process-

ing chain of windowed time series data with a two-dimensional representation of the

data see Figure 2.2 and Section 2.2.1.

4 The respective derivatives are constant for every sample and as such not depending on it.
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The backward modeling begins with the parametrization of the final decision func-

tion and continues by iteratively combining it backwards with the preceding algo-

rithms in a processing chain. With each iteration, weights are calculated, which

correspond to the components of the input data of the last observed algorithm.

For the abstract formulation of the backtransformation approach, data with a one-

dimensional representation before and after each processing step is used. The output

of each processing step is fed into the next processing algorithm.

2.1 Backtransformation using the Derivative

This section shortly introduces the general backtransformation. Let the input data

be denoted with x(0) = xin ∈ R
n0 and let the series of processing algorithms be repre-

sented by differentiable mappings

F0 : Rn0 → R
n1 , . . . , Fk : Rnk → R (2.1)

which are applied to the data consecutively.5 Then, the application of the processing

chain can be summarized to:

xout = x(k+1) = F (x(0)) = (Fk ◦ . . . ◦ F0)(x(0)) . (2.2)

With this notation, the derivative can be calculated with the chain rule:

∂F

∂y

(
x(0)

)
=

∂Fk

∂y(k)

(
x(k)

)
· ∂Fk−1

∂y(k−1)

(
x(k−1)

)
· . . . · ∂F1

∂y(1)

(
x(1)

)
· ∂F0

∂y(0)

(
x(0)

)
, (2.3)

where x(l) ∈ R
nl is the respective input of the l-th algorithm in the processing chain

with the mapping Fl and x(l+1) is the output. The terms ∂Fl

∂y(l) and ∂F
∂y

represent the to-

tal differentials of the differentiable mappings and not the partial derivatives. Equa-

tion (2.3) is a matrix product. It can be calculated iteratively using the backtransfor-

mation matrices Bl and the derivatives
∂Fl−1

∂y(l−1) (x(l−1)):

Bk =
∂Fk

∂y(k)

(
x(k)

)
and Bl−1 =

∂Fl−1

∂y(l−1)

(
x(l−1)

)
· Bl with l = 1, . . . , k . (2.4)

Now each matrix Bl ∈ R
nl×1 has the same dimensions as the respective x(l)

and tells which change in the components of x(l) will increase (positive entry in

Bl), decrease (negative entry), or will have no effect (zero entry) on the decision

function. The higher the absolute value of an entry (multiplied with the esti-

5 The notation of data and its components differs in this chapter in relation to Chapter 1, because

instead of looking at training data, we look at one data sample x(0) with its different processing stages

x(l) and the respective changes in each component of the data (x
(l)
gh).
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mated variance of the respective input), the larger is the influence of the respec-

tive data component on the decision function. Consequently, not only the back-

transformation of the complete processing chain (B0) but also the intermediate re-

sults (Bl; l > 0) might be used for analyzing the processing chain. Bk is the

matrix used in the existing approaches, which do not consider the preprocessing

[LaConte et al., 2005, Baehrens et al., 2010, Blankertz et al., 2011]. Note that the Bl

are dependent on the input of the processing chain and are expected to change with

changing input. So the information about the influence of certain parts in the data is

only a local information. A global representation is only possible when using affine

transformations instead of arbitrary differentiable mappings Fl.

2.2 Affine Backtransformation

For handling affine transformations like translations, the data vectors are aug-

mented by adding a coordinate with value 1 to have homogenous coordinates. Ev-

ery affine transformation F can be identified with a tuple (A, T ), where A is a linear

mapping matrix and T a translation vector and the corresponding mapping of the

processing algorithm applied on data xin reads as

xout = F (xin) = Axin + T = (A T )

(
xin

1

)
. (2.5)

So by extending the matrix (A T ) to a Matrix A′ with an additional row of zeros with

a 1 at the translational component, the mapping on the augmented data x′in =
(

xin

1

)
can be written in the simple notation: x′out = A′x′in. With a processing chain with

corresponding matrices A′
0, . . . , A′

k the transformation of the input data x′in can be

summarized to

x′out = A′
k · . . . · A′

1 · A′
0 · x′in . (2.6)

With this notation, the backtransformation concept now boils down to iteratively

determine the matrices

Bk = A′
k , Bk−1 = A′

k · A′
k−1 , . . . , and B0 = A′

k · A′
k−1 · . . . · A′

1 · A′
0 . (2.7)

This corresponds to a convolution of affine mappings.6 Each Bl ∈ R
nk×2 defines the

mapping of the data from the respective point in the processing chain (after l pre-

vious processing steps) to the final decision value. So each product Bl consists of a

weighting vector w(l) and an offset b(l) (and the artificial second row with zero en-

6 Note that no matrix inversion is required even though one might expect that, because the goal is

to find out what the original mapping was doing with the data which sounds like an inverse approach.
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tries and 1 in the last column). The term w(l) can now be used for interpretation and

understanding the respective sub-processing chain or the complete chain with w(0)

(see Section 2.4). The following section renders possible (and impossible) algorithms

which can be used for the affine backtransformation and how the weights from the

backtransformation are determined in detail for a data processing chain applied on

two-dimensional data.

2.2.1 Affine Backtransformation Modeling Example

D
ata P

rocessing C
hain

respective 
backtransformation

weights on algorithm input

2d-Input Data Array
amplitudes of sensors (h) at time points (g)

Scalar Output
regression value, classification score

x
(0)
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w
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ij
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∑
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ij
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i,j

thgifhjsijw
(4)
ij

w(0)
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Temporal Filtering
subtract mean, subsampling,
low/band/high pass FIR filtering

Dimensionality Reduction
ICA, PCA, 
spatial filter (CSP, xDAWN, ∏SF)

Feature Extraction
time-domain amplitudes, polynomial fits
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rescaling, standardization
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regression (linear regression, SVR)

x
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x
(2)
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(1)
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x
(4)
ij = x

(3)
ij sij + bij

x
(2)
ij =

∑

h

x
(1)
ih fhj

x
(1)
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∑

g

x
(0)
gh t

h
gi

x(5) = b(4) +
∑

i,j

x
(4)
ij w

(4)
ij

x
(3)
ij

x(3) = x(2)

Figure 2.2: Illustrative data processing chain scheme with examples of linear

algorithms and the formulas for the backtransformation in short. Spatio-

temporal data x
(0)
gh are processed from top to bottom (x(5)). Every component of the

scheme is optional. Backtransformation takes the classifier parametrization w(4) and

projects it iteratively back (w(k)) through the processing chain and results in a rep-

resentation w(0) corresponding to the input domain. For more details refer to Sec-

tion 2.2.1.

In this section, a more concrete example of applying the backtransformation prin-

ciple is given for processing time series epochs of fixed length of several sensors with

the same sampling frequency. Examples for affine transformations are given to show

that there is a large number of available algorithms to construct a good processing

chain. Some cases will be highlighted which are not affine. A possible processing

chain is depicted in Figure 2.2. Note that all components of this chain are optional
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and the presented scheme can be applied to an arbitrary data processing chain of

affine maps even if dimensions like time and space are replaced by others or left out

(see Section 2.2 and 2.4.2).

An intuitive way of handling such data is to represent it as two-dimensional ar-

rays with the time on one axis and space (e.g., sensors) on the other axis, since im-

portant preprocessing steps like temporal and spatial filters just operate on one axis.

So this type of representation eases the use and the parameterization of these algo-

rithms compared to the aforementioned mathematically equivalent one-dimensional

representation. Furthermore, a two-dimensional representation of the data helps for

its visualization and interpretation. For parametrization of the two-dimensional ar-

rays, the common double index notation is used, where the data x(0) is represented

by its components x
(0)
gh with temporal index g and spatial index h. This index scheme

will be kept for all processing stages even if the data could be represented as one-

dimensional feature vectors for some stages. The same indexing scheme can be ap-

plied for the parametrization of the affine data processing algorithms in the chain as

will be shown in the following. As before, the input of the i-th algorithm is denoted

with x(i−1) and the output with x(i) respectively. To fit to the concept of backtrans-

formation, first the parametrization of the decision algorithm will be introduced and

then the preceding algorithms step-by-step . An overview of the processing chain, the

chosen parameterizations, and the resulting weights from the backtransformation is

depicted in Figure 2.2.

2.2.1.1 Linear Decision Function

A linear decision function can be parameterized using a decision vector/matrix

w
(4)
ij ∈ R

mi×nj and an offset b(4) ∈ R. The transformation of the input x(4) ∈ R
mi×nj to

the decision value x(5) ∈ R is then defined as

x(5) = b(4) +
mi∑
i=1

nj∑
j=1

x
(4)
ij w

(4)
ij , (2.8)

with mi time points and nj sensors. Examples for machine learning algorithms with

linear decision function are all the algorithms introduced in Chapter 1 without ker-

nel or linear kernel. Using a RBF kernel would result in a smooth but not linear

decision function. Even worse, working with a decision tree [Comité et al., 1999] as

classifier would result in a non-differentiable decision function such that even the

general backtransformation could not be applied.
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2.2.1.2 Feature Normalization

With a scaling s ∈ R
mi×nj and transition b ∈ R

mi×nj and the same indexes as for the

linear decision function, an affine feature normalization can be written as

x
(4)
ij = x

(3)
ij sij + bij with i ∈ {1, . . . mi} and j ∈ {1, . . . nj} . (2.9)

This covers most standard feature normalization algorithms like rescaling or stan-

dardization [Aksoy and Haralick, 2001]. Nonlinear scalings, e.g., using absolute val-

ues as in min
{

10,
∣∣∣x(3)

ij

∣∣∣}, or sample dependent scalings, e.g., division by the Euclidean

norm sij = 1

‖x(3)‖
2

, are not affine mappings and could not be used here. For the affine

backtransformation the formula of the feature normalization needs do be inserted

into the formula of the decision function:

x(5) = b(4) +
∑
i,j

(
x

(3)
ij sij + bij

)
w

(4)
ij = b(3) +

∑
i,j

x
(3)
ij sijw

(4)
ij . (2.10)

Here, b(3) = b(4) +
∑

i,j bij summarizes the offset. As denoted in Figure 2.2, sijw
(4)
ij is

the weight to the input data part x
(3)
ij .

2.2.1.3 Feature Generation

For simplicity, the data amplitudes at different sensors have been directly taken as

features and nothing needs to be changed in this step
(
x(3) = x(2)

)
. Other linear fea-

tures like polynomial fits would be possible, too [Straube and Feess, 2013]. Nonlinear

features (e.g., standard deviation, sum of squares, or sum of absolute values of each

sensor) would not work for the affine backtransformation but for the general one.

Symbolic features, mapped to natural numbers will be even impossible to analyze

with the general backtransformation.

2.2.1.4 Dimensionality Reduction on the Spatial Component

A spatial filter transforms real sensors to new pseudo sensors by linear combination

of the signal of the original sensors. To use well known dimensionality reduction al-

gorithms like PCA, and independent component analysis [Jutten and Herault, 1991,

Hyvärinen, 1999, Rivet et al., 2009] (ICA) for spatial filtering, the space component of

the data is taken as feature component for these algorithms and the time component

for the samples. Examples for typical spatial filters are common spatial patterns

[Blankertz et al., 2008] (CSP), xDAWN [Rivet et al., 2009, Wöhrle et al., 2015], and

πSF [Ghaderi and Straube, 2013].

The backtransformation with the spatial filtering is the most important part of
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the concept, because spatial filtering hides the spatial information needed for visual-

ization or getting true spatial information into the classifier.7

The number of virtual sensors ranges between the number of real sensors and one.

The spatial filter for the j-th virtual sensor is a tuple of weights f1j , ..., fnhj defining

the linear weighting of the nh real channels. The transformation for the i-th time

point is written as

x
(3)
ij =

nh∑
h=1

x
(1)
ih fhj , (2.11)

where the time component could be ignored, because the transformation is indepen-

dent of time. The transformation formula can be substituted into formula (2.11):

x(5) = b(3) +
∑
i,j

nh∑
h=1

x
(1)
ih fhjsijw

(4)
ij (2.12)

= b(3) +
∑
i,h

x
(1)
ih ·

⎛
⎝∑

j

fhjsijw
(4)
ij

⎞
⎠ . (2.13)

Equation (2.13) shows, that the weight
∑

j fhjsijw
(4)
ij is assigned to the input data

component x
(1)
ih . If there is no time component, a spatial filter is just a linear di-

mensionality reduction algorithm. It is also possible to combine different reduction

methods or to do a dimensionality reduction after the feature generation.

2.2.1.5 Detrending, Temporal Filtering, and Decimation

There are numerous discrete-time signal processing algorithms

[Oppenheim and Schafer, 2009]. Detrending the mean from a time series can

be done in several ways. Having a time window, a direct approach would be to

subtract the mean of the time window, or to use some time before the relevant

time frame to calculate a guess for the mean (baseline correction). Often, such

algorithms can be seen as finite impulse response (FIR) filters, which eliminate very

low frequencies. Filtering the variance is a quadratic filter [Krell et al., 2013c] and

infinite impulse response (IIR) filters have a feedback part. Both filters are not

applicable for the affine backtransformation, because they have no respective affine

transformations. One can either use uniform temporal filtering, which is similar

to spatial filtering with changed axis, or introduce different filters for every sensor.

As parametrization, th
gi is chosen for the weight at sensor h for the source g and the

7 This was also the original motivation to develop this concept.
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resulting time point i with a number of mg time points in the source domain:

x
(1)
ih =

mg∑
g=1

x
(0)
gh th

gi . (2.14)

Starting with the more common filter formulation as convolution (filter of length N ):

x
(1)
ih =

N∑
l=0

al · x
(0)
(n−l)h

g:=n−l
=

n∑
g=n−N

a(n−g) · x
(0)
gh , (2.15)

the filter coefficients ai can be directly mapped to the th
gi and the other coefficients

can be set to zero.

Reducing the sampling frequency of the data by downsampling is a combination of

a low-pass filter and systematically leaving out several time points after the filtering

(decimation). When using a FIR filter, the given parameterization of a temporal filter

can be used here, too. For leaving out samples, the matrix tgi for channel h can be

obtained from an identity matrix by only keeping the rows, where samples are taken

from.

The final step is similar to the spatial filtering part:

x(5) = b(3) +
∑
i,h

⎛
⎝mg∑

g=1

x
(0)
gh th

gi

⎞
⎠ ·
⎛
⎝∑

j

fhjsijw
(4)
ij

⎞
⎠ (2.16)

= b(3) +
∑
g,h

x
(0)
gh ·

⎛
⎝∑

i,j

th
gifhjsijw

(4)
ij

⎞
⎠ (2.17)

= b(3) +

mg∑
g=1

nh∑
h=1

x
(0)
gh w

(0)
gh . (2.18)

The input component of the original data x
(0)
gh finally gets assigned the weight

w
(0)
gh =

∑
i,j th

gifhjsijw
(4)
ij . Note that for some applications it is good to work on normal-

ized and filtered data for interpreting data and the behavior of the data processing.

In that case, the backtransformation is stopped before the temporal filtering and the

respective weights are used.

2.2.1.6 Others

The aforementioned algorithms can be combined and repeated (e.g., concatenations

of FIR filters or PCA and xDAWN). Having a different feature generator, multiple

filters, decimation, or skipping a filter or normalization the same calculation scheme

could be used resulting in different b(3) and w(0). Nevertheless, w(0) has the same

indexes as the original data x(0). After the final mapping to a scalar by the deci-
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sion function, a shift of the decision criterion (e.g., using threshold adaptation as

suggested in [Metzen and Kirchner, 2011]) is possible but has no impact on the back-

transformation because it only requires w(0) and not the offset. If a probability fit

[Platt, 1999b, Lin et al., 2007, Baehrens et al., 2010] was used, this step has to be

either ignored or the general approach (Section 2.1) has to be applied. Since the

probability fit is a mostly sigmoid function which maps R → [0, 1], it is also possi-

ble to visualize its derivative separately. For the interpretation concerning a sample,

the function value is determined and the respective (positive) derivative is multiplied

with the affine transformation part to get the local importance. Hence, the relations

between the weights remain the same but the absolute values only change. This

approach of mixing the calculations is much easier to implement.

If nonlinear preprocessing is used to normalize the data (e.g., to have variance of

one), the normalized data can be used as input for the backtransformation and the

respective processing chain. This might be even advantageous for the interpretation

when the visualization of the original data is not helpful due to artifacts and outliers.

An example for such a case is to work with normalized image data like the MNIST

dataset (see Section 1.3.4.4) instead of the original data, where the size of the images

and the position of the digits varied a lot (see also Section 2.4.2 and Section 2.4.3).

2.3 Generic Implementation of the Backtransformation

This section gives information on how to apply the backtransformation concept in

practice especially when the aforementioned calculations are difficult or impossible

to perform and a “generic” implementation is required to handle arbitrary processing

chains.

The backtransformation has been implemented in pySPACE (see also Section 3)

and can be directly used. This modular Python software gives simple access to more

than 200 classification and preprocessing algorithms and so it provides a reasonable

interface for a generic implementation. It provides data visualization tools for the

different processing stages and largely supports the handling of complex processing

chains.

In practice, accessing the single parameterizations for the transformation matri-

ces Ai for the affine backtransformation might be impossible (e.g., because external

libraries are used without access to the internal algorithm parameters) or too difficult

(e.g., code of numerous algorithms needs to be written to extract these parameters).

In this case, the backtransformation approach cannot be applied directly in the way

it is described in Section 2.2. Instead, the respective products and weights for the

affine backtransformation can be reconstructed with the following trick which only

requires the algorithms to be affine. No access to any parameters is needed. First,
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the offset of the transformation product is obtained by processing a zero data sample

with the complete processing chain. The processing function is denoted by F . The

resulting scalar output is the offset

b(0) = F (0). (2.19)

Second, a basis {e1, . . . , en} of the original space (e.g., the canonical basis) needs to

be chosen. In the last step, the weights w
(0)
i , which directly correspond to the base

elements, are determined by also processing the respective base element ei with the

processing chain and subtracting the offset b(0) from the scalar output:

w
(0)
i = F (ei) − F (0). (2.20)

The calculation of the derivative for the general backtransformation approach is

more complicated. Deriving and implementing the derivative function for each algo-

rithm used in a processing chain and combining the derivatives can be very difficult,

especially if the goal is to implement it for a large number of relevant algorithms,

e.g., as provided in pySPACE. The variety of possible derivatives even of classification

functions can be very diverse [Baehrens et al., 2010]. A generic approach would be to

use automatic differentiation tools [Griewank and Walther, 2008]. These tools gener-

ate a program which calculates the derivative directly from the program code. They

can also consider the concatenation of algorithms by applying the chain rule. For

most standard implementations, open source automatic differentiation tools could

be applied. For existing frameworks, it is required to modify each algorithm imple-

mentation such that the existing differentiation tools know all derivatives of used

elemental functions used in the code, which might be a lot of work. Furthermore,

this approach would be impossible if black box algorithms were used. So for simplic-

ity, a different approach, which is similar to the previous one for the affine case can

be chosen. This is the numerical calculation of the derivative of the complete decision

function via differential quotients for directional derivatives:

∂F

∂ei
(x0) ≈ F (x0 + hei) − F (x0)

h
. (2.21)

Here, ei is the i-th unit vector, and h is the step size. It is difficult to choose the

optimal h for the best approximation, but for the backtransformation a rough ap-

proximation should be sufficient. A good first guess is to choose h = 1.5 ·10−8 〈x0, ei〉 if

〈x0, ei〉 
= 0 and in the other case h = 1.5 · 10−8 [Press, 2007]. In the backtransforma-

tion implementation in pySPACE, the value of 1.5 · 10−8 can be exchanged easily by

the user. It is additionally possible to use more accurate formulas for the differential
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quotient at the cost additional function evaluations like

∂F

∂ei
(x0) ≈ F (x0 − hei) − 8F (x0 − h

2 ei) + 8F (x0 + h
2 ei) − F (x0 − hei)

6h
. (2.22)

2.4 Applications of the Backtransformation

Having a transformation of the decision algorithm back through different data rep-

resentation spaces to the original data space might help for the understanding and

interpretation of processing chains in several applications (e.g., image detection, clas-

sification of neuroscientific data, robot sensor regression) as explained in the follow-

ing. First, some general remarks will be given on visualization techniques. After-

wards, the affine and the general backtransformation will be applied on handwritten

digit classification (Section 2.4.2, Section 2.4.3, and Section 2.4.4) because it is a rel-

atively simple problem which can be understood without expert knowledge. A more

complex example on EEG data classification is given in Section 2.4.5. Finally, an

outlook on the possibility of more sophisticated usage is given with processing chain

manipulation. The affine backtransformation can be additionally used for ranking

and regularization of sensors (see Section 3.4.3)

2.4.1 Visualization in General

As suggested in [LaConte et al., 2005] for fMRI data, the backtransformation weights

could be visualized in the same way as the respective input data is visualized. This

works only if there is a possibility to visualize the data and if this visualization dis-

plays the “strength” of the values of the input data. Otherwise, additional effort has

to be put into the visualization, or the weights have to be analyzed as raw numbers.

For interpreting the weights, it is usually required to also have the original data visu-

alized for comparison (as averaged data or single samples) because higher weights in

the backtransformation could be rendered meaningless if the corresponding absolute

data values are low or even zero. Additionally to the backtransformation visualiza-

tion of one data processing chain, different chains (with different hyperparameters,

training data, or algorithms) can be compared (see Section 2.4.4). Differences in the

weights directly correspond to the differences in the processing. Normally, weights

with high absolute values correspond to important components for the processing

and weights close to zero are less important and might be even omitted. This very

general interpretation scheme does not work for all applications. In some cases, the

weights have to be set in relation to the values of the respective data components: If

data values are close to zero, high weights might still be irrelevant, and vice versa.

To avoid such problems, it is better to take normalized data, which is very often also
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a good choice for pure data visualization. Another variant to partially compensate for

this issue is to also look at the products of weights and the respective data values.

According to [Haufe et al., 2014], the backtransformation model is a backward

model of the original data and as such mixes the reduction of noise with the empha-

sis of the relevant data pattern. To derive the respective forward model they suggest

to multiply the respective weighting vector with the covariance matrix of the data.

From a different perspective, this approach sounds reasonable, too: If backtransfor-

mation reveals that a feature gets a very high weight by the processing chain, but

this feature is zero for all except one outlier sample a modified backtransformation

would reveal this effect. Furthermore, if a feature is highly correlated with other

features, a sparse classifier might just use this one feature and skip the other fea-

tures which might lead to the wrong assumption, that the other features are useless

even though they provide the same information. On the other hand, if features are

highly correlated as it holds for EEG data this approach might be also disadvanta-

geous. The processing chain might give a very high weight to the feature, where the

best distinction is possible, but the covariance transformation will blur this impor-

tant information over all sensors and time points. Using such a blurred version for

feature selection would be a bad choice. Another current drawback of the method

from [Haufe et al., 2014] is that it puts some assumptions on the data which often do

not hold: The expectancy values of noise, data, and signal of interest are assumed to

be zero “w.l.o.g.” (without loss of generality). Hence, more realistic assumptions are

necessary for better applicability.

Note that in Figure 2.2, Section 2.2, and Section 2.2.1 it has been shown that

every iteration step in the backtransformation results in weightings w(i) which corre-

spond to the data x(i). This data is obtained by applying the first i algorithms of the

processing chain on the original input data x(0). So depending on the application, it

is even possible to visualize data and weights of intermediate processing steps. This

can be used to further improve the overall picture of what happens in the processing

chain.

2.4.2 Handwritten Digit Classification: Affine Processing Chain

For a simple application example of the affine backtransformation approach, the

MNIST dataset is used (see Section 1.3.4.4). These normalized greyscale images

have an inherent structure due to 28 × 28 used pixels. but they are stored as one-

dimensional feature vectors (784 features). For processing, we first applied a PCA on

the feature vectors and reduced the dimension of the data to 4 (or 64). As a second

step, the resulting features were normalized to have zero mean and standard devi-

ation of one on the training data. Finally, a linear C-SVM (LIBSVM) with a fixed
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regularization parameter (value: 1) is trained on the normalized PCA features. With-

out backtransformation, the filter weights for the 4 (or 64) principal components could

be visualized in the domain of the original data and the single (4 or 64) weights as-

signed by C-SVM could be given, but the interplay between C-SVM and PCA would

remain unknown, especially if all 784 principal components would be used. This in-

formation can only be given with backtransformation and is displayed in Figure 2.3

for the distinction of digit pairs (from 0, 1, and 2). The generic implementation of

the affine backtransformation was used, since only affine algorithms were used in

the processing chain (PCA, feature standardization, linear classifier). The forward

model to the backtransformation, obtained by multiplication with the covariance ma-

trix, is also visualized in Figure 2.3. Note that the original data is not normalized

(zero mean), although this was an assumption on the data for the covariance trans-

formation approach from [Haufe et al., 2014]. Nevertheless, the resulting graphics

look reasonable.

Generally, it can be seen that the classifier focuses on the digit parts, where there

is no overlay between the digits on average. For one class there are high positive

values and for the other there are high negative weights. For the classification with

64 principal components, the covariance correction smoothes the weight usage and

results in a visualization which is similar to the visualization of the backtransfor-

mation for the classification with 4 principal components. Hence, the 60 additional

components are mainly used for canceling out “noise”.

2.4.3 Handwritten Digit Classification: Nonlinear Classifier

To show the effect of the generic backtransformation for a nonlinear processing chain,

the evaluation of Section 2.4.2 is repeated with a RBF kernel for C-SVM instead of

a linear one. The hyperparameter of the kernel, γ, has been determined according

to [Varewyck and Martens, 2011]. Everything else remained unchanged. Again the

generic implementation was used. Note that every sample requires its own back-

transformation. So for the visualization of the backtransformation, only the first four

single samples were taken.

It can be clearly seen in Figure 2.4 that there is a different backtransformation for

each sample. Similar to the results in Section 2.4.2 (Figure 2.3), the backtransforma-

tion with covariance correction (when 64 principal components are taken as features)

seems to be more useful in contrast to the raw visualization which also contains the

noise cancellation part. This is surprising because this approach has been originally

developed for linear models and not for nonlinear ones [Haufe et al., 2014]. Using a

correction with a “local” covariance would be more appropriate in this case but more

demanding from the computation and implementation point of view. A large number
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Figure 2.3: Contour plots of backtransformation weights for handwritten

digit classification: The white and black silhouettes display an average contour of

the original data (digits 0 vs. 1, 0 vs. 2, and 1 vs. 2). The colored contour plots show

the respective weights in the classification process before and after covariance correc-

tion with a different number of used principal components (case A and B). Negative

weights (blue) are important for the classification of the first class (black silhouette)

and positive weights (red) for the second class (white silhouette). Green weights are

close to zero and do only contribute weakly to the classification process.

of principal components seems to be a bad choice for the nonlinear kernel, because it

does not seem to generalize that well and is using a lot of small components instead

of focusing on the big shape of the digits.
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A (4 principal comp.)

0 vs. 1 0 vs. 2 1 vs. 2

covariance correction

B (64 principal comp.)

0 vs. 1 0 vs. 2 1 vs. 2

covariance correction

Figure 2.4: Contour plots of backtransformation weights for handwritten

digit classification with nonlinear classifier: The setting is the same as in Fig-

ure 2.3 except that no average shapes are displayed but the shape of the sample of

interest where the backtransformation is calculated for.
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In case of using only 4 principal components, the approach mainly shows the

shape of the digit 2 (or 0 for the first column). In contrast, the visualizations without

covariance correction clearly indicate with a blue color which parts are relevant for

classifying it as the first class and with the red color which parts are important for

the second class. An interesting effect occurs for the first classifier at the fourth digit

(1). Here a closer look could be taken at the classifier and the data to find out why

there are yellow weights outside the regular shape of the digit 1. This might be the

result of some artifacts in the data (e.g., a sample with very bad handwriting near to

the observed sample) or an artifact in the processing.

In the nonlinear and the linear case with 64 principal components the backtrans-

formation reveals that the decision process is not capable of deriving real shape fea-

tures for the digits. This might be a reason, why a specially tuned deep neural net-

work performs better in this classification task [Schmidhuber, 2012].

2.4.4 Handwritten Digit Classification: Classifier Comparison

This section is based on an evaluation in:

Krell, M. M., Straube, S., Wöhrle, H., and Kirchner, F. (2014c). Generalizing, Opti-

mizing, and Decoding Support Vector Machine Classification. In ECML/PKDD-2014

PhD Session Proceedings, September 15-19, Nancy, France.

I wrote this paper completely on my own to have a first, very short summary of this

thesis and reused some text parts. My coauthors helped me with reviews and discus-

sions about the paper and my thesis in general.

Again, the MNIST dataset was used with the classification of the digits 0, 1, and 2;

the data was reduced in dimensionality with PCA from 784 to 40; and then it was nor-

malized with a standardization (zero mean and variance of one on the given training

data). For classification, a squared loss penalization of misclassifications was used

to obtain the more common Gaussian loss for RFDA and to be better comparable.

RFDA, L2–SVM, the respective online SVM using the single iteration approach (see

Section 1.2.4), and the νoc-SVM were compared. The classifiers were chosen as good

representatives of the algorithms introduced in Chapter 1 and to compare their be-

havior on a visual level. Backtransformation can summarize all three processing

steps and provides the respective weights belonging to the input data. This is visual-

ized in Fig. 2.5.

The linear classifiers itself do only determine the 40 weights of the normalized

principal components. These weights would be difficult to interpret, but with the

given affine backtransformation the weighting and its correspondence to the average

shapes can be observed. As expected due to the model similarities (single iteration ap-
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Figure 2.5: Contour plots of backtransformation weights for handwritten

digit classification with different classifiers: The white and black silhouettes

display an average contour of the original data (digits 0, 1, and 2). The colored con-

tour plots show the respective weights in the classification process. Negative weights

(blue) are important for the classification of the first class (black silhouette) and pos-

itive weights (red) for the second class (white silhouette). Green weights are close to

zero and do not contribute to the classification process. For the unary classification,

the second class (white) was used. Visualization taken from [Krell et al., 2014c].

proach, Section 1.2) similar weight distributions were obtained for the L2–SVM and

its online learning variant (PA2 PAA). The visualizations of L2–SVM and RFDA look

similar due to the connection with BRMM (relative margin approach, Section 1.3).

However, for the distinction between the two digits 0 and 2 some larger differences

can be observed. The unary classifier is different to the other classifiers as expected

because it has been trained on a single digit only (origin separation approach, Sec-

tion 1.4). Nevertheless, characteristics of the other class can be marginally observed

due to the use of PCA which has been trained on both classes. This can be seen in the

second and third row: although trained on the digit 2 in both cases, the classification
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results look different.

2.4.5 Movement Prediction from EEG Data

The EEG is a very complex signal, measuring electrical activity on the scalp with

a very high temporal resolution and more than 100 sensors. Several visualization

techniques exist for this type of signal, which are used in neuroscience for analysis.

When processing EEG data for BCIs, there is a growing interest in understanding

the properties of processing chains and the dynamics of the data, to avoid relying

on artifacts and to get information on the original signal back for further interpre-

tation [Kirchner, 2014]. Here, very often spatial filtering is used for dimensionality

reduction to linearly combine the signals from the numerous electrodes to a largely

reduced number of new virtual sensors with much less noise (see Section 2.2.1.4).

These spatial filters and much more importantly the data patterns they are enhanc-

ing are visualized with similar methods as used for visualizing data. If the spatial

filter is the main part of the processing (e.g., only two filters are used), this approach

is sufficient to understand the data processing. However, often more filters and other,

additional preprocessing algorithms are used. Hence, the original spatial information

cannot be determined for the input of the classifier. This disables a good visualization

of the classifier and an understanding of what the classifier learned from the training

data. So here, backtransformation can be very helpful.

To illustrate this, a dataset from an EEG experiment was taken

[Tabie and Kirchner, 2013]. In this experiment, subjects were instructed to move

their right arm as fast as possible from a flat board to a buzzer in approximately

30 cm distance. The classification task was to predict upcoming movements by

detecting movement-related cortical potentials [Johanshahi and Hallett, 2003] in

the EEG single trials. Before applying the backtransformation and visualizing the

data as depicted in Figure 2.6, the data has been normalized with a standardization,

a decimation, and temporal filtering. Only the last part of the signal closed to

the movement was visualized. The processing chain was similar to the one in

Section 2.2.1. The details are described in [Seeland et al., 2013b].

The averaged input data in Figure 2.6 shows a very strong negative acti-

vation at the motor cortex mainly at the left hemisphere over the electrodes

C1, Cz, and FCC1h.8 This activation is consistent with the occurrence of

movement related cortical potentials and is expected from the EEG literature

[Johanshahi and Hallett, 2003]. The region of the activation (blue circle on the left

hemisphere at the motor cortex region) is associated with right arm movements,

which the subjects had to perform in the experiment.

8 A standard extended 10 − 20 electrode layout has been chosen with 128 electrodes (see Figure C.6).
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Figure 2.6: Visualization of data for movement prediction and the corre-

sponding processing chain: In the first row the average of the data before a move-

ment is displayed as topography plots and in the second row the backtransformation

weights are displayed, respectively. The data values from the different sensors were

mapped to the respective position on the head, displayed as an ellipse with the nose

at the top and the ears on the sides.

The backtransformation weights are much more spread over the head compared

to the averaged data. There is a major activation at the left motor cortex at elec-

trodes C1 and CP3, but also a large activation at the back of the head at the right

hemisphere around the electrode P8. On the time scale, the most important weights

can be found at the last time point, 50 ms before movement onset.

This is reasonable, because the most important movement related information

is expected to be just before the movement starts, although movement intention

can be detected above chance level on average 460 ms before the movement on-

set [Lew et al., 2012]. Note that the analysis has been performed on single trials

and not on averaged data and that for a good classification the largest difference is

of interest and not the minimal one. The high weights at C1 and CP3 clearly fit to

the high negative activation found in the averaged data and as such highlight the

signal of interest. For interpreting the other weights, two things have to be kept in

mind. First, EEG data usually contains numerous artifacts and second, due to the

conductivity of the skin it is possible to measure every electric signal at a certain

electrode also on the other electrodes. Keeping that in mind, the activation around

P8 could be interpreted as a noise filter for the more important class related signal

at C1 and CP3. This required filtering effect on EEG data is closely related to spatial

filtering, which emphasizes a certain spatial pattern [Blankertz et al., 2011, section

4.2]. It could be also a relevant signal which cannot be observed in the plot of the
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averaged data. These observations are now a good starting point for domain experts

to take a closer look at the raw data to determine which interpretation fits better.

2.4.6 Reinitialization of Linear Classifier with Affine Preprocessing

There could be several reasons for exchanging the preprocessing in a signal process-

ing chain. For example, first some initial preprocessing is loaded but in parallel a

new better fitting data specific processing is trained or tuned on new incoming data

(e.g., a new spatial filter [Wöhrle et al., 2015]). If dimensionality would not be fitting

after changing the preprocessing chain, a new classifier would also be needed. But

even if dimensions of old and new preprocessing were the same it might be good to

adapt the classifier to that change to have a better initialization. Here, the affine

backtransformation can be used as described in the following.

For this application, a processing chain of affine transformations is assumed

which ends with a sample weighting online learning algorithm like PAA. Since the

classification function is a weighted sum of samples, it enables following calculation:

w =
∑

i

αiyix̂i =
∑

i

αiyi(Axi + T ) = A
∑

i

αiyixi + T
∑

i

αiyi (2.23)

= Aw(0) + Tb with w(0) =
∑

i

αiyixi and b =
∑

i

αiyi . (2.24)

Here, xi is the training data with the training samples yi and x̂1 is the preprocessed

training data given to the classifier. The weights αi are calculated by update formulas

of the classifier. During the update step, w(0) must be calculated additionally but

neither xi, yi, nor αi are stored. When changing the preprocessing from (A, T ) to

(A′, T ′)

w′ = A′w(0) (2.25)

is a straightforward estimate for the new classifier. The advantage of this formula is,

that it just requires additionally calculating and storing w(0). So the resulting classi-

fier can be still used for memory efficient online learning. Especially, even if neither

(A′, T ′) nor (A, T ) is known, w′ can be calculated using the new signal processing

function F̂ (x) = A′x + T ′:

w′ = A′w(0) = F̂ (w(0)) − T ′b = F̂ (w(0)) − 0A′w(0)b − T ′b = F̂ (w(0)) − F̂ (0w(0))b . (2.26)

So, w′ can be computed by processing w(0) and a sample of zero entries in the signal

processing chain. This only requires some minor processing time but no additional

resources. Usually the processing chain is very fast and so the additional processing

time should not be a problem.
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For giving a proof of concept, the data introduced in Section 0.4 was used. We con-

catenated the 5 recordings of each subject and obtained 10 datasets with more than

4000 samples each. In a preceding preparation the data was standardized, decimated,

and bandpass filtered (see first 4 nodes in Figure 3.4). As modular preprocessing, a

chain was trained on each of the datasets consisting of the xDAWN filter (8 retained

pseudo channels), a simple feature generator, which used the amplitudes of the sig-

nal as features, and a feature normalization linearly mapping each feature to the

interval [0, 1], assuming 5% of the data to be outliers (see Figure C.3). This modu-

lar processing chain was then randomly loaded9 in a simulated incremental learning

scenario, where a sample was first classified and then the classifier (PA1, see Sec-

tion 1.1.6.2) directly got the right label and performed an update step. The classifier

has not been trained before. After a fixed number of iterations, the preprocessing was

again randomly changed, to analyze the effect of changing the preprocessing (for the

specification file see Figure C.3). Due to the randomization, the preprocessing does

not fit to the data. Consequently, with every change of the preprocessing a drop in

performance is expected. In contrast, the incremental learning should increase the

performance over time, because, the classifier adapts to the data and the preprocess-

ing. For simplicity, the regularization parameter C was fixed to 1 for the overrepre-

sented target class and 5 for the other class. The BA was used as performance metric

to account for class imbalance. The evaluation is repeated 10 times to have different

randomizations. It is clear, that this setting is artificial, but for showing the problem

of the classifier to deal with changing preprocessing and how our approach can can

overcome this issue it is helpful.

In Figure 2.7 the positive effect of the backtransformation on the performance

is shown, when the preprocessing is randomly changed after a varying amount of

processed data samples. The new approach using backtransformation is not nega-

tively affected by changing the preprocessing in contrast to the simple approach of

not adapting the classifier to the different processing. There is even a slight improve-

ment in performance. When changing the processing too often, the simple classifier

without the backtransformation adaptation would be as good as a guessing classifier

(performance of 0.5).

For Figure 2.8 the preprocessing is randomly changed every 1000 samples and the

change of performance in time is displayed during incremental training. It can be

clearly seen that performance dramatically drops when the preprocessing is changed

after 1000 samples.

For the experiment, w = 0 and b = 0 was used for initialization and hyperparame-

ters were not optimized but fixed. A different initialization or other hyperparameters

9 The randomly chosen processing chain was trained on one of the 9 other datasets but not the one

of the current evaluation.
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Figure 2.7: Adaption to random preprocessing: Performance (and standard er-

ror) of an online classifier which gets an incremental update after each incoming

sample. After every 10log dist incoming samples the preprocessing is changed by ran-

domly loading a new preprocessing.
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Figure 2.8: Performance trace to random preprocessing after every 1000 sam-

ples: Performance of an online classifier which gets an incremental update after

each incoming sample is displayed were the metric is the average over all evalua-

tions. The metric BA is calculated with a moving window of 60 samples as described

by [Wöhrle et al., 2015].

might show better or worse performance in total, but the clear positive effect of the

backtransformation as a good initialization after changing the preprocessing will be
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the same. The effect might get lost when also using incremental learning for the pre-

processing and compensating the changing preprocessing in the classifier, because

incremental learning in the preprocessing could generate stationary features from

non-stationary data and backtransformation would undo this positive effect.

2.5 Discussion

With the affine backtransformation, we introduced a direct approach to look at the

complete data processing chain (in contrast to separate handling of its components)

and to transform it to a representation in the same format as the data. We general-

ized the concept to arbitrary differentiable processing chains. We showed, that it is

necessary and possible to break up the black box of classifier and preprocessing. The

approach could be used to improve the understanding of complex processing chains

and might enable several applications in future. It was shown that backtransforma-

tion can be used for visualization of the decision process and a direct comparison with

a visualization of the data is possible and enables an interpretation of the processing.

Our approach extends existing algorithms by also considering the preprocessing,

by putting no restrictions on the decision algorithm, by providing the implementa-

tion details, and by integrating the backtransformation in the pySPACE framework

which already comes with a large number of available algorithms. The framework is

required and very useful for the suggested generic implementation. A big advantage

is, that our generic approach enables the usage of arbitrary (differentiable) process-

ing algorithms and their combination. Due to the integration into a high-level frame-

work, the backtransformation can be applied to different data types and applications

and it can benefit from future extensions of pySPACE to new applications and new

data types.

Backtransformation can be used for interpreting the behavior of the decision pro-

cess, but it remains an open question of how the further analysis is performed, be-

cause additional investigations and expert knowledge might still be required. A re-

lated problem occurs when using temporal and spatial filters. Here the solution is to

visualize the frequency response and the spatial pattern instead of the pure weights

of the transformation. The frequency response gives information on how frequencies

are filtered out and spatial patterns give information on which signal in space is em-

phasized by the respective spatial filter. It is important for the future to develop new

methods, which improve the interpretability of the decision process. This could be

achieved for example by extending the method of covariance multiplication with a

more sophisticated calculation of the covariance matrix or by deriving a different for-



118 Chapter 2. Decoding: Backtransformation

mula for getting a forward model, which describes how the data is generated.10 This

might enable the backtransformation to reveal new signals or connections in the data

which can then be used to improve the observed data processing chain. This improve-

ment is especially important for longterm learning. If a robot shall generate its own

expert knowledge from a self-defined decision process, the process of interpretations

needs to be more automized.

In future, it would be also interesting to analyze the application of the backtrans-

formation further, e.g., by using other data, processing chains, or decision algorithms

like regression.
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Kirchner, E. A., and Kirchner, F. (2013b). pySPACE a signal processing and

classification environment in Python. Frontiers in Neuroinformatics, 7(40):1–11,

doi:10.3389/fninf.2013.00040.

For a clarification of my contribution, I refer to Section 3.5.2.

Contents

3.1 Structure and Principles . . . . . . . . . . . . . . . . . . . . . . . . 123

3.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.1.3 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.2 User and Developer Interfaces . . . . . . . . . . . . . . . . . . . . 129

3.2.1 System and Storage Interface . . . . . . . . . . . . . . . . . . . 130

3.2.2 Processing Interface . . . . . . . . . . . . . . . . . . . . . . . . 130

3.2.3 Offline Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.2.4 Online Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.2.5 Extensibility, Documentation and Testing . . . . . . . . . . . . 133

3.2.6 Availability and Requirements . . . . . . . . . . . . . . . . . . 134

3.3 Optimization Problems and Solution Strategies . . . . . . . . . 134

3.4 pySPACE Usage Examples . . . . . . . . . . . . . . . . . . . . . . . 143

3.4.1 Example: Algorithm Comparison . . . . . . . . . . . . . . . . . 144

3.4.2 Usage of the Software and Published Work . . . . . . . . . . . 147

3.4.3 Comparison of Sensor Selection Mechanisms . . . . . . . . . . 149

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.5.2 My Contribution to pySPACE for this Thesis . . . . . . . . . . 161

3.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

119



120 Chapter 3. Optimizing: pySPACE

This chapter presents the software pySPACE which allows to use the contributions

from the previous chapters and furthermore design, optimize, and evaluate data pro-

cessing chains. In the following, we will discuss typical data analysis problems illus-

trated by examples from neuroscientific and robotic data.

Motivation Most data in neuroscience and robotics are not feature vector data but

time series data from the different sensors which were used. Consequently, for this

data a classifier (as for example introduced in Chapter 1) usually cannot be directly

applied and a sophisticated preprocessing is required as for example explained in

Section 2.2.1. There are also other areas where such data are used but we will use

these two examples to show some problems where our approach might provide help.

Time series are recorded in various fields of neuroscience to infer information

about neural processing. Although the direct communication between most parts

of the nervous system is based on spikes as unique and discrete events, graded po-

tentials are seen as reflections of neural population activity in both, invasive and

non-invasive techniques. Examples for such time series come from recordings of local

field potentials (LFPs), EEG, or even fMRI.

Common characteristics of time series data reflecting neural activity are: (i) a

high noise level (caused by external signal sources, muscle activity, or overlapping

uncorrelated brain activity) and (ii) a large amount of data that is often recorded

with many sensors (electrodes) and with a high sampling rate. To reduce noise

and size the data are preprocessed, e.g., by filtering in the frequency domain or

by averaging over trials and/or sensors. These approaches have been very success-

ful in the past, but the solutions were often chosen manually, guided by the liter-

ature, visual inspection and in-house written scripts, so that possible drawbacks

remain. It is still not straightforward to compare or reproduce analyses across

laboratories and the investigator has to face many choices (e.g., filter type, de-

sired frequency band, and respective hyperparameters) that cannot be evaluated

systematically without investing a large amount of time. Another critical issue is

that the data might contain so far undiscovered or unexpected signal components

that might be overseen by the choice of the applied data analysis. False or incom-

plete hypotheses can be a consequence. An automatic optimization of the processing

chain might avoid such effects. On the other hand, the success of applications us-

ing automatically processed and classified neurophysiological data has been widely

demonstrated, e.g., for usage of BCIs [Lemm et al., 2004, Bashashati et al., 2007,

Hoffmann et al., 2008, Seeland et al., 2013b, Kirchner et al., 2013] and classification

of epileptic spikes [Meier et al., 2008, Yadav et al., 2012]. These applications demon-

strate that automated signal processing and classification can indeed be used to di-

rectly extract relevant information from such time series recordings.
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Similar problems also apply for data in robotics. The noise level is usu-

ally lower but it might still cause problems. A big problem is the amount

of data, which can/could be recorded with a robot in contrast to its lim-

ited processing power and memory. For example, deep see grippers are con-

structed with multimodal sensor processing to fulfill complex manipulation tasks

[Aggarwal et al., 2015, Kampmann and Kirchner, 2015]. There are sensors in

the numerous motors of more and more complex robots [Lemburg et al., 2011,

Manz et al., 2013, Bartsch, 2014]. Sometimes internal sensors are used to en-

able or improve localization [Schwendner et al., 2014] but usually several other

sensors are added to enable SLAM [Hildebrandt et al., 2014]. Often video image

data is used for SLAM but also for object manipulation and terrain classification

[Manduchi et al., 2005, Müller et al., 2014]. For the processing of this data, usually

expert knowledge is used (as in neuroscience too) for constructing a feasible signal

processing chain. But taking the expert out of the loop is necessary for real longterm

autonomy of robots.

Solving all facets of the aforementioned problems, which are all connected to the

problem of optimizing the signal processing chain, is probably impossible. Neverthe-

less, we will show that it is at least possible to improve the situation from the inter-

face/framework perspective which can be used as the basis for further approaches.

Here, recent tools can help to tackle the data processing problem, especially when

made available open source, by providing a common ground that everyone can use.

As a side effect, there is the chance to enhance the reproducibility of the conducted re-

search, since researchers can directly exchange how they processed their data based

on the respective specification or script files. A short overview of the variety of ex-

isting approaches is given in the related work (Section 3.5.1). There is an increasing

number and complexity of signal processing and classification algorithms that enable

more sophisticated processing of the data. However, this is also considered as a prob-

lem, since it also demands (i) tools where the signal processing algorithms can be

directly compared [Sonnenburg et al., 2007, Domingos, 2012] and (ii) to close the still

existing large gap between developer and user, i.e., make the tools usable for a larger

group of people with no or few experience in programming or data analysis.

Contribution With the software pySPACE, we introduce a modular framework

that can help scientists to process and analyze time series data in an automated and

parallel fashion. The software supports the complete process of data analysis, includ-

ing processing, storage and evaluation. No individual execution scripts are needed,

instead users can control pySPACE via text files in YAML Ain’t Markup Language

[Ben-Kiki et al., 2008] (YAML) format, specifying what data operation should be exe-

cuted. The software was particularly designed to process windowed (segmented) time
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series and feature vector data, typically with classifiers at the end of the processing

chain. For such supervised algorithms the data can be separated into training and

testing data. pySPACE is, however, not limited to this application case: data can

be preprocessed without classification, reorganized (e.g., shuffled, merged), or ma-

nipulated using own operations. The framework offers automatic parallelization of

independent (not communicating) processes by means of different execution back-

ends, from serial over multicore to distributed cluster systems. Finally, processing

can be executed in an offline or in an online fashion. While the normal use case is

concerned with recorded data saved to a hard disk (and therefore offline), the online

mode, called pySPACE live, offers the application-directed possibility to process data

directly when it is recorded without storing it to hard disk. We refer to this process-

ing here as online due to the direct access in contrast to offline processing where the

input data is loaded from a hard disk.

To tackle the challenge of an increasing number of signal processing algorithms,

additional effort was put into the goal of keeping pySPACE modular and easy-to-

extend. Further algorithms can be added by the advanced user; the algorithms will

be automatically included in the collection of available algorithms and into the doc-

umentation. Furthermore, the software is capable of using existing signal process-

ing libraries, preferably implemented in Python and of using existing wrappers to

other languages like C++. So far, interfaces are implemented to external classifiers

(from scikit-learn [Pedregosa et al., 2011] and LibSVM [Chang and Lin, 2011]), mod-

ular toolkit for data processing [Zito et al., 2008] (MDP), WEKA [Hall et al., 2009],

and MMLF (http://mmlf.sourceforge.net/). Core functionality of pySPACE uses the

Python libraries NumPy [Dubois, 1999] and SciPy [Jones et al., 2001].

pySPACE was implemented as a comprehensive tool that covers all aspects a user

needs to perform the intended operations. The software has a central configuration

where the user can optionally specify global input and output parameters and make

settings for individual paths to external packages as well as setting computational

parameters. The processing is then defined in individual specification files (using

YAML) and the framework can be executed with the respective operation on several

datasets at once. This functionality is not only provided for internal algorithms, but

can also be used with external frameworks like WEKA and MMLF. For the basic

signal processing algorithms implemented in pySPACE, we adopted the node and

flow concept of the MDP software together with basic principles that were intro-

duced together with it. Currently, more than 200 of such signal processing nodes

are integrated into pySPACE. These nodes can be combined and result in numerous

different processing flows. Different evaluation schemes (e.g., cross-validation) and

performance metrics are provided, and different evaluation results can be combined

to one output file. This output can be explored using external software or by using a
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graphical user interface (GUI) provided within pySPACE.

A drawback of most frameworks is that they focus on the preprocessing and a

machine learning part is often missing or vice versa. Furthermore, they do not en-

able a simple configuration and parallel execution of processing chains. To enable an

interfacing to existing tools, pySPACE supports a variety of data types. As soon as

several datasets have to be processed automatically with a set of different processing

algorithms (including classification) and numerous different hyperparameter values,

pySPACE is probably the better choice in comparison to the other tools. Additionally,

the capability to operate on feature vector data makes pySPACE useful for a lot of

other applications, where the feature generation has been done with other tools. To

the best of our knowledge, pySPACE is unique in its way of processing data with spe-

cial support of neurophysiological data and with its number of available algorithms.

Outline The structural concepts of pySPACE will be presented in Section 3.1. In

Section 3.2 we will describe how the software is interfaced including the requirements

for running it. This is followed by a short description of optimization aspects in

pySPACE (Section 3.3). Several examples and application cases will be highlighted in

Section 3.4 including a more complex analysis, using the power of pySPACE and the

content of the previous chapters (Section 3.4.3). Finally, we discuss the related work,

the connection between this thesis and the pySPACE framework, and summarize

with a more personal view.

3.1 Structure and Principles

The software package structure of pySPACE was designed in order to be self-

explanatory for the user and to correspond to the inherent problem structure. Core

components in the main directory are run containing everything that can be ex-

ecuted, resources where external and internal data formats and types are de-

fined, missions with existing processing algorithms the user can specify, and

environments containing infrastructure components for execution. How to run the

software is described in Sections 3.2 and 3.4. The other packages and their connec-

tions are described in the following.

3.1.1 Data

When analyzing data, the first difficulty is getting it into a framework or into a for-

mat, one can continue working with. So as a good starting point, one can look at the

way the data are organized and handled within the software, including ways to load

data into the framework and how the outcome is stored. Data are distinguished in
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pySPACE by granularity: from single data samples to datasets and complete sum-

maries (defined in the resources package), as explained in the following. They re-

quire at the same time different types of processing which are subsequently described

in Sections 3.1.2 and 3.1.3 and depicted in Figure 3.1.

Four types of data samples can occur in pySPACE: the raw data stream, the win-

dowed time series, feature vector, and prediction vector. A data sample comes with

some metadata for additional description, e.g., specifying sensor names, sampling fre-

quency, feature names, or classifier information. When loading a raw data stream it

is first of all segmented into a windowed time series. Windowed time series have the

form of two-dimensional arrays with amplitudes sorted according to sensors on the

one axis and time points on the other. Feature vectors are one-dimensional arrays of

feature values. In a prediction vector the data sample is reduced to the classification

outcome and the assigned label or regression value.

For analysis, data samples are combined to datasets. In pySPACE, a dataset is

defined as a recording of one single experimental run, either as streamed data or al-

ready preprocessed as a set of the corresponding time series windows, or as a loose

collection of feature vectors. It also has metadata specifying the type, the storage

format, and information about the original data and preceding processing steps. For

each type of dataset, various loading and saving procedures are defined. Currently

supported data formats for loading streaming datasets are the comma separated val-

ues (.csv), the European Data Format (.edf), and two formats specifically used for

EEG data which are the one from Brain Products GmbH (Gilching, Germany) (.eeg)

and the EEGLAB [Delorme and Makeig, 2004] format (.set). With the help of the

EEGLAB format several other EEG data formats can be converted to be used in

pySPACE. For cutting out the windows from the data stream, either certain markers

can be used or stream snippets with equal distance are created automatically. For

supervised learning, cutting rules can be specified to label these windows. Feature

vector datasets can be loaded and stored in .csv files or the “attribute-relation file

format” (ARFF), which is, e.g., useful for the interface to WEKA [Hall et al., 2009].

Groups of datasets, e.g., experimental repetitions with the same subject or differ-

ent subjects, can be combined to be analyzed and compared jointly. Such dataset col-

lections are called summary in pySPACE. Summaries are organized in folder struc-

tures. To enable simple evaluations, all single performance results in a summary are

combined to one .csv file, which contains various metrics, observed parameters and

classifier information.
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3.1.2 Algorithms

Nodes and operations are the low and high-level algorithms in pySPACE (see Fig-

ure 3.1). They are organized in the missions package. New implementations have to

be placed in the missions package and can then be used like the already implemented

ones. Here, the type and granularity of input (as depicted in Figure 3.1) have to be

considered, the algorithms need to inherit from the base class, and implement some

basic processing function(s).

operation
1

operation
2

operation
3

operation
..

node
1

node
2

node
3

node
..

operation 
chain

operation

node chain

node

node chain merge WEKA ..

FIR Filter
sub-

sampling
SVM ..

offline

offline

offline + online

summary

summary

dataset

data sample

Figure 3.1: High-level and low-level processing types (upper and lower part)

and their connection to the data granularity (summary, dataset, sample).

Access levels for the user are depicted in blue and can be specified with YAML files

(Section 3.2.2). Only low-level processing can be performed online. For offline anal-

ysis, it is accessed by the node chain operation. For the operations and nodes sev-

eral different algorithms can be chosen. Algorithms are depicted in orange (Sec-

tion 3.1.2) and respective infrastructure components concatenating these in green

(Section 3.1.3). Visualization taken from [Krell et al., 2013b].

3.1.2.1 Nodes

The signal processing algorithms in pySPACE which operate on data samples (e.g.,

single feature vectors) are called nodes. Some nodes are trainable, i.e., they define

their output based on the training data provided. The concept of nodes was inspired

by MDP as well as the concept of their concatenation, which is presented in Sec-

tion 3.1.3.1. In contrast to frameworks like MDP and scikit-learn, the processing

in the nodes is purely sample based1 to ease implementation and online application

1 There is no special handling of batches of data.
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of the algorithms. Nodes are grouped depending on their functionality as depicted

in Figure 3.2. Currently, there are more than 100 nodes available in pySPACE plus

some wrappers for other libraries (MDP, LibSVM, scikit-learn). A new node inherits

from the base node and at least defines an execute function which maps the input

(time series, feature vector, or prediction vector) to a new object of one of these types.

Furthermore, it has a unique name ending with “Node” and its code is placed into the

respective nodes folder. Templates are given to support the implementation of new

nodes. For a complete processing of data from time series windows over feature vec-

tors to the final predictions and their evaluation, several processing steps are needed

as outlined in the following and in Figure 3.2.

Preprocessing comprises denoising time series data and reducing dimensionality

in the temporal and frequency domain. By contrast, the spatial filters operate in the

spatial domain to reduce noise. This can be done by combining the signals of dif-

ferent sensors to new virtual sensors or by applying sensor selection mechanisms.

Classification algorithms typically operate on feature vector data, i.e, before classifi-

cation the time series have to be transformed with at least one feature generator to

a feature vector. A classifier is then transforming feature vectors to predictions. In

postprocessing, feature vectors can be normalized and score mappings can be applied

to prediction scores. For every data type a visualization is possible. Furthermore,

there are meta nodes, which internally call other nodes or node chains. Thus, they

can combine results of nodes or optimize node parameters. If training and testing

data are not predefined, the data must be split to enable supervised learning. By

default, data are processed as testing data.

Source nodes are necessary to request data samples from the datasets, sink nodes

are required for gathering data together to get new datasets or to evaluate classifica-

tion performance. They establish the connection from datasets to data samples which

is required for processing datasets with concatenations of nodes.

3.1.2.2 Operations

An operation automatically processes one data summary2 and creates a new one. It

is also responsible for the mapping between summaries and datasets. Several oper-

ations exist for reorganizing data (e.g., shuffling or merging), interfacing to WEKA

and MMLF, visualizing results, or to access external code. The most important opera-

tion is, however, the node chain operation that enables automatic parallel processing

of the modular node chain (see Section 3.1.3.1). An operation has to implement two

main functions. The first function creates independent processes for specified pa-

rameter ranges and combinations, as well as different datasets. This functionality

2 Note that a summary can also consist of just a single dataset.
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Figure 3.2: Overview of the more than 100 processing nodes in pySPACE. The

given examples are arranged according to processing categories (package names) and

subcategories. The size of the boxes indicates the respective number of currently

available algorithms. My contributions in the context of this thesis (in terms of im-

plemented nodes) are highlighted with double rule.

is the basis for the parallelization property of pySPACE (see Section 3.1.3.3). The

process itself defines the mapping of one or more datasets from the input summary

to a dataset of the output summary and its call function is the important part. The

second function of an operation is called “consolidate” and implements the clean up

part after all its processes finished. This is especially useful to store some meta infor-

mation and to check and compress the results. Operations and their concatenations

are used for offline analysis (see Section 3.2.3). In Section 3.4.1 an example of an

operation will be given and explained.

3.1.3 Infrastructure

So far we have discussed what to process (data) and which algorithms to use (nodes,

operations). The infrastructure of pySPACE now defines how the processing is done.

This core part is mainly defined in the environment package and usually not modi-

fied. It comprises the online execution (see Section 3.2.4), the concatenation of nodes

and operations (as depicted in Figure 3.1), and the parallel execution of processing

tasks.
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3.1.3.1 Node Chains

Nodes can be concatenated to a node chain to get a desired signal processing flow.

The only restriction here is what a particular node needs as input format (raw stream

data, time series, feature vector, or prediction vector). The input of a node chain is

a dataset (possibly in an online fashion), which is accessed by a source node at the

beginning of the node chain. For offline analysis, a sink node is at the end of the node

chain to gather the result and return a dataset as output. In the online analysis,

incoming data samples are processed immediately and the result is forwarded to the

application. Between the nodes, the processed data samples are directly forwarded,

and if needed cached for speed-up. Additional information can be transferred between

nodes where this is necessary. To automatically execute a node chain on several

datasets or to compare different node chains, a higher level processing is used: the

node chain operation as depicted in Figure 3.3.

3.1.3.2 Operation Chains

Similar to concatenating nodes to node chains, operations can be concatenated to op-

eration chains. Then, the first operation takes the general input summary and the

others take the result summary of the preceding operation as input. At the end, the

operation chain produces a series of consecutive summaries. Additionally to combin-

ing different operations, a benefit of the operation chain in combination with node

chain operations is that a long node chain can be split into smaller parts and in-

termediate results can be saved and reused. In an operation chain, operations are

performed sequentially so that parallelization is only possible within each operation.

3.1.3.3 Parallelization

An offline analysis of data processing often requires a comparison of multiple differ-

ent processing schemes on various datasets. This can and should be done in parallel

to get a reduction of processing time by using all available central processing units

(CPUs). Otherwise, exhaustive evaluations might not be possible as they require too

much time. Operations in pySPACE provide the possibility to create independent pro-

cesses, which can be launched in a so-called “embarrassingly parallel” mode. This can

be used for investigations where various different algorithms and hyperparameters

are compared (e.g., spatial filters, filter frequencies, feature generators). As another

application example, data from different experimental sessions or different subjects

might be processed in parallel. The degree of process distribution is determined in

pySPACE by usage of the appropriate back-end for multicore and cluster systems.

Figure 3.3 schematically shows how a data summary of two datasets is processed
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automatically with different node chains in parallel.
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Figure 3.3: Processing scheme of a node chain operation in pySPACE. A and

B are two different datasets (Section 3.1.1), which shall be processed as specified in

a simple spec file (Section 3.2.2). The processing is then performed automatically.

As a result, it can produce new data but also visualizations and performance charts.

To speed up processing the different processing tasks can be distributed over sev-

eral CPUs (Section 3.1.3.3). The puzzle symbols illustrate different modular nodes

(Section 3.1.2.1), e.g., a cross-validation splitter (1), a feature generator (2), a visu-

alization node (3), and two different classifiers (4a, 4b). They are concatenated to a

node chain (Section 3.1.3.1). Visualization taken from [Krell et al., 2013b].

Additionally, some nodes of the meta package can distribute their internal evalua-

tions by requesting own subprocesses from the back-end.3 This results in a two-level

parallelization.

For further speed-up, process creation and process execution are parallelized. For

the online application, different processing chains are executed in parallel if the same

data is used for different signal processing chains, e.g., to predict upcoming move-

ments and to detect warning perception (P300) from the EEG.

3.2 User and Developer Interfaces

pySPACE was designed as a complete software environment4 without requiring in-

dividual hand-written scripts for interaction. Users and developers have clearly de-

fined access points to pySPACE that are briefly described in this section. Most of

these are files in the YAML format. Still, major parts of pySPACE can also be used

as a library,5 e.g., the included signal processing algorithms.

3 This feature has been mainly developed by Anett Seeland.
4 in contrast to libraries
5 This requires adding the pySPACE folder to the PYTHONPATH variable.
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3.2.1 System and Storage Interface

The main configuration of pySPACE on the system is done with a small setup script

that creates a folder, by default called pySPACEcenter, containing everything in one

place the user needs to get started. This includes the global configuration file, links

to main scripts to start pySPACE (see Sections 3.2.3 and 3.2.4), a sub-folder for files

containing the mission specification files (see Section 3.2.2), and the data storage

(input and output). Examples can be found in the respective folders. The global con-

figuration file is also written in YAML and has default settings that can be changed

or extended by the user.

3.2.2 Processing Interface

No matter if node chains, operations, or operation chains are defined (Figure 3.1),

the specifications for processing in pySPACE are written in YAML. Examples are

the node chain illustrated in Figure 3.4 or the operation illustrated in Figure 3.8.

In addition to this file, the user has to make sure that the data are described with a

short metadata file where information like data type and storage format are specified.

If the data have been processed with pySPACE before, this metadata file is already

present.

The types of (most) parameters in the YAML files are detected automatically

and do not require specific syntax rules as can be inferred from the illustrated

node chain (Figure 3.4), i.e., entries do not have to be tagged as being of type in-

teger, floating point, or string. On the highest level, parameters can consist of

lists (introduced with minus on separate lines like the node list) and dictionar-

ies (denoted by “key: value” pairs on separate lines, or in the Python syntax, like

{key1: value1, key2: value2}). During processing, these values are directly

passed to the initialization of the respective object.

Figure 3.4 shows an example of a node chain specification that can be used to

process EEG data. It illustrates the concatenation of different node categories (in-

troduced in Section 3.1.2.1).6 Data samples for this node chain could, e.g., consist

of multiple EEG channels and multiple time points, so that after loading one would

obtain windowed time series. Each data sample is then processed as specified: each

channel is standardized, reduced in sampling rate, and lowpass filtered. Then, the

data are equally split into training and testing data to train the supervised learning

algorithms, which are, in this example, the spatial filter xDAWN [Rivet et al., 2009],

the feature normalization and the classifier later on (here, the LibSVM Support Vec-

tor Machine as implemented by [Chang and Lin, 2011]). Included in this node chain

is a hyperparameter optimization (grid search) of the regularization parameter of

6 For simplicity, most default parameters were not displayed.
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# supply node chain with data

− node : TimeSeriesSource

# three preprocessing algorithms

− # standardize each sensor : mean 0 , variance 1

node : Standardization

− # reduce sampling frequency to 25 Hz

node : Decimation

parameters :

target frequency : 25

− # f i l t e r i n g with f as t Fourier transform

node : FFTBandPassFilter

parameters :

pass band : [ 0 . 0 , 4 .0 ]

# s p l i t data to have 50% training data

− node : TrainTestSpl itter

parameters :

t r a i n r a t i o : 0.5

random : True

# l inear combination of sensors to get

# reduced number of ( pseudo ) channels ( here 8)

− node : xDAWN

parameters :

retained channels : 8

# take a l l s ing le amplitudes as f ea tures

− node : TimeDomainFeatures

# mean 0 and variance 1 for each feature

# ( determined on training data )

− node : GaussianFeatureNormalization

# meta node , ca l l ing c l a s s i f i e r for

# optimizing one parameter ( complexity ˜ ˜C ˜ ˜ )

− node : GridSearch

parameters :

optimization : # def ine the grid

ranges : { ˜ ˜C ˜ ˜ : [0 .1 ,0 .01 ,0 .001 ,0 .0001]}

evaluation : # which metric to optimize

metric : Balanced accuracy

va l idat i on se t : # how to s p l i t training data

s p l i t s : 5 # 5−fo ld cross−validation

nodes :

# c l a s s i f i e r wrapper around external SVM

− node : LibSVMClassifier

parameters :

complexity : ˜ ˜C˜ ˜

kernel : LINEAR

# Optimize the decis ion boundary for BA

− node : ThresholdOptimization

# calcu la te various performance metrics

− node : PerformanceSink

Figure 3.4: Node chain example file. Comments are denoted by a “#”.

For further explanation see Section 3.2.2.
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the classifier. This is done with five-fold cross-validation on the training data. Fi-

nally, performance metrics are calculated respectively for training and testing data.

In a real application, the example in Figure 3.4 can be used to classify P300 data as

described in Section 0.4.

3.2.3 Offline Analysis

Stored data can be analyzed in pySPACE using the launch.py script. This script is

used for operations and operation chains. The user only needs the respective spec-

ification file in YAML. The file name is a mandatory parameter of launch.py. For

having non-serial execution but a distribution of processing, the parallelization mode

parameter (e.g., “mcore” for multicore) is required. The operation specified in a file

called my_operation.yaml can be executed from the command line, e.g., as

./launch.py -o my_operation.yaml --mcore .

GUIs exist for th construction of node chains and especially for the exploration of

the results. With the latter (example given in Figure 3.9), different metrics can be

displayed, parameters compared, and the observation can be reduced to sub-parts of

the complete results output, e.g., explore only results of one classifier type, though

several different were processed. In Section 3.4.1 an example of an offline analysis is

given and explained.

3.2.4 Online Analysis

For processing data from a recording device in an application, it is required to define

a specific node chain, train it (if necessary), and then use it directly on incoming data.

This is possible using the pySPACE live mode.7 It allows to define a certain appli-

cation setup (such as involved components, communication parameters, acquisition

hardware, number and type of node chains) by using additional parameter files that

reference other pySPACE specification files (like in the offline analysis).

Several node chains can be used concurrently to enable simultaneous and parallel

processing of different chains. For this, data are distributed to all node chains and

the results are collected and stored or sent to the configured recipient (e.g., a remote

computer). The data can be acquired from a custom IP-based network protocol or

directly from a local file for testing purposes and simulation. Data from supported

acquisition-hardware8 can be converted to the custom network protocol using a dedi-

cated software tool, that comes bundled with pySPACE.

7 I did not contribute to pySPACE live except some debugging, tuning, and enabling the incremental

learning.
8 e.g., the BrainAmp USB Adapter by Brain Products GmbH (Gilching, Germany)
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3.2.5 Extensibility, Documentation and Testing

Integration of new nodes, operations, and dataset definitions is straightforward due

to the modular structure of pySPACE. Once written and included in the software

structure, they automatically appear in the documentation and can be used with the

general YAML specification described above.9 All operations and nodes come with a

parameter description and a usage example. If necessary, single nodes can be defined

externally of pySPACE and they will still be included likewise, if they are specified

via the global configuration file (Section 3.2.1).

If pySPACE shall be used for more complex evaluation schemes, pure YAML syn-

tax would not be sufficient anymore for our domain-specific language (DSL) (e.g., 5000

testing values from 10−5 to 100 with logarithmic scaling). Consequently, we allow for

Python code injections via strings in a YAML file which are later on replaced by the

real values. The injections can be used for defining parameter ranges and when mod-

ifying the parameters in the node definitions. Some examples are given in Figure C.2,

indicated by the “eval(...)” string. This combines the simplicity of the YAML format

with the power of Python to describe more complex evaluations in a readable and

compressed format.

These configuration files are experiment descriptions which can be directly ex-

changed between the users to discuss problems, to standardize processing schemes,

or just to easily communicate reproducible approaches. The comparison between our

experiment descriptions is much easier than comparing scripts because of

• better structure of the description,

• standardized keywords, and

• less required information/commands and consequently very good compressed

representation.

The documentation of pySPACE is designed for both users and developers. We fol-

lowed a top down approach with smooth transition from high-level to low-level docu-

mentation and final linking to the source code for the developers. The documentation

is automatically compiled with the documentation generator Sphinx.10 We largely

customized the generator of the documentation structure which creates overviews

of existing packages, modules and classes (API documentation). Some properties of

nodes are automatically determined and integrated into their documentation like in-

put data types and possible names for usage in the YAML specification. Furthermore,

a list of all available nodes, and lists of usage examples for operations and operation

chain are generated automatically by parsing the software structure. In contrast to

other famous projects using Sphinx like scikit-learn, or Python, we also programmed

9 Class names and YAML strings are automatically matched.
10 http://sphinx-doc.org/
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the main page with the restructured text format, which is the basis of Sphinx docu-

mentation, and did not use specific commands for webpage design (html).

Additionally, test scripts and unit tests are available in the test component of

pySPACE. During the software development process, the infrastructure mostly re-

mains untouched but very often new nodes are implemented or existing nodes are

extended. To improve test coverage, we developed a generic test concept for the nodes:

1. The node documentation is checked for an example to create a node.

2. A node is created using this example.

3. Predefined data is used to be processed by the node, including the training pro-

cedure.

Furthermore, an interface is provided to use this generic testing concept to easily

generate self-defined tests by providing the respective input and output data. This

concept will be used in future to define a test suite, which just checks for changes in

the processing to support a change management.

The documentation is generated and unit tests are automatically executed on an

everyday basis. For bug fixing, bug reports are possible via email to the pySPACE

developer list or via issue reports on https://github.com/pyspace/pyspace.

3.2.6 Availability and Requirements

pySPACE can be downloaded from https://github.com/pyspace and is dis-

tributed under GNU General Public License. The documentation can be found there,

too. The software can be currently used on Linux, OS X, and Windows. For paral-

lelization, off-the-shelf multi-core PCs as well as cluster architectures using message

passing interface (MPI) or the IBM LoadLeveler system can be interfaced. The soft-

ware requires Python2.6 or 2.7, NumPy, SciPy, and YAML. Further optional depen-

dencies exist, e.g., Matplotlib [Hunter, 2007] is required for plotting. Computational

efficiency is achieved by using C/C++-Code libraries where necessary, e.g., NumPy

is working with C-arrays and implementations and SVM classification can be per-

formed using the Python wrapper of the LIBSVM C++ package.

3.3 Optimization Problems and Solution Strategies

The optimization of data processing chains is very complex. Hence, some separation

into subproblems and respective solution strategies is required. In this section, we

will highlight some subproblems and solution approaches. pySPACE can be seen as

an interface to implement existing approaches and also to explore new approaches.
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Performance Evaluation and the Class Imbalance Problem This large para-

graph introduces several metrics integrated into pySPACE and analyzes their sensi-

tivity to the class ratio.

It includes text parts and figures from Dr. Sirko Straube and is based on:

Straube, S. and Krell, M. M. (2014). How to evaluate an agent’s behaviour to in-

frequent events? – Reliable performance estimation insensitive to class distribution.

Frontiers in Computational Neuroscience, 8(43):1–6, doi:10.3389/fncom.2014.00043.

I contributed a few text parts to this paper. My contributions were the (re-)discovery

of the class imbalance problem in the machine learning context, the evaluation in

this paper which pictures the class imbalance problem, and discussions about the

paper and about performance metrics in general.

For optimizing the processing chain, a performance measure is required to quantify

which algorithm is better than another. The basis of defining performance metrics is

the confusion matrix, which is introduced in Figure 3.5. The figure also shortly sum-

marizes the most important metrics.11 They are separated into two groups, because

when keeping the decision algorithm but changing the ratio of positive and negative

samples, some metrics are sensitive to this change and some are not.12 Another issue,

when looking at these metrics is the lack of common naming conventions.

The true positive rate (TPR) is also called Sensitivity or Recall. The true negative

rate (TNR) is equal to the Specificity. When the two classes are balanced, the accu-

racy (ACC) and the balanced accuracy (BA) are equal. The weighted accuracy (WA) is

a more general version introducing a class weight w (for BA: w=0.5). The BA is some-

times also referred to as the balanced classification rate [Lannoy et al., 2011], class-

wise balanced binary classification accuracy [Hohne and Tangermann, 2012], or as

a simplified version of the AUC [Sokolova et al., 2006, Sokolova and Lapalme, 2009].

Another simplification of the AUC is to assume standard normal distributions so

that each value of the AUC corresponds to a particular shape of the receiver oper-

ating characteristic [Green and Swets, 1988, Macmillan and Creelman, 2005] (ROC)

curve. This simplification is denoted AUCz and it is the shape of the AUC that is

assumed when using the performance measure d′. This measure is the distance

between the means of signal and noise distributions in standard deviation units

given by the z-score. The two are related by AUCz = Θ(d′/
√

2) where Θ is the nor-

mal distribution function. A formula for calculating the general AUC is given by

11 All mentioned performance metrics and many more are integrated into pySPACE and calculated

for every (binary) classifier evaluation.
12 Explained later in this section in more detail and depicted in Figure 3.6.
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Figure 3.5: Confusion matrix and metrics. (A) The performance of an agent dis-

criminating between two classes (positives and negatives) is described by a confusion

matrix. Top: The probabilities of the two classes are overlapping in the discrimi-

nation space as illustrated by class distributions. The agent deals with this using

a decision boundary to make a prediction. Middle: The resulting confusion matrix

shows how the prediction by the agent (columns) is related to the actual class (rows).

Bottom: The true positive rate (TPR) and the true negative rate (TNR) quantify the

proportion of correctly predicted elements of the respective class. (B) Metrics based

on the confusion matrix grouped into sensitive and non-sensitive metrics for class im-

balance when both classes are considered. Visualization and shortened description

taken from [Straube and Krell, 2014].

[Keerthi et al., 2007]:

1∑
yi=1

1 · ∑
yj=−1

1

∑
yi=1

∑
yj=−1

1 − sgn(f(xj) − f(x1))

2
(3.1)
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with the testing data samples xj with label yj .

Matthews correlation coefficient (MCC) is also known as phi-coefficient, or Pear-

son correlation coefficient from statistics and can be also straightforwardly used for

regression problems in contrast to the other metrics. The F-measure [Powers, 2011]

is also referred to as the F-score. A version as weighted harmonic mean is named

Fβ-score, where β denotes the weighting factor. It has been for example used in the

aforementioned optimization approaches by Keerthi et al. and Eitrich et al.13 De-

spite its strong sensitivity to the ratio of positive and negative samples and its lack

of interpretability it is still very often used, especially in text classification where

largely unbalanced settings occur [Lipton et al., 2014].

The problem of metrics being sensitive to class imbalance is quite

old [Kubat et al., 1998] but still seems to be no common knowledge. In

[Straube and Krell, 2014], the authors argument that class imbalance is very com-

mon for realistic experiments. Prominent examples can be also found at the evalua-

tion of unary classification (see Section 1.4). For multi-class evaluations, it gets even

worse [Lipton et al., 2014]. Lipton et al. report, that it is crucial to optimize the deci-

sion criterion (threshold) when using the F-measure and using the default threshold

(zero) for the SVM is usually not a good choice. This effect is also partially related

to class imbalance. Generally, it is always good choose a threshold which optimizes

the performance measure of interest [Metzen and Kirchner, 2011]. This threshold

optimization algorithm is integrated into pySPACE.

Using metrics which are sensitive to the class ration makes them incomparable,

when class ratios change. Furthermore, their absolute values are fairly meaning-

less if the class ratio is not reported. Figure 3.6 visualizes the effect of changing the

class ratio in an evaluation and how it effects the sensitive metrics. It also visual-

izes a related effect of comparability between true classifiers and different “guessing”

classifiers. The graphic clearly shows, that at least from the perspective of class im-

balance, no metric should be used which is sensitive to the class ratio, because the

values change very much. Even the normalization of the mutual information (MI)

does not make the metric insensitive. For more details on metrics and the imbalance

problem refer to [Straube and Krell, 2014].

Classifier Problem Usually, classifiers are defined as an optimization problem

and not as a concrete algorithm. Except for the sparse approaches, solving SVM

variants is not so difficult because the models of interest are defined as convex opti-

mization problems which can be simplified by duality theory (see Section 1). The only

difficulty is that the algorithms need to be able to tackle large amounts of data, e.g.,

13 It was also primarily used by the developers of pySPACE but later on replaced by the BA due to

sensitivity to class imbalance.
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Figure 3.6: Performance, class ratios and guessing. Examples of metric sensi-

tivities to class ratios (A) and agents that guess (B). Effect of the metrics AUC and d’

are represented by AUCz using the simplification of assumed underlying normal dis-

tributions. The value for d′ in this scenario is 0.81. Similarly, the BA also represents

the effect on the WA. (A) The agent responds with the same proportion of correct

and incorrect responses, no matter how frequent positive and negative targets are.

For the balanced case (ratio 1:1) the obtained confusion matrix is [TP 90; FN 10;

TN 70; FP 30]. (B) Hypothetical agent that guesses either all instances as positive

(right) or as negative (left) in comparison to the true agent used in (A). Class ratio is

1:4, colors are the same as in (A). The performance values are reported as difference

to the performance obtained from a classifier guessing each class with probability

0.5, i.e., respective performances for guessing are: [ACC 0.5; G-Mean 0.5; BA 0.5;

F-Measure 0.29; MCC 0; AUCz 0.5; nMI 0]. Visualization and description taken from

[Straube and Krell, 2014]. nMI denotes the normalized MI. The respective normal-

ization factor is the inverse of the maximum possible MI due to class imbalance.

by online learning, iteration over samples, or reduction of the training data (see also

Section 1.2). Different implementations of classifiers are available in pySPACE (not

limited to SVM variants).

Over- and Underfitting Note that the overall goal is to find the perfect processing

which finally detects/classifies the signal of interest as well as possible. This espe-

cially includes the generalization to unseen data and situations. The main dilemma

is that we build a model of our data on the given training data but then the model is

expected to perform well on unseen data.

A direct approach to tackle the problem with unseen data is to later integrate this

new data into the decision algorithm with online learning in an online application
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(see also Section 1.2).

If a classifier model does not fit the data well enough, it is said to be underfitting.

This problem is often already considered in the classifier design, especially by the

kernel, loss, and regularization approaches mentioned in Section 1.1.1.2.

The kernel enables complex models that can fit to the data even in cases where a

linear model is not appropriate for the data at hand. The loss term is usually moti-

vated by an assumption on the noise in the data which inhibits a perfect matching of

the chosen model to the data. Both concepts enable a good fitting of the model to the

data. Only if either loss or kernel is not chosen well, the model will be underfitting.

Unfortunately, more often data cannot be provided sufficiently enough and conse-

quently the model fitting might be too exact and does not generalize well on unseen

data. This effect is called overfitting.

Here, regularization (in combination with the loss term) is an approach to avoid

this effect and to obtain more general models (e.g., because the margin between the

two classes is maximized or sparse solutions are enforced).

The prize to pay is that the resulting regularization parameter has to be optimized

additionally to potential hyperparameters of the chosen loss function or the kernel.

Unfortunately, optimizing hyperparameters can again result in over- or underfitting

especially if too many hyperparameter are used and optimized. So the problem of

over- and underfitting might be just lifted to a higher level.

Hyperparameter Optimization Hyperparameters of the classifier considered in

this thesis are

• the regularization parameter C,

• the extension of this parameter with class weighting (i.e., C(yj)),

• the range parameter R of the BRMM or the radius R of the unary PAA, and

• specific kernel parameters (see Table 1.1).

Sometimes, even more hyperparameters are introduced for additional tuning, like

sample dependent weightings Cj or feature weightings. Furthermore, hyperparam-

eters of the solution algorithms like the number of iterations and the stopping toler-

ance could be optimized. The type of loss and regularization could be changed, too,

which is not considered in the following. The optimization of these hyperparameters

can not yet be considered as sufficiently well “solved”.

Even the most basic step of choosing an appropriate evaluation metric is not al-

ways straightforward as previously discussed. For evaluating an algorithm, there are

several evaluation schemes (like k-fold cross-validation) which are quite well studied.

Most common evaluation approaches result in a function which is not even continu-

ous and might have several local optima. Another difficulty is, that function evalu-

ations are very expensive because they require to repeatedly train the classifier and
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evaluate it on testing data.

A straightforward approach to handle function evaluations and reduce pro-

cessing time is to use parallelization as done in pySPACE. To really speed

up the repeated classifier training with different hyperparameters, warm starts

[Steinwart et al., 2009] can be used to initialize the optimization algorithms which

construct the classifier.14 For (n − 1)-fold cross-validation (leave-one-out error) there

are special schemes for additional speed up [Lee et al., 2004, Loosli et al., 2007,

Franc et al., 2008]. Another approach for saving processing resources is to use

heuristics for the hyperparameter optimization and to focus on finding a “quasi-

optimal” solution [Varewyck and Martens, 2011], which is often sufficient. This ap-

proach is specifically designed for the C-SVM with RBF kernel. First data is normal-

ized, then the hyperparameter γ from the kernel is calculated directly, and finally for

the regularization parameter C only at most 3 values have to be tested. This scheme

can be used in pySPACE and is very helpful because finding a good γ by hand is diffi-

cult. A similar (but more complex) approach can be found in [Keerthi and Lin, 2003],

which uses Theorem 5 for the C-SVM and can be generalized to BRMM and SVR us-

ing Theorem 14. First, the C for the linear case is optimized and then a line search is

performed with a fixed ratio between the hyperparameters γ and C of the respective

classifier with RBF kernel.

The hyperparameter optimization and the C-SVM classifier problem can be also

seen as a bilevel optimization problem. Hence, one approach is to tackle both prob-

lems at once [Keerthi et al., 2007, Moore et al., 2011]. In [Moore et al., 2011] only

SVR was handled with a simple validation function. In [Keerthi et al., 2007] the

validation function is smoothed which results in a difference to the targeted vali-

dation function. The evaluation is not broad (only 4 datasets) but it is promising.

Unfortunately, the code is not provided and their implementation does not scale well

with the number of training samples.15 Is is surprising that the authors did not

continue their work on this algorithm. It would be interesting to investigate this

approach more in detail in future (e.g., using a large scale optimizer like WORHP

[Büskens and Wassel, 2013]).

For analyzing the aforementioned change of the validation function, we integrated

smooth versions of existing metrics into pySPACE for further analysis. Here we real-

ized, that some smoothing techniques will not work because the resulting metrics are

too different from the target metric. For the metrics related to [Keerthi et al., 2007],

it is important to look at the parameter of the smoothing function or even adapt it

14 We implemented and tested a pattern search (Figure 3.7) using a warm start which resulted in a

large speed up but also required a lot of memory resources, because several processing chains had to

be used in parallel for different choices of the hyperparameter values and randomization of the data

splitting.
15 Maybe this could be handled using parallelization techniques.
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during the optimization. Too low values of this parameter result in a large difference

to the target metric and too high values might result in numerical problems with

too high values of the derivative. We also integrated the smoothing approach from

[Eitrich and Lang, 2006, Eitrich, 2007].16

Pattern Search Eitrich et al. use a smoothed metric to optimize several SVM

hyperparameters with a pattern search method (Figure 3.7). An important aspect of

their approach is the large speed up due to parallelization of the pattern search, the

function evaluation, and the C-SVM solving strategies [Eitrich, 2006]. Due to the use

of the pattern search, the method is derivative free and it can be applied to a very

large class of optimization problems in contrast to the previous bilevel optimization.

Unfortunately, the pattern search comes with additional hyperparameters.

We also integrated the pattern search into pySPACE. We only used a paral-

lelization of the pattern search and the validation cycle, but not for the solution of

the C-SVM problem in contrast to [Eitrich, 2006]. Implementing such a concept in

Python is not straightforward, because communication and other overhead due to

the parallelization has to be kept low and when using the standard parallelization

package in Python (multiprocessing) an additional second level of parallelization is

not possible anymore.

When exploring performance plots of BRMMs with pySPACE (not reported) sev-

eral observations can be made as listed in the following

• Rather high values for C and R (e.g., 1 and 10, respectively) provide better re-

sults and faster convergence of the solution algorithms compared to very low

values (e.g., 10−5 and 1.1).

• If the evaluation metric is not smoothed, there will always be plateaus (for

mathematical reasons) but they are not relevant if the number of testing sam-

ples is sufficiently high.

• There is a maximum value of R and C which should be considered. It should

be acknowledged that there is always a maximum meaningful value for R and

C. Choosing higher values will result in the same performance and also in a

plateau in the hyperparameter landscape.

• Combining all three observations it is good to start with rather high values. Fur-

thermore at least at the beginning of the pattern search, the hyperparameters

should be reduced, when performance is not decreasing instead of requesting a

performance improvement. So the algorithm does not get stuck on a plateau.

• It is often more efficient to work with logarithmic steps in the hy-

16 Smoothing the validation function is support by the fact, that the classification function can be

sometimes chosen partially smooth, with the regularization parameter as variable (see Theorem 24 in

the appendix). Consequently, the composed function is expected to be at least partially smooth.
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perparameter landscape as also suggested in [Keerthi and Lin, 2003,

Varewyck and Martens, 2011].

These approaches of customizing the pattern search are possible with our implemen-

tation.

1. Take sequence of direction sets Dk (e.g., Dk = {ei|i = 1, .., n} ∪ {−ei|i = 1, .., n}),

initial step size s0, initial starting point x0, f0 := f(x0) (current minimal value),

contraction parameter c, step tolerance t, and a decreasing sequence p(sk) to

define the minimal improvement (e.g. constantly zero) and iterate over k

2. Evaluate the points xk + s0 · d for d ∈ Dk

3. If f(xk + s0 · d) < fk − p(sk):

• sk+1 = sk or increased

• xk+1 = xk + s0 · d

• Continue with Step 2

4. Otherwise: sk+1 = c · sk and xk+1 = xk

5. If sk+1 < t: STOP

6. Continue with Step 2

Figure 3.7: General scheme of the pattern search [Nocedal and Wright, 2006].

There are numerous variants/extensions of this method like restricting the number

of iterations or performing the evaluations asynchronously [Gray and Kolda, 2006].

Grid Search Despite the previously mentioned promising approaches for hyperpa-

rameter optimization, in most cases the grid search is used (or even no hyperparam-

eter optimization is performed or reported at all). In this case, the algorithms are

evaluated on a predefined grid of values for the hyperparameters and the best one is

chosen. This approach is also implemented in pySPACE with support of paralleliza-

tion. It is inefficient for two reasons. First, it does not exploit the knowledge about

the topography of the landscape of function values, to derive good regions to expand.

And second, if the optimal point is outside of the grid region, the performance result

can be much worse than in the other hyperparameter optimization approaches. Nev-

ertheless, it usually provides sufficiently good results as for example shown by the

variant in [Varewyck and Martens, 2011]. The large dependency of the performance

on the chosen grid makes this famous algorithm difficult to compare to real optimiza-

tion algorithms, because it is always possible to choose a grid which performs at least

equally good or better, or a grid which performs worse.
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Preprocessing Optimization So far, we only discussed methods for optimizing

the hyperparameters of the classifier. What is missing in the literature are ap-

proaches to additionally optimize the preprocessing. Even though, the genera-

tion of meaningful feature in the preprocessing is expected to have a large impact

[Domingos, 2012], it is mostly done by hand and using expert knowledge.

In [Flamary et al., 2012] raw data from a time series was used and the optimiza-

tion of the filter in the preprocessing was combined with the classifier construction.

The target function of C-SVM is extended with a regularization term of the filter

(including an additional regularization constant). For optimization, a two-stage algo-

rithm is suggested, which switches between between updates of C-SVM and filter.

The optimization of a multi-column deep neural network [Schmidhuber, 2012] can

also be seen as a joint optimization of feature generation and classifier. Here, the

different layers of the neural network can be identified with different types of pre-

processing or feature generation. In the context of pure feature learning without

classification, neural networks are also used [Ranzato et al., 2007].

Discussion For optimizing the complete processing chain, pySPACE shows a great

advantage to the previously mentioned approaches. Grid search and pattern search

can be applied to complete processing chains without much additional effort. It is

even possible to have hybrid approaches, where the grid defines different types of

algorithms and the pattern search optimizes the respective algorithm hyperparam-

eters. Furthermore, arbitrary node chains, evaluation schemes, and performance

metrics which are available in pySPACE can be combined to define the optimization

procedure. Even without the optimization algorithms, pySPACE largely supports the

comparison of algorithms as shown in the examples in this thesis. In future, we plan

to use this interface to implement a complete automatic optimization process which

will be called autoSPACE and which will work on a database of datasets.

3.4 pySPACE Usage Examples

pySPACE is applicable in various situations, from simple data processing over com-

prehensive algorithm comparisons to online execution. In this section an example

for an offline analysis is given that comprises most of the key features of pySPACE.

Thereby it is shown how the intended analysis can be easily realized without the

need for programming skills. Published work and related projects are named where

pySPACE has been used, most often with such an offline analysis. Finally, a more

complex example is given which incorporates content from the previous main chap-

ters.
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3.4.1 Example: Algorithm Comparison

In the following, an exemplary and yet realistic research question for processing neu-

rophysiological data serves to explain how a node chain can be parameterized and

thus different algorithms and hyperparameters can be tested. To show that for such

a comparison of algorithms and/or algorithm hyperparameters pySPACE can be a

perfect choice, the whole procedure from data preparation to final evaluation of the

results is described.

Data and Research Question

We take the data described in Section 0.4. Our aim, besides the distinction of the two

classes Standard and Target, is to investigate the effect of different spatial filters,

i.e., ICA, PCA, xDAWN, and CSP (see also Section 2.2.1.4), on the classification per-

formance, or whether one should not use any spatial filter at all (denoted by “Noop”).

Spatial filters aim to increase the signal-to-noise ratio by combining the data of the

original electrodes to pseudo-channels. Thereby, not only performance can be in-

creased, but also information is condensed into few channels, enabling reduction of

dimensionality and thereby reducing the processing effort. Thus, a second research

question here is to evaluate the influence of the number of pseudo-channels on the

classification performance.

Data Preparation

In our example, each recording session consists of five datasets. To have a suffi-

cient amount of data, they were all are concatenated. This is an available operation

in pySPACE after the data were transferred from stream (raw EEG format) to the

pySPACE time series format. Therefore, after data preparation, all merged record-

ings that should be processed are present in the input path (see below), each in a

separate sub-directory with its own meta file.

Processing Configuration

The algorithm comparison has to be specified in a file as depicted in Figure 3.8. The

type keyword declares the intended operation, i.e., node chains will be executed. The

data, which can be found in the directory P300_data (input path) will be processed

according to the specifications in the file P300.yaml. This file is identical to the one

presented in Figure 3.4, except that it is parameterized to serve as a template for

all node chains that should be executed. The parameterization is done by inserting

unique words for all variables that need to be analyzed. This means, in this example

that the specification of the xDAWN node is replaced by
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− node : a l g

parameters :

retained channels : channels

introducing __alg__ as parameter for the different spatial filters and

__channels__ for the varying number of pseudo-channels. All values that

should be tested for these two parameters are specified in the operation file (Fig-

ure 3.8) below the keyword parameter ranges. pySPACE will create all possible

node chains of this operation using the Cartesian product of the value sets (grid).

The value of the parameter __alg__ is the corresponding node name, with Noop

(meaning no option) telling pySPACE that in this condition nothing should be done

with the data. In the example Noop could serve as a baseline showing what happens

when no spatial filter is used.

type : node chain # operation type

input path : ” P300 data ” # locat ion o f data in storage fo lder

templates : [ ”P300 . yaml” ] # s p e c i f i c a t i o n of node chain ( s )

parameter ranges : # Cartesian product o f parameters to be t e s t ed

a l g : [ ’CSP ’ , ’xDAWN’ , ’ ICA ’ , ’PCA ’ , ’Noop ’ ] # nodes t e s t ed

channels : [2 , 4 , 6 , 8 , 10 , 20 , 30 , 40 , 50 , 62]

# number of pseudo−channels

runs : 10 # number of r e p e t i t i o n s

Figure 3.8: Operation specification example file for spatial filter

comparison. For more details see discussion in Section 3.4.1.

In this example, varying the number of retained channels will lead to equal re-

sults for each value in the case of using Noop. Therefore, an additional constraint

could ensure that Noop is only combined with one value of __channels__ which

would reduce computational effort. Furthermore, instead of a grid of parameters, a

list of parameter settings could be specified or Python commands could simplify the

writing of spec files for users with basic Python knowledge. For example, the com-

mand range(2, 63, 2) could be used to define a list of even numbers from 2 to 62

instead of defining the number of retained pseudo-channels individually.

Finally, the runs keyword declares the number of repeated executions of each node

chain. Repetitions can be used to compensate for random effects in the results due to

components in the node chain that use randomness, like the TrainTestSplitter. Us-

ing different data splitting strategies when processing the same data with different

parameterizations (e.g., spatial filters or number of retained pseudo-channels) would

make the results incomparable. To avoid such behavior and to ensure reproducibil-

ity of the results, randomness in pySPACE is realized by using the random package
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of Python with a fixed seed that is set to the index of the repeated execution. In

other words, the same value of runs returns the same results for a given dataset and

operation. For obtaining different results, this number has to be changed.

Execution and Evaluation

The execution of the operation works as described in Section 3.2.3. The result is

stored in a folder in the data storage, named by the time-stamp of execution. For

replicability, it contains a zipped version of the software stack and the processing

specification files. For each single processing result there is a subfolder named after

the processed data, the specified parameters and their corresponding values. For

evaluation, performance results are not stored separately in these single folders, but

the respective metrics are summarized in a .csv tabular. Furthermore, by default the

result folders are also compressed and only one is kept as an example.

The result visualization with the evaluation GUI of pySPACE can be seen in Fig-

ure 3.9. Here, the varied parameters (compare test parameters in Figure 3.8 with

selection in upper left of Figure 3.9) as well as the data can be selected and individu-

ally compared with respect to the desired metric.

Figure 3.9: Visualization from the evaluation GUI for the result of the

spatial filter comparison, explained in Section 3.4.1. Visualization taken from

[Krell et al., 2013b].
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It is not surprising, that the xDAWN is superior to the other algorithms because

it was specifically designed for the type of data used in this analysis. The well per-

formance of the CSP is interesting, because it is normally only used for the detection

of changes in EEG frequency bands connected to muscle movement. The bad perfor-

mance of the ICA shows, that the pseudo-channels have no ordering in importance in

contrast to the other filters. A correct reduction step would be here to reduce dimen-

sionality internally in the algorithm in its whitening step. This error in interfacing

the implementation from the MDP library was fixed due to this result. Normally, the

ICA should perform better than the PCA.

3.4.2 Usage of the Software and Published Work

This section shortly highlights the use of pySPACE in the community, in different

projects, and in several publications.

Since pySPACE became open source software in August 2013, there is not yet a

public user community. Usage statistics from the repository are unfortunately not

yet available. The software was announced at the machine learning open source

software webpage (http://mloss.org/software/view/490/) in the context of a

presentation at a workshop [Krell et al., 2013a] which resulted in 2753 views and

575 downloads. The publication which first presented the software to the com-

munity in a special issue about Python tools for neuroscience [Krell et al., 2013b]

resulted in 1654 views, 192 paper downloads, 10 citations, and 118 mentions in

public networks. Furthermore, pySPACE has been presented at 3 conferences

[Krell et al., 2013a, Krell et al., 2014b, Krell, 2014], where the last presentation re-

sulted in a video tutorial (http://youtu.be/KobSyPceR6I, 345 views). In 2015,

pySPACE was presented at the CeBIT.

pySPACE has been developed, tested and used since 2008 at the Robotics Innova-

tion Center of the German Research Center for Artificial Intelligence in Bremen and

by the Robotics Research Group at the University of Bremen:

• project VI-Bot (http://robotik.dfki-bremen.de/en/research/

projects/vi-bot.html): EEG data analysis for movement prediction

and detection of warning perception during robot control with an exoskeleton,

• project IMMI (http://robotik.dfki-bremen.de/en/research/

projects/immi.html): EEG and EMG data analysis for movement pre-

diction, detection of warning perception, and detection of the perception of

errors applied in embedded brain reading [Kirchner, 2014],

• direct control of a robot with different types of EEG signals,
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• project Recupera (http://robotik.dfki-bremen.de/en/research/

projects/recupera.html): EEG and EMG data analysis for movement

detection to support rehabilitation,

• project ACTIVE (http://robotik.dfki-bremen.de/en/research/

projects/active.html): analysis of epileptic seizure EEG data,

• project TransTerrA (http://robotik.dfki-bremen.de/en/research/

projects/transterra.html): transfer of results from the project IMMI,

• project VirGo4 (http://robotik.dfki-bremen.de/en/research/

projects/virgo4.html): tuning of regression algorithm for robot sen-

sors [Rauch et al., 2013, Köhler et al., 2014],

• project City2.e 2.0 (http://robotik.dfki-bremen.de/de/forschung/

projekte/city2e-20.html): comparison of different methods for parking

space occupancy prediction (in future),

• project LIMES (http://robotik.dfki-bremen.de/en/research/

projects/limes.html): parallelization of robot simulations,

• classification of iterative closest point (ICP) matches into good and bad ones,

• soil detection from sensor values of a robot, and

• every evaluation in this thesis and the visualizations of the backtransformation.

The existing publications are mainly results from the projects VI-Bot and

its follower project IMMI. They only show a small subset of possible applica-

tions of the software, documenting its applicability to EEG and EMG data (e.g.,

[Kirchner and Tabie, 2013, Kirchner et al., 2014b, Kirchner, 2014]).

In [Kirchner et al., 2010, Wöhrle et al., 2013a, Seeland et al., 2013b,

Kirchner et al., 2013, Kim and Kirchner, 2013, Kirchner, 2014, Wöhrle et al., 2014,

Seeland et al., 2015] pySPACE was used for evaluations on EEG data in the context

of real applications. P300 data as described in Section 0.4 is used to customize

complex control environments because warnings do not have to be repeated if

they were perceived by the operator. Another application is to predict/detect

movements to use it in rehabilitation and/or to adapt an exoskeleton/orthosis due

to the predicted/detected movement. In [Kim and Kirchner, 2013], human brain

signals are analyzed which are related to perception of errors, like interaction error

and observation error. Special formulas for a moving variance filter are used in

pySPACE for EMG data preprocessing [Krell et al., 2013c]. In [Metzen et al., 2011a,

Ghaderi and Straube, 2013, Ghaderi and Kirchner, 2013, Wöhrle et al., 2015] the
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framework is used for the evaluation of spatial filters as also done in Section 3.4.1.

An example for a large-scale comparison of sensor selection algorithms can be found

in [Feess et al., 2013] and Section 3.4.3. Here, the parallelization in pySPACE for

a high performance cluster was required, due to high computational load coming

from the compared algorithms and the amount of data used for this evaluation. In

[Ghaderi et al., 2014], the effect of eye artifact removal from the EEG was analyzed.

There are also several publication, looking at the adaptation of EEG processing

chains [Metzen and Kirchner, 2011, Metzen et al., 2011b, Wöhrle et al., 2015,

Ghaderi and Straube, 2013, Wöhrle and Kirchner, 2014, Tabie et al., 2014].

Some machine learning evaluations on EEG data were performed

[Metzen and Kirchner, 2011, Metzen et al., 2011b, Kassahun et al., 2012].

In the context of this thesis, pySPACE was for example used for evalua-

tions of new classifiers on synthetic and benchmarking data [Krell et al., 2014a,

Krell and Wöhrle, 2014] and for visualizing data processing chains with the back-

transformation [Krell et al., 2014c, Krell and Straube, 2015].

3.4.3 Comparison of Sensor Selection Mechanisms

This section is based on:

Feess, D., Krell, M. M., and Metzen, J. H. (2013). Comparison of Sensor Selection

Mechanisms for an ERP-Based Brain-Computer Interface. PloS ONE, 8(7):e67543,

doi:10.1371/journal.pone.0067543.

It was largely reduced to the parts relevant for this thesis and some additional obser-

vations and algorithms were added. This includes some text parts that are written

by David Feess. David Feess and I equally contributed to this paper. David’s focus

was the state of the art, the sensor selection with the “performance” ranking, and

writing most parts of the paper. The main contribution of Dr. Jan Hendrik Metzen

was the probability interpretation of the results (not reported in this section) and the

evaluations with the two SSNR approaches. There were several discussion between

the authors about the paper and the evaluation. My main contribution was in the

implementation and in design of the other ranking algorithms like the ranking with

spatial filters or SVMs.

In this section, we will highlight a more complex application/evaluation, which

touches all aspects of this thesis. The analysis will be applied to data from a pas-

sive BCI application (P300 data, see Section 0.4).

A major barrier for a broad applicability of BCIs based on EEG is the large num-

ber of EEG sensors (electrodes) typically used (up to more than 100).17 The necessity

17 The cap has to be placed on the user’s scalp and for each electrode a conductive gel has to be applied.
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for this results from the fact that the relevant information for the BCI is often spread

over the scalp in complex patterns that differ depending on subjects and application

scenarios. Since passive BCIs aim at minimizing nuisance of their users, it is im-

portant to look at sensor selection algorithms in this context. The less sensors need

to be applied, the less preparation time is required and the more mobile the system

might become. So the users will probably be less aware of the fact that their EEG is

recorded.

Recently, a number of methods have been proposed to determine an individual

optimal sensor selection. In [Feess et al., 2013] a selection of approaches has been

compared against each other and most importantly against several baselines (for the

first time). The following baselines were analyzed:

• Use the complete set of sensors.

• Use two electrode constellations corresponding to commercialized EEG systems:

one 32 electrode 10–10 layout as used in the actiCAP EEG system (Figure C.6)

and the original 10–20 layout with 19 sensors.

• Use random selections of sensors (100 repetitions).

• Use the normal evaluation scheme on the data and recursively eliminate the

sensor which is least decreasing the performance.18

Note that the latter might be computational expensive but given an evaluation

scheme it is the most direct intuitive way, because when reducing sensors, the goal is

always not to loose performance or even increase it due to reduced noise from irrele-

vant sensors.

For a realistic estimation of the reduced system’s performance sensor constella-

tions found on one experimental session were transferred to a different session for

evaluation. Notable (and unanticipated) differences among the methods were identi-

fied and could demonstrate that the best method in this setup is able to reduce the

required number of sensors considerably. Even though the final best approach was

tailored to the given type of data, the presented algorithms and evaluation schemes

can be transferred to any binary classification task on sensor arrays. The results will

be also reported in this section.

Even though, the analysis is performed on EEG data, sensor selection algorithms

are also relevant in other applications In robotics for example, reducing the number

of relevant sensors for a certain classification task can help to save resources (ma-

terial, time, money, electricity) and it can improve the understanding because with

fewer sensors the interpretation (e.g., with the backtransformation from Chapter 2)

18 The BA was used as performance metric as discussed in Section 3.3.
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becomes easier. In contrast to the EEG application, there are two minor differences.

Some sensors are normally divided into sub-sensors, but for really removing the sen-

sor, all sub-sensors need to be removed. For example, an inertial measurement unit

(IMU) provides “sub-sensors” for movement in x, y, and z direction or a camera could

be divided into its pixel components as sub-sensors. For EEG data sensors could be

also grouped, but this is not so relevant. The second difference is in the evaluation. In

EEG data processing, the setting of the electrodes (sensors) between different record-

ing sessions is never the same, because electrode conductivity, electrode positions,

and the head (e.g., hair length) are always slightly different. For robots, this should

normally not be such an important issue, even though the robotic system itself might

be subject to wear.19

For a detailed description of the state of the art and methodology we refer to

[Feess et al., 2013]. In this section, we will focus on some aspects in context of this

thesis.

Sensor Ranking for Recursive Backwards Elimination

This section describes the used methods. Motivated by the processing chain, used

in the final evaluation, different ranking algorithms are suggested. The ranking of

the sensors is then used to recursively eliminate one sensor after the other. After

each removal, a new ranking is determined and the sensor with the lowest rank is

removed.

The standard processing chain in this experimental paradigm is given in Fig-

ure 3.4 with the only exception in the feature generation to be consistent with

[Feess et al., 2013]. Features are extracted from the filtered signal by fitting straight

lines to short segments of each channel’s data that are cut out every 120 ms and

have a duration of 400 ms. The slopes of the fitted lines are then used as features

[Straube and Feess, 2013].

Similar when the goal is to decode the decision process, a ranking of sensors can

be based on the different stages of a processing chain for the related decision process

as shown in the following. The respective algorithm short names for the evaluation

are denoted in brackets in the title.

Spatial Filter Ranking (xDAWN, CSP, PCA) When a spatial filter has been

trained, its filter weights can be used for a ranking, by for example adding up the

absolute coefficient of the first four spatial filters (xDAWN, CSP, PCA, see also Sec-

19 One approach to handle these changes is online learning (see Section 1.4).
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tion 2.2.1.4):

Wh =
4∑

j=1

|fhj | . (3.2)

Here, Wh provides the weight associated with the h-th real sensor. The weight with

the lowest value Wh is iteratively removed. (The filter is than trained on the reduced

set of sensors.)

Signal to Signal-Plus-Noise Ratio (SSNRAS , SSNRV S) There are two addi-

tional methods connected to the xDAWN [Rivet et al., 2012], which was specifically

designed for P300 data. The first calculates the signal to signal-plus noise ratio in the

actual sensor space (SSNRAS). The second, calculates the same ration in the virtual

space after the application of the xDAWN (SSNRV S). The value is calculated with

every sensor removed and the sensor with the lowest increase (or highest decrease)

of the ratio is selected for recursive removal.

Support Vector Machine-Recursive Feature Elimination (1SVM, 2SVM,

1SVMO, 2SVMO) If no spatial filter is applied in the processing chain, the weights

in the classifier still have a one-to-one correspondence to the original sensors. This

can be used for a ranking. Given a classification vector w with components wij where

the j component is related to the j-th sensor, we can again define the ranking

Wh =
∑

i

|wih| . (3.3)

Again recursively the sensor h with the lowest Wh is removed as in cursive feature

elimination [Lal et al., 2004]. To simulate the hard margin case, the regularization

parameter C was fixed to 100.20 Using real hard margin separation would not be

feasible, because with small electrode numbers the two classes become inseparable.

Additionally to the ranking with the C-SVM (2SVM), the variant with 1–norm reg-

ularization (1SVM) was used due to its property to induce sparsity in the feature

space.

This view on the classifier was the original motivation to look at the sparsity

properties presented in Section 1.3.3.4 and the backtransformation (Chapter 2) and

to extend the original analysis from [Feess et al., 2013].

Most importantly, this ranking turned out to be a very good example of the neces-

sity to optimize the hyperparameter C at least roughly. We will show, that C should

be optimized and not chosen very high. Therefore, we additionally performed a grid

search (C ∈ {
10−2, 10−1.5, . . . , 102

}
) with 5-fold cross validation optimizing the BA.

20 This was not reported in [Feess et al., 2013] but could be reproduced with the configuration file.
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This resulted in additional rankings, denoted with 1SVMO and 2SVMO respectively.

A variant would be to use a sum of squares, to be more close to the 2–norm regu-

larization of the C-SVM [Tam et al., 2011].

Instead of reducing the processing chain such that it is possible to gain sensor

weights from the linear classifier, it would be also possible to use the affine backtrans-

formation (see Chapter 2) after the first preprocessing right before the application of

the xDAWN filter:

Wh =
∑

i

∣∣∣w(1)
ih

∣∣∣ . (3.4)

Note that this way of ranking sensors could be applied to any affine processing chain.

Ranking in Regularization (SSVMO) A disadvantage of the 1–norm regularized

C-SVM is that it is only inducing sparsity in the feature space but not directly in

the number of sensors. There are several approaches to induce grouped sparsity

[Bach et al., 2012]. An intuitive approach would be to use

‖w‖1,∞ =
∑

h

max
i

|wih| (3.5)

where the second index h again corresponds to the sensor. The advantage of this reg-

ularization is, that the resulting classifier can be still defined as a linear optimization

problem and it might be possible to derive a proof of sparsity similar to Theorem 13.

Unfortunately, this way of regularization solely focuses on sparsity and not on gener-

alization. In fact, a short analysis showed that often equally high weights referring

to one sensor are assigned. To compensate for this, we choose a mixed regularization:

Method 20 (Sensor-Selecting Support Vector Machine (SSVM)).

min
w,b,t

∑
i,h

|wih| + Cs

∑
h

max
i

|wih| + C
∑
k

tk

s.t. yk

(∑
i,h

wihxk
ih + b

)
≥ 1 − tk ∀k

tk ≥ 0 ∀k .

(3.6)

Here, the additional regularization constant Cs weights between sparsity in sen-

sor space and the original 1–norm regularization. The final classifier weights can

again be used for ranking. We used the same approach for optimizing C as for the

1SVMO but CS had to be fixed to 1000 because an optimization was computationally

too expensive.

If the first index is related to the time, sparsity in time can be induced, accord-

ingly. If a smaller time interval is needed, the final decision can be accelerated.
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Evaluation Schemes

For evaluating the performance of a sensor selection method, three datasets are re-

quired: one on which the actual sensor selection is performed, one where the system

(spatial filter, classifier, etc.) is trained based on the selected sensor constellation, and

one where the system’s performance is evaluated. From an EEG-application point of

view, sensor selection should be performed on data from a prior usage session of the

subject and not on data from the current one, on which the system is trained and eval-

uated (one would not demount sensors that are already in position after a training

run). Since the selected sensor constellations are transferred from one usage session

to another, this evaluation scheme is denoted as inter-session (see also Figure 3.10).

The sensor constellations are thus evaluated on data from a different usage session

with potentially different positioning of EEG sensors, different electrode impedances,

etc. For the selected sensor constellation, the system is trained on data from one run

of the session and evaluated on the remaining 4 runs. Thus, the inter-session scheme

does not imply that classifiers are transferred between sessions but only that sensor

constellations are transferred. If the sensor properties (e.g., impedance, position) be-

tween different recordings are not expected to change, this evaluation part should be

omitted.

An alternative evaluation scheme, which is used frequently in related work, is

the intra-session scheme (as depicted in Figure 3.10): in this scheme, the sensor

selection is performed on data from the usage session itself; namely on the same

run’s data on which the system is trained later on. Thus, sensor constellations are

not transferred to a different session and the influence of changes in EEG sensor

positions and impedances is not captured. While this scheme is not sensible in the

context of an actual application, it is nevertheless used often for evaluation of sensor

selection methods because data of multiple usage sessions from the same subject

may not be available. We perform the intra-session evaluation mainly to investigate

to which extent its results generalize to the inter-session evaluation scheme.

To mimic an application case with a training period prior to an actual operation

period, the evaluation is performed by applying an “inverse cross-validation like”

schema on basis of the runs from one session. In the intra-session scheme, one run

is used for sensor selection and training of the classification flow, and the remaining

four runs from that session are used as test cases. This is repeated so that each of the

5 runs is used for sensor selection/training once and results for our dataset (consisting

of 5 subjects with 2 sessions each) in a total of 5 · 2 · 5 = 200 performance scores per

selection method and sensor set size. In the inter-session scheme we can perform the

sensor selection on each of the five runs of the other session of the subject, and thus

we obtain 5 · 200 = 1000 performance scores.
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Figure 3.10: Intra-session and inter-session scheme. R1–R5 denote the runs

from each experimental session. In the intra-session scheme (left), the sensor selec-

tion (blue) is performed in the same run in which the system is trained (green), and

the evaluation (red) is performed on the remaining runs from that session. In the

inter-session scheme (right), the sensor constellations are transferred to a different

session of the same subject. Note that run and session numbering were permuted

during the experiment so that in each condition, each run was used for sensor selec-

tion and training. Visualization taken from [Feess et al., 2013].

Another possible evaluation scheme, which we will not follow in this thesis is to

look at the transfer between subjects or to be more general the transfer between

different systems, the sensors are attached to.

Standard Signal Processing and Classification

During the training phase, the regularization parameter C of the C-SVM is optimized

using a grid search
(
C ∈ {100, 10−1, . . . , 10−6

})
with a 5-fold cross-validation.

The individual sensor selection methods require the training and evaluation of

different parts of the signal processing chain: the SSNR and Spatial Filter sensor se-

lection algorithms can be applied for each run based on the signals after the low-pass

filter and require no separate evaluation based on validation data. For the SVM-

based methods, the entire signal processing chain has to be trained. In this case, the

xDAWN filter is not used during the sensor selection in order to retain a straight-

forward mapping from SVM weights to sensor space. Again, no evaluation on vali-

dation data is required. The Performance method requires to train the entire signal

processing chain, too; however, additionally, a validation of the trained system’s per-

formance is required. For this, the data from a run is split using an internal 5-fold

cross-validation. Each of the methods yields one sensor constellation per run for each

session of a subject.

Processing with pySPACE

For this evaluation, pySPACE is very helpful. Even though, the evaluation was split

into several parts, the standardized configuration files ensured consistency between

the experiments. Without the parallelization capabilities, the evaluation would prob-

ably last too long. Adding ranking capabilities to spatial filters and linear classifiers
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(even combined with hyperparameter optimization) was straightforward due to the

software structure and only the SSNR and Performance methods needed some extra

implementation. This was combined into one electrode selection algorithm, which

was able to interface the different methods and to store and load electrode rank-

ing results. For the evaluation the resulting rankings (coming from the recursive

backward elimination) only had to be loaded and evaluated depending on the chosen

number of electrodes and the chosen evaluation scheme.

Results

Figure 3.11 shows the results for the intra-session scheme. At first it can be noticed

that all standard caps perform essentially on chance level. The same is true for the

SSNRAS and 2SVM selection heuristics: for more than 5 sensors, both curves lie close

to the center of the random selection patches. The PCA filter method performs even

worse than random for a large range of constellation sizes. The SSNRV S method,

the xDAWN filter, the Performance ranking, and the 1SVM ranking deliver a perfor-

mance considerably better than chance level for 30 or less sensors. The latter three

perform nearly identically for the whole range and they are better than chance level.

The CSP method performs slightly worse than these methods for less than 20 sen-

sors. The Performance ranking performs slightly worse than these methods in the

range between 30 and 40 sensors. For SSNRV S , the mean performance remains on

the baseline level of using all sensors down to around 18 sensors and is remarkably

better than any of the other heuristics.

It can be clearly seen, that ranking using the classifiers with optimized complex-

ity (1SVMO, 2SVMO, SSVMO) perform comparable or even slightly better than the

not optimized 1SVM ranking. Especially, the 2SVMO ranking shows a large improve-

ment in comparison to the ranking with no optimization (2SVM).

In the inter-session results shown in Figure 3.12, all sensor selection methods

drop in absolute performance compared to the intra-session scheme. Random con-

stellations and standard caps are not effected by the type of transfer since they are

not adapted to a specific session anyway. The relative order of the curves remains

identical to the intra-session results. The performance of the best methods is still

above or in the upper range of the random constellations, and SSNRV S still outper-

forms all random constellations in the relevant range.

Discussion

As the sensor selection of the SSNRAS and 2SVM methods performs essentially

equivalent to random selection, apparently these methods are not able to extract

any useful information from the data. It can be clearly seen, that the 2SVM requires
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Figure 3.11: Intra-session evaluation of the classification performance versus the

number of EEG electrodes for different sensor selection approaches. The horizontal

line All is a reference showing the performance using all available 62 electrodes. The

grey patches correspond to histograms of performances of 100 randomly sampled elec-

trode constellations. The elongation in y-direction spans the range of the occurring

performances and the width of the patches in x-direction corresponds to the quantity

of results in that particular range. The three black stars represent widely accepted

sensor placements for 19, 32,and 62 EEG electrodes. All other curves depict the mean

classification performance over all subjects and cross-validation splits. The results

for 4–10 sensors are shown separately in the inset. By using an inset the curves in

the main graphic appear less compressed. Description taken from [Feess et al., 2013].

a hyperparameter optimization (2SVMO) to be able to generalize well, which also

holds a bit for the 1SVM. A potential reason for the failure of the PCA could be that

the sources with highest variance, which are preferred by PCA, might be dominated

by EEG artifacts rather than task-related activities.

In accordance with the results of [Rivet et al., 2012], SSNRV S performs consider-

ably better than the relatively similar SSNRAS ranker. This is most likely due to the

fact that SSNRAS cannot take redundancy between channels into account. SSNRV S

accomplishes this by aggregating redundant information from different channels into

a single surrogate channel via spatial filtering.

It is perhaps surprising that Performance is not the best ranking and SSNRV S

performs much better; we suspect that this might be caused by an overfitting of the
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Figure 3.12: Inter-session evaluation of the classification performance versus the

number of EEG electrodes for different sensor selection approaches. For more details,

please see Figure 3.11

sensor selection by Performance to the selection session. This effect might be re-

duced by using a performance estimate which is more robust than the mean, such as

the median or the mean minus one standard deviation (to favor constellations with

smaller variances in performance and less outliers). However, this issue requires

further investigation.

The sensor selection capabilities of the SSVMO ranking are reasonable, since the

performance is comparable to the other good rankings (xDAWN, 1SVMO, 2SVMO).

Maybe, with an improved hyperparameter tuning, this algorithm is able to outper-

form these algorithms. Therefore, a more efficient implementation would be required.

Furthermore, the integration of warm starts for speeding up the hyperparameter op-

timization might be helpful for future investigations.

For the inter-session scheme, the loss in performance of all methods in comparison

to the intra-session scheme is expected. It results from the fact that due to day-to-

day changes in brain patterns and differences in the exact sensor placement, different

constellations may be optimal on different days—even for the same subject.

The fact, that the relative order of the results remains unchanged, however, in-

dicates that a comparison of electrode selection approaches can in principle be per-

formed without the effort of acquiring a second set of data for each subject. This
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facilitates the process of deciding for a particular sensor selection approach substan-

tially. For obtaining a realistic estimate of the classification performance in future

recordings with less sensors one needs a second, independent data recording session

for each subject, however.

All in all, we showed that a reduction of the number of sensors is possible from

62 to at least 40 sensors and that sensor selection approaches using the backtransfor-

mation concept show a good performance (SSVMO, 1SVMO, 2SVMO), even though

there is still room for improvement. Furthermore, we demonstrated a more com-

plex use case of pySPACE and the necessity to compare algorithms and to optimize

hyperparameters.

3.5 Discussion

3.5.1 Related Work

Based on the commercial software package Matlab, there are open

source toolboxes existing for processing data from neuroscience, like

EEGLAB [Delorme and Makeig, 2004] and FieldTrip [Oostenveld et al., 2011]

for magnetoencephalography (MEG) and EEG, and SPM (http://www.

fil.ion.ucl.ac.uk/spm/) especially for fMRI data. Respective Python

libraries are for example PyMVPA [Hanke et al., 2009], OpenElectro-

phy [Garcia and Fourcaud-Trocmé, 2009], and the NIPY software projects

(http://nipy.org/). These tools, are very much tailored to their special

type of data and application and are not appropriate for more general signal pro-

cessing and classification. In scientific computing in general, Python is probably the

programming language mostly used, because it is easy to learn/use/read, because it

can be made efficient by using C/C++ interfaces, and because it provides high quality

libraries which already define a lot of required functionality.

The Python machine learning stack is organized roughly, starting from core

libraries for numerical and scientific computation such as NumPy [Dubois, 1999]

and SciPy [Jones et al., 2001], over libraries containing implementations of core ma-

chine learning algorithms such as scikit-learn [Pedregosa et al., 2011], to higher level

frameworks such as MDP, which allow to combine several methods and evaluate

their performance empirically. Besides that, there are non-standardized ways of in-

terfacing with machine learning tools that are not implemented in Python such as

LibSVM [Chang and Lin, 2011] and WEKA [Hall et al., 2009].

The distinction between libraries and frameworks is typically not strict; frame-

works often contain some implementations of basic processing algorithms as libraries

do and libraries typically include some basic framework-like tools for configuration
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and evaluation. pySPACE can be considered as a high-level framework which con-

tains a large set of built-in machine learning algorithms as well as wrappers for

external software such as scikit-learn, MDP, WEKA, and LibSVM.

In contrast to libraries like scikit-learn, the focus of pySPACE is much more on

configuration, automation, and evaluation of large-scale empirical evaluations of sig-

nal processing and machine learning algorithms. Thus, we do not see pySPACE as an

alternative to libraries but rather as a high-level framework, which can easily wrap

libraries (and does so already for several ones), and which makes it easier to use and

compare the algorithms contained in these libraries.

In contrast to frameworks like MDP, pySPACE requires less programming skills

since a multitude of different data processing and evaluation procedures can be com-

pletely specified using configuration files in YAML-syntax without requiring the user

to write scripts, which would be a “show-stopper” for users without programming

experience. Similarly, frameworks based on GUIs are not easily used in distributed

computing contexts on remote machines without graphical interface. Thus, we con-

sider pySPACE’s YAML-based configuration files a good compromise between sim-

plicity and flexibility.

Additionally, pySPACE allows to execute the specified experiments on different

computational modalities in a fully automated manner using different back-ends:

starting from a serial computation on a single machine, over symmetric multipro-

cessing on shared-memory multi-core machines, to distributed execution on high-

performance clusters based on MPI or IBM’s job scheduler LoadLeveler. Further

back-ends like one integrating IPython parallel [Pérez and Granger, 2007] could eas-

ily be integrated in the future. Other tools for parallel execution are either re-

stricted to the symmetric multiprocessing scenario like joblib [Varoquaux, 2013] or

by themselves not directly usable in machine learning without some “glue” scripts

such as IPython parallel. Recently, the framework SciKit-Learn Laboratory (skll,

https://skll.readthedocs.org/) became open source. This framework also

uses the command line for distributing different data processing operations on a sum-

mary of datasets but in contrast to pySPACE it only interfaces scikit-learn, which

largely limits its capabilities.

A further advantage of pySPACE is that it allows to easily transfer methods from

the offline benchmarking mode to the processing in real application scenarios. The

user can use the same YAML-based data processing specifications in both modes.

For loading EEG and related data, pySPACE is already quite powerful. But in

the data handling of more arbitrary data, it would greatly benefit from interfacing to

the Python library pandas [McKinney, 2010]. This library provides a large range of

efficient, large scale data handling methods, which could increase the performance

of pySPACE and enlarge the number of available formats, data handling algorithms,
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and data cleaning methods.

There are several further open source signal processing tool-

boxes which could be interesting to be interfaced with pySPACE

like OpenVibe [Renard et al., 2010], BCI2000 [Schalk et al., 2004],

EEGLAB [Delorme and Makeig, 2004], Oger [Verstraeten et al., 2012],

pyMVPA [Hanke et al., 2009], Shogun [Sonnenburg et al., 2010], and many more,

including frameworks which would only use the automatic processing and paral-

lelization capabilities of pySPACE. These interfaces might help to overcome some

limitations of the software like the focus on feature vector and segmented time series

data or the missing interactive data visualization.

3.5.2 My Contribution to pySPACE for this Thesis

pySPACE was not exclusively my own work.21 For good software development always

a team is required and especially major changes to an existing software require a

discussion between developers and users. The original benchmarking framework was

written by Dr. Jan Hendrik Metzen and Timo Duchrow and the code for the signal

processing chains was adapted from MDP.

Nevertheless, for the goal to implement a framework for better automatizing the

process of optimizing the construction of an appropriate signal processing chain in-

cluding a classifier and to make this framework open source large changes had to

be made. This also includes usability and documentation issues. In context of these

changes, I see my major contribution to the framework and to my thesis.

For comparing classifiers, originally the WEKA framework was used. To also

evaluate classifiers in signal processing chains (node chains), which was required for

the application and the work on Chapter 1, I implemented the concept of classifiers

and their evaluation including numerous different performance measures. This work

was followed by implementing algorithms for the hyperparameter optimization. For

increasing the usability, I suggested, discussed, and implemented the major restruc-

turing of the software, I eased the setup of the software, and largely improved the

documentation and the testing suite. The basic concepts introduced in this chapter

already existed right from the beginning of the software in 2008 without my contri-

bution because they are required by the problem of tuning signal processing chains

itself. My contribution is to make this structure visible in the code and in its docu-

mentation for users and developers.

Last but not least, I implemented all algorithms used for evaluations and visual-

izations in this thesis like the BRMM and the generic backtransformation.

21 This can be seen at http://pyspace.github.io/pyspace/history.html and http://

pyspace.github.io/pyspace/credits.html.
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All the authors of [Krell et al., 2013b] had an important contribution to the frame-

work and helped making it open source. Due to my aforementioned contribution to

pySPACE, I was the main author of this publication. I defined the structure and

wrote most text parts of the paper but also the other authors contributed a few parts.

For the introduction (which is also used in this chapter) especially Dr. Sirko Straube

contributed some text parts. He also mainly implemented Figure 3.1. The text

parts about online processing are mainly the work of Johannes Teiwes and Hendrik

Wöhrle. Figure 3.3 and the pySPACE logo and some more graphics in the pySPACE

documentation are joint work with Johannes Teiwes. The evaluation example (see

Section 3.4.1) was joint work with Anett Seeland. The related work (see Section 3.5.1)

was mostly written by Dr. Jan Hendrik Metzen.

3.5.3 Summary

In this chapter a general framework was presented which supports the tuning/opti-

mization, analysis, and comparison of signal processing chains. Even though more

automation and more sophisticated algorithms for the optimization (as for example

mentioned in Section 3.3) should be integrated into pySPACE, basic concepts and

tools are already available and the software provides interfaces to integrate these

approaches. The framework supports a wide range of data formats, platforms, and

applications and provides several parallelization schemes, performance metrics, and

most importantly algorithms from diverse categories. It can be used for benchmark-

ing as well as real online applications. Numerous results and publications would not

have been possible without this framework and the cluster which we use to paral-

lelize our calculations.

In the process of developing methods two aspects of pySPACE were very helpful:

the reproducibility and the simplicity of the configuration. For discussing approaches

and problems the respective files were used and exchanged. So often new approaches

could be tested using configuration files from other scientists. This also ensured com-

parability and saved a lot of time. Even though the main research results of pySPACE

have been in the area of EEG data processing so far, the concepts and implementa-

tions can be transferred to other problem settings. For example, some analyses on

robotics data have been performed using sensor selection capabilities, the paralleliza-

tion, or a regression algorithm, and in Chapter 1 we showed an analysis of data on a

more abstract level, unrelated to a direct application. Usually, algorithms are devel-

oped and tested using scripts and later on these might be exchanged and then need

to be adapted to other applications or evaluations. By using pySPACE as a common

ground the exchange of algorithms between team members and the transfer to other

applications or evaluations was straightforward.
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The generic documentation and testing in pySPACE largely ease the mainte-

nance. Nevertheless, working on the framework with the goal to make it usable for

everyone in every application is extremely demanding and would probably require

some full time developers. In the future, pySPACE could benefit from additional al-

gorithms (e.g., by using an improved wrapper to Weka, or enabling evaluations of

clustering algorithms), input/storage formats (e.g., using pandas), job distribution

back-ends (e.g., database access, or the distribution concept from the SciKit-Learn

Laboratory), and use cases (e.g., soil detection by robots, support in rehabilitation,

video and picture processing). Furthermore, there are several possibilities, to im-

prove testing coverage, performance, usability, logging, and automation of the frame-

work. Especially the latter is interesting to target a fully autonomous optimization of

a signal processing chain. A broad scientific user community of pySPACE would pro-

vide a basis for easy exchange and discussion of signal processing and classification

approaches, as well as an increased availability of new signal processing algorithms

from various disciplines.
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Chapter 4

Conclusion

Optimizing the classification of complex data is a difficult task which often requires

expert knowledge. To ease the optimization process especially for non-experts, three

approaches are introduced in this thesis to improve the design and understanding of

signal processing and classification algorithms and their combination.

Classifier Connections

Several connections between existing SVM variants have been shown and resulted

in additional new SVM variants including unary classifiers and online learning algo-

rithms, which were shown to be relevant for certain applications. These connections

replace the loose net of SVM variants by a strongly connected one, which can be

regarded as a more general overall model. Knowing the connections, it is easier to

understand differences and similarities between the classifiers and save time when

teaching, implementing, optimizing, or just applying the classifiers. Furthermore,

different concepts can be transferred and existing proofs of properties can be gener-

alized to the connected models.

Backtransformation

To interpret and decode the complete signal processing chain which ends with a clas-

sifier, the backtransformation approach was presented. Whenever the processing

consists of affine transformations, it results in a representation of the processing

chain, giving weights for each component in the input domain, which can be directly

visualized. It replaces the handcrafted and cumbersome visualization and interpre-

tation of single algorithms with a joint view on the complete processing which is very

easy to obtain due to a generic implementation.

165
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pySPACE

The pySPACE framework was presented as a tool, to process data, tune algorithms

and their hyperparameters, and to enable the communication between scientists.

This largely supports optimization of the signal processing chain. Especially for the

classifiers handled in this thesis, the hyperparameter optimization and the choice

of the preprocessing is important. Furthermore, the framework was required for

comparing the classifiers and analyzing them, as well as for implementing the back-

transformation in a generic way. pySPACE was used for all evaluations in this thesis

and even in numerous other cases and so proved its usability as a tool for scientific

research (see Section 3.4.2).

Implications for the Practitioner

All three approaches are not to be taken separately1 but jointly to tackle the question

of

“How shall I use which classifier and

what features of my data does it rely on?”

So given a new problem, how can the insights and tools provided in this thesis

help?

The first step is that the respective data has to be prepared such that it can be

loaded into pySPACE. Usually, this step is quite simple due to the available loading

routines, examples, and documentation. Now it is possible to explore several process-

ing chains with pySPACE using different visualization, evaluation, and optimization

techniques (“How”, see Chapter 3). For a more systematic approach when choosing

the classifier, the “general” view/model on SVM classifier variants in Chapter 1 can

be used (“which”). As outlined in Section 1.5, the model can help in different ways:

• It can be used to understand/teach the models and their connections.

• It provides a rough guideline from the application point of view.

• It can partially be used to optimize the choice of classifier with an optimization

algorithm, e.g., as provided by pySPACE. By parameterizing the number of iter-

ations and possibly integrating it into the performance metric, the optimization

could help to decide between batch and online learning using the single iteration

approach (Section 1.2). Furthermore, the choice between C-SVM and RFDA is

parameterized with the relative margin concept from the BRMM (Section 1.3).

This provides a smooth transition, which can be used for optimization.

The resulting different processing chains can be compared and analyzed by decoding

them with the backtransformation (“what”, see Chapter 2). Therefore, the pySPACE

1 For a separate discussion of the approaches refer to Section 1.5, 2.5, and 3.5, respectively.
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framework can be used with its generic implementation of the backtransformation.

Irrelevant data can be detected and new insights about the data or the processing can

be gained. This can be used to derive new algorithms and/or improve the processing

chain.

Last but not least, the backtransformation can be used to support application

driven dimensionality reduction, e.g., by extending the classifier model with a re-

spective “sparsification” or by providing a ranking of input components in the source

domain instead of the feature domain.

Outlook

The aforementioned contributions can only be seen as the beginning and a lot of

research has to follow.

For the generalizing part (Chapter 1), connections between further classifiers (not

limited to SVM variants) should be derived and knowledge and particularities con-

cerning one algorithm should be transferred to the connected ones, if possible.

For the decoding part (Chapter 2), different visualization techniques should be

developed for different types of data, and especially new tools should be developed to

ease the interpretability of the affine as well as the general backtransformation.

For the framework and optimization part (Chapter 3), the number of algorithms,2

supported data types,3 and optimization algorithms4 should be increased especially

with the goal of making pySPACE useful for more applications and providing more

functionality, automation, and efficiency of the optimizing approaches.

Overall, the three introduced concepts should be analyzed in further applications

to prove their usefulness.

By pushing all aspects further and integrating the results in pySPACE, it might

be possible to achieve the longterm goal of creating a nearly fully automized algo-

rithm for autonomous longterm learning and efficient optimization of signal process-

ing chains (autoSPACE).

2 e.g., wrappers, clustering algorithms, and preprocessing which is tailored to not yet supported types

of data
3 e.g., text or music data
4 e.g., joint optimization of classifier and hyperparameters or joint optimization of filtering and clas-

sification
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Appendix B

Proofs and Formulas

B.1 Dual Optimization Problems

B.1.1 Well Defined SVM Model

Theorem 1 (The SVM Model is well defined). The SVM optimization problem has

feasible points and a solution always exists if there is at least one sample for each

class. Additionally when using the hard margin the sets of the two classes need to be

strictly separable. Furthermore, Slater’s constraint qualification is fulfilled.

Proof. The first point is fairly easy, because a feasible point P = (w, b, t) is described

by

w = 0, b = 0, tj = 10 ∀j : 1 ≤ j ≤ n . (B.1)

When working with a hard margin SVM the two sets S+1 and S−1 with

Sz = conv ({xj |yj = z}) (B.2)

need to be strictly separable by a hyperplane with parametrization P = (w, b) which

defines a feasible point. Otherwise, the optimization problem has no solution, be-

cause there is no feasible point.

The optimization problem consists of a convex target function and linear con-

straints. Furthermore, P is a Slater point, because small changes of P are still

feasible. Consequently, Slater’s constraint qualification can be applied to show

that the problem can be locally linearized and Lagrange duality can be applied

[Burges, 1998, Slater, 2014].

The argument about solvability will only be given for Method 3 but can be applied

to numerous variants analogous like the hard margin separation, squared loss, or

arbitrary norm of w. The target function f(w, b, t) = 1
2 ‖w‖2

2 + C
∑

tj is bounded below

by zero and f(P ) is an upper bound. Furthermore, the constraints are linear and
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define a closed set and the target function is convex. Even strong convexity holds

when fixing b. Consequently, there can not be more than one solution vector w. Due

to the uniqueness of the optimal tj , an optimal b is also unique. With the help of the

upper bound f(P ), the set of considered feasible points can be reduced to the ones

where

‖w‖2 ≤ 2

√
2f(P ), ‖t‖1 ≤ f(P )

C
. (B.3)

holds. All other points result in values of the target function being higher than the

value obtained by the feasible point P . If there were also limits for b, the set of

relevant and feasible points would be compact and consequently a minimum would

be obtained, because f is a continuous function. Since this is not the case, we have

to work with a sequence (w(n), b(n), t(n)) approaching the infimum. This sequence

is existing, because f is bounded from below. Due to the bounds on w and t we can

assume (at least by working with the respective subsequences) lim
n→∞

w(n) = w′ and

lim
n→∞

t(n) = t′. Without loss of generality, we can furthermore assume that lim
n→∞

b(n) =

∞ and that x1 is a sample with y1 = −1. Inserting this into the feasibility constraints

results in:

y1(〈w(n), x1〉 + b(n)) ≥ 1 − t(n)1 ⇒ lim
n→∞

− 〈w(n), x1〉 − b(n) ≥ lim
n→∞

1 − t(n)1 (B.4)

and consequently − 〈w′, x1〉 − ∞ ≥ 1 − t′
1 which is a contradiction. Assuming

lim
n→∞

b(n) = ∞ also leads to a contradiction by using the sample of the second class

with yj = +1. Consequently, we can assume lim
n→∞

b(n) = b′ holds at least for a subse-

quence. So finally, we obtain the solution of the optimization problem: (w′, b′, t′).

B.1.2 Dual of the Hard Margin Support Vector Machine

Theorem 18 (Dual Hard Margin SVM). If the samples of the two classes are strictly

separable, the duality gap for the hard margin SVM is zero and the dual optimization

problem reads:

min
αj≥0,

∑
αjyj=0

1

2

∑
i,j

αiαjyiyj 〈xi, xj〉 −
∑

j

αj (B.5)

Proof. The proof is the same as for Theorem 2 using the Lagrange function

L(w, b, α) =
1

2
‖w‖2

2 −
∑

αj(yj(〈w, xj〉 + b) − 1) (B.6)

and the derivatives

∂L

∂w
= w −

∑
j

αjyjxj ,
∂L

∂b
= −

∑
j

αjyj . (B.7)
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B.1.3 Detailed Calculation for the Dual of the L2–SVM

Even though, the calculations for the dual formulation are straightforward, there is

always in danger of small errors. To give at least one complete example, we provide

the calculation for the L2–SVM from Section 1.1.1.1 Theorem 2 in detail. The Model

reads:

Method 21 (L2–Support Vector Machine (p = p′ = 2)).

min
w,b,t

1
2 ‖w‖2

2 +
∑

Cjt2
j

s.t. yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n.
(B.8)

The respective Lagrange function is

L2(w, b, t, α) =
1

2
‖w‖2

2 +
∑

Cjt2
j −

∑
αj(yj(〈w, xj〉 + b) − 1 + tj) (B.9)

with the derivatives

∂L2

∂w
= w −

∑
j

αjyjxj ,
∂L2

∂b
= −

∑
j

αjyj ,
∂L2

∂tj
= 2tjCj − αj (B.10)

as explained in Section 1.1.1.1. This results in the equations:

w =
∑

j

αjyjxj (B.11)

0 =
∑

j

αjyj (B.12)

tj =
αj

2Cj
. (B.13)

When substituting the optimal tj and w in L2, we calculate:
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L2(w, b, t, α) =L2

⎛
⎝∑

j

αjyjxj , b,
αj

2Cj
, α

⎞
⎠ (B.14)

=
1

2

〈∑
i

αiyixi,
∑

j

αjyjxj

〉
+
∑

j

Cj

(
αj

2Cj

)2

(B.15)

−
∑

j

αj

(
yj

(〈∑
i

αiyixi, xj

〉
+ b

)
− 1 +

αj

2Cj

)
(B.16)

=
1

2

∑
i,j

αiαjyiyj 〈xi, xj〉 +
∑

j

α2
j

4Cj
(B.17)

−
∑
i,j

αiαjyiyj 〈xi, xj〉 − b
∑

j

αjyj +
∑

j

αj −
∑

j

α2
j

2Cj
(B.18)

= − 1

2

∑
i,j

αiαjyiyj 〈xi, xj〉 −
∑

j

α2
j

4Cj
− b · 0 +

∑
j

αj . (B.19)

Only in the last step, Equation (B.12) was used to eliminate b. Consequently, if b were

omitted in the original model, the resulting function would still be the same. Only

the additional restriction from Equation (B.12) would disappear.

B.1.4 Dual of the ν-SVM

Theorem 19 (Dual of the ν-SVM). Assuming solvability of the ν-SVM

min
w,t,ρ,b

1
2 ‖w‖2

2 − νρ + 1
n

∑
tj

s.t. yj (〈w, xj〉 + b) ≥ ρ − tj and tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.20)

the dual optimization can be formulated as:

min
α

1
2

∑
i,j

αiαjyiyj 〈xi, xj〉
s.t. 1

n
≥ αj ≥ 0 ∀j : 1 ≤ j ≤ n,

∑
j

αjyj = 0,
∑
j

αj = ν .
(B.21)

Proof. As in Theorem 1 it can be shown, that there are feasible points of the ν-SVM

and that it fulfills Slater’s constraint qualification. The therein mentioned proof for

the existence of a solution cannot be applied here. The target function is bounded

only from above by zero because putting all variables to zero is a feasible solution.

(As a side effect it automatically holds ρ > 0 [Crisp and Burges, 2000].) Furthermore,

the target function contains a negative component. Consequently, it cannot be used

for restricting the set of feasible points to a compact set.
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The Lagrange functions reads:

L(w, b, t, ρ, α, γ) =
1

2
‖w‖2

2 − νρ +
1

n

∑
j

tj −
∑

j

αj(yj(〈w, xj〉 + b) − ρ + tj) −
∑

j

γjtj

(B.22)

with the derivatives

∂L

∂w
= w −

∑
j

αjyjxj ,
∂L

∂b
= −

∑
j

αjyj ,
∂L

∂tj
=

1

n
− αj − γj ,

∂L

∂ρ
= −ν +

∑
j

αj . (B.23)

Again, setting the derivatives to zero and substituting them in the Lagrange func-

tions, provides the dual problem. ρ is eliminated from the Lagrange function, but the

additional constraint equation remains. Everything else is the same as for the dual

of the L1–SVM in Theorem 2.

B.1.5 Dual of the Binary BRMM

The general (primal) L1–BRMM model with special offset treatment reads:

min
w,b,s,t

1
2 ‖w‖2

2 + H
2 b2

2 +
∑

Cjtj +
∑

C ′
jsj

s.t. Rj + sj ≥ yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n

sj ≥ 0 ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(B.24)

The corresponding L2–BRMM model is very similar:

min
w,b,s,t

1
2 ‖w‖2

2 + H
2 b2 +

∑
Cjt2

j +
∑

C ′
js2

j

s.t. Rj + sj ≥ yj(〈w, xj〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n.
(B.25)

The Lagrange functions read:

L1(w, b, s, t, α, β, γ, δ) =
1

2
‖w‖2

2 +
H

2
b2 +

∑
Cjtj +

∑
C ′

jsj (B.26)

−
∑

αj(yj(〈w, xj〉 + b) − 1 + tj) (B.27)

+
∑

βj(yj(〈w, xj〉 + b) − Rj − sj) (B.28)

−
∑

γjsj −
∑

δjtj and (B.29)

L2(w, b, s, t, α, β) =
1

2
‖w‖2

2 +
H

2
b2 +

∑
Cjt2

j +
∑

C ′
js2

j (B.30)

−
∑

αj(yj(〈w, xj〉 + b) − 1 + tj) (B.31)

+
∑

βj(yj(〈w, xj〉 + b) − Rj − sj). (B.32)
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The original problem is now equivalent to first maximize L with positive dual vari-

ables (α, β, γ, δ) and then minimize with respect to the primal variables (w, b, s, t). The

dual problem is the reverse. Hence, we first need the derivatives with respect to the

primal variables:

∂L

∂w
= w −

∑
(αj − βj)yjxj ,

∂L

∂b
= Hb −

∑
(αj − βj)yj , (B.33)

∂L1

∂sj
= C ′

j − βj − δj ,
∂L2

∂sj
= 2sjC ′

j − βj , (B.34)

∂L1

∂tj
= Cj − αj − γj ,

∂L2

∂tj
= 2tjCj − αj . (B.35)

For getting the dual problems, two steps are required. Setting the derivatives zero,

gives equations for the primal variables, which then can be replaced in the opti-

mization problem, such that only the dual problem remains. The other step, just for

cosmetic reasons, is to multiply the problem with −1 and switch from maximization

to minimization. Together, this results in

min
α,β

1
2(α − β)T Q(α − β) −∑αj +

∑
Rjβj

s.t. 0 ≤ αj ≤ Cj ∀j : 1 ≤ j ≤ n

0 ≤ βj ≤ C ′
j ∀j : 1 ≤ j ≤ n

(B.36)

in the L1 case and

min
α,β

1
2(α − β)T Q(α − β) −∑αj +

∑
Rjβj + 1

4

∑ α2
j

Cj
+ 1

4

∑ β2
j

C′
j

s.t. 0 ≤ αj ∀j : 1 ≤ j ≤ n

0 ≤ βj ∀j : 1 ≤ j ≤ n

(B.37)

in the L2 case with

Qkl = ykyl

(
〈xk, xl〉 +

1

H

)
∀k, l : 1 ≤ k ≤ n, 1 ≤ l ≤ n. (B.38)

Without the special offset treatment, the equation

∑
j

yj(αj − βj) = 0 (B.39)

would have to be added to the constraints in the dual optimization problem. (The

proof would be nearly the same.)
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B.1.6 Dual of the One-Class BRMM Models

The dual problem formulations are required to derive update formulas to get a solu-

tion in an iterative way and to generate the online versions of the algorithms. Fur-

thermore, they are needed to introduce kernels.

Method 22 (Dual of the One-Class BRMM).

min
α,β

1
2

∑
i,j

(αi − βi)(αj − βj) 〈xi, xj〉 − 2
∑

αj + (R + 1)
∑

βj

s.t. 0 ≤ αj ≤ C and 0 ≤ βj ≤ C ∀j : 1 ≤ j ≤ n .
(B.40)

Theorem 20 (Dual of the One-Class BRMM). Method 22 is a dual problem of Method

28 and both methods are connected via

w =
∑

(αj − βj)xj . (B.41)

Proof. To simplify the calculations, we use the equivalent formulation:

min
w,t,u

1
2 ‖w‖2

2 + C
∑

tj + C
∑

uj

s.t. 1 + R + uj ≥ 〈w, xj〉 ≥ 2 − tj and tj , uj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.42)

This is a convex optimization problem and with w = 0, tj = 10, uj = 10 ∀i a

slater point is defined. Hence, strong duality holds (Slater’s constraint qualifica-

tion) [Boyd and Vandenberghe, 2004]. From the modified problem, we can derive the

Lagrange function:

L(w, t, u, α, β, γ, δ) =
1

2
‖w‖2

2 (B.43)

+ C
∑

tj −
∑

γjtj +
∑

αj (2 − tj − 〈w, xj〉) (B.44)

+ C
∑

uj −
∑

δjuj +
∑

βj (〈w, xj〉 − R − 1 − uj) (B.45)

and calculate the derivatives:

∂L

∂w
= w −

∑
(αj − βj)xj ,

∂L

∂tj
= C − γj − αj ,

∂L

∂uj
= C − δj − βj . (B.46)

To get the dual problems, the derivatives have to be set to zero and substituted in

the Lagrange function. Since all dual variables have to be positive, the equations
∂L
∂tj

= 0 and ∂L
∂uj

= 0 can be used to eliminate γj and δj with the inequalities αj ≤ C

and βj ≤ C. Putting everything together gives us the dual problem:

max
α,β

−1
2

∑
i,j

(αi − βi)(αj − βj) 〈xi, xj〉 + 2
∑

αj − (R + 1)
∑

βj

s.t. 0 ≤ αj ≤ C and 0 ≤ βj ≤ C ∀j : 1 ≤ j ≤ n .
(B.47)
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Multiplication of the target function with −1 completes the proof.

Method 23 (Dual of the L2–One-Class BRMM).

min
α,β

1
2

∑
i,j

(αi − βi)(αj − βj) 〈xi, xj〉 − 2
∑

αj + (R + 1)
∑

βj +
∑ α2

j +β2
j

2C

s.t. 0 ≤ αj and 0 ≤ βj ∀j : 1 ≤ j ≤ n .
(B.48)

Theorem 21 (Dual of the L2–One-Class BRMM). Method 23 is a dual problem of

Method 31 and both methods are connected via w =
∑

(αj − βj)xj .

Proof. To simplify the calculations, we use an equivalent formulation:

min
w,t,u

1
2 ‖w‖2

2 + C
2

∑
t2
j + C

2

∑
u2

j

s.t. 1 + R + uj ≥ 〈w, xj〉 ≥ 2 − tj ∀j : 1 ≤ j ≤ n .
(B.49)

This is a convex optimization problem and with w = 0, tj = 10, uj = 10 ∀j a

slater point is defined. Hence, strong duality holds (Slater’s constraint qualifica-

tion) [Boyd and Vandenberghe, 2004]. From the modified problem formulation, we

can derive the Lagrange function:

L(w, t, u, α, β) =
1

2
‖w‖2

2 (B.50)

+
C

2

∑
t2
j +

∑
αj (2 − tj − 〈w, xj〉) (B.51)

+
C

2

∑
u2

j +
∑

βj (〈w, xj〉 − R − 1 − uj) (B.52)

and calculate the derivatives:

∂L

∂w
= w −

∑
(αj − βj)xj ,

∂L

∂tj
= Ctj − αj ,

∂L

∂uj
= Cuj − βj . (B.53)

To get the dual problems, the derivatives have to be set to zero and substituted in the

Lagrange function, to eliminate the primal variables: w, t, and u. This gives us the

dual problem:

max
α,β

−1
2

∑
i,j

(αi − βi)(αj − βj) 〈xi, xj〉 + 2
∑

αj − (R + 1)
∑

βj −∑ α2
j +β2

j

2C

s.t. 0 ≤ αj and 0 ≤ βj ∀j : 1 ≤ j ≤ n .
(B.54)

Multiplication of the target function with −1 completes the proof.



180 Appendix B. Proofs and Formulas

Method 24 (Dual of the Hard-Margin One-Class BRMM).

min
α,β

1
2

∑
i,j

(αi − βi)(αj − βj) 〈xi, xj〉 − 2
∑

αj + (R + 1)
∑

βj

s.t. 0 ≤ αj and 0 ≤ βj ∀j : 1 ≤ j ≤ n .
(B.55)

Theorem 22 (Dual of the Hard-Margin One-Class BRMM). If there exists a w′ with

R > 〈w′, xj〉 > 0 ∀j, Method 24 is a dual problem of Method 32 and both methods are

connected via w =
∑

(αj − βj)xj .

Proof. Since w′ fulfills the constraints R > 〈w′, xj〉 > 0 ∀j, it is a slater

point of Method 32. Hence, strong duality holds (Slater’s constraint qualifica-

tion) [Boyd and Vandenberghe, 2004]. The Lagrange function for Method 32 is:

L(w, α, β) =
1

2
‖w‖2

2 +
∑

αj (2 − 〈w, xj〉) +
∑

βj (〈w, xj〉 − R − 1) (B.56)

with the derivative:
∂L

∂w
= w −

∑
(αj − βj)xj . (B.57)

Hence, the dual problem reads:

max
α,β

−1
2

∑
i,j

(αi − βi)(αj − βj) 〈xi, xj〉 + 2
∑

αj − (R + 1)
∑

βj

s.t. 0 ≤ αj and 0 ≤ βj ∀j : 1 ≤ j ≤ n .
(B.58)

Multiplication of the target function with −1 completes the proof.

Method 25 (Dual BRMM Variants with Kernel k). To introduce kernels, 〈xi, xj〉 is

again replaced by k(xi, xj) in the dual problems. The decision functions reads:

f(x) = sgn
((∑

(αj − βj)k(xj , x)
)

− 2
)

(B.59)

B.2 Model Connections

B.2.1 Least Squares SVM and Ridge Regression

The model for the ridge regression is:

Method 26 (Ridge Regression).

min
w,b,t

1
2 ‖w‖2

2 + C
2

∑
t2
j

s.t. yj − (〈w, xj〉 + b) = tj ∀j : 1 ≤ j ≤ n
(B.60)

with yj ∈ R.
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When restricting this model to yj ∈ {−1, +1} (binary classification) it is equivalent

to LS-SVM (Method 7) due to the equation:

t2
j = (1 − yj(〈w, xj〉 + b))2 = (yj − (〈w, xj〉 + b))2. (B.61)

B.2.2 Equality of ε-RFDA and BRMM

The ε-RFDA method from Section 1.3.3.3 reads

Definition 6 (2–norm regularized, ε-insensitive RFDA).

min
w,b,t

1
2 ‖w‖2

2 + C ‖t‖ε

s.t. yj(〈w, xj〉 + b) = 1 − tj ∀j : 1 ≤ j ≤ n.
(B.62)

Theorem 12 (Equivalence between RFDA, SVR, and BRMM). The RFDA with ε-

insensitive loss function and 2–norm regularization (or the SVR reduced to the val-

ues 1 and −1) and BRMM result in an identical classification with a corresponding

function, mapping RFDA (SVR) hyperparameters (C, ε) to BRMM hyperparameters

(C ′, R′) and vice versa.

Proof. As a first step, we want to replace the ε–norm by a linear formulation. Using

the definition of ‖.‖ε and replacing |tj | − ε by a new variable hj , the method can be

written as

min
w,b,h

1
2 ‖w‖2

2 + C
∑

max {hj , 0}
s.t. |yj(〈w, xj〉 + b) − 1| = hj + ε ∀j : 1 ≤ j ≤ n.

(B.63)

Since h is subject to minimization, the constraint can just as well be specified as

inequality

|yj(〈w, xj〉 + b) − 1| ≤ hj + ε. (B.64)

Additionally, to omit the max {hj , 0} term we introduce a new positive variable sj and

define sj = hj if hj > 0 and sj = 0 for hj ≤ 0. This results in a further reformulation

of the original method:

min
w,b,s

1
2 ‖w‖2

2 + C
∑

sj

s.t. |yj(〈w, xj〉 + b) − 1| ≤ sj + ε ∀j : 1 ≤ j ≤ n

sj ≥ 0 ∀j : 1 ≤ j ≤ n.

(B.65)

The last step is to replace the absolute value. This is done with the help of a case-by-
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case analysis that results in the linear program

min
w,b,s

1
2 ‖w‖2

2 + C
∑

sj

s.t. yj(〈w, xj〉 + b) ≥ 1 − (sj + ε) ∀j : 1 ≤ j ≤ n

yj(〈w, xj〉 + b) ≤ 1 + (sj + ε) ∀j : 1 ≤ j ≤ n

sj ≥ 0 ∀j : 1 ≤ j ≤ n.

(B.66)

As ε < 1 we can scale the problem by dividing by 1 − ε, yielding the scaled variables

w′, b′, s′
j . We also scale the target function with 1

(1−ε)2 , such that the scaled problem

reads
min
w,b,s

1
2 ‖w′‖2

2 + C
1−ε

∑
s′

j

s.t. yj(〈w′, xj〉 + b′) ≥ 1 − s′
j ∀j : 1 ≤ j ≤ n

yj(〈w′, xj〉 + b′) ≤ 1+ε
1−ε

+ s′
j ∀j : 1 ≤ j ≤ n

s′
j ≥ 0 ∀j : 1 ≤ j ≤ n.

(B.67)

The scaling also has an effect on the classification function, which is scaled in the

same way as the variables. This scaling does not change the sign of the classification

values and so the mapping to the classes is still the same. Renaming C
1−ε

to C ′ and
1+ε
1−ε

to R′, the result is BRMM with hyperparameters C ′ and R′.

To make the proof in the other direction, we first have to search for the ε corre-

sponding to R′ and afterwards scale the C ′ with the help of ε. This results in

ε =
R′ − 1

R′ + 1
, C = (1 − ε)C ′ =

2C ′

R′ + 1
. (B.68)

For the mapping between RFDA and SVR we have to use the fact that yj ∈ {−1, 1}
and consequently |yj | = 1 and y2

j = 1 :

|yj(〈w, xj〉 + b) − 1| = |yj | |yj(〈w, xj〉 + b) − 1| = |(〈w, xj〉 + b) − yj | . (B.69)

Note that it is possible to always replace the absolute value function |a| with −b ≤
a ≤ b if b is subject to minimization and it automatically holds b ≥ 0.

B.2.3 One-Class Algorithm Connections

Theorem 16 (Equivalence of SVDD and νoc-SVM on the Unit Hypersphere). If all

training samples lie on the unit hypersphere, SVDD (Method 10) is equivalent to νoc-

SVM (Method 11).
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Proof. SVDD is defined by

min
R′,a,t′

R′2 + C ′∑ t′
j

s.t. ‖a − xj‖2
2 ≤ R′2 + t′

j and t′
j ≥ 0 ∀j : 1 ≤ j ≤ n .

(B.70)

The norm part can be rewritten:

‖a − xj‖2
2 = ‖a‖2

2 − 2 〈a, xj〉 + ‖xj‖2
2 (B.71)

With this equation and since the samples are on the unit hypersphere
(
‖xj‖2

2 = 1
)

the SVDD method can be reformulated to:

min
R′,a,t′

R′2 + C ′∑ t′
j

s.t. 〈a, xj〉 ≥ ‖a‖2
2+1−R′2−t′

j

2 and t′
j ≥ 0 ∀j : 1 ≤ j ≤ n

(B.72)

with fa(x) = sgn
(
R′2 − ‖a‖2

2 + 2 〈a, xj〉 − 1
)
. Using the mapping

w = a, tj =
t′
j

2
, ρ =

‖a‖2
2 + 1 − R2

2
, ν =

1

C ′l
(B.73)

results in
min
w,ρ,t

‖w‖2
2 + 1 − 2ρ + 2 1

νl

∑
tj

s.t. 〈w, xj〉 ≥ ρ − tj and 2tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.74)

Scaling the target function and the restriction 2tj ≥ 0 with 0.5, shows the equivalence

to the νoc-SVM model (Method 11). The decision functions are the same, too:

fa(x) = sgn (2 〈w, xj〉 − 2ρ) = sgn (〈w, xj〉 − ρ) . (B.75)

On the other hand, to get from the νoc-SVM to the SVDD, the reverse mapping

a = w, t′
j = 2tj , R2 = ‖w‖2

2 + 1 − 2ρ, C ′ =
1

νl
(B.76)

can be used.

Theorem 17 (From νoc-SVM to the New One-Class SVM). Let ρ(ν) denote the opti-

mal value of νoc-SVM model. If ρ(ν) > 0, νoc-SVM is equivalent to our new one-class

SVM.

Proof. Having the optimal ρ(ν), the optimal w for νoc-SVM can be determined by the
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optimization problem.

min
w,t

1
2 ‖w‖2

2 + 1
νl

∑
tj

s.t. 〈w, xj〉 ≥ ρ(ν) − tj and tj ≥ 0 ∀j .
(B.77)

Now, scaling the target function with 4
(ρ(ν))2 and the restrictions with 2

ρ(ν) gives the

equivalent optimization problem:

min
w,t

1
2

∥∥∥ 2w
ρ(ν)

∥∥∥2

2
+ 2

νlρ(ν)

∑ 2tj

ρ(ν)

s.t.
〈

2w
ρ(ν) , xj

〉
≥ 2 − 2tj

ρ(ν) and
2tj

ρ(ν) ≥ 0 ∀j .
(B.78)

This scaling is feasible, since ρ(ν) > 0. Substituting

w̄ =
2w

ρ(ν)
, t̄j =

2tj

ρ(ν)
, C̄ =

2

νlρ(ν)
(B.79)

results in the new one-class SVM. Finally, for the decision function it holds:

f(x) = sgn (〈w, xj〉 − ρ(ν)) = sgn

(〈
ρ(ν)

2
w̄, xj

〉
− 2

ρ(ν)

2

)
= sgn (〈w̄, xj〉 − 2) . (B.80)

Theorem 23 (Hard-Margin One-Class SVM: C = ∞). Let X denote the set of training

instances xj with the convex hull conv(X). For the Hard-Margin One-Class SVM, the

origin separation approach reveals that the optimal hyperplane (for the positive class)

is tangent to conv(X) in its point of minimal norm x′. The hyperplane is orthogonal to

the vector x′ with w = x′ 2
‖x′‖2

2

.

Proof.

Method 27 (Hard-Margin One-Class SVM).

min
w

1
2 ‖w‖2

2

s.t. 〈w, xj〉 ≥ 2 ∀j : 1 ≤ j ≤ n .
(B.81)

Via convex linear combination of 〈w, xj〉 ≥ 2 ∀i it holds 〈w, x〉 ≥ 2 ∀x ∈ conv(X).

Furthermore, by the Cauchy-Schwarz inequality one gets:

2 ≤ 〈w, x′〉 ≤ ‖w‖2

∥∥x′
∥∥

2 ⇒ ‖w‖2 ≥ 2

‖x′‖2

. (B.82)

So if w′ = x′ 2
‖x′‖2

2

would fulfill all restrictions, it would be optimal, because ‖w′‖2 =

2
‖x′‖2

. The following proof is a variant from [Boyd and Vandenberghe, 2004, separat-
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ing hyperplane theorem]. Assume, there exists an xj with

〈
2x′

‖x′‖2
2

, xj

〉
< 2. This can

be reformulated to 〈x′, xj〉 < ‖x′‖2
2. Due to convexity it holds (1 − α)x′ + αxj ∈ conv(X)

for any 0 ≤ α ≤ 1. Consider the function h : R → R, h(α) = ‖(1 − α)x′ + αxj‖2
2 and its

derivative at zero:

∂h

∂α
(0) =

∂

∂α

(
(1 − α)2

∥∥x′
∥∥2

2 + α2 ‖xj‖2
2 + 2α(1 − α)

〈
x′, xj

〉)
(0) (B.83)

=
(
−2(1 − α)

∥∥x′
∥∥2

2 + 2α ‖xj‖2
2 + 2(1 − 2α)

〈
x′, xj

〉)
(0) (B.84)

= −2
∥∥x′
∥∥2

2 + 2
〈
x′, xj

〉
. (B.85)

With our assumption we get: ∂h
∂α

(0) < 0. Consequently, there exists a small 0 < t < 1

such that h(t) < h(0). In other words, there exists an

x′
t = (1 − t)x′ + txj ∈ conv(X) (B.86)

such that ‖x′
t‖2 < ‖x′‖2 which contradicts the definition of x′ which is the point of

minimal norm in conv(X). Hence, our assumption was wrong and w′ = x′ 2
‖x′‖2

2

fulfills

all the restrictions 〈w′, xj〉 ≥ 2 ∀j and is the solution of the hard-margin one-class

SVM.

B.2.4 Connection of Classifiers with Different Regularization Pa-

rameter

Theorem 24 (Linear Transition with Regularization Parameter). There is a function

of optimal dual variables α(C) of the C-SVM depending on the chosen regularization

parameter C. It can be defined, such that except for a finite number of points it is

locally linear which means that it locally has a representation: αi(C) = Cv1 + v2 with

v1, v2 ∈ R
n. The same holds for the function b(C). Consequently, for a linear kernel

the classification vector w and the offset b can be chosen such that, they are partially

linear functions depending on the classifier weights.

This theorem is a side effect of the proofs given in [Chang and Lin, 2001, espe-

cially the formulas in lemma 5]. Note that this can be easily extended, e.g., to class

dependent weighting. In some cases, the optimization problem might have more

than one solution but the solution function can be chosen such that it only includes

the choice where the behavior is locally linear. It is not yet clear, if the function can

be discontinuous at the finite number of points where it is not locally linear but the

example calculation in [Chang and Lin, 2001] indicates, that this is not the case.
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B.3 BRMM Properties

B.3.1 Sparsity of the 1–norm BRMM

Having the formulation of Method 16 as a linear program, the Simplex algorithm can

be applied to deliver an exact solution in a finite number of steps. Since there might

be more than one solution, an advantage of the Simplex algorithm is that it prefers

solutions with more variables equal to zero as shown in the following proof.

Theorem 13 (Feature Reduction of 1–norm BRMM). A solution of the 1–norm BRMM

(Method 16) with the Simplex algorithm always uses a number nf of features smaller

than the number of support vectors lying on the four margins. In other words, nf is

smaller than the number of training examples xj that satisfy

〈
w+ − w−, xj

〉
+
(
b+ − b−

)
∈ {1, −1, R, −R} . (B.87)

Proof. Due to the usage of the soft margin, the convex optimization problem always

has a solution.

Since we have a solvable linear optimization problem, the Simplex algorithm can

be applied. The set of feasible points in this special case is a polytope. The principle

of the Simplex algorithm is to take a vertex of this polytope and choose step by step

a neighboring one with a higher value of the target function. In the context of the

Simplex algorithm these vertices are called basic feasible points. Hence the solution

found by the Simplex algorithm is always a vertex of this polytope and it is called a

basic feasible solution [Nocedal and Wright, 2006].

As a first step, we introduce the mathematical description of these vertices. This

results in a restriction on the number of nonzero variables in the 1–norm BRMM

method. The next step is then to analyze the interconnection between the variables

and to connect the found restriction with the number of used features of the linear

classifier.

Method 16 has a total of 2n linear equations which can be formulated as one equa-

tion using a matrix multiplication with a matrix A ∈ R
2n×(2m+2+3n). The parameter

n is the number of given data vectors and m is the dimension of the data space which

is also the number of available features.

Definition 7 (Basic Feasible Point in Method 16). A basic feasible point

y = (w+, w−, b+, b−, t, g, h) (B.88)

has only positive components and solves the method equations. Each component of

y corresponds to a column of A. y can only have nonzero components so that all

corresponding columns of A are linearly independent.
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So a maximum of 2n out of 2m + 2 + 3n components of a basic feasible point

can be different from zero because a 2n × (2m + 2 + 3n) matrix can have at most

2n linearly independent columns. It can be proven that the basic feasible points

from this definition are exactly the vertices of the Simplex algorithms applied on

Method 16 [Nocedal and Wright, 2006]. Let y be a basic feasible solution. We already

know that a maximum of 2n components of y can be nonzero and we now analyze the

consequences for the individual parts w+, w−, b+, b−, t, g, h.

We are mainly interested in the classification vector w = w+−w− as the number of

features used refers to the number of components of w which are different from zero.

The above considerations alone deliver nf ≤ 2n as upper boundary for the number

of features. To get a more precise boundary, we have to analyze the dependencies

between the variables tj , gj , and hj . Hence, for each training example xj we conduct

a case-by-case analysis of the classification function f(x) =
〈
w+ − w−, x

〉
+ b+ − b−:

If |f(xj)| < 1 : tj 
= 0 and gj 
= 0.

If |f(xj)| = 1 : gj 
= 0.

If 1 < |f(xj)| < R : gj 
= 0 and hj 
= 0.

If |f(xj)| = R : hj 
= 0.

If |f(xj)| > R : hj 
= 0 and tj 
= 0.

(B.89)

For each of the n training samples at least one of the variables tj , gj and hj is nonzero.

Hence, the upper bound for the number of features drops from 2n down to n. Addi-

tionally, one nonzero component is required in all cases where |f(xj)| is not equal to 1

or R. The number of these cases can be written as n − n1R, where n1R is the number

of training samples xj for which f(xj) ∈ {1, −1, R, −R}. Summing up, the maximal

number 2n of nonzero components of any basic feasible solution y is composed of

• one component if b = b+ − b− is not zero (1b),

• n plus another n − n1R components from the case-by-case analysis,

• and finally the number of used features nf .

Written as an inequality we finally have

2n ≥ 1b + (2n − n1R) + nf ⇒ n1R ≥ nf , (B.90)

as we wanted to prove.

Note that in the special case of R = 1 we count each vector on the hyperplane

twice, accounting for the fact that these vectors still lie on two planes at the same time

in terms of the method. In the case of a 1–norm SVM, the number of used features

is restricted by the number of vectors lying on the two hyperplanes with |f(x)| = 1.

These findings are a direct consequence from Theorem 13 and the connections shown
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in Section 1.3.

B.3.2 Extension of Affine Transformation Perspective

Consider a totally different view on binary classification. We now search for

a good classifier together with a good transformation. Therefore, we want a

large soft margin as defined in the SVM method together with a small spread

of the data after transformation. This approach corresponds to the one in

[Shivaswamy and Jebara, 2010], but in contrast our classifier is not fixed. The corre-

sponding optimization problem is:

Definition 8 (Classification Transformation Problem).

min
w,b,A,T,R

1
2 ‖w‖2

2 + C
n∑

j=1
tj + BR

s.t. yj(〈w, Axj + T 〉 + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n
1
2 ‖Axj + T‖2

2 ≤ R2 ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n

(B.91)

where B and C are positive hyperparameters.

Lemma 25. The classification transformation problem always has a solution.

Proof. First, the feasible set is not empty because we can set

w = 0, b = 0, A = 0, T = 0, R = 0, tj = 1 ∀j : 1 ≤ j ≤ n. (B.92)

Now we can “reduce” the feasibility set by restricting the target function to the value

reached by this feasible point:

1

2
‖w‖2

2 + C
n∑

j=1

tj + BR ≤ Cn. (B.93)

This results in additional restrictions of the variables:

‖w‖2 ≤ √
2Cn, ‖t‖1 ≤ n,

0 ≤ R ≤ Cn
B

, ‖Axj + T‖2 ≤ 2Cn
B

.
(B.94)

The last one can be reformulated and seen as a restriction of (AT ) on the space which

is build by the xj with an additional last component with the values 1 (homogeneous

space).

‖AT‖2 ≤ 2Cn

B

1√
1 + min ‖xj‖2

2

(B.95)
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Outside this space, we can define AT to be zero without loss of generality. So we

showed the affine transformation to be bounded in the space of matrices. It can be

seen that the feasible set is closed. So the only remaining unbounded variable is b.

If it were bounded, too, we could use the existence of minima of continuous functions

on compact sets or bounded, closed sets in finite dimensional R-vector space.

Nevertheless, our target function is also bounded below by zero and so we can find

a sequence (wm, tm, Am, T m, Rm, bm)m∈N approaching the infimum. By looking only at

subsequences,

lim
m→∞

(wm, tm, Am, T m, Rm) = (w, t, A, T, R) (B.96)

can be assumed. If b had no converging subsequence, limm→∞ b = ∞ or − ∞ holds for

the above subsequence. If the classifications problem is not trivial, we can assume

y1 = 1, y2 = −1. If limm→∞ b = ∞, we can use the inequality

− (〈wm, Amx2 + T m〉 + bm) ≥ 1 − tm
2 (B.97)

and get the contradiction −∞ ≥ 1 − t2. The other case is similar. So our sequence

approaching the infimum can be assumed to converge. Because of closure of the

feasible set and continuity of the target function, the limit is one solution of the

minimization problem.

Lemma 26. The classification transformation problem has a solution, with an opti-

mal Matrix A∗ = [ĀT̄ ] with rank one.

Proof. From the previous lemma we already know that there is a solution of the

problem. We call it (w0, b0, t0, A0, T 0, R0).

Assuming w0 
= 0 without loss of generality, we can find an orthonormal base and

thereby an orthonormal transformation O which maps w0 to
∥∥w0

∥∥
2 ∗ e1. This results

in the same transformation as in the affine transformation problem. Now we use this

base transformation to transform the problem. We have

yj(〈w, Axj + T 〉 + b)

= yj(
〈
Ow, (OAOT )(Oxj) + OT

〉
+ b) ∀j : 1 ≤ j ≤ n

1
2 ‖Axj + T‖2

2

= 1
2

∥∥∥(OAOT )(Oxj) + OT
∥∥∥2

2
∀j : 1 ≤ j ≤ n.

(B.98)

So by fixing the optimal w0 and by using the new orthonormal base we get a subprob-
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lem where each partial solution is still one of the previous problem:

min
b,t,Ā,T̄ ,R

1
2

∥∥w0
∥∥2

2 + C
∑

tj + BR

s.t. yj(
∥∥w0

∥∥
2 (āT

1 x̄j + T̄1) + b) ≥ 1 − tj ∀j : 1 ≤ j ≤ n
1
2

∑n
i=1 (āT

i x̄j + T̄i)
2 ≤ R2 ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n

(B.99)

where āi is the ith row of Ā. The bar (̄.) stands for components in the representation

of the new base. Since we are trying to minimize R, the sum in the second inequality

has to be minimal. Furthermore, aj is irrelevant for the rest of the program ∀j 
= 1. So

we can set (ā0
i , t̄0

i ) = 0 ∀i 
= 1 and we have a rank one matrix after retransformation.

This matrix is still optimal in the original problem because the change has no effect

on the target function.

After demonstrating that an optimal A can be chosen with rank one, we can re-

duce the original problem or look at a subproblem and we get a program with no fixed

variables, but still we use the transformation defined by w0:

min
w,b,t,Ā,T̄ ,R

1
2 ‖w‖2

2 + C
∑

tj + BR

s.t. yj

(〈w,w0〉
‖w0‖2

(āT
1 x̄j + T̄1) + b

)
≥ 1 − tj ∀j : 1 ≤ j ≤ n

1
2(āT

1 x̄j + T̄1)2 ≤ R2 ∀j : 1 ≤ j ≤ n

tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(B.100)

This method looks similar to the Relative Margin Machine formulation.

B.3.3 Implementation of the BRMM with 2–norm regularization

In the following we will give further details on the calculations, which lead to the

algorithm formulas given in Section 1.3.4.1. Therefore, we use the dual problem

formulations from Appendix B.1.5.

For implementing a solution algorithm, in the n-th step, all except one index j are

kept fixed in dual and for this index the optimal αn+1
j and βn+1

j are determined. Let
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f1 and f2 be the target functions of the dual problems. Now we define

g1(d) = f1(α + dej , β) =
d2

2
Qjj + d (Qj. (α − β) − 1) + c (B.101)

g2(d) = f2(α + dej , β) =
d2

2

(
Qjj +

1

2Cj

)
+ d

(
Qj. (α − β) − 1 +

αj

2Cj

)
+ c (B.102)

h1(d) = f1(α, β + dej) =
d2

2
Qjj + d (Rj − Qj. (α − β)) + c’ (B.103)

h2(d) = f2(α, β + dej) =
d2

2

(
Qjj +

1

2C ′
j

)
+ d

(
Rj − Qj. (α − β) +

βj

2C ′
j

)
+ c’ (B.104)

with respective constants c and c′. The remaining step is to calculate the optimal d, a

case by case analysis concerning the boundaries, and plugging together the solution

formula with the boundary constraints to get formulas for αn+1
j and βn+1

j depending

on αn
j and βn

j .

Solvability and Constraint Qualifications

The following argument has the same structure as the proof in Section 1.1.1.1 but is

now for the BRMM instead of the C-SVM.

For using duality theory, two requirements have to be checked, which we will do

now on the concrete primal problem. First, it has to be proven that there is a solu-

tion, because applying duality theory requires an optimal point. Second a constraint

qualification has to hold, such that a local linearization of the problem is possible,

which is the basic concept of duality theory.

The two target functions (with q ∈ {1, 2}) are defined as:

f ′
q(w, b, t, s) =

1

2
‖w‖2

2 +
H

2
b2 +

∑
Cjtq

j +
∑

C ′
jsq

j . (B.105)

First some important observations:

• The constraints are linear.

• f ′
q are convex, continuous functions.

⇒ The BRMM model is defined by a convex optimization problem.

• With e being a vector of ones, the point p = (�0, 0, 2e, 2e) is a feasible point (ful-

filling all constraints) with u := f ′
q(p) = 2q

∑(
Cj + C ′

j

)
.

⇒ An upper bound of the optimal value of the optimization problem is u.

• p is a Slater point, meaning that it fulfills the restrictions without equality.

Since p is a Slater point of a convex optimization problem, the Slater condition is

fulfilled, which is a constraint qualification. So it remains to show the existence of

a solution. With the help of the upper bound u we can infer further restrictions for
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optimal points:

‖w‖2 ≤ 2
√

2u, |b| ≤ 2

√
2u

H
, ‖t‖q ≤ q

√√√√ u

min
1≤j≤n

Cj
, ‖s‖q ≤ q

√√√√ u

min
1≤j≤n

C ′
j

. (B.106)

Together with the normal constraints of the model, these restrictions define a com-

pact set. Since f ′
q is a continuous function, it has a minimum on this set. Hence, a

solution exists.

For the proof of the existence of a solution, it is very useful, that b is part of

the target function. Otherwise, one has to work with sequences and subsequence

approaching the infimum, which exists, because f ′
q is bounded below by zero. Assum-

ing, that there is no minimum, results in a subsequence with converging components

except of bn going to plus or minus infinity, one gets a contradiction when taking the

limits of the constraints of one example for each class:

lim
n→∞

yj(〈wn, xj〉 + bn) = yj lim
n→∞

bn ≥ 1 − lim
n→∞

tn. (B.107)

This results in ∞ ≥ const. for one class and −∞ ≥ const. for the other class, which is

a contradiction to the assumed divergence on bn.

B.3.4 ν-Balanced Relative Margin Machine

The ν-BRMM was derived from the ν-SVR by a sign/variable shifting (between tj and

sj) if yj = −1:

min
w,b,ε,s,t

1
2 ‖w‖2

2 + C (nνε +
∑

sj +
∑

tj)

s.t. ε + sj ≥ yj(〈w, xj〉 + b) − 1 ≥ −ε − tj ∀j : 1 ≤ j ≤ n

sj , tj ≥ 0 ∀j : 1 ≤ j ≤ n.

(B.108)

This model is always feasible and fulfills Slater’s constraint qualification. The proof is

similar to the C-SVM. Consequently, it is possible to derive optimality conditions and

to work with the dual optimization problem. Formulating, the respective Lagrange
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function and calculating the derivative leads to:

L(w, b, ε, s, t, α, β, γ, δ) =
1

2
‖w‖2

2 + C
(
nνε +

∑
tj +

∑
sj

)
(B.109)

+
∑

αj (1 − tj − ε − yj(〈w, xj〉 + b)) −
∑

γjtj (B.110)

+
∑

βj (yj(〈w, xj〉 + b) − 1 − ε − sj) −
∑

δjsj (B.111)

∂L

∂w
=w −

∑
(αj − βj)yjxj (B.112)

∂L

∂b
= −

∑
yj(αj − βj) (B.113)

∂L

∂ε
=Cnν −

∑
αj −

∑
βj (B.114)

∂L

∂tj
=C − αj − γj (B.115)

∂L

∂sj
=C − βj − δj . (B.116)

The dual ν-BRMM reads:

min
α

1
2

∑
(αi − βi)(αj − βj) 〈xi, xj〉 yiyj −∑

j
(αj − βj)

s.t. C ≥ αj ≥ 0 ∀j : 1 ≤ j ≤ n,

C ≥ βj ≥ 0 ∀j : 1 ≤ j ≤ n,∑
j

αjyj =
∑
j

βjyj ,

∑
j

αj + βj = νCn .

(B.117)

To show, that ν is a lower border (in percentage) on the number of support vectors it

is good to rescale the dual parameters and get an equivalent rescaled dual ν-BRMM

problem:

min
α

1
2

∑
(αi − βi)(αj − βj) 〈xi, xj〉 yiyj − 1

Cn

∑
j

(αj − βj)

s.t. 1
n

≥ αj ≥ 0, ∀j : 1 ≤ j ≤ n,
1
n

≥ βj ≥ 0, ∀j : 1 ≤ j ≤ n,∑
j

αjyj =
∑
j

βjyj ,

∑
j

αj + βj = ν .

(B.118)
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B.4 Unary Classifier Variants and Implementations

B.4.1 One-Class Balanced Relative Margin Machine and its Variants

For the following algorithms the decision function reads:

f(x) = sgn (〈w, x〉 − 2) . (B.119)

For the range parameter R it holds R ≥ 1.

Method 28 (One-Class BRMM).

min
w,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. 1 + R + tj ≥ 〈w, xj〉 ≥ 2 − tj and tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.120)

Method 29 (New One-Class SVM (R = ∞)).

min
w,b,t

1
2 ‖w‖2

2 + C
∑

tj

s.t. 〈w, xj〉 ≥ 2 − tj and tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.121)

Method 30 (One-Class RFDA (R = 1)).

min
w

1

2
‖w‖2

2 + C
∑

|〈w, xj〉 − 2| . (B.122)

Method 31 (L2–One-Class BRMM).

min
w,t

1
2 ‖w‖2

2 + C
2

∑
t2
j

s.t. 1 + R + tj ≥ 〈w, xj〉 ≥ 2 − tj ∀j : 1 ≤ j ≤ n .
(B.123)

Method 32 (Hard-Margin One-Class BRMM).

min
w

1
2 ‖w‖2

2

s.t. 1 + R ≥ 〈w, xj〉 ≥ 2 ∀j : 1 ≤ j ≤ n .
(B.124)

For the existence of a solution R > 1 is required. In contrast to all other BRMM

methods, this model might have no solution.

Method 33 (1–Norm One-Class BRMM).

min
w,t

‖w‖1 + C
∑

tj

s.t. 1 + R + tj ≥ 〈w, xj〉 ≥ 2 − tj and tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.125)
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B.4.2 Iterative Solution Formulas for One-Class BRMM Variants

This section introduces update formulas using the approaches from Section 1.2.3

and 1.2.4 Let j be the index of the relevant sample for the update in the k-th iter-

ation.

Theorem 27 (Update Formulas for the One-Class BRMM). With the projection func-

tion P (z) = max {0, min {z, C}}, the update formulas are:

α
(k+1)
j = P

(
α

(k)
j − 1

k(xj , xj)

(
−2 +

∑
(αi − βi)k(xi, xj)

))
(B.126)

β
(k+1)
j = P

(
β

(k)
j +

1

k(xj , xj)

(
−(R + 1) +

∑
(αi − βi)k(xi, xj)

))
(B.127)

and in the linear case:

α
(k+1)
j = P

(
α

(k)
j − 1

‖xj‖2
2

(〈
w(k), xj

〉
− 2
))

(B.128)

β
(k+1)
j = P

(
β

(k)
j +

1

‖xj‖2
2

(〈
w(k), xj

〉
− (R + 1)

))
(B.129)

w(k+1) = w(k) + ((α
(k+1)
j − α

(k)
j ) − (β

(k+1)
j − β

(k)
j )) xj . (B.130)

Proof. With the help of

h(α, β) =
1

2

∑
i,m

(αi − βi)(αm − βm)k(xi, xm) − 2
∑

αi + (R + 1)
∑

βi (B.131)

we define g1(d) = h(α(k) + dej , β(k)), g2(d) = h(α(k), β(k) + dej) and calculate:

∂g1

∂d
= d · k(xj , xj) +

∑
(α

(k)
i − β

(k)
i )k(xi, xj) − 2 , (B.132)

∂g2

∂d
= d · k(xj , xj) −

∑
(α

(k)
i − β

(k)
i )k(xi, xj) + (R + 1) . (B.133)

If k(xj , xj) = 0 the index can be ignored and no update is required. With k(xj , xj) > 0

the optimal d can be determined with ∂g1

∂d
= 0 or ∂g2

∂d
= 0 respectively. With the

projection of the resulting solution to the restriction interval [0, C] this gives the up-

date formulas. Replacing k(xi, xj) with 〈xi, xj〉 and substituting w(m) =
∑

(αj − βj)xj

results in the formulas for the linear case.

Theorem 28 (Update Formulas for the L2–One-Class BRMM). With the projection
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function P (z) = max {0, z}, the update formulas are:

α
(k+1)
j = P

⎛
⎝α

(k)
j − 1

k(xj , xj) + 1
C

⎛
⎝−2 +

α
(k)
j

C
+
∑

(αi − βi)k(xi, xj)

⎞
⎠
⎞
⎠ (B.134)

β
(k+1)
j = P

⎛
⎝β

(k)
j +

1

k(xj , xj) + 1
C

⎛
⎝−(R + 1) − β

(k)
j

C
+
∑

(αi − βi)k(xi, xj)

⎞
⎠
⎞
⎠ (B.135)

and in the linear case:

α
(k+1)
j = P

⎛
⎝α

(k)
j − 1

‖xj‖2
2 + 1

C

⎛
⎝〈w(k), xj

〉
− 2 +

α
(k)
j

C

⎞
⎠
⎞
⎠ (B.136)

β
(k+1)
j = P

⎛
⎝β

(k)
j +

1

‖xj‖2
2 + 1

C

⎛
⎝〈w(k), xj

〉
− (R + 1) − β

(k)
j

C

⎞
⎠
⎞
⎠ (B.137)

w(k+1) = w(k) + ((α
(k+1)
j − α

(k)
j ) − (β

(k+1)
j − β

(k)
j )) xj . (B.138)

Proof. With the help of

h(α, β) =
1

2

∑
i,m

(αi−βi)(αm−βm)k(xi, xm)−2
∑

αi+(R+1)
∑

βi+
∑ α2

i + β2
i

2C
(B.139)

we define g1(d) = h(α(k) + dej , β(k)), g2(d) = h(α(k), β(k) + dej) and calculate:

∂g1

∂d
= d

(
k(xj , xj) +

1

C

)
+
∑

(α
(k)
i − β

(k)
i )k(xi, xj) − 2 +

αj

C
, (B.140)

∂g2

∂d
= d

(
k(xj , xj) +

1

C

)
−
∑

(α
(k)
i − β

(k)
i )k(xi, xj) + (R + 1) +

βj

C
. (B.141)

If k(xj , xj) = 0 the index can be ignored and no update is required. With k(xj , xj) > 0

the optimal d can be determined with ∂g1

∂d
= 0 or ∂g2

∂d
= 0 respectively. With the

projection of the resulting solution to the restriction interval [0, ∞) this gives the

update formulas. Replacing k(xi, xj) with 〈xi, xj〉 and substituting w(m) =
∑

(αj −
βj)xj results in the formulas for the linear case.

Theorem 29 (Update Formulas for the Hard-Margin One-Class BRMM). With the

projection function P (z) = max {0, z}, the update formulas are:

α
(k+1)
j = P

(
α

(k)
j − 1

k(xj , xj)

(
−2 +

∑
(αi − βi)k(xi, xj)

))
(B.142)

β
(k+1)
j = P

(
β

(k)
j +

1

k(xj , xj)

(
−(R + 1) +

∑
(αi − βi)k(xi, xj)

))
(B.143)
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and in the linear case:

α
(k+1)
j = P

(
α

(k)
j − 1

‖xj‖2
2

(〈
w(k), xj

〉
− 2
))

(B.144)

β
(k+1)
j = P

(
β

(k)
j +

1

‖xj‖2
2

(〈
w(k), xj

〉
− (R + 1)

))
(B.145)

w(k+1) = w(k) + ((α
(k+1)
j − α

(k)
j ) − (β

(k+1)
j − β

(k)
j )) xj . (B.146)

These formulas are the same as for the One-Class BRMM but with a different projec-

tion.

Proof. The proof is the same as for the One-Class BRMM but the final projection is

different because, there is no upper boundary on the variables.

B.4.3 Online One-Class BRMM Variants

According to the origin separation approach in Section 1.2.4, deriving the update

formulas is straightforward. With a new incoming sample xj , the respective weights

are initialized with zero, w is updated and afterwards, the update weights are not

needed any longer. w is usually initialized with zeros, but it be also can also randomly

initialized or with a vector from a different dataset.

Method 34 (Online One-Class BRMM).

α = max

{
0, min

{
1

‖xj‖2
2

(
2 −

〈
w(j), xj

〉)
, C

}}

β = max

{
0, min

{
1

‖xj‖2
2

(〈
w(j), xj

〉
− (R + 1)

)
, C

}}
w(j+1) = w(j) + (α − β) xj .

(B.147)

Method 35 (Online L2–One-Class BRMM).

α = max

{
0, 1

‖xj‖2
2+ 1

C

(
2 −

〈
w(j), xj

〉)}

β = max

{
0, 1

‖xj‖2
2+ 1

C

(〈
w(j), xj

〉
− (R + 1)

)}
w(j+1) = w(j) + (α − β) xj .

(B.148)

Method 36 (Online Hard-Margin One-Class BRMM).

α = max

{
0, 1

‖xj‖2
2

(
2 −

〈
w(j), xj

〉)}

β = max

{
0, 1

‖xj‖2
2

(〈
w(j), xj

〉
− (R + 1)

)}
w(j+1) = w(j) + (α − β) xj .

(B.149)
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To get the respective SVM perceptrons, R = ∞ has to be used, which results in β = 0

in all cases.

Method 37 (Online One-Class SVM).

w(j+1) = w(j) + max

{
0, min

{
1

‖xj‖2
2

(
2 −

〈
w(j), xj

〉)
, C

}}
xj . (B.150)

Method 38 (Online L2–One-Class SVM).

w(j+1) = w(j) + max

{
0,

1

‖xj‖2
2 + 1

C

(
2 −

〈
w(j), xj

〉)}
xj . (B.151)

Method 39 (Online Hard-Margin One-Class SVM).

w(j+1) = w(j) + max

{
0,

1

‖xj‖2
2

(
2 −

〈
w(j), xj

〉)}
xj . (B.152)

For completeness, we also give the reduced formulas for the RFDA variants (R = 1),

except, for the hard margin case, where no solution exists.

Method 40 (Online One-Class RFDA).

w(j+1) = w(j) + max

{
−C, min

{
1

‖xj‖2
2

(
2 −

〈
w(j), xj

〉)
, C

}}
xj . (B.153)

Method 41 (Online L2–One-Class RFDA).

w(j+1) = w(j) +
1

‖xj‖2
2 + 1

C

(
2 −

〈
w(j), xj

〉)
xj . (B.154)
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B.5 Positive Upper Boundary Support Vector Estima-

tion

This section is joint work with Alexander Fabisch and is based on:

Fabisch, A., Metzen, J. H., Krell, M. M., and Kirchner, F. (2015). Accounting for Task-

Hardness in Active Multi-Task Robot Control Learning. Künstliche Intelligenz.

My contribution to this paper is the PUBSVE algorithm and the respective formulas

for the implementation after a request by Alexander Fabisch.

This section presents the SVR variant PUBSVE. It is related to this thesis due to its

relation to SVM, and its special offset treatment.

We are given a set of observations D = {(xj , yj)}n
j=1 and assume that the yj depend

on the xj via yj = f(xj) − ej , where ej is some noise term. In contrast to standard

regression problems, we assume ej ≥ 0, i.e., we always observe values yj which are

less or equal than the true function value f(xj). This model is appropriate for in-

stance in reinforcement learning when f(xj) returns the maximal reward possible in

a context xj , and yj is the actual reward obtained by a learning agent, which often

makes suboptimal decisions.

We are now interested in inferring the function f from observations D, i.e., learn

an estimate f̂ of f . One natural constraint on the estimate is that f̂(xj) ≥ yj , i.e., f̂

shall be an upper boundary on D. Assuming positive values, the goal is to have a low

b and to keep the boundary as tight as possible but also to generalize well on unseen

data. This can be achieved by a regularization:

Method 42 (Positive Upper Boundary Support Vector Estimation (PUBSVE)).

min
w,b

1
2 ‖w‖2

2 + H
2 b2 + C

∑
tq
j

s.t. 〈w, xj〉 + b ≥ yj − tj and tj ≥ 0 ∀j : 1 ≤ j ≤ n .
(B.155)

H is a special hyperparameter, to weight between a simple maximum using the

offset b or having a real curve fitted.1 The error toleration constant C should be

chosen to be infinity to enforce a hard margin. It was just used here, to give a more

general model and make the resemblance between our error handling and the hinge

loss clear (Tabular 1.1). In this case, q ∈ {1, 2} was used to also allow for squared

loss.2 The yj need to be normalized (e.g., by subtracting min
j′

yj′), such that a positive

value of b can be expected because otherwise, f̂(x) ≡ 0 would be the solution of our

suggested model. The same approach could be used, to estimate a negative lower

boundary by multiplying the yj and the resulting final boundary function f from the

1 Usually H should be chosen high for real curve fitting.
2 If q = 2, the constraint tj ≥ 0 can be omitted.
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PUBSVE with −1. The introduction of nonlinear kernels and sparse regularization,

and the implementation is straightforward (see also Chapter 1). We typically use

a non-parametric, kernelized model for f̂ , e.g., f̂(x) = b +
∑n

i=1 αjk(xj , x) with RBF

kernel k and offset b because it provides an arbitrary tight boundary and usually a

linear model is not appropriate.

Thanks to the offset in the target function, the special offset treatment approach

can be used for implementation as outlined in the following. First the dual optimiza-

tion problems are derived.

L1(w, b, t, α, γ) =
1

2
‖w‖2

2 +
H

2
b2 + C

∑
tj +

∑
αj (yj − tj − b − 〈w, xj〉) −

∑
γjtj

(B.156)

L2(w, b, t, α) =
1

2
‖w‖2

2 +
H

2
b2 + C

∑
t2
j +

∑
αj (yj − tj − b − 〈w, xj〉) (B.157)

∂Lq

∂w
= w −

∑
αjxj ⇒ wopt =

∑
αjxj (B.158)

∂Lq

∂b
= Hb −

∑
αj ⇒ bopt =

1

H

∑
αj (B.159)

∂L1

∂tj
= C − αj − γj ⇒ 0 ≤ αj ≤ C (B.160)

∂L2

∂tj
= 2Ctj − αj ⇒ topt

j =
αj

2C
(B.161)

Consequently the dual L1–PUBSVE reads:

min
α:0≤αj≤C∀j

1

2

∑
i,j

αiαj 〈xi, xj〉 +
1

2H

⎛
⎝∑

j

αj

⎞
⎠

2

−
∑

j

αjyj (B.162)

with the respective update formula after introducing the kernel function k:

αnew
j = max

{
0, min

{
αold

j − 1

k(xj , xj) + 1
H

(
−yj +

∑
i

αold
i k(xi, xj) +

1

H

∑
i

αi

)
, C

}}
.

(B.163)

For the hard margin case, set C = ∞. The dual L2–PUBSVE reads:

min
α:0≤αj∀j

1

2

∑
i,j

αiαj 〈xi, xj〉 +
1

2H

⎛
⎝∑

j

αj

⎞
⎠

2

−
∑

j

αjyj +
1

4C

∑
j

α2
j (B.164)

with the update formula:

αnew
j = max

{
0, αold

j − 1

k(xj , xj) + 1
2C

+ 1
H

(
αold

j

2C
− yj +

∑
i

αold
i k(xi, xj) +

1

H

∑
i

αold
i

)}
.

(B.165)
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The target function is:

f(x) =
∑

i

αik(xi, x) + b with b =
1

H

∑
i

αi. (B.166)

To reduce the training time and memory usage of the PUBSVE significantly, in-

stead of training the PUBSVE on the whole set of observed pairs we can update the

boundaries incrementally after each update [Syed et al., 1999]: we forget every ex-

ample except the support vectors xi and the corresponding weights (αi > 0), collect

new samples and use the new samples and the support vectors to train the model

of the upper and lower boundaries. The result is illustrated in Figure B.1, where

the samples are drawn from uniform random distributions with x ∈ [0, 1) and y lies

between the boundaries that are marked by the gray areas. We use this method to

reduce the computational complexity at the cost of a slightly higher error because

some previous examples that are close the estimated boundary but are not support

vectors might be outside of the boundaries after another iteration.

Figure B.1: Visualization of incremental learning with PUBSVE. 8 iterations of

the incremental learning of upper and lower boundaries: for each update of the PUB-

SVE we take the new samples (small red dots) and the support vectors (large yellow

dots) from the previous iteration as a training set. The area between the upper and

the lower boundary is blue and the area that has been added in comparison to the

previous iteration is red. All previous samples that will not be used for the incremen-

tal training are displayed as small blue dots. The true boundaries are marked by the

gray areas.



Appendix C

Configuration Files

type : node chain

input path : MNIST

parameter ranges :

c l a s s i f i e r : [ LibsvmOneClass , OcRmm]

l a b e l : [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ ,

’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ ]

l c : [2 , 1 .5 , 1 , 0 .5 , 0 , −0.5 , −1, −1.5 ,

−2, −2.5 , −3, −3.5 , −4]

node chain :

− node : PCASklearn

parameters :

n components : 40

− node : EuclideanFeatureNormalization

− node : c l a s s i f i e r

parameters :

c l a s s l a b e l s : [ l a b e l , REST]

complexity : eval (10∗∗ l c )

max iterations : 100000

nu : eval ( ( ( − l c + 2 . 1 ) / 6 . 2 ) ∗ ∗ ( 1 . 5 ) )

random : true

tolerance : eval (min(0.001∗10∗∗ l c , 0 . 0 1 ) )

− node : PerformanceSink

parameters : { i r c l a s s : l a b e l , s e c c l a s s : REST}

Figure C.1: Operation specification file for the comparison of new one-class

SVM (“OcRmm” with range=∞) and νoc-SVM (“LibsvmOneClass”) on MNIST

data (Section 1.4.5.2).
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type : node chain

input path : MNIST

parameter ranges :

c l a s s i f i e r : [OcRmm, OcRmmPerceptron , 2RMM,

UnaryPA0 , UnaryPA1]

l a b e l : [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ ]

l r : eval (range ( 4 , 2 1 ) )

node chain :

− node : PCASklearn

parameters :

n components : 40

− node : EuclideanFeatureNormalization

− node : Grid Search

parameters :

evaluation :

metric : AUC

performance sink node :

node : PerformanceSink

parameters :

calc AUC : true

i r c l a s s : l a b e l

se c c l a s s : REST

nodes :

− node : c l a s s i f i e r

parameters :

c l a s s l a b e l s : [ l a b e l , REST]

complexity : eval (10∗∗ ˜ ˜ l c ˜ ˜ )

max iterations : 100

radius : eval ( ( l r ) / 1 0 . 0 )

range : eval ( l r / 4 . 0 )

tolerance : eval (0 .001∗10∗∗ ˜ ˜ l c ˜ ˜ )

optimization :

ranges :

˜ ˜ l c ˜ ˜ : eval ([ −5.0+.5∗ i for i in range ( 1 5 ) ] )

p a r a l l e l i z a t i o n : {processing modality : backend}

va l idat i on se t :

sp l i t node :

node : CV Splitter

parameters : { s p l i t s : 5 , s t r a t i f i e d : true}

− node : PerformanceSink

parameters : { i r c l a s s : l a b e l , s e c c l a s s : REST}

Figure C.2: Operation specification file for unary classifier comparison on

MNIST data (Section 1.4.5.1).
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type : node chain

input path : P300 Data Preprocessed InterSession

store node chain : True

node chain :

− node : Time Series Source

− node : xDAWN

parameters :

e r p c l a s s l a b e l : ” Target ”

retained channels : 8

− node : TDF

− node : O FN

− node : NilSink

Figure C.3: Operation specification file for storing preprocessing flows (Sec-

tion 2.4.6).
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type : node chain

input path : P300 Data Preprocessed InterSession

parameter ranges :

backtransformation : [ with , without ]

c o ad ap t : [ fa lse , double ]

l o g d i s t : [1 , 1 .25 , 1 .5 , 1.75 , 2 , 2.25 , 2 .5 ,

2.75 , 3 , 3.25 , 3 .5 , 3.75 , 4]

runs : 10

constraints :

[ ( ” backtransformation ”==” with ” and ” c o adapt ”==” double ” )

or ( ” backtransformation ”==” without ” and ” c o adapt ”==” False ” ) ]

node chain :

− node : Time Series Source

− node : InstanceSelect ion

parameters :

reduce class : f a l s e

tes t percentage se lec ted : 100

tra in percentage se lected : 0

− node : Noop

parameters : {keep in history : True}

− node : RandomFlowNode

parameters :

dataset : INPUT DATASET

distance : eval (10∗∗ l o g d i s t )

f low base dir : resu l t fo lder f rom stored preprocess ing

retrain : True

− node : RmmPerceptron

parameters :

c l a s s l a b e l s : [ Target , Standard ]

co adaptive : c o adapt

co adaptive index : 2

complexity : 1

history index : 1

range : 100

retrain : True

weight : [ 5 . 0 , 1 .0 ]

zero tra in ing : True

− node : Classi f ication Performance Sink

parameters : { i r c l a s s : Standard , save trace : True}

Figure C.4: Operation specification file for reinitialization after changing the

preprocssing (Section 2.4.6).
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#!/ usr/bin/python

# http :// s c i k i t−learn . org/s table/auto examples/p lo t c las s i f i e r compar i son . html

” ” ” Reduced sc r ip t version by Mario Michael Krell taken from sc ik i t−learn . ” ” ”

# Code source : Gaë l Varoquaux

# Andreas Mü l l e r

# Modified for documentation by Jaques Grobler

# License : BSD 3 clause

import numpy as np

import matplotl ib . pyplot as p l t

from matplotl ib . co l o rs import ListedColormap

from sklearn . c ross va l idat i on import t r a i n t e s t s p l i t

from sklearn . preprocessing import StandardScaler

from sklearn . datasets import make moons , make circles , make c lass i f i cat ion

from sklearn . svm import SVC

from sklearn . lda import LDA

from sklearn . l inear model import PassiveAggressiveClassi f ier

h = .02 # step s i z e in the mesh

names = [ ” Linear SVM” , ”RBF SVM” , ” Polynomial SVM” , ”PA1” , ”FDA” ]

c l a s s i f i e r s = [SVC( kernel=” l inear ” , C=0.025) , SVC(gamma=2 , C=1) ,

SVC( kernel=” poly ” , degree =2 , C=10) ,

PassiveAggressiveClassi f ier ( n i t e r =1) , LDA( ) ]

X, y = make c lass i f i cat ion ( n features =2 , n redundant=0 , n informative =2 ,

random state =1 , n c l u s t e r s per c l ass =1)

rng = np . random . RandomState ( 2 )

X += 2 ∗ rng . uniform ( s ize=X. shape )

l inear ly separable = (X, y )

datasets = [ make moons ( noise =0.3 , random state =0) ,

make circles ( noise =0.2 , fac tor =0.5 , random state =1) ,

l inear ly separable ]

f igure = pl t . f igure ( f i g s i z e =(3∗len ( c l a s s i f i e r s ) , 3∗len ( datasets ) ) )

i = 1

for ds in datasets :

X, y = ds

X = StandardScaler ( ) . f i t t rans form (X)

X train , X test , y train , y tes t = t r a i n t e s t s p l i t (X, y , t e s t s i z e = .4 )

x min , x max = X[ : , 0 ] .min ( ) − . 5 , X [ : , 0 ] .max( ) + .5

y min , y max = X[ : , 1 ] .min ( ) − . 5 , X [ : , 1 ] .max( ) + .5

xx , yy = np . meshgrid (np . arange ( x min , x max , h ) ,

np . arange ( y min , y max , h ) )

cm = pl t .cm.RdBu

cm bright = ListedColormap ( [ ’ #FF0000 ’ , ’ #0000FF ’ ] )

ax = pl t . subplot ( len ( datasets ) , len ( c l a s s i f i e r s ) + 1 , i )

ax . scat ter ( X train [ : , 0 ] , X train [ : , 1 ] , c=y train , cmap=cm bright )

ax . set xl im ( xx .min ( ) , xx .max ( ) )

ax . set yl im ( yy .min ( ) , yy .max ( ) )

ax . s e t x t i c k s ( ( ) )

ax . s e t y t i c k s ( ( ) )

i += 1

for name, c l f in zip (names , c l a s s i f i e r s ) :

ax = pl t . subplot ( len ( datasets ) , len ( c l a s s i f i e r s ) + 1 , i )

c l f . f i t ( X train , y tra in )

score = c l f . score ( X test , y tes t )

i f hasattr ( c l f , ” dec i s ion funct ion ” ) :

Z = c l f . dec i s ion funct ion (np . c [ xx . ravel ( ) , yy . ravel ( ) ] )

else :

Z = c l f . predict proba (np . c [ xx . ravel ( ) , yy . ravel ( ) ] ) [ : , 1]

Z = Z . reshape ( xx . shape )

ax . contourf ( xx , yy , Z , cmap=cm, alpha =.8 )

ax . scat ter ( X train [ : , 0 ] , X train [ : , 1 ] , c=y train , cmap=cm bright )

ax . set xl im ( xx .min ( ) , xx .max ( ) )

ax . set yl im ( yy .min ( ) , yy .max ( ) )

ax . s e t x t i c k s ( ( ) )

ax . s e t y t i c k s ( ( ) )

ax . s e t t i t l e (name)

i += 1

f igure . subplots adjust ( l e f t =.02 , r ight =.98)

f igure . savef ig ( ” s c i k i t c l a s s i f i e r v i s p p . png” , dpi =300 , bbox inches= ’ t ight ’ )

Figure C.5: Scikit-learn script for classifier visualization (Figure 2.1).
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Version 14-01-2007

page 1 of 2

actiCAP 128Ch Standard-2

Green holders: Label 1 - 32, hard-wired Ch1 - Ch32 White holders: Label 1 - 32, hard-wired Ch33 - Ch64

Pink holders: Label 1 - 32, hard-wired Ch65 - Ch96 Yellow holders: Label 1 - 32, hard-wired Ch97 - Ch128

Blue holder: Label & hard-wired Ref Black holder: Label & hard-wired Gnd

Components:

Softcap

Holders with flat side inwards

3 additional holders for use with double-sided adhesive rings to place electrodes on bare skin

1 chin belt

this layout / pinout

Number Labels on page 2l

w
w

w
.b

ra
in

p
ro

d
u

c
ts

.c
o

m

Electrode Names

Electrode Nomenclature 

according to:

Oostenveld, R. & Praamstra, 

P. The five percent electrode 

system for high-resolution 

EEG and ERP measurements.

Clinical Neurophysiology 

2001; 112: 713-719

Figure C.6: Electrode positions of a 128 channel electrode cap taken from

www.brainproducts.com. For a 64 channel cap, the pink and yellow colored elec-

trodes are not used.



Acronyms

ν-SVM ν support vector machine — Section 1.1.1.3

νoc-SVM classical one-class support vector machine — Section 1.1.6.3

C-SVM classical support vector machine — Section 1.1

AUC area under the ROC curve [Bradley, 1997]

BA balanced accuracy — Figure 3.5

BCI brain-computer interface

BRMM balanced relative margin machine — Section 1.3.2

CPU central processing unit

CSP common spatial patterns [Blankertz et al., 2008]

DSL domain-specific language

EEG electroencephalogram

EMG electromyogram

ERP event-related potential

FDA Fisher’s discriminant — Section 1.1.3

fMRI functional magnetic resonance imaging

GUI graphical user interface

ICA independent component analysis [Jutten and Herault, 1991, Hyvärinen, 1999,

Rivet et al., 2009]
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LS-SVM least squares support vector machine — Section 1.1.2

MDP modular toolkit for data processing [Zito et al., 2008]

MEG magnetoencephalography

MPI message passing interface

PAA passive-aggressive algorithm— Section 1.1.5

PCA principal component analysis [Lagerlund et al., 1997, Rivet et al., 2009,

Abdi and Williams, 2010]

PUBSVE positive upper boundary support vector estimation — Appendix B.5

pySPACE Signal Processing And Classification Environment written in Python

RBF radial basis function

RFDA regularized Fisher’s discriminant — Section 1.1.3

RHKS reproducing kernel Hilbert space

RMM relative margin machine — Section 1.1.4

ROC receiver operating characteristic [Green and Swets, 1988,

Macmillan and Creelman, 2005]

SLAM simultaneous localization and mapping

SMO sequential minimal optimization — Section 1.2.2

SVDD support vector data description — Section 1.1.6.1

SVM support vector machine — Section 1.1

SVR support vector regression — Section 1.1.1.4

YAML YAML Ain’t Markup Language [Ben-Kiki et al., 2008]



Symbols

b offset/bias of the classification function f

C regularization parameter of the C-SVM

and its variants, also called cost parameter

or complexity

conv convex hull

ei i-th unit vector

exp exponential function

f classification function

Hz := {x ∈ R
n |〈w, x〉 + b = z } hyper plane

k kernel function to replace the scalar prod-

uct in the algorithm model

m dimensionality of the data

n number of samples

‖.‖p p-norm

〈., .〉 scalar product

sgn(t) :=

{
+1 if t > 0,

−1 otherwise.
signum function

tj loss value for the misclassification of xj

with label yj

w vector ∈ R
m to describe a linear function on

the data x via a scalar product

x data sample ∈ R
m

xj j-th sample of the training data ∈ R
m

yj label of xj

xij two-dimensional data sample x with i-th

temporal and j-th spatial dimension (e.g.,

sensor)
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abilistic interpretation of SVMs with an application to unbalanced classification.

In Advances in Neural Information Processing Systems 18 (NIPS 2005), pages 467–

474. MIT Press.

[Gray and Kolda, 2006] Gray, G. A. and Kolda, T. G. (2006). Algorithm 856:

APPSPACK 4.0: Asynchronous parallel pattern search for derivative-free opti-

mization. ACM Transactions on Mathematical Software, 32:485–507.

[Green and Swets, 1988] Green, D. M. and Swets, J. A. (1988). Signal detection the-

ory and psychophysics. Peninsula Publ., Los Altos, CA.

[Gretton and Desobry, 2003] Gretton, A. and Desobry, F. (2003). On-line one-class

support vector machines. An application to signal segmentation. In 2003 IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2003. Pro-

ceedings. (ICASSP ’03)., volume 2, pages II–709–712. IEEE.

[Griewank and Walther, 2008] Griewank, A. and Walther, A. (2008). Evaluating

Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for

Industrial and Applied Mathematics.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction to

variable and feature selection. The Journal of Machine Learning Research, 3:1157–

1182.

[Guyon et al., 2002] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene

Selection for Cancer Classification using Support Vector Machines. Machine

Learning, 46(1-3):389–422, doi:10.1023/A:1012487302797.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,

and Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explo-

rations Newsletter, 11(1):10–18, doi:10.1145/1656274.1656278.



Bibliography 221

[Hanke et al., 2009] Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E.,

Fründ, I., Rieger, J. W., Herrmann, C. S., Haxby, J. V., Hanson, S. J., and Poll-

mann, S. (2009). PyMVPA: A Unifying Approach to the Analysis of Neuroscientific

Data. Frontiers in Neuroinformatics, 3(3), doi:10.3389/neuro.11.003.2009.

[Haufe et al., 2014] Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D.,

Blankertz, B., and Bieß mann, F. (2014). On the interpretation of weight vec-

tors of linear models in multivariate neuroimaging. NeuroImage, 87:96–110,

doi:10.1016/j.neuroimage.2013.10.067.

[Helmbold et al., 1999] Helmbold, D. P., Kivinen, J., and Warmuth, M. K. (1999).

Relative loss bounds for single neurons. IEEE transactions on neural net-

works / a publication of the IEEE Neural Networks Council, 10(6):1291–1304,

doi:10.1109/72.809075.

[Hildebrandt et al., 2014] Hildebrandt, M., Gaudig, C., Christensen, L., Natarajan,
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[Lemm et al., 2004] Lemm, S., Schäfer, C., and Curio, G. (2004). BCI Competition

2003–Data set III: probabilistic modeling of sensorimotor mu rhythms for classifi-

cation of imaginary hand movements. IEEE Transactions on Biomedical Engineer-

ing, 51(6):1077–1080, doi:10.1109/TBME.2004.827076.

[Lew et al., 2012] Lew, E., Chavarriaga, R., Zhang, H., Seeck, M., and del Millan,

J. R. (2012). Self-paced movement intention detection from human brain signals:

Invasive and non-invasive EEG. In 2012 Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), pages 3280–3283.

[Lin et al., 2007] Lin, H.-T., Lin, C.-J., and Weng, R. C. (2007). A note on Platt’s

probabilistic outputs for support vector machines. Machine Learning, 68(3):267–

276, doi:10.1007/s10994-007-5018-6.

[Lipton et al., 2014] Lipton, Z. C., Elkan, C., and Narayanaswamy, B. (2014). Op-

timal Thresholding of Classifiers to Maximize F1 Measure. In Machine Learn-

ing and Knowledge Discovery in Databases - European Conference, ECML/PKDD

2014, Nancy, France, September 15-19, 2014. Proceedings, Part II, pages 225–239.

[Liu et al., 2011] Liu, Y., Zhang, H. H., and Wu, Y. (2011). Hard or Soft Classifica-

tion? Large-margin Unified Machines. Journal of the American Statistical Associ-

ation, 106(493):166–177, doi:10.1198/jasa.2011.tm10319.

[Loosli et al., 2007] Loosli, G., Gasso, G., and Canu, S. (2007). Regularization Paths

for ν-SVM and ν-SVR. In Liu, D., Fei, S., Hou, Z., Zhang, H., and Sun, C., edi-

tors, Advances in Neural Networks – ISNN 2007, volume 4493 of Lecture Notes in

Computer Science, pages 486–496. Springer Berlin Heidelberg.

[Macmillan and Creelman, 2005] Macmillan, N. A. and Creelman, C. D. (2005). De-

tection Theory : A User’s Guide. Lawrence Erlbaum Associates, Mahwah, NJ.



Bibliography 227

[Mahadevan and Shah, 2009] Mahadevan, S. and Shah, S. L. (2009).

Fault detection and diagnosis in process data using one-class sup-

port vector machines. Journal of Process Control, 19(10):1627–1639,

doi:http://dx.doi.org/10.1016/j.jprocont.2009.07.011.

[Makhorin, 2010] Makhorin, A. O. (2010). GNU Linear Programming Kit (GLPK).

[Manduchi et al., 2005] Manduchi, R., Castano, A., Talukder, A., and

Matthies, L. (2005). Obstacle Detection and Terrain Classification for

Autonomous Off-Road Navigation. Autonomous Robots, 18(1):81–102,

doi:10.1023/B:AURO.0000047286.62481.1d.

[Mangasarian, 1999] Mangasarian, O. (1999). Arbitrary-norm separating plane. Op-

erations Research Letters, 24(1-2):15–23, doi:10.1016/S0167-6377(98)00049-2.

[Mangasarian and Kou, 2007] Mangasarian, O. L. and Kou, G. (2007). Feature Se-

lection for Nonlinear Kernel Support Vector Machines. In Proceedings of the 7th

IEEE International Conference on Data Mining Workshops (ICDMW 2007), pages

231–236. IEEE Computer Society.

[Mangasarian and Musicant, 1998] Mangasarian, O. L. and Musicant, D. R. (1998).

Successive Overrelaxation for Support Vector Machines. IEEE Transactions on

Neural Networks, 10:1032 – 1037.

[Manz et al., 2013] Manz, M., Bartsch, S., and Kirchner, F. (2013). Mantis - a robot

with advanced locomotion and manipulation abilities. In Proceedings of the 12th

Symposium on Advanced Space Technologies in Robotics and Automation.

[Mazhelis, 2006] Mazhelis, O. (2006). One-class classifiers : a review and analysis

of suitability in the context of mobile-masquerader detection. South African Com-

puter Journal, 36:29–48.

[McDermott, 2009] McDermott, J. H. (2009). The cocktail party problem. Current

Biology, 19(22):R1024–R1027, doi:10.1016/j.cub.2009.09.005.

[McKinney, 2010] McKinney, W. (2010). Data structures for statistical computing in

python. In van der Walt, S. and Millman, J., editors, Proceedings of the 9th Python

in Science Conference, pages 51 – 56. http://pandas.pydata.org/.

[Meier et al., 2008] Meier, R., Dittrich, H., Schulze-Bonhage, A., and Aertsen, A.

(2008). Detecting epileptic seizures in long-term human EEG: a new ap-

proach to automatic online and real-time detection and classification of poly-

morphic seizure patterns. Journal of Clinical Neurophysiology, 25(3):119–131,

doi:10.1097/WNP.0b013e3181775993.



228 Bibliography

[Mercer, 1909] Mercer, J. (1909). Functions of positive and negative type and their

connection with the theory of integral equations. Philosophical Transactions of the

Royal Society of London. Series A, 209:415 – 446.

[Metzen et al., 2011a] Metzen, J. H., Kim, S. K., Duchrow, T., Kirchner, E. A., and

Kirchner, F. (2011a). On transferring spatial filters in a brain reading scenario.

In 2011 IEEE Statistical Signal Processing Workshop (SSP), pages 797–800, Nice,

France. IEEE.

[Metzen et al., 2011b] Metzen, J. H., Kim, S. K., and Kirchner, E. A. (2011b). Mini-

mizing calibration time for brain reading. In Mester, R. and Felsberg, M., editors,

Pattern Recognition, Lecture Notes in Computer Science, volume 6835, pages 366–

375. Springer Berlin Heidelberg, Frankfurt.

[Metzen and Kirchner, 2011] Metzen, J. H. and Kirchner, E. A. (2011). Rapid Adapta-

tion of Brain Reading Interfaces based on Threshold Adjustment. In 35th Annual

Conference of the German Classification Society, (GfKl-2011), page 138, Frankfurt,

Germany.

[Mika, 2003] Mika, S. (2003). Kernel Fisher Discriminants. PhD thesis, Technische

Universität Berlin.
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[Seeland et al., 2013a] Seeland, A., Wöhrle, H., Straube, S., and Kirchner, E. A.

(2013a). Online movement prediction in a robotic application scenario. In 6th In-

ternational IEEE EMBS Conference on Neural Engineering (NER), pages 41–44,

San Diego, California.
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[Wöhrle et al., 2014] Wöhrle, H., Teiwes, J., Krell, M. M., Seeland, A., Kirchner,

E. A., and Kirchner, F. (2014). Reconfigurable dataflow hardware accelerators for



236 Bibliography

machine learning and robotics. In Proceedings of European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases (ECML

PKDD-2014), September 15-19, Nancy, France.
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