
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2013 

Automating Large-Scale Simulation Calibration to Real-World Automating Large-Scale Simulation Calibration to Real-World 

Sensor Data Sensor Data 

Richard Everett Edwards 
redwar15@utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Applied Statistics Commons, Multivariate Analysis Commons, Other Computer Sciences 

Commons, Probability Commons, and the Statistical Models Commons 

Recommended Citation Recommended Citation 
Edwards, Richard Everett, "Automating Large-Scale Simulation Calibration to Real-World Sensor Data. " 
PhD diss., University of Tennessee, 2013. 
https://trace.tennessee.edu/utk_graddiss/1715 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1715&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Richard Everett Edwards entitled "Automating 

Large-Scale Simulation Calibration to Real-World Sensor Data." I have examined the final 

electronic copy of this dissertation for form and content and recommend that it be accepted in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 

Computer Science. 

Lynne E. Parker, Major Professor 

We have read this dissertation and recommend its acceptance: 

Michael Berry, Hamparsum Bozdogan, Husheng Li, Joshua New 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Automating Large-Scale

Simulation Calibration to

Real-World Sensor Data

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Richard Everett Edwards

May 2013



c© by Richard Everett Edwards, 2013

All Rights Reserved.

ii



Many people have contributed to my inspiration and desire to complete this work,

despite their occasional nagging question, “When are you going to finish exactly?”. I

dedicate this dissertation to the my family, friends, and the following people:

Grandfather Russell Busbee – In addition to working his way up from digging

ditches to an accountant at DuPont, he made sure my Aunt Dell, Uncle Rusty, and

my mother had the opportunity and the ability to obtain college degrees.

Grandfather Richard E. Edwards Sr. – He passed November 2012 from pancreatic

cancer at age 81. He always encouraged his grandchildren to pursue math, science,

and engineering. In addition, he dedicated his entire life’s attention to his family.

Mother, Nancy B. Powell – She forced me to study as a child, despite my desires to

play and pursue other endeavors, and she never allowed me to settle for anything

less than what my abilities should achieve. In addition, she supported me throughout

all studies with text book expenses, living expenses, and more.

Step Father, Clay Gehrke – He was always there to help me move. Clay helped move

me in and out of every dorm room and apartment without complaint. This includes

him helping me move all the way from Houston to Knoxville.

Wife, Xia (Sophia) Huang – While Sophia was very pushy about my graduate

studies, she always made sure I had excellent food and rest. I have greatly enjoyed

her home cooked lunches, and I look forward to her continued support.

Father, Richard E. Edwards Jr. – My father paid all my tuition at the University of

Texas, and allowed me to spend extra time there to explore undergraduate research.

My explorations into research as an undergraduate student ultimately lead me here.

iii



Acknowledgements

I would like to thank Dr. Joshua New for funding and assisting all research presented

within this dissertation. In addition, I would like to thank Dr. Lynne E. Parker for

providing guidance throughout my graduate studies and research as well as providing

opportunities to grow and expand my knowledge within the machine learning domain.

Additionally, I would like to thank Dr. Hamparsum Bozdoghan for evolving my

understanding about model complexity and model selection overall, it has greatly

changed how I approach most learning problems. Lastly, I would like to thank all my

friends and family for their continuous support throughout my graduate studies.

iv



Abstract

Many key decisions and design policies are made using sophisticated computer

simulations. However, these sophisticated computer simulations have several major

problems. The two main issues are 1) gaps between the simulation model and

the actual structure, and 2) limitations of the modeling engine’s capabilities.

This dissertation’s goal is to address these simulation deficiencies by presenting a

general automated process for tuning simulation inputs such that simulation output

matches real world measured data. The automated process involves the following

key components – 1) Identify a model that accurately estimates the real world

simulation calibration target from measured sensor data; 2) Identify the key real world

measurements that best estimate the simulation calibration target; 3) Construct a

mapping from the most useful real world measurements to actual simulation outputs;

4) Build fast and effective simulation approximation models that predict simulation

output using simulation input; 5) Build a relational model that captures inter variable

dependencies between simulation inputs and outputs; and finally 6) Use the relational

model to estimate the simulation input variables from the mapped sensor data, and

use either the simulation model or approximate simulation model to fine tune input

simulation parameter estimates towards the calibration system.

The work in this dissertation individually validates and completes five out of

the six calibration components with respect to the residential energy domain. Step

1 is satisfied by identifying the best model for predicting next hour residential

electrical consumption, the calibration target. Step 2 is completed by identifying

v



the most important sensors for predicting residential electrical consumption, the

real world measurements. While step 3 is completed by domain experts, step 4 is

addressed by using techniques from the Big Data machine learning domain to build

approximations for the EnergyPlus (E+) simulator. Step 5’s solution leverages the

same Big Data machine learning techniques to build a relational model that describes

how the simulator’s variables are probabilistically related. Finally, step 6 is partially

demonstrated by using the relational model to estimate simulation parameters for

E+ simulations with known ground truth simulation inputs.

vi



Contents

Introduction 1

1 Related Work 11

1.1 Simulation Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Sensor Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 18

2.1 E+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Campbell Creek . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Wolf Creek . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 E+ Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Dealing with Large Datasets . . . . . . . . . . . . . . . . . . . . . . . 23

3 Sensor-based Modeling 24

3.1 Traditional Modeling vs Sensor-Based Modeling . . . . . . . . . . . . 25

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Feed Forward Neural Network . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Least Squares Support Vector Machine . . . . . . . . . . . . . . . . . 32

vii



3.7 Hierarchical Mixture of Experts . . . . . . . . . . . . . . . . . . . . . 34

3.8 Fuzzy C-Means with Feed Forward Neural Networks . . . . . . . . . . 36

3.9 Temporal Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.10 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Predicton Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12.1 Great Energy Prediction Shootout . . . . . . . . . . . . . . . 41

3.12.2 Campbell Creek House 1 . . . . . . . . . . . . . . . . . . . . . 42

3.12.3 Campbell Creek House 2 . . . . . . . . . . . . . . . . . . . . . 43

3.12.4 Campbell Creek House 3 . . . . . . . . . . . . . . . . . . . . . 44

3.13 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Sensor Selection 52

4.1 Model Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Genetic Algorithm for Subset Selection . . . . . . . . . . . . . . . . . 57

4.3 Stepwise Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Auto Relevance Detection . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Feature Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Feature Selection Results . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.1 Campbell Creek House 1 . . . . . . . . . . . . . . . . . . . . . 62

4.6.2 Campbell Creek House 2 . . . . . . . . . . . . . . . . . . . . . 67

4.6.3 Campbell Creek House 3 . . . . . . . . . . . . . . . . . . . . . 75

4.6.4 Across All Houses . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.5 Variable Ranking . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.6 Ground Truth Comparison . . . . . . . . . . . . . . . . . . . . 94

4.7 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Computer Science Contribution Summary . . . . . . . . . . . . . . . 104

viii



5 Simulation Approximation 105

5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Large Scale-Feed Forward Neural Network Training . . . . . . 107

5.1.2 Lasso Regression . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.3 Alternating Direction Method of Multipliers . . . . . . . . . . 109

5.1.4 Large-Scale Lasso Regression . . . . . . . . . . . . . . . . . . 112

5.1.5 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Fine Grain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.2 Markov Order 1 & 2 . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Learning Simulation Variable Relationships 139

6.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . 141

6.2 Score and Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Constraint Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Regression Based Method . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.1 Direct GGM Learning . . . . . . . . . . . . . . . . . . . . . . 153

6.5.2 Bayesian GGM Learning . . . . . . . . . . . . . . . . . . . . . 154

6.5.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7.1 MO1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.7.2 FG Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ix



6.7.3 MO2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.9 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.10 Computer Science Contribution Summary . . . . . . . . . . . . . . . 174

Conclusion 175

Bibliography 183

Vita 207

x



List of Tables

3.1 Great Energy Prediction Shootout Results. . . . . . . . . . . . . . . . 41

3.2 Results for all techniques applied to House 1. . . . . . . . . . . . . . . 42

3.3 Results for all techniques applied to House 2 . . . . . . . . . . . . . . 44

3.4 Results for all techniques applied to House 3. . . . . . . . . . . . . . . 45

3.5 Great Energy Prediction Shootout results using 3-Folds. . . . . . . . 51

4.1 Top 10 Stepwise Sensors for Markov Order 1 models per House;

variables with missing data were removed. . . . . . . . . . . . . . . . 92

4.2 Top 10 GA Sensors for Markov Order 1 models per House; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 94

4.3 Top 10 Stepwise Sensors for Markov Order 1 models per House; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Top 10 GA Sensors for Markov Order 1 models per House; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Compares the best sensor subsets for House 1 and 2 against the

restricted ground truth; variables with missing values were dropped. . 100

4.6 Compares the best sensor subsets for House 3 and across all houses

against the restricted ground truth; variables with missing values were

dropped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Compares the best subsets for House 1 and 2 against the restricted

ground truth; missing data values were set to zero. . . . . . . . . . . 101

xi



4.8 Compares the best subsets for House 3 and across all houses against

the restricted ground truth; missing data values were set to zero. . . 101

5.1 Illustrates all model’s Whole Building Energy consumption (MO2

Variable 90) prediction accuracy. Several standard deviations were

very small, making them essentially zero. . . . . . . . . . . . . . . . 128

5.2 The first column represents the single MO1 model training time, and

the second column is the necessary time to train all MO1 models in

serial. The prediction time represents single model execution time. . . 129

5.3 Compares the best FG FFNN model results, without HVAC features,

against the best FG FFNN model with HVAC operation features. Both

models use 15 hidden units. Variables that show improvement are

marked in blue and those show degradation are marked in red. . . . 134

5.4 Compares the best MO2 FFNN model results, without HVAC features,

against the best MO2 FFNN model with HVAC operation features.

Both models use 10 hidden units. Variables that show improvement

are marked in blue and those that show degradation are marked in red. 135

1 MO1 and MO2 input variables 1 - 52. . . . . . . . . . . . . . . . . . . 196

2 MO1 and MO2 input variables 53 - 104. . . . . . . . . . . . . . . . . 197

3 MO1 and MO2 input variables 104 - 156. . . . . . . . . . . . . . . . . 198

4 MO1 and MO2 output variables 1 - 40 . . . . . . . . . . . . . . . . . 199

5 MO1 and MO2 output variables 41 - 90 . . . . . . . . . . . . . . . . . 200

6 FG input variables 1 - 50 . . . . . . . . . . . . . . . . . . . . . . . . . 201

7 FG input variables 51 - 100 . . . . . . . . . . . . . . . . . . . . . . . 202

8 FG input variables 101 - 150 . . . . . . . . . . . . . . . . . . . . . . . 203

9 FG input variables 151 - 180 . . . . . . . . . . . . . . . . . . . . . . . 204

10 FG output variables 1 - 40 . . . . . . . . . . . . . . . . . . . . . . . . 205

11 FG input variables 41 - 80 . . . . . . . . . . . . . . . . . . . . . . . . 206

xii



List of Figures

1 Automated simulation calibration process diagram . . . . . . . . . . . 4

3.1 An example Hierarchical Mixture of Experts model with depth 2 and

branching factor 2. This figure is provided by Jordan and Jacobs (1994). 33

3.2 One week of electrical consumption for all three houses. . . . . . . . . 46

3.3 One week of electrical consumption for the Great Energy Prediction

Shootout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Three weeks of electrical consumption for House 3. . . . . . . . . . . 49

4.1 Models with the lowest ICOMP(IFIM) variances for House 1; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 63

4.2 Models with the lowest ICOMP(IFIM) mean for House 1; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 65

4.3 Models with the lowest ICOMP(IFIM) variance for House 1; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Models with the lowest ICOMP(IFIM) mean for House 1; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Models with the lowest ICOMP(IFIM) variance for House 2; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 70

4.6 Models with the lowest ICOMP(IFIM) mean for House 2; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 71

xiii



4.7 Models with the lowest ICOMP(IFIM) variance for House 2; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Models with the lowest ICOMP(IFIM) meane for House 2; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Models with the lowest ICOMP(IFIM) variance for House 3; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 76

4.10 Models with the lowest ICOMP(IFIM) mean for House 3; variables

with missing data were removed. . . . . . . . . . . . . . . . . . . . . 78

4.11 Models with the lowest ICOMP(IFIM) variance for House 3; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Models with the lowest ICOMP(IFIM) mean for House 3; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.13 Models with the lowest ICOMP(IFIM) variance across all houses;

variables with missing data were removed. . . . . . . . . . . . . . . . 82

4.14 Models with the lowest ICOMP(IFIM) mean across all houses; vari-

ables with missing data were removed. . . . . . . . . . . . . . . . . . 84

4.15 Models with the lowest ICOMP(IFIM) variance across all houses;

missing values were set to zero. . . . . . . . . . . . . . . . . . . . . . 85

4.16 Models with the lowest ICOMP(IFIM) mean across all houses; missing

values were set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.17 House 1’s Rank Models with dropped variables that have missing data. 88

4.18 House 2’s Rank Models with dropped variables that have missing data. 90

4.19 House 3’s Rank Models with dropped variables that have missing data. 91

4.20 Rank Models across all house with dropped variables that have missing

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.21 House 1’s Rank Models with missing data values set to zero. . . . . . 96

4.22 House 2’s Rank Models with missing data values set to zero. . . . . . 97

4.23 House 3’s Rank Models with missing data values set to zero. . . . . . 98

4.24 Rank Models across all houses with missing data values set to zero. . 99

xiv



5.1 FFNN prediction results for the FG non-load variables with 5 (Figure

5.1(a)), 10 (Figure 5.1(b)), and 15 (Figure 5.1(c)) hidden units. Error

bars are not presented to enhance figure readability, all standard

deviations are less than 0.447. . . . . . . . . . . . . . . . . . . . . . . 119

5.2 FFNN prediction results for the FG load variables with 5 (Figure

5.2(a)), 10 (Figure 5.2(b)), and 15 (Figure 5.2(c)) hidden units. . . . 121

5.3 Lasso regression model’s performance on the FG data set’s non load

variables. Error bars are not presented to enhance figure readability,

most standard deviations are less than 1. However, variables 5, 22, 23,

25, and 26 have standard deviations between 2 and 6. Variable 24’s

RMSE is 84.45±22.4921 and its MTR is 122.56±0.00. . . . . . . . . . 122

5.4 Lasso regression model’s performance on the FG data set’s load

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 FFNN prediction results for MO2 non-load variables with 5 (Figure

5.5(a)), 10 (Figure 5.5(b)), and 15 (Figure 5.5(c)) hidden units. Models

were trained using all MO1 data. Error bars are not presented to

enhance figure readability, variable standard deviations are less than

or equal to 1.21. Only variable 10 has a larger standard deviation, 6.86. 124

5.6 FFNN prediction results for the MO2 load variables with 5 (Figure

6.7(a)), 10 (Figure 6.7(b)), and 15 (Figure 6.7(f)) hidden units. Models

were trained using all MO1 data. . . . . . . . . . . . . . . . . . . . . 126

5.7 Lasso regression model’s performance on the MO2 data set’s non-

load variables. The model was trained using all MO1 data. Error

bars are not presented to enhance figure readability, variable standard

deviations are less than or equal to 1.20. Only variable 10 has a larger

standard deviation, 6.47. . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Compares the average MO2 dryer heat gain response against an

observed scale shifted response. Two other MO2 test simulations

present the same scale shift response behavior. . . . . . . . . . . . . . 127

xv



5.9 Lasso regression model’s performance on the MO2 data set’s load

variables. The model was trained using all MO1 data. . . . . . . . . . 128

5.10 Illustrates the FFNN model’s CV error clustering into distinct clusters

on the Fine Grain dataset. . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 Illustrates that the Lasso regression models can produce distinct

clusters when a linear model captures the full relationship between

inputs and outputs (Figure 5.11(a)). When a nonlinear model is

required, Lasso regression fails to produce the distinct clustering

(Figure 5.11(b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.12 Illustrates the FFNN model’s CV error clustering into a distinct cluster

on the Markov Order 2 dataset. . . . . . . . . . . . . . . . . . . . . 131

5.13 The HVAC on and off operating feature overlayed onto a sample MO1

LR latent heating (Figure 5.13(a)) and sample MO1 LR latent cooling

(Figure 5.13(b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.14 The HVAC on and off operating feature overlayed onto a sample FG

LR latent heating (Figure 5.14(a)) and sample FG LR latent cooling

(Figure 5.14(b)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Bayesian GGM’s error on 50 randomly sampled MO1 simulations. . . 161

6.2 Direct GGM’s error on 50 randomly sampled MO1 simulations. . . . 163

6.3 Shows Bayesian GGM’s error compared against the error from ran-

domly estimating building parameters using a uniform distribution. . 164

6.4 Shows Direct GGM’s error compared against the error from randomly

estimating building parameters using a uniform distribution. . . . . . 166

6.5 This figure compares Bayesian GGM’s error against a [0, 1] uniform

distribution’s error on estimating FG building parameters. In addition,

it illustrates how the two estimates align with the actual building

parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xvi



6.6 Bayesian GGM’s parameter estimates compared against the actual

parameter values on 300 randomly sampled MO2 simulations. . . . . 169

6.7 Random parameter estimates sampled from a [0, 1] uniform distribu-

tion compared against the actual parameter values on 300 randomly

sampled MO2 simulations. . . . . . . . . . . . . . . . . . . . . . . . . 170

6.8 This figure compares parameter values estimated using a Genetic

Algorithm and a standard gradient optimization algorithm. . . . . . . 171

6.9 This figure highlights that building parameter three has values that

occasionally differ greatly from the parameter’s mean. In addition, it

presents how the Bayesian GGM’s estimates correlate with these large

deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.10 Identifies three potential outlier simulations within the Fine Grain data

set. The outliers in each figure represent the same simulation across

the two figures, i.e. there are three outlier simulations and not six

outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xvii



Introduction

Many key decisions and design policies are made using sophisticated computer

simulations. For example, building engineers use whole energy building simulations to

estimate building electrical consumption. They use these estimates to measure how

policy changes in building materials, building design, occupancy behavior, and much

more influences energy efficiency and overall savings. However, these sophisticated

computer simulations have several major problems. The two main issues are 1) gaps

between the simulation model and the actual structure, and 2) limitations of the

modeling engine’s capabilities

Gaps between as-modeled and as-built structures come in many sources and

ultimately relate to the addage “garbage in, garbage out” with the fault lying within

the inaccurate input file rather than the simulation engine itself. For example, in

the building energy domain, Infiltration, the rate at which air and the energy in it

flows through the building envelope (typically measured in cubic feet per minute per

square ft), is not currently able to be cheaply tested despite being one of the most

important factors for building energy efficiency. Blower-door tests can determine

infiltration rate at a given pressure (usu. 50 Pascals) but is a 1-time measurement

that, in reality, experiences significant variances as a function of temperature, wind

speed, wind direction, etc. As such, infiltration is often one of the first variables most

energy modeling experts use to manually align a simulation model with actual data.

Another gap is overall duty cycle and overall usage. For example, the building

energy domain models overall building usage with a yearly operation schedule file,

1



which includes number of occupants, times of occupancy, HVAC setpoints, device

operations schedule, and many other factors. For many of these, cost-effective sensors

simply do not exist or are not typically deployed in a building (especially data

provided in a way to be easily leveraged by energy modelers). In many cases, estimates

of occupancy schedules and relatively static setpoint temperatures are estimated and

then used later to “true-up” the simulation to match whole-building data without

regard to the accuracy of the actual HVAC thermostat setpoints.

The third cause can be attributed to inaccurate information about model

components. Most modelers typically use the advertised material properties (i.e.,

product labels) or standard values, which are typically published in reference

manuals. However, laboratory testing has shown that material properties are a

major contributor to model variance, which means inaccurate values have significant

consequences. Occasionally, the manufacturer labels are more accurate than the

reference manuals. However, laboratory-controlled testing of specific materials has

shown significant variance in materials even from a single manufacturer. In such

cases, modelers have very little reliable data to determine the precise values necessary

for creating an accurate simulation model.

The final common gap is modelers typically use the original design specifications,

which may differ from the actual built structure. Physical structures tend to differ

slightly from the original design specification, which is attributed to either variation

in the final construction process or the actual environmental conditions producing

different results than the original design assumptions.

Limitations of engine modeling capabilities is a more well-understood and active

area of involvement with funded development teams or active communities behind

the most popular simulation engines and tools. Unlike making a one time use

simulation model accurate, there is sufficient market incentive and policy impact

to be found in developing a capable software engine that can be either sold or used

to develop environmental policies, energy saving policies, and many more. However,

there are a few primary factors that may be considered in relation to inaccuracies

2



of simulation engines. First, most simulation engines are engineering models that

attempt to model, through time and with some degree of fidelity, the underlying

physics model. As is necessary from such an approach, engineering algorithms are

by necessity an approximation of reality (e.g., using 1D heat transfer equations

over 3D heat transfer equations). Statistical models show some promise, but are

more useful in normative-based models for policy decisions rather than product-level

or system-level modifications. Second, there is a lag between the development of

new, innovative technologies and the capabilities of accurately modeling it within

a simulation engine. Only the most active simulation engine development teams

are able to keep up with or foresee the need to model new products, components,

systems, or additional influences before they achieve a significant market share or

an accepted impact within the community. In addition, as the codebase grows,

the challenge of maintaining a software architecture that can accommodate new

integrated technologies (which may impact several simulation components) also grows.

Third, many simulation engines are single-threaded with only recent attempts to

leverage multi-core computational hardware. Given the significantly different multi-

threaded software development paradigms, there will be substantial challenges in

being able to scale additional simulation capabilities without an increase in runtime

for models that use those capabilities. Fourth, the computer itself is an approximation

engine and is fundamentally limited with respect to the accuracy that it can provide

in a unit of time for a given algorithm. For most simulation engine developments,

the focus has been a reactive process of building something that is sufficient to meet

some small fraction of the long list of needs expressed by the users.

3



&DOLEUDWLRQ
'LDJUDP

6HOHFW�%HVW�
0RGHO

$OWHUQDWLYH�3URFHVV 'HFLVLRQ

(QYLURQPHQWDO
6HQVRUV

3UHGHILQHG�3URFHVV

,QWHUQDO�6WRUDJH

'RFXPHQW

0XOWLGRFXPHQW 3UHSDUDWLRQ 0DQXDO�,QSXW

)L
OWH
U�

6
HQ
VR
U�

'
DW
D

&RQQHFWRU 2II�SDJH�&RQQHFWRU

7HUPLQDWRU

&DUG 3XQFKHG�7DSH 6XPPLQJ�-XQFWLRQ 2U

&ROODWH 6RUW ([WUDFW 0HUJH 6WRUHG�'DWD 'HOD\

6HTXHQWLDO�$FFHVV�
6WRUDJH 0DJQHWLF�'LVN 'LUHFW�$FFHVV�

6WRUDJH 'LVSOD\

\HV

QR

&DOLEUDWLRQ�
6LJQDO

6HOHFW�%HVW
6HQVRUV

5HODWLRQDO�0RGHO 6LPXODWLRQ�
$SSUR[LPDWLRQ

(VWLPDWH�
6LPXODWLRQ
3DUDPHWHUV

6LPXODWLRQ
3DUDPHWHUV

0DS�VHQVRUV�WR
6LPXODWLRQ
2XWSXW

Figure 1: Automated simulation calibration process diagram

4



This dissertation’s goal is to address these simulation deficiencies by presenting a

general automated process for tuning simulation inputs such that simulation output

matches real world measured data. The automated process, depicted in Figure

1, involves the following key components – 1) Identify a model that accurately

estimates the real world simulation calibration target from measured sensor data

(Chapter 3); 2) Identify the key real world measurements that best estimate the

simulation calibration target (Chapter 4)); 3) Construct a mapping from the most

useful real world measurements to actual simulation outputs; 4) Build fast and

effective simulation approximation models that predict simulation output using

simulation input∗ (Chapter 5); 5) Build a relational model that captures inter variable

dependencies between simulation inputs and outputs (Chapter 6); and finally 6) Use

the relational model to estimate the simulation input variables from the mapped

sensor data, and use either the simulation model or approximate simulation model

to fine tune input simulation parameter estimates towards the calibration system.

It should be noted that the fine tuning phase must respect structural dependencies

within the relational model when augmenting input parameter estimates, (i.e., the

relational model imposes constrained optimization over the simulation inputs).

The remainder of this chapter presents high level comments and highlights

key components within the automated simulation calibration process (Approach

Overview Section); Contribution section presents all contributions found within this

dissertation. Finally, the Dissertation Overview section presents a high-level outline

for all the chapters within the dissertation.

Approach Overview

In order to validate and explore the automated simulation calibration system’s

capabilities, this dissertation focuses on the whole building simulation domain. While

∗ Only required if the overall simulation engine is extremely slow, making it difficult to run many
simulations

5



this dissertation focuses on the building simulation domain, the entire process and

individual techniques are application independent. This means all the methods and

algorithms within this dissertation are able to calibrate any simulation software,

provided all necessary simulation and environmental data is available.

EnergyPlus (E+) is a sufficiently complicated large-scale whole-building simula-

tion model (Section 2.1 provides more details) with available simulation data. In

addition, there exist real world sensor data for the simulated building (i.e., Wolf

Creek sensor data (Section 2.2.2)). However, this research does not address the third

component within the automatic calibration process. The mapping from real world

sensor data to simulation outputs was hand crafted by domain experts, which means

this component is not automated. In addition, the domain knowledge experts are

providing a key learning bias required to facilitate calibration, by ultimately selecting

the most important simulation outputs and sensors used for calibration, rather than

completely using the recommended sensors produced by step 2.

Given this information, this research addresses step 1 by exploring many different

regression methods using the Campbell Creek data set (Secton 2.2.1). Using these

different regression methodologies, we can isolate the best model for estimating the

calibration target from the available sensor data. In this instance, our calibration

signal is the overall building’s future electrical consumption, a fairly difficult response

variable to estimate. The tools used to complete step 1 are packaged and readily

usable for estimating other calibration signals from any sensor data set.

Step 2 is addressed by exploring feature selection methods that are easily combined

with the best predictor from step 1. In particular, our results indicate that the

Information Complexity measure and our novel voting method facilitates selecting

the best sensors.

Needing to address step 4 is purely dependent upon the overall simulation engine’s

performance and execution time. As mentioned in Section 2.1, E+ simulations

require approximately 2-3 minutes each on a standard desktop computer. While

this execution time may seem insignificant, calibrating simulation inputs using

6



such a slow model is very cumbersome, especially if the total number of required

evaluations approach several thousand. Therefore, this dissertation explores the Big

Data community’s algorithmic methods and adopts a scaleable learning algorithm

for approximating E+ simulations. In addition, this dissertation modifies an existing

gradient method using a standard stochastic-batch hybrid update method, which

optimizes sequential gradient descent learning performance.

Step 5 is addressed by combining graphical model structural learning with the

same scaleable learning algorithm from the Big Data community. We also explore the

traditional direct learning approach, which assumes no priors, as well as a Bayesian

structural learning approach, which assumes a Wishart prior.

Using these components it is possible to complete the actual calibration process,

step 6, with real world sensor data. However, we have yet to experimentally test

the calibration process using real world sensor data. Rather all components within

the system were validated individually using either known or approximate ground

truth information. We are currently working on fully validating the system and plan

to incorporate E+ simulation results for the real building’s estimated parameters

compared against the measured ground truth sensor data.

Contributions

The following list contains my Building Spaces contributions:

• Best predictor for hourly residential electrical consumption (Chapter 3)

• Best sensors for predicting electrical consumption (Chapter 4)

• First general purpose large-scale E+ residential approximation (Chapter 5)

The following list contains my Computer Science contributions:

• A novel feature selection method, which uses the estimated ICOMP distribution

over the features to select the best ones via voting (Chapter 4)

7



• Adapting Bayesian and Direct regression structure learning to large-scale

datasets, via Alternating Direction Method of Multipliers (Chapter 6)

• General large-scale automated computer simulation calibration process (Figure

1)

These contributions have individual benefits, as well as facilitate constructing

the overall general automated calibration process. Knowing the best predictor for

hourly residential electrical consumption provides building engineers with an excellent

starting point when modeling a new residential building. Ideally, the same model

will be the best for all buildings, but the results within this dissertation illustrate

empirical model evaluation, which can guide the building engineer’s model selection

process. However, selecting the best sensors for predicting electrical consumption is

greatly dependent upon the underlying predictive model’s capabilities, which means

identifying the best model is essential for selecting the most important sensors. In

addition, selecting the most important sensors helps reduce installation and planning

costs for future building instrumentation.

A general purpose large-scale E+ approximation that runs in a few seconds

allows building engineers to manually calibrate simulations much more effectively. In

addition, it alleviates computation time consumed by automatic calibration methods

that try to use the simulator to facilitate calibration by directly executing simulations.

However, large-scale approximation models require large simulation data sets, which

exceed standard regression methods’ capabilities. Solving this difficulty by utilizing

a regression method that fully scales to any regression problem, directly solves

most challenges associated with learning linear inter-variable dependencies, or inter-

variable structural dependencies, over the simulation variables.

The E+ inter-variable dependency model allows building engineers to statistically

infer building parameters automatically from data. However, the overall linear inter-

variable dependency method is completely general and applicable to any large scale

structural learning problem.

8



Finally, combining all contributions together allows full simulation calibration.

A simulation calibration engineer can select the best predictive model and use that

model along with the feature selection methods in this dissertation to select the most

important environmental sensors. Given the best sensors, the engineer can select

corresponding simulation outputs that map well with the best sensors. Using the

manually derived sensor to simulation output mapping, the engineer can use the

faster approximations to either manually or automatically calibrate the simulation.

The automatic calibration process would combine any standard optimization method

with the fast approximations. Alternatively, the engineer can use the relational

model to infer parameter estimates automatically by using reference sensor data.

These estimates can serve as initial calibration starting points for manual calibration

or as the final calibration parameters by fine tuning them with the simulation

approximation.

Dissertation Overview

The remainder of this dissertation is structured as follows:

• Chapter 1 presents related work on simulation calibration methods, simulation

approximation methods, modeling electrical consumption using sensors, and

previous studies on sensor selection.

• Chapter 2 presents background material on the E+ simulator and provides a

summary for all data sets used in this work.

• Chapter 3 compares traditional modeling against sensor-based modeling. In

addition, it presents several techniques that were explored for performing

sensor-based energy modeling and their corresponding prediction results on the

Campbell Creek data set.

9



• Chapter 4 analyzes different feature selection methodologies and tests how

well wrapper based feature selection performs at selecting the best sensors for

predicting electrical consumption.

• Chapter 5 explores adjusting the FFNN learning process by using a stochastic-

batch hybrid updating process, which allows it to approximate E+ simulations.

In addition, it presents using Lasso regression with Alternating Direction

Method of Multipliers (ADMM) to quickly fit linear models.

• Chapter 6 analyzes previous structural learning methods with respect to

scalability. The chapter illustrates that regression based structure learning is

extremely scaleable and presents two methods that scale well to the E+ data

set by leveraging the Lasso regression method from Chapter 5.

• The conclusion summarizes how each individual chapter 3-6 addresses its

corresponding step within the automated calibration process. In addition, it

presents all contributions and future directions for exploring this research topic

and application.

10



Chapter 1

Related Work

1.1 Simulation Calibration

There are many different simulation calibration approaches through out the literature.

However, all approaches can be categorized into two areas: manual procedural

calibration methodologies and semi-automated statistical calibration procedures.

This first category generally involves constructing a manual audit process for

incorporating environmental information into the engineer’s simulation parameter

calibration process. Raftery et al. (2011) provides an excellent example. This

work integrates measurements, and additional periodic audits into the calibration

process, which creates a fairly reliable manual procedure. The process is more

reliable because the engineer now incorporates external temporal conditions that

induce measurement variations into the simulation parameter adjustments. Generally,

the calibration process may only use a single environmental snap shot for the

simulated target. Yoon and Lee (1999) and Pedrini et al. (2002) present older manual

calibration methodologies, which are similar to Raftery et al. (2011). All manual

calibration processes at their core identify the most important tuning parameters

via simulation sensitivity analysis. This means the engineer runs simulations with

different parameter settings and estimates which parameters provide the largest

11



change in the simulation’s overall behavior with respect to the target. Westphal

and Lamberts (2005) presents an example sensitivity analysis study for calibrating

whole-building energy simulations. While these manual approaches are effective, the

entire process must be repeated per building. In addition, it is a time consuming

process, which means a large amount of engineering time is invested in calibrating a

single simulation.

Alternatively, other engineers approach the problem analytically using statistical

models. The statistical model approach involves engineers or domain experts

selecting the most important simulation parameters, model outputs, environmental

measurements for calibration, and mappings between simulation outputs and envi-

ronmental measurements, which results in a semi-automated calibration process. For

example, Tian and Choudhary (2012) builds small scale simulation approximations

or surrogates, and uses these surrogates to optimize the simulation parameters with

respect to known target data. The surrogates are not necessarily required, as shown

by the Zeng et al. (2013), which directly calibrates parameters using the actual

simulation model. However, the simulation execution time in Zeng et al. (2013) was

two minutes per simulation and the authors ran 13,000 simulations. This means that

their calibration process is not realistic for general purpose use without the parallel

computation and computing resources used in their work. The overall execution

time in serial is 18 days. While some methods are slower than others, these

semi-automated statistical approaches are transferable and repeatable across multiple

domains and simulation environments, provided experts or engineers select the most

relevant criteria. This dissertation partially addresses this semi-automated nature, by

using feature selection to select the most important sensors with respect to the overall

most important calibration target (Chapter 4). In addition, it explores constructing

large-scale surrogate models that can facilitate calibration, and reduce the calibration

runtime to a range manageable by a more general user base (Chapter 5). Lastly, the

overall computation burden is reduced further by providing a single compact model

12



that may be used either standalone or in conjunction with the approximation models

to infer simulation parameters directly from reference data (Chapter 6).

1.2 Surrogate Modeling

Surrogate generation or meta-modeling within the building domain typically uses a

few classical statistical techniques – Ordinary Least Squares (OLS) linear regression,

Multivariate Adaptive Regression Splines (MARS), Kriging∗, and Radial Basis

Functions (RBF). Each technique has its own strengths and weaknesses, which

are documented throughout the literature Jin et al. (2001). The first two are

fairly popular because they also facilitate sensitivity analysis Storlie et al. (2009);

Helton et al. (2006), which allows researchers to determine the key input variables

for particular outputs. Fitting a surrogate model that uses the key inputs allows

researchers to calibrate simulations around these key inputs by solving an inverse

optimization problem using actual measured data Tian and Choudhary (2012), which

is more efficient than directly solving the inverse optimization problem with the exact

software simulation.

Overall calibration quality is dependent upon the surrogate model’s estimation

accuracy. The work in Tian and Choudhary (2012) illustrates that small scale

(16 inputs and 1 output) E+ surrogates are able to produce accurate distribution

estimates over parameter settings for buildings based on actual measured data. In

addition, Tian and Choudhary (2012) used linear regression and MARS to generate

surrogate models and noted the need to explore other surrogate model options.

However, the work focuses on large macro-scale building stock parameter estimation,

which reduces the overall surrogate model’s size and complexity. Our work, on the

other hand, focuses on producing surrogate models for large scale E+ residential

simulations (156 inputs and 80 to 90 output variables) for individual buildings.

∗ This method is also referred to as Gaussian Process Regression in the literature.

13



The scale difference produces significant scalability issues with fitting the MARS,

Kriging, and RBF surrogates. In particular, the computational time and memory

requirements quickly become intractable as the available model training data

increases. This scalability issue motivated us to explore machine learning methods

from state-of-the-art data mining methodologies for Big Data. This exploration

ultimately lead us to select FFNN and Lasso regression using Alternating Direction

of Method of Multipliers Boyd et al. (2011), which are discussed more in Sections

5.1.1 and 5.1.3. These methods allow us to produce large scale surrogate models and

determine their overall effectiveness at producing actual E+ simulation outputs.

1.3 Sensor Modeling

Many researchers have explored machine learning alternatives for modeling electrical

consumption, both within commercial buildings and residential buildings. However,

a majority of the studies have focused on commercial buildings. A notable study that

used commercial building data is the Building Energy Predictor Shootout hosted by

ASHRAE. The competition called for participants to predict hourly whole building

electrical (wbe) consumption for an unknown building using environmental sensors

and user-defined domain knowledge. The competition provided 150 competitors with

data from September 1, 1989 until December 31, 1989 as training data, as well as

testing data that had the target variables removed. Six winners were selected from

the submitted predictions Kreider and Haberl (1994).

The overall winner, MacKay et al. (1994), used a Feed Forward Neural Network

(FFNN) with Auto Relevance Detection (ARD). The author was not sure which

inputs or variables were most beneficial for predicting the specified targets. Therefore,

the author devised a method for exploring a wide variety of different inputs that

would minimize the error caused by irrelevant inputs. This Auto Relevance Detection

process drives the weights for irrelevant inputs toward zero and prevents the weights

for other inputs from growing too large or overpowering the solution. This is achieved

14



by reformulating weight regularization to obey a probabilistic model, where all

parameters follow prior distributions and the weights are inferred using Bayesian

inference. The results presented from this prior work provide strong incentive

for exploring how effective FFNNs are at predicting future residential electrical

consumption. Our use of this method is discussed in more detail in Section 3.4.

Another winner used Piecewise Linear Regression Iijima et al. (1994). The

authors created three different linear functions for predicting wbe. The first model

is dedicated to workdays, the second is dedicated to weekends, and the third is

dedicated to modeling holidays. These models were combined using the provided

temporal information: day, month, year, and hour. However, the method used in this

work requires explicit temporal domain knowledge about the particular application

area. Given that we lack such temporal domain knowledge for residential domains,

we decided to explore an automated Piecewise Linear Regression process. We apply

Hierarchical Mixture of Experts (HME) with Linear Regression, because it uses the

training data to automatically build and integrate multiple linear models. Section

3.3 briefly describes Linear Regression, and Section 3.7 discusses HME with Linear

Regression in greater detail.

Feuston and Thurtell (1994) used an ensemble of FFNNs, which involved training

multiple FFNNs and combining them by averaging their predictions. The predictions

for each FFNN were equally weighted and the networks were trained using the

same training data, and possibly different initializations. This method assumes that

all FFNN responses are equally important. This assumption can harm accuracy,

especially if a majority of the FFNNs learn the same errors, and only a few networks

learn to correct those errors. Therefore, we decided to explore a more balanced and

general method for mixing multiple FFNNs. The HME approach, which we previously

mentioned, combined with FFNN Experts, accomplishes the same task, except the

predictions are combined based on the likelihood that each network produces the

correct prediction (Section 3.7).

15



A more recent wbe prediction study with commercial buildings uses Support

Vector Machines (SVM) to predict monthly consumption Dong et al. (2005). SVMs

are built on the principle that minimizing structural risk produces a general model.

In addition, SVMs have a proven upper bound on the error rate for classification

problems Vapnik (1999). While we do not know of a proven upper bound for regression

problems, minimizing structural risk can still produce general models. The results

from this prior work and the known benefits from SVMs lead us to the application

of Support Vector Regression (SVR), which is SVM adapted for Regression (Section

3.5). These prior results also encouraged us to explore an SVM variant, called Least

Squares Support Vector Machine (LS-SVM) (Section 3.6).

Karatasou et al. (2006) builds upon the success found with FFNN and explores

selecting the most important inputs and network structure for the Building Energy

Predictor Shootout data. In addition, the work explores another commercial building

data set. The authors present impressive results on both buildings and out-performed

the Shootout winner. However, the authors provide little discussion about what

allowed them to obtain better performance or the key differences between other FFNN

techniques. The results found within this study provide further incentive to explore

the application of FFNN to predicting residential electrical consumption.

Another recent work, by Li et al. (2011), presents results for the Energy Predictor

Shootout that are better than the overall winner as well. This approach uses an

Adaptive Neuro Fuzzy Inference System (ANFIS), which deviates greatly from the

previously published FFNN works. This method combines partitioning rules from

Fuzzy Systems with the properties of FFNNs, which is similar to Fuzzy C-Means

(FCM) with FFNN. However, the authors in this work fully use the Fuzzy Systems

by using multiple partitioning functions, while the FCM with FFNN in our work uses

a single partitioning function. Section 3.8 provides a more detailed description about

FCM with FFNN.

These studies on commercial buildings provide insight into successful techniques,

many of which have inspired several of the techniques we explore in this research.

16



However, how successful are these techniques on residential buildings? The studies

that involve residential buildings are generally conducted with monthly information

collected from utility companies. This means that most residential studies do not

provide hourly predictions, which is fairly different from our focus on predicting

hourly wbe consumption. For instance, Kolter and Ferreira Jr (2011) focuses on

modeling commercial and residential buildings, but all the whole building energy

(wbe) measurements are only at a monthly resolution for all buildings. This restriction

is created by the fact that utility companies measure residential electrical consumption

at monthly intervals, while commercial electrical consumption is measured hourly.

Our research makes use of a new residential data set, called the Campbell Creek

data set, which gives us a unique opportunity to predict next hour wbe consumption

for residential homes. The Campbell Creek data set contains approximately 140

different sensor measurements collected every 15 minutes. We explain this data set

in more detail in Section 2.2.1. This data set provides a vast quantity of inputs

that far surpasses the amount of information used in the previous commercial and

residential building studies. For example, the Great Energy Prediction Shootout

data set contains only five measurements per hour. This means we are able to test

existing techniques that were proven on previous smaller data sets, and introduce

new techniques that have not previously been applied to this field.

17



Chapter 2

Preliminaries

This chapter outlines all preliminary material required to assimilate this dissertation.

Section 2.1 provides a detailed description of the simulator used as the calibration

test platform. In addition, Section 2.2 describes all data sets used throughout this

dissertation. Section 2.2.1 describes the data sets used in Chapters 3 and 4, and

Sections 2.2.2 and 2.2.3 describes the data sets used in Chapters 5 and 6. Finally,

Section 2.3 illustrates the difficulties associated with scaling the better techniques in

Chapter 3 to large data sets or Big Data.

2.1 E+

E+ is currently DOE’s flagship whole-building energy simulation engine developed

with active involvement by many participating individuals and organizations since

1996, with roots dating back to DOE-2 and Building Loads Analysis and System

Thermodynamics (BLAST) from the late 1970s. DOE has trademarked the

EnergyPlus name while copyright and intellectual property for E+ is held by Lawrence

Berkeley National Laboratory. DOE has recently provided an open source license

agreement in addition to the executable distribution and cost-based commercial

source license DOE (2012b). A branch of the official E+ development trunk has

also been posted on SourceForge Peter Ellis (2012). E+ consists of ∼600k lines of

18



Fortran code, but utilizes a much more extensible, modular architecture than DOE-

2 to perform the energy analysis and thermal load simulation for a building. The

extensive capabilities of E+ are beyond the scope of this dissertation; the interested

reader is referred to existing resources DOE (2012a,c,d) for further information.

However, the computational costs of these capabilities has resulted in annual building

simulations that, depending on the complexity of the building information, often

requires 5+ minutes (10x-100x slower than DOE-2 Hong et al. (2008)) of wall-clock

time to complete; reducing the runtime of E+ is the top priority of the development

team with EnergyPlus 7.0 being 25%-40% faster than EnergyPlus 6.0 DOE (2011).

The simulation engine uses a building specification file and a schedule file. The

building file specifies all the building’s physical properties, while the schedule describes

when components within the environment will turn on and off. The schedule should

represent the expected occupancy behavior for the particular building. For instance,

the residential dataset’s (Section 2.2.1 and 2.2.2) occupancy behavior is based on a

standard family. While the average may not always be the best occupancy, it provides

an overall expected view of a building under standard operating conditions.

The final simulation input component is weather data. E+ depends upon actual

weather data, or estimated weather data, to drive its internal models. Using this

component and the previous two components, E+ can simulate a building for an

entire year. However, the simulation must be conducted on a single core and in

some instances can take about eight minutes per simulation. The slow turn around

for simulations makes the tuning process rather cumbersome and time consuming,

especially when a building specification file may contain 1000 to 3000 tunable

parameters. Therefore, being able to approximate and tune the whole building

simulation model is very valuable to the Energy community.

19



2.2 Data Sets

2.2.1 Campbell Creek

The new residential data set used in our research, called the Campbell Creek data

set, is a rich and unique data set. This data set was collected from three different

homes located in west Knox County, Tennessee. These Campbell Creek homes are

leased and operated by Tennessee Valley Authority (TVA) as part of a study testing

energy efficient materials and their savings Christian et al. (2010). The first house

in this study, called House 1, is a standard two-story residential home. However,

the second and third houses, called House 2 and House 3 respectively, were modified

to decrease energy consumption. House 2 uses the same construction materials as

House 1, but was retrofitted with more energy efficient appliances, water heater, and

HVAC. House 3 was built using construction techniques and materials designed to

help reduce energy consumption. In addition, House 3 has a set of photovoltaics for

generating electricity and a solar thermal water heater.

In this dataset each house has approximately 140 different sensors that collect data

every 15 minutes. Each house is also outfitted with automated controls that manage

the opening/closing of the refrigerator door, using the oven, running clothes washer

and dryer, as well as shower usage. These automatic controls achieve an occupancy

pattern that is consistent with typical energy usage patterns of American households,

as determined by a Building America study Hendron et al. (2010). The simulated

occupancy provides stable behavioral patterns across all three homes, making device

usage within the data set consistent across test environments. This means the data

set is free from behavioral factors, making it easier to compare results for different

houses. Note that this data set provides a vast quantity of inputs that far surpasses

the amount of information used in the previous commercial and residential building

studies.

20



Removing the dynamic human behavior variable is clearly advantageous for

making better predictions. However, these three homes were used to conduct

numerous experiments throughout the data collection process. This means there

were equipment substitutions, thermostat set point changes, prototype equipment

tests, and much more. Therefore, the data sets still exhibits rich dynamic behavior,

unless the data collected from these experiments is removed or treated as special

cases.

2.2.2 Wolf Creek

There are four houses in the Wolf Creek data set and each one is equipped with

approximate 250 sensors. All sensor measurements are at a 15 minute resolution just

like the Campbell Creek homes. However, unlike the Campbell Creek houses, these

houses were built using the latest building materials and energy savings technologies.

The objective was to measure how much electricity could be saved, even when using

materials that are cost prohibitive to the market adoption.

While the buildings in this data set are more advance than the Campbell Creek

buildings, and most likely present interesting consumption and behavior patterns,

these buildings serve a different purpose. Building engineers have been working hard

to manually tune building models for the Wolf Creek homes. In particular, Wolf Creek

1 ( WC1) is the reference building used for the E+ simulation data that is discussed

in the following section. Using the sensor data from WC1, we can estimate how well

our calibration process is able to match the manual tuning endeavors, and estimate

how much time is saved with respect to human hours spent working on adjusting

simulation parameters.

21



2.2.3 E+ Simulations

The Autotune project∗ Sanyal et al. (2012) has generated three residential E+ data

sets. These data sets contain input and output pairings for E+ simulations, and were

built by varying building envelop model parameters. In addition, these data sets each

contain 156 building inputs, and two data sets have 90 building outputs. The other

residential data set contains only 80 output parameters.

The data set with only 80 output parameters, called Fine Grain (FG), was

generated by brute force increments across 14 of the 156 building input parameters.

The FG data contains approximately 12,000 simulations, and is approximately 143

gigabytes. Originally the Autotune project was attempting a small brute force pass

over the input parameter space, but it was shown to be too computationally expensive.

Therefore, the number of brute force building parameters was scaled back to a more

computationally reasonable amount.

Given the size of the parameter space, another parameter sweep method was

implemented to generate the other data sets. The second data set, called Markov

Order 1 (MO1), was generated by running two simulations per input variable. The

modified variables were set to a predetermined minimum value and maximum value

for these two simulations, while the other variables were set to their average value.

These predetermined and average values were selected by building engineers on the

Autotune project. This data set is approximately 3.9 gigabytes and contains 299

simulations.

The final data set, called Markov Order 2 (MO2), was generated by running

simulations based on all possible minimum and maximum value pairings between two

variables. This means we ran four simulations per variable pairing. The simulations

covered the (min,min), (min,max), (max,min), and (max,max) pairs. In addition, all

∗ This project’s sole purpose is to build repeatable and transferable automated calibration
processes for whole building energy simulators, such as E+. However, the automatic calibration
research does not only focus on the E+ simulator.

22



other variables were set to their average value during the simulation. This data set

is approximately 450 gigabytes and contains approximately 28,000 simulations.

2.3 Dealing with Large Datasets

The majority of the presented regression methods have runtimes that are dependent

upon the number of training examples. In addition, the memory requirements are

dependent upon the number of training examples as well. For example, linear

regression requires computing the inverse of the predictors matrix, which is an

O(N3) operation where N is the total number of examples. Additionally, the

memory requirements areO(NM) whereM is the dimensionality for each observation.

This restriction makes scaling standard linear regression to large datasets fairly

difficult. Stochastic gradient descent addresses this problem by considering each

sample individually, but this method is an approximation and not guaranteed to

produce the same solution as the maximum likelihood method, which is unique if the

system of equations are well determined.

Similar problems plague the offline versions for all the methods, and are generally

solved by online approximation methods. For instance, the general solution for scaling

SVR to large datasets is referred to as the working set approach Joachims (1999a).

This method sub-samples the data to reduce memory requirements and to reduce the

runtime for solving the quadratic optimization problem. Approaches similar to this

are required for kernel methods, because the kernel matrix requires O(N2) memory. In

addition, the runtime generally increases as the number of examples increases Shalev-

Shwartz and Srebro (2008). However, Shalev-Shwartz and Srebro (2008) notes that

for a particular SVM solver and classification problems, the runtime decreases as the

number of examples increase. The presented proof only shows this property for linear

kernels and for the hinge loss function, a regularization function for classification.

23



Chapter 3

Sensor-based Modeling

Sensor-based modeling can be viewed as a hybrid between “forward” modeling and

“inverse” modeling approaches. This data-driven approach assumes that the sensor

data provides a viable model for the entire building – the “forward” component. This

means the sensor data encodes the state of weather, building envelope, equipment,

and operation schedules over time. Through the application of machine learning

algorithms, an approximation of the engineering model is derived statistically – the

“inverse” component. However, the machine learning algorithms used by sensor-based

modeling allow the data to determine the best model, rather than engineering domain

knowledge that may not always be applicable.

Sensor-based modeling serves as an alternative approach to traditional “forward”

and “inverse” modeling. In fact, there are numerous sensor-based studies that focus on

predicting current and future electrical consumption for commercial buildings Kreider

and Haberl (1994); Karatasou et al. (2006); Li et al. (2011). In addition, these

studies have established which machine learning techniques perform well at modeling

commercial electrical consumption.

24



While sensor-based modeling is general, the remainder of this chapter focuses on

sensor-based energy modeling, which is the application of sensor-based modeling to

predicting electrical consumption∗.

3.1 Traditional Modeling vs Sensor-Based Model-

ing

Both forward and inverse modeling approaches, individually, suffer from several

problems that are mitigated, if not solved, through sensor-based energy modeling.

First, very few design firms have the expertise and can absorb the time and cost

necessary to develop a thorough set of inputs during the design phase of a building.

Most do so primarily for the largest of projects, despite the fact that the most

important energy-consuming decisions are made during this phase and are least costly

to remedy during early design. While sensor-based energy modeling does require

existing sensor data, and thus implies an existing building, machine learning software

trained on data from a similar reference building can function as an approximation

engine and may provide sufficiently accurate results for quick feedback during early,

iterative building design. Second, there is always a gap between the as-designed

and as-built building. During construction, changes are made out of necessity,

convenience, or negligence (e.g., lack of insulation in a corner), and many changes

are very rarely communicated to designers or energy modelers. Sensors obviously

eliminate this problem by measuring the actual state of the building rather than a

designer’s intentions. Third, sufficient knowledge is rarely available to accurately

classify the dynamic specificities of equipment or a given material. Most energy

modelers use the ASHRAE Handbook of Fundamentals American Society of Heating,

Refrigerating and Air-Conditioning Engineers, Inc. (2009) to estimate thermal and

related properties based on typical values. Many others use the manufacturer’s label

∗ A majority of the work in this chapter was published in a journal paper, Edwards et al. (2012).

25



information when available. However, few modelers put the materials and equipment

through controlled laboratory conditions, or the appropriate ASTM test method, to

determine properties of the specimen actually used in the building. The sensor-driven

approach can not only capture the current/actual performance of the material, but

also its degradation over time. Fourth, traditional modeling approaches can involve

manually defining thousands of variables to codify an existing building. Since multiple

experts may encode a specific building in many different ways, the large required input

space lends itself to problems with reliability/repeatability and ultimately validity.

Sensors are much more reliable and repeatable in reporting measured data over time,

until a sensor or data acquisition system fails. Fifth, both the inverse statistical

model and forward engineering models, by their very nature, necessarily require fixed

assumptions and algorithmic approximations. Machine learning allows asymptotic

approximation to the “true” model of the data, limited solely by the amount or quality

of data provided, the capabilities of the algorithm utilized, or the time available to

compute/learn from the available data.

For all its advantages, sensor-based energy modeling also introduces some of its

own concerns and limitations. First, the additional cost associated with acquisition

and deployment of sensors is not required by previous modeling approaches. Sensor

development and costs are dropping with the same transistor density doubling every

18 months as defined by Moore’s Law Schaller (1997). Increasingly sophisticated peel-

and-stick, wireless mesh, energy-harvesting, system-on-a-chip sensors are becoming

readily available. While the increase in capabilities and reduction in costs continue, it

is currently not feasible to heavily instrument a building cost-effectively. Second, the

number, type, and placement of sensors required to sufficiently capture the state of

different building types is an open question. This work addresses this issue through

selection of an optimal subset of 140 sensors for predicting hourly energy consumption

for three residential buildings, but extrapolation across building types is unproven

and sensor counts/types would vary based upon the metric(s) being predicted. It

is anticipated that shared, web-enabled databases of heavily instrumented buildings

26



will help resolve this current issue. Third, sensors, data acquisition systems, and the

physical infrastructure upon which they rely can be unstable and result in missing or

corrupted sensor data values. To mitigate this real-world issue, intelligent quality

assurance and control algorithms Ibargüengoytia et al. (2001) can be applied to

detect and/or correct corrupted sensor values. The sensor pre-processing system

we currently use notifies assigned personnel via email messages for data channels

exhibiting out-of-range errors, using simple statistical tests. Lastly, determining the

best machine learning algorithm for a given learning task is an open question. While

there exist taxonomies for classifying problem types and appropriate machine learning

algorithms Russell and Norvig (2010), rarely is there a known algorithm that is best

for solving a given problem (e.g., predicting next hour energy usage). This issue is

mitigated by exploring seven different machine learning algorithms and determining

which algorithm or algorithms perform best.

We have tested seven different machine learning techniques on our residential

data sets, and on the ASHRAE Building Energy Predictor Shootout data set. In

this chapter, we briefly outline the technical details for each individual learner.

In addition, we discuss advantages, disadvantages, and technical benefits for each

technique. We present the techniques in the following order: Linear Regression;

FFNN; SVR; Least Squares Support Vector Machines (LS-SVM); HME with Linear

Regression Experts; HME with FFNN Experts; and Fuzzy C-Means with FFNN. In

addition, the preliminaries chapter commented on the difficulties encountered when

scaling these regression methods to large datasets (Section 2.3). The latter discussion

is very important, because it highlights a true limitation for most regression methods,

and Chapter 5 and 6 show that it is a major problem for construction approximations

and relational learning. Note, in the following sections Y refers to the entire set of

electrical consumption measurements, y refers to a single consumption measurement,

X refers to the entire set of sensor observations, xi refers to an individual sensor

observation, and ~x refers to a vector of sensor observations.

27



3.2 Problem Statement

Very little sensor-based work focuses on modeling electrical consumption for residen-

tial buildings, rather than commercial buildings. In fact, most sensor-based studies

conducted with residential buildings model monthly electrical consumption Kolter

and Ferreira Jr (2011), while commercial building studies model hourly consumption.

This means the few established methods for residential buildings are only tested and

verified on monthly data. Therefore, there is a need to explore additional techniques

on higher granularity data sets and to establish which machine learning techniques

truly perform best at modeling residential electrical consumption.

A problem that hampers sensor-based energy modeling’s variability is the

associated cost with sensor deployment. Sensor deployment, a non-trivial expense,

takes a large amount of planning and installation time, as well as large monetary cost.

The human time and equipment cost can be greatly mitigated by reducing the overall

number of required sensors within a building. This leaves a key question: which

sensors are most important for modeling overall electrical consumption? Removing

sensors from the environment can reduce a model’s ability to accurately estimate

consumption. This means the sensors removed from the environment must be

irrelevant or redundant for predicting the electrical consumption. Therefore, it is

important to determine which sensors are most important for predicting electrical

consumption and reduce cost by eliminating irrelevant or redundant sensors from

future buildings.

While solving these two problems shows that sensor-based energy modeling is

a viable alternative, forward modeling is still the most general approach. Forward

models, such as Energy Plus, can estimate electrical consumption without an existing

building or existing sensor information. However, developing an accurate building

model takes a significant amount of engineering time. In addition, matching

a simulation model with an actual building or a reference building is a slow

iterative process, because of the computation time required to check and compare

28



a model against the expected results. The runtime for simulating an entire year

is approximately eight minutes. While the amount of time required to perform

100 iterations over a simulation model (i.e., 800 minutes, not including manual

tuning time) may seem reasonable, it could take many more iterations, maybe even

thousands. Clearly, there is a need for a method to automate the tuning process and

to improve the simulation time required for estimating a year’s energy usage.

3.3 Linear Regression

Linear Regression is the simplest technique and can provide a baseline performance

measure. Linear Regression is based on fitting a linear function with the following

form:

y = β1x1 + β2x2 + ...+ βnxn + βn

Here, y is the target value, x1, x2, ..., xn are the available inputs, and β represents the

functional weights. While this model is simplistic, it is used to establish a baseline

performance for predicting electrical consumption on our residential data sets. If

a technique performs worse than the baseline predictor, then it is most likely not

appropriate for the data set.

3.4 Feed Forward Neural Network

As mentioned previously, previous studies have shown that Feed Forward Neural

Networks (FFNN) are very capable at predicting electrical consumption. These

previous studies have leveraged the fact that a FFNN can be used as a general

purpose method for approximating nonlinear functions. That is, FFNN can learn

to approximate a function f that maps <m → < without making assumptions about

the relationship between the input and outputs.

29



While a FFNN does not make assumptions about the inputs or outputs, it does

require the user to define the model’s structure, including the number of hidden

layers and hidden units within the network and any other associated parameters. In

this work, we explore a FFNN with a single hidden layer, which is the same overall

structure as the previous studies. A FFNN with a single hidden layer for function

approximation has the following mathematical representation:

f(x) =
N∑
j=1

wjΨj

[ M∑
i=1

wijxi + wio

]
+ wjo

where N represents the total number of hidden units, M represents the total number

of inputs, and Ψ represents the activation function for each hidden unit. In this

work we selected tanh(x) as our activation function because prior research has shown

good performance using this function Dodier and Henze (2004); Yang et al. (2005);

Gonzalez and Zamarreno (2005); Karatasou et al. (2006).

A FFNN’s weights are learned using gradient descent-based methods, such as

Newton-Raphson, by minimizing a user-specified error function. There are many

possible error functions, such as Mean Squared Error (MSE), Sum Squared Error

(SSE), and Root Mean Squared Error (RMSE). In this work, we use the SSE function.

However, a gradient descent learning approach poses two problems. The first

problem is over-fitting. The FFNN can adjust its weights in such a way that it

performs well on the training examples, but it will be unable to produce accurate

responses for novel input examples. This problem is addressed by splitting the training

set into two parts – a set used for training and a set for validation. When the error

increases on the validation set, the learning algorithm should halt, because any further

weight updates will only result in over-fitting the training examples.

The second problem involves avoiding local minima and exploring the search

space to find a globally optimal solution. A local minimum is a point at which it

is impossible to further minimize the objective function by following the gradient,

even though the global minimum is not reached. However, it is not possible to

30



determine if any particular set of weights is a globally optimal solution or a local

minimum. It is not possible to completely address this problem, but it is possible

to avoid shallow local minima by using momentum and an adaptive learning rate.

Momentum incorporates a small portion from the previous weight changes into the

current weight updates. This can allow the FFNN to converge faster and to possibly

step over shallow local minima. An adaptive learning rate dynamically changes the

gradient descent step size, such that the step size is larger when the gradient is

steep and smaller when the gradient is flat. This mechanism will allow the learning

algorithm to escape local minima if it is shallow enough.

3.5 Support Vector Regression

Support Vector Regression (SVR) was designed and developed to minimize structural

risk Smola, A.J. and Schólkopf, B. (2004). That is, the objective is to minimize the

probability that the model built from the training examples will make errors on new

examples by finding a solution that best generalizes the training examples. The best

solution is found by minimizing the following convex criterion function:

1

2
‖w‖2 + C

l∑
i=1

ξi + ξ∗i

with the following constraints:

yi − wTϕ(~xi)− b ≤ ε+ ξi

wTϕ(~xi) + b− yi ≤ ε+ ξ∗i

In the above equations, ε defines the desired error range for all points. The variables

ξi and ξ∗i are slack variables that guarantee that a solution exists for all ε. C is a

penalty term used to balance between data fitting and smoothness. Lastly, w are the

31



weights for the regression, and ϕ represents a kernel function for mapping the input

space to a higher dimensional feature space.

There is one major advantage within the SVR optimization formulation; there

is a unique solution which minimizes a convex function. However, the unique

solution is dependent upon providing C, ε, and the necessary parameters for the user-

selected kernel function ϕ. There are many techniques for selecting the appropriate

parameters, such as grid search with cross-validation, leave-one-out cross-validation,

and many more. The work of Smola, A.J. and Schólkopf, B. (2004) provides a detailed

overview of the different tuning techniques. In this work, all parameter settings were

determined via grid search with cross-validation using LIBSVM’s provided utilities

Chang and Lin (2011a).

However, SVR does have a potential disadvantage: scalability. The convex

criterion function is optimized using quadratic programming optimization algorithms.

There are many different algorithms and each has its own advantages and disad-

vantages Smola, A.J. and Schólkopf, B. (2004), but the primary disadvantages are

generally memory requirements and speed. However, the data sets used in our work

are not large enough for these issues to be a real concern.

3.6 Least Squares Support Vector Machine

Least Squares Support Vector Machine (LS-SVM) is very similar to SVR, but with

two notable differences. The first difference is the criterion function, which is based

on least squares. The second difference is that the problem constraints are changed

from inequality to equality. These differences allow the optimization function to be

formulated as:
1

2
‖w‖2 + C

l∑
i=1

ξ2
i

32



Figure 3.1: An example Hierarchical Mixture of Experts model with depth 2 and
branching factor 2. This figure is provided by Jordan and Jacobs (1994).

with the following constraint:

wTϕ(~xi) + b+ ξi = yi

One advantage LS-SVM has over SVR is that this modified criterion function does

not require quadratic programming to solve the optimization problem. This allows

LS-SVM to find solutions much faster by solving a set of linear equations. The set

of linear equations and their solution are well documented in Suykens et al. (2002a).

However, LS-SVM uses all data points to define its solution, while SVR only uses a

subset of the training examples to define its solution. This means that LS-SVM loses

the sparsity property, which may or may not affect the solutions’ ability to generalize.

However, there are studies that address the sparsity issue through pruning or via

weighting the examples Suykens et al. (2002b); Hoegaerts et al. (2004).

33



3.7 Hierarchical Mixture of Experts

Hierarchical Mixture of Experts (HME) is a type of Neural Network that learns

to partition an input space across a set of experts, where the input space in our

application is the raw sensor values. These experts will either specialize over a

particular region or assist each other in learning a region or regions. These HME

models are very useful for exploring the possibility that a data set contains multiple

regimes or sub-populations. For example, a residential home’s electrical consumption

can vary according to the seasons – fall, winter, spring, and summer. These variations

may be best explained by separate individual models. An HME model tries to discover

these different sub-models automatically, and fit an Expert to each sub-model. While

the previous motivating example implies temporal based sub-model changes, the HME

model can only detect sub-model changes by using spatial differences, as well as using

each expert’s ability to produce accurate predictions during training.

HME models are constructed using two types of networks: Gating and Expert

networks. Figure 3.1 presents an example HME with two layers of Gating networks

and four Expert networks. This particular HME is modeled as:

µ =
∑
i

gi
∑
j|i

gj|iFji(~x)

where gi represents the top level gating network’s output, gj|i represents the outputs

from the lower level gating networks, and Fji(~x) represents the output from an Expert

network. This example model is easily extended to have additional Gating networks

and Experts by adding additional summations.

The Gating network probabilistically partitions the input space across either

additional Gating or Expert networks. The partitioning is achieved using the following

softmax function:

gi =
eξi∑N
k=1 e

ξk

34



where ξ represents the Gating network outputs, gi is the normalized weight associated

with the ith sub-network, and N represents the total number of sub-networks.

Each Gating network approximates the conditional probability P (Z|X) in which Z

represents the set of direct sub-networks and X represents the set of observations.

Approximating P (Z|X) allows the Gating network to determine which Expert

network or networks is more likely to produce an accurate prediction.

Each Expert network represents a complete learning system. However, unlike

a standalone learning system, each Expert is expected to specialize over different

regions defined by the Gating networks. In the original HME studies, the only

supported expert learner was Neural Networks Jordan and Jacobs (1992). However,

a later extension on the work introduced support for Linear Regression Experts

Jordan and Jacobs (1994). While these studies only presented Neural Network and

Linear Regression Experts, the learning procedures introduced in the extension do

not limit the Experts to only these learning systems. The only restriction placed on

the Experts is that they have an associated likelihood function. For example, the

assumed likelihood function in these previous studies for regression problems is that

each Expert’s error rate follows a Gaussian distribution.

The original studies present three different maximum likelihood learning algo-

rithms. The first algorithm is based on using gradient ascent. Using the HME shown

in Figure 3.1 as an example, all three algorithms attempt to maximize the following

likelihood function:

L(Y |X, θ) =
∏
t

∑
i

g
(t)
i

∑
j

g
(t)
j|iPij(y

(t)|~x(t), θij)

where Pij represents an Expert’s likelihood function and θ represents parameters

associated with each Gating network and with each Expert.

The other two algorithms approach the problem as a maximum likelihood problem

with missing data. The missing or unobservable data is a set of indicator variables

that specify the direction for partitioning the input space at each Gating network.

35



If all indicator variables are known, then maximizing the HME’s likelihood function

is split into two separate problems Jordan and Jacobs (1994). The first problem

is learning the parameters for each individual Gating network, while the second

problem is training each Expert on the appropriate training examples. Given that it is

generally impossible to know the exact value for each indicator variable in advance, the

original developers derived two different Expectation Maximization (EM) Dempster

et al. (1977) algorithms. The first algorithm is an exact EM algorithm and the second

algorithm approximates the first algorithm.

In addition to FFNN and Linear Regression Experts, we extended the Mixture of

Experts (MoE) with LS-SVM Experts, by Lima et al. (2009), to Hierarchical Mixtures.

The Maximization process is presented as a weighted regression problem in both HME

EM algorithms, which implies any learning system that supports weighted examples

can be used as an Expert. We utilize this property and the robust LS-SVM work

by Suykens et al. (2002b) to integrate LS-SVM Experts into the HME framework.

However, we found that the results for HME with LS-SVM on our residential data

set and the Great Energy Prediction Shootout data set were not statistically different

from a single LS-SVM. We believe this is due to all LS-SVM Experts using the same

parameter settings as the single LS-SVM model. The findings in Lima et al. (2009)

suggest that the parameter settings can be the same across the LS-SVM Experts, but

the parameter settings should be determined by searching the parameter space using

the entire mixture model.

3.8 Fuzzy C-Means with Feed Forward Neural

Networks

An alternative approach to HME is to separate the learning process into two steps.

The first step is an unsupervised learning phase that uses clustering to approximate

P (Z|X), and the second step is to use each cluster to train the Experts. It is

36



possible to use any clustering algorithm, such as K-Means, Self-Organizing Maps,

Hierarchical Clustering, etc. However, a clustering algorithm that does not allow

observations to belong to multiple clusters will produce very rigid approximations. A

rigid approximation will cause Experts to ignore large sets of observations, which can

cause the Experts to produce very poor models. This means each Expert will be less

likely to produce reasonable responses when accounting for errors in the approximated

P (Z|X). We avoid rigid approximations by using Fuzzy C-Means (FCM), which

allows for observations to belong to multiple clusters.

FCM is based on minimizing the following criterion function:

N∑
i=1

C∑
j=1

umij‖~xi − ~cj‖2

where uij represents the probability that ~xi is a member of cluster ~cj, and m is a

user-defined parameter that controls how much an observation can belong to multiple

clusters. The criterion function is minimized through an iterative process using the

following equations:

cj =

∑N
i=1 u

m
ij~xi∑N

i=1 u
m
ij

uij =
1∑C

k=1
‖~xi−~cj‖
‖~xi− ~ck‖

2
m−1

Iterating over the above equations will produce N cluster centroids and a weight

matrix U . N represents the total number of user-defined clusters and each row in U

represents an instance of P (Z|X). The weight matrix can be used to train a Gating

network or for weighting the training examples when fitting the Experts. In this

work, we choose to use the second option, and use N cluster centers to approximate

P (Z|X) for new observations by computing the second equation.

While we implemented FFNN, Linear Regression, and LS-SVM Experts for the

HME models, we have only explored FFNN Experts for this two-step approach.

This approach is not limited to FFNN Experts, and can support all learning

37



systems that can incorporate weighted training examples. In addition, the likelihood

function requirement for the Experts is removed. While this approach seems

superior to the HME, it relies on the critical assumption that the spatial relation

between observations can approximate P (Z|X), while HME approximates P (Z|X)

by maximizing P (Y |X, θ).

3.9 Temporal Dependencies

In the realm of function approximation, temporal dependencies means that the target

response yt is dependent on past observations, xt−1, as well as current observations

xt. These temporal dependencies either follow a Markov order or are sparse. If

the dependencies follow a Markov order, then the response yt is dependent on

previous complete sets of observations. For example, if yt has temporal dependencies

with Markov Order 2, then it is dependent on xt, xt−1, xt−2. However, sparse

temporal dependencies indicate that yt can be dependent on any combination of

past observations rather than a complete set. Exploring all possible sparse temporal

dependencies grows exponentially and is thus intractable.

Our work focuses on predicting future hourly electrical consumption. This means

we can only use observations xt−1, xt−2, etc., to predict yt. If we did not follow this

constraint, we would use future information to predict yt. Therefore, Markov order 1

models use observation xt−1, order 2 models use observations xt−1 and xt−2, and so

forth.

In previous works, researchers explored sparse temporal dependencies either with

manual statistical testing or automatically, by defining a feasible search space within

the learning system. The winner for the first Shootout, which we discussed previously,

used automatic relevance detection (ARD; Section 4.4) to automatically determine

the relevant inputs. The possible inputs included temporal dependencies. However,

the total number of available inputs for the competition was fairly small. For example,

the winner’s FFNN used 25 different inputs, while a single order 3 model uses

38



approximately 432 inputs. Therefore, we only consider the entire set of inputs, rather

than trying to search for the best inputs. However, the feature selection methods in

Chapter 4 are able to facilitate sparse temporal dependency detection.

3.10 Model Selection

Each previously mentioned learning system has a variety of different parameters.

Some parameters are estimated during the learning process, while others are user-

defined parameters. In addition, each different combination of learned parameters

and user-defined parameters constitutes a single model configuration. In order to

determine which learning system performs best at predicting residential electrical

consumption, we need to select the best model configurations for each technique

and compare these best configurations. This type of comparison facilitates a fair

comparison across all techniques.

There are several different model selection techniques. For example, cross-

validation methods help find parameter estimates that can generalize to unseen data

by periodically testing the current model on a validation set. Another cross-validation

method, called K-Folds cross-validation, ensures that each data point is used as

a testing example at least once, and that the training and testing sets are fixed.

This means that each learning system can be compared using the same testing and

validation sets, which is ideal for determining how different user-defined parameters

affect the models.

We use a combination of cross-validation and K-Folds cross-validation to select

the best predictive model for each technique. We separate out a cross-validation set

from the allocated training data, which leaves each learning system with a training

set, a validation set, and a testing set. However, the Linear Regression models do not

utilize the validation set, because the parameters are estimated using a non-iterative

maximum likelihood method. We then select the model from each technique that has

the best performance across all the testing sets. This allows us to identify models that

39



generalize well to unseen data, and determine which user-defined parameters settings

are best for each learning system.

3.11 Performance Metrics

The primary measure for selecting the winners in the ASHRAE competition was the

Coefficient of Variance (CV) measure Kreider and Haberl (1994), which determines

how much the overall prediction error varies with respect to the target’s mean. A

high CV score indicates that a model has a high error range. The CV measure is

defined as follows:

CV =

1
N−1

√∑N
i=1(yi − ŷi)2

ȳ
× 100

where ŷi is the predicted energy consumption, yi is the actual energy consumption,

and ȳ is the average energy consumption.

A second metric, Mean Bias Error (MBE), was used to break ties within the

competition. This metric establishes how likely a particular model is to over-estimate

or under-estimate the actual energy consumption. A MBE closest to zero is preferred,

because this means the model does not favor a particular trend in its prediction. The

MBE measure is defined as follows:

MBE =
1

N−1

∑N
i=1(yi − ŷi)
ȳ

× 100

where ŷi, yi, and ȳ represent the same components presented in the CV measure.

Another metric that is commonly used in the literature to assess regression

accuracy is Mean Absolute Percentage of Error (MAPE) Karatasou et al. (2006);

Gonzalez and Zamarreno (2005). The MAPE measure determines the percentage of

error per prediction, and is defined as follows:

MAPE =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100

40



Table 3.1: Great Energy Prediction Shootout Results. Best results are shown in bold
font.

S1 S2
CV(%) MBE(%) MAPE(%)

Regression 14.12±0.00 7.69±0.00 13.41±0.00
FFNN 11.29±0.00 8.32±0.00 9.14±0.00
SVR 11.93±0.00 8.95±0.00 9.63±0.00

LS-SVM 13.70±0.00 10.32±0.00 11.21±0.00
HME-REG 14.11±0.00 7.66±0.00 13.40±0.00

HME-FFNN 11.49±0.00 2.91±0.00 9.73±0.00
FCM-FFNN 11.51±0.00 8.71±0.00 9.45±0.00

CV(%) MBE(%) MAPE(%)
Regression 4.07±0.00 1.01±0.00 2.86±0.00

FFNN 2.93±0.00 0.64±0.00 1.77±0.00
SVR 3.97±0.00 1.41±0.00 2.31±0.00

LS-SVM 6.35±0.00 1.53±0.00 4.50±0.00
HME-REG 4.05±0.00 0.99±0.00 2.85±0.00

HME-FFNN 2.75±0.00 0.52±0.00 1.60±0.00
FCM-FFNN 2.71±0.00 0.55±0.00 1.61±0.00

where ŷi and yi represent the same components defined in the CV and MBE measures.

In this work, we use CV as our primary metric. MBE is the first tie breaker, and

MAPE is the final tie breaker. We only take the tie breaker metrics into consideration

when the CV metric does not measure a statistical difference between two techniques.

If both original ASHRAE metrics are inconclusive, our decisions are based on the

MAPE metric.

3.12 Predicton Results

Our experimental results are organized in the following order: ASHRAE Shootout

1, Campbell Creek House 1, Campbell Creek House 2, and Campbell Creek House

3. Each subsection presents the best performing models from the seven techniques.

Following these result sections, we present a results summary, which presents the best

general overall technique and highlights the key results for each data set.

3.12.1 Great Energy Prediction Shootout

For comparison purposes, we ran our seven implemented machine learning techniques

on the earlier Great Energy Prediction Shootout data set. The results for these

experiments are presented in Table 3.1. We are not able to make statistical claims

about the difference between techniques, because the original competition presented

41



Table 3.2: Results for all techniques applied to Campbell Creek House 1. Best results
are shown in bold font.

House 1
Order 1 Order 2

CV(%) MBE(%) MAPE(%)
Regression 32.38±1.91 -0.06±1.08 30.52±1.41

FFNN 25.10±2.34 0.66±1.43 21.08±1.14
SVR 24.60±1.78 -2.46±0.95 17.05±0.94

LS-SVM 23.39±1.26 0.01±0.84 18.21±0.89
HME-REG 32.35±1.82 -0.05±1.02 30.57±1.42

HME-FFNN 22.77±1.56 0.15±0.98 17.74±0.65
FCM-FFNN 22.65±1.42 0.81±0.95 18.18±0.75

CV(%) MBE(%) MAPE(%)
Regression 27.63±1.95 -0.03±1.09 26.18±1.51

FFNN 24.32±2.61 0.53±1.74 22.28±2.67
SVR 21.58±1.40 -1.41±0.89 16.41±0.95

LS-SVM 20.05±0.81 0.06±0.62 16.11±0.85
HME-REG 27.60±2.13 -0.03±1.01 26.11±1.67

HME-FFNN 20.15±1.65 0.46±0.93 17.07±1.19
FCM-FFNN 20.53±1.76 0.74±0.87 17.57±1.42

Order 3
CV(%) MBE(%) MAPE(%)

Regression 26.27±1.19 -0.11±1.45 24.33±0.96
FFNN 25.24±1.59 1.00±1.05 22.29±1.81
SVR 21.32±1.32 -1.50±0.80 15.48±0.87

LS-SVM 20.36±1.46 0.11±0.63 15.73±1.11
HME-REG 26.14±1.10 -0.08±1.44 24.21±0.93

HME-FFNN 20.39±1.67 0.70±0.92 17.09±0.81
FCM-FFNN 21.03±1.29 0.47±1.49 18.27±1.06

only a single training and testing set. However, the S1 results indicate that a FFNN

is the best predictor for electrical consumption. This finding is consistent with the

existing literature Kreider and Haberl (1994). However, all methods except Linear

Regression, HME with Linear Regression, and LS-SVM are competitive with the best

three competition winners: CV – 10.36%, 11.78%, 12.79%.

The S2 results in Table 3.1 suggest that HME with FFNN and FCM with FFNN

are better than the FFNN. The existing published results for the S2 inputs range from

2.44% to 3.65% Karatasou et al. (2006); Li et al. (2011). From these results, we can

conclude that Neural Network type methods perform best on this data set. We can

also conclude that LS-SVM is the worst advanced technique, with Linear Regression

and HME with Linear Regression being only slightly better.

3.12.2 Campbell Creek House 1

Table 3.2 presents the results from applying all the techniques to House 1 with

different Markov orders. These results illustrate which techniques perform the best

42



on House 1 and the effects that different Markov orders have on these techniques.

Almost all techniques increase in performance as the order increases. The three

methods that do not increase in performance are FFNN, HME with FFNNs, and

FCM with FFNNs. The FFNN results are not statistically different across all orders.

The other two techniques show performance increases with order 2, but order 3 is not

statistically different.

According to the CV metric, the best techniques are the order 2 SVR, order 2

LS-SVM, order 2 HME with FFNNs, and order 2 FCM with FFNNs. While the

CV performance for the SVR model is not significantly different, its MBE error is

statistically different from the other techniques, illustrating that it has potential to

perform much poorer than the other three techniques. In addition, the other three

techniques do not have significantly different MBE results. Even though the second

tie-breaker metric does not indicate a single best model, the third tie-breaker (MAPE)

shows clearly that LS-SVM has the best MAPE measure and is statistically different

from HME with FFNNs and FCM with FFNNs. Therefore, LS-SVM is the best model

for predicting next hour energy consumption for House 1.

3.12.3 Campbell Creek House 2

The results for House 2 (Table 3.3) show a different performance trend as the Markov

order increases, compared to House 1. While most techniques illustrated an increase

in performance on House 1 as the order increased, these techniques only present small

improvements on House 2. The improvements are only statistically significant for the

baseline Linear Regression technique and order 3 SVR.

Given the minimal performance gains from the increasing orders and the CV

results for House 2, the best techniques are order 1 LS-SVM and Order 1 FCM with

FFNNs. The order 1 models are selected over the Order 2 and 3 models, because the

three models are not statistically different within an acceptable confidence, and higher

order models are much more complex. The higher order models are more complex

43



Table 3.3: Results for all techniques applied to Campbell Creek House 2. Best results
are show in bold font.

House 2
Order 1 Order 2

CV(%) MBE(%) MAPE(%)
Regression 36.73±2.26 -0.13±1.00 31.01±3.48

FFNN 33.24±1.26 0.50±0.91 27.28±3.12
SVR 30.36±1.83 -2.95±1.03 20.44±2.81

LS-SVM 27.88±1.24 -0.05±0.91 20.47±2.37
HME-REG 35.82±1.04 0.15±0.88 30.48±3.20

HME-FFNN 29.30±1.28 0.09±1.01 22.71±2.92
FCM-FFNN 28.14±1.21 0.40±0.97 21.96±2.74

CV(%) MBE(%) MAPE(%)
Regression 34.15±1.66 0.05±1.61 28.36±3.72

FFNN 33.83±1.98 0.21±1.45 27.07±4.14
SVR 29.22±1.06 -3.00±1.12 19.42±3.27

LS-SVM 27.43±1.90 0.20±1.03 20.17±2.26
HME-REG 34.15±1.74 0.14±1.38 28.29±3.86

HME-FFNN 28.17±2.04 0.26±0.58 22.43±2.44
FCM-FFNN 28.34±1.67 -0.20±1.27 22.30±3.28

Order 3
CV(%) MBE(%) MAPE(%)

Regression 33.15±1.33 -0.02±0.96 27.87±2.40
FFNN 34.23±1.63 2.01±2.45 29.62±2.16
SVR 28.59±2.05 -2.33±1.09 19.58±2.07

LS-SVM 27.68±1.91 -0.02±1.71 20.23±2.56
HME-REG 33.20±1.32 -0.08±0.97 27.95±2.31

HME-FFNN 29.64±2.21 -0.12±1.64 24.81±0.38
FCM-FFNN 28.94±1.46 0.45±1.27 22.76±2.03

because as the number of inputs increases, the total number of parameters to estimate

increases. A more complex model has less potential to generalize to new examples,

which makes it less desirable when simpler models provide equal performance. In

addition, the tie breaker measures MBE and MAPE are not statistically different for

all orders.

3.12.4 Campbell Creek House 3

The results for House 3, shown in Table 3.4, present the same trend as the House

2 results. As the order increases, most techniques have minimal or no performance

gains. The only models that present statistically significant improvements are order 3

SVR and order 2 LS-SVM. The order 3 SVR shows improvement in the CV measure,

while the order 2 LS-SVM presents improvement in the MAPE measure. All other

models are not statistically different within a reasonable confidence range across the

different orders.

According to the results in Table 3.4, order 3 SVR’s CV value is statistically

different from every model except order 2 and 3 LS-SVMs’ CV values. In addition,

44



Table 3.4: Results for all techniques applied to Campbell Creek House 3. Best results
are shown in bold font.

House 3
Order 1 Order 2

CV(%) MBE(%) MAPE(%)
Regression 40.07±2.21 0.07±1.15 32.49±1.88

FFNN 37.15±1.57 0.35±2.03 28.92±2.55
SVR 33.71±1.72 -3.36±0.99 21.49±1.80

LS-SVM 31.60±2.07 -0.15±1.10 22.25±1.33
HME-REG 39.17±2.17 0.33±1.38 31.72±2.07

HME-FFNN 32.98±1.28 -0.12±0.84 23.99±1.63
FCM-FFNN 33.03±1.67 0.93±1.52 25.28±2.14

CV(%) MBE(%) MAPE(%)
Regression 39.26±4.19 0.11±1.86 31.34±2.58

FFNN 38.02±2.49 2.05±2.67 29.83±2.02
SVR 32.38±2.96 -3.12±1.73 20.72±1.38

LS-SVM 30.66±2.53 -0.05±0.93 21.33±1.40
HME-REG 38.48±4.34 1.03±1.72 30.53±3.07

HME-FFNN 32.99±2.17 1.07±1.17 24.76±1.94
FCM-FFNN 32.92±2.49 0.76±2.03 24.20±2.06

Order 3
CV(%) MBE(%) MAPE(%)

Regression 38.53±3.47 0.15±1.22 30.49±2.15
FFNN 38.58±2.07 -0.08±2.46 30.57±2.51
SVR 31.88±2.01 -2.84±0.97 20.47±1.69

LS-SVM 30.78±2.56 -0.21±1.04 21.36±1.50
HME-REG 38.22±3.58 1.20±1.49 29.52±2.47

HME-FFNN 33.34±1.83 1.09±1.24 25.15±2.13
FCM-FFNN 33.66±2.09 1.17±1.30 25.51±1.72

order 1 LS-SVM’s CV value is not statistically different from all HME with FFNN

models and FCM with FFNN models, but the CV values for orders 2 and 3 are

statistically better. Therefore, order 2 LS-SVM and order 3 SVR are the best models

based on the CV measure. The order 3 LS-SVM model is excluded because it is not

statistically different from the simpler order 2 model.

Note that the House 3 results indicate that SVR demonstrates a large MBE

measure for all Markov orders. This means that the SVR model is removed from

consideration based on the second tie-breaker measure. Therefore, the best technique

for predicting next hour energy consumption for House 3 is LS-SVMs.

3.13 Results Summary

Our findings indicate that FFNN performs best on the original ASHRAE Shootout

data set, which is consistent with the literature. However, our results for S2 indicate

that other Neural Network methods might perform better. This is consistent with

the recent work in Li et al. (2011).

45



0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (Hours)

W
a

tt
−

H
o

u
r

Residential Electrical Consumption for 1 Week

 

 

House 1 House 2 House 3

Figure 3.2: This figure presents one week of electrical consumption for all three
residential homes, from the second week in September, 2010.

Our findings also indicate that traditional methods, such as FFNN, are not the

best overall method for predicting future residential electrical consumption. In fact,

on House 3 the FFNN’s performance is extremely close to the baseline performance

established by Linear Regression. Traditional methods perform better on House 1

and 2, but not as well as other techniques.

Despite traditional methods not performing as well on the residential data sets,

our results establish that FCM with FFNN, HME with FFNN, and LS-SVM work well

on all three houses. However, LS-SVM is statistically the best technique at predicting

future residential electrical consumption over the next hour.

3.14 Discussion

The different performance results for each house stem from the fact that each house

is fundamentally different. These physical differences make each house have a very

46



different energy response pattern, even though each house is automated to run exactly

the same schedule. Figure 3.2 illustrates the electrical consumption for a single week

in September. The complexity of the energy patterns exhibited by Houses 2 and 3

make them harder to predict than House 1. The figure shows that House 3 is prone

to sudden drops in electrical consumption, while House 2’s electrical consumption

fluctuates much more frequently. House 1 may appear to fluctuate as sharply as

House 2, but the fluctuations are much less on average. The physical differences

certainly impact the physical sensor data as well.

The results from the Great Energy Predictor Shootout and results from predicting

electrical consumption in other commercial buildings have established expected ranges

for good CV values – on the order of 2% to 13%, according to the existing literature.

The results are clearly dependent on the input variables, but a learning approach is

generally considered acceptable if it is within that range. However, we note that our

residential results are not within this range. These results are not due to the learning

approaches being implemented incorrectly or poorly. In fact, all learning approaches

are implemented using existing or modified software packages. The LS-SVM

implementation is from LS-SVMlab Suykens et al. (2002a), the SVR implementation

is from LIBSVM Chang and Lin (2011a), the HME implementation uses modified

software provided by the authors of Martin et al. (2004), and all remaining learning

systems are implemented using existing MATLAB modules provided by Mathworks.

Considering the reasonable performance of these same techniques on the Great Energy

Prediction Shootout data set (Table 3.1) and the fact that all techniques are built

using established software, the only possible cause for not matching the established

CV range is that each house has more complex energy usage patterns than typical

commercial buildings.

Comparing the residential electrical consumption (Figure 3.2) with the commercial

electrical consumption (Figure 3.3) shows that commercial buildings have fairly stable

usage patterns and less sudden change than residential buildings. The reason for this

difference is based purely on the size of the buildings and the fact that small variations

47



0 20 40 60 80 100 120 140 160
400

500

600

700

800

900

1000

Time (Hours)

K
ilo

w
a

tt
−

H
o

u
r

ASHRAE Shootout I Electrical Consumption for 1 Week

Figure 3.3: One week of electrical consumption for the Great Energy Prediction
Shootout building, from the second week in September, 1989.

in consumption do not significantly affect the overall consumption. A larger building

will obviously consume more electricity and contain more people, which means that

the actions of a few individuals turning on lights or using additional electricity will

have very little effect on the buildings’ consumption trend. However, in a smaller

building, minor changes to the environment can cause noticeable effects. For example,

turning all the lights on in most houses will cause more noticeable fluctuation than

turning on the equivalent number of lights in a commercial building.

In addition, residential buildings exhibit more complex usage patterns. Figure

3.4 illustrates three weeks of measured electrical consumption for House 3. The

usage patterns are very similar for the first two weeks and share similar highs and

minimums. However, the usage pattern completely changes during the third week

(hours 315 through 500). This variability is mostly dependent upon the house’s

ability to produce solar power and how much solar power the house is able to produce.

While this figure illustrates changes in consumption patterns for House 3, changes in

48



0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (Hours)

W
a

tt
−

H
o

u
r

House 3’s Electrical Consumption for 3 Weeks

Figure 3.4: Three weeks of electrical consumption for House 3, starting from the
second week in September, 2010.

consumption patterns are not unique to House 3 and also occur in Houses 1 and 2;

the pattern changes are just more pronounced in House 3.

The Great Energy Prediction Shootout data set does contain changes in consump-

tion patterns, but these changes correspond with holidays, weekends, and normal

vacation periods. On the other hand, the changes in these residential homes is

dependent on environmental variables and changes in occupant behavior. Thus, these

three homes provide a rich and interesting data set for modeling energy prediction

that is more challenging than the currently available commercial data sets.

According to the results presented in Tables 3.2, 3.3, and 3.4, changing the

Markov order had varying affects. Most techniques applied to House 1 showed a

statistically significant performance increase as the order was increased from 1 to

2. On House 1, fewer techniques present improvement by increasing the order even

further. However, most techniques applied to Houses 2 and 3 show very little or no

performance gains as the order increases. On House 2 only Linear Regression shows

49



statistically significant improvements by increasing the order. In addition, only two

techniques show statistically significant improvement on House 3: LS-SVM and SVR.

There are two possible explanations for these results. First, the temporal

dependencies could extend back much further in time than order 3. Second, the

consumption patterns could change often enough that increasing the past observations

does not help predict future consumption. The first option is possible, but requires

further testing and evaluation. However, extending the order further without

removing irrelevant inputs may cause most models to perform worse than the ones

with smaller orders, due to overfitting. Therefore, this requires testing higher orders

and determining the most relevant inputs for predicting electrical consumption. The

feature selection methods explored in this dissertation enable relevant input selection,

but those methods were not used to generate these results.

The second option is the most plausible explanation. Houses 2 and 3 change

consumption patterns fairly often and are dependent on future events that are not

always represented within past observations. For example, House 3’s ability to

generate solar power is dependent on external weather events that are not guaranteed

to follow a regular pattern. However, House 2 is more difficult to explain. House

2’s consumption pattern changes regularly, except that there are periods where the

electrical consumption sporadically increases more than the normal trends. These

instantaneous changes in patterns are not represented by past observations, which

means increasing the order will not necessarily help.

Our residential results establish that LS-SVM is the best technique from the

ones we explored. However, the Shootout results establish that this technique only

performs better than HME with Linear Regression and Linear Regression alone.

Clearly the LS-SVM model fails to generalize to the Shootout testing data. The

model failed to generalize because the provided training data is not general. The

electrical response signal for the training data and testing data are statistically

different, but LS-SVM uses every training example to help define its model. This

means that the LS-SVM builds a model that expects the testing response to resemble

50



Table 3.5: Great Energy Prediction Shootout results using 3-Folds. The data set’s
order was randomized before being divided into folds. Each test set has approximately
the same number of examples as the original competition test set. Best results are
shown in bold font.

ASHRAE Shootout
S1 S2

CV(%) MBE(%) MAPE(%)
Regression 13.26±0.16 -0.02±0.43 11.64±0.11

FFNN 8.81±0.17 0.01±0.10 7.10±0.09
SVR 9.16±0.23 0.05±0.04 7.48±0.12

LS-SVM 8.85±0.18 0.02±0.21 6.95±0.21
HME-REG 13.26±0.15 0.03±0.41 11.65±0.10

HME-FFNN 8.74±0.22 -0.02±0.04 7.00±0.11
FCM-FFNN 8.74±0.26 0.05±0.24 6.99±0.21

CV(%) MBE(%) MAPE(%)
Regression 4.01±0.35 0.00±0.27 2.71±0.08

FFNN 2.29±0.16 0.06±0.12 1.51±0.05
SVR 3.27±0.36 0.09±0.16 1.90±0.12

LS-SVM 3.77±0.44 -0.07±0.08 2.13±0.20
HME-REG 4.01±0.35 0.01±0.29 2.70±0.10

HME-FFNN 2.20±0.19 -0.03±0.07 1.39±0.01
FCM-FFNN 2.17±0.17 0.01±0.11 1.38±0.00

the observed training reponse. However, in this situation the electrical consumption

pattern changes and the LS-SVM model is not able to predict these changes. We

were able to test this idea by randomizing the Shootout training and testing data,

such that the sets were more similar.

Our experiments with this modified data set show a performance increase for

most techniques (Table 3.5). More importantly, LS-SVM is now a more competitive

learning algorithm on this data set when presented with a more general training set.

In our residential experiments, we shuffled the data sets before dividing the data into

folds. This allowed us to perform all experiments with training and testing data sets

that covered a wide range of different scenarios. Ultimately, we plan to train all

methods on the entire 2010 Campbell Creek data set and perform tests on the entire

2011 Campbell Creek data set once the year is complete.

51



Chapter 4

Sensor Selection

Feature Selection is viewed as a Model Selection problem within the machine learning

and statistical community, and involves trying to select a set of inputs, variables

or functions that produces an optimal predictive model. An optimal model will

generalize well to new examples and has little bias towards the training examples.

There are many different Model Selection techniques for approximating which model

has the least amount of bias; each technique has advantages and disadvantages.

However, this chapter only focuses on a few types of Model Selection techniques

that assume parsimony or Occam’s razor governs the best model. These types of

Model Selection, or Feature Selection, techniques can be categorized into three types

– Filter, Wrapper, and Embedded Guyon and Elisseeff (2003).

Filter algorithms provide a preprocessing approach to reduce model complexity.

A filter algorithm attempts to discover relevant inputs based on the statistical

information presented within the data. For example, a common filter approach is

to apply Principle Component Analysis (PCA) to a dataset and use the resulting

coefficients in the transformation matrix to derive a variable ranking. Given this

ranking, one can pick a fixed number of variables to use for the learning problem. The

main advantage provided by Filter methods is that they are relatively computationally

inexpensive, making them much faster to use than the other method types. However,

52



these approaches will only provide heuristic estimates for selecting the correct

variables to use in the model and cannot provide any provable properties.

Wrapper methods perform model selection by attempting to reduce the number of

parameters used by the learner external to the learning system. Essentially, Wrapper

techniques provide a method for searching through different parameter configurations

and use the learning system to judge the quality of these configurations. These

types of methods generally perform much better than Filter methods at selecting

the truly important variables, because the variables are selected with respect to the

task; as mentioned previously, Filter methods only use the statistical information

within the data to guide variable selection. Although Wrapper methods are more

computationally expensive, the benefits provided by a guided search are generally

worth the computational cost.

The last category, Embedded algorithms, perform model selection by indirectly

selecting the appropriate variables required to perform the specified task. This

approach ignores irrelevant inputs without explicitly searching for the relevant

inputs. For example, a learning algorithm that uses an embedded method can

drive the weights given for relevant variables towards large values, and the weights

for irrelevant variables towards zero. This class of learning algorithms can have

mixed reliability, and ultimately provide heuristic guidance for selecting the relevant

variables. However, this heuristic guidance is more directed than the Filter methods,

and the methods can be computationally more efficient than the Wrapper methods.

Given the advantages and disadvantages for each Feature Selection algorithm

category, this chapter focuses on Wrapper and Embedded methods. Section 4.1 covers

Model Criteria metrics. These criteria functions are used to estimate a model’s overall

quality. The model criterial functions assist Wrapper methods to select important

variables, which is discussed in Section 4.2. Section 4.3 discusses Stepwise Selection,

which is a classic Wrapper method for variable selection. Section 4.4 discusses Auto

Relevance Detection (ARD), an embedded variable selection method. Lastly, Section

53



4.5 presents a novel voting method that uses a Wrapper method to produce variable

rankings similar to Filter methods.

4.1 Model Criteria

There are many different Model Criteria functions that combine a goodness-of-fit

objective with a model complexity objective. While each Model Criteria measures

model complexity differently, all the functions measure goodness-of-fit using the same

criteria, −2 log(L(θ)), where L(θ) is the maximum likelihood function using θ as

the parameter set. Since the preliminary feature selection results (Section 4.6) were

generated using Wrapper methods that utilize a Linear Regression Model as the

learning system, the general maximum likelihood function should be expressed as

follows:

L(θ) = L(Y |β,Σ) =
1

2πk/2|Σ|k/2
e−

(Y−Xβ)TΣ−1(Y−Xβ)
2

where k is the dimensionality of the multivariate normal (i.e., the number of

parameters used in the regression model) and β is a coefficient matrix used to map

the input X to a multivariate response Y . However, since our response variable Y is

univariate∗, the maximum likelihood equation simplifies to the following:

L(y|β, σ2) =
1

(2πσ2)k/2
e−

(y−Xβ)T(y−Xβ)

2σ2

Given that all Model Criteria in this report are applied to univariate Linear Regression

Models, one can replace L(θ) with L(y|β, σ2) to frame all Model Criteria for measuring

regression complexity.

The first Model Criteria function was defined by Akaike in 1973, called AIC

(Akaike’s Information Criterion) Akaike (1973). This definition proposed the

∗ Assuming a univariate response is appropriate, because the response variable used in structure
learning via regression methods is univariate in all cases. Additionally, the response variable
considered in this chapter is univariate.

54



evaluation of a model based on the previous likelihood function L(θ) and a penalty

term that attempts to correct the model’s bias, under the assumption that the model

that best minimizes log(L(θ)) and minimizes model complexity is the best model.

AIC’s Criteria function is as follows:

AIC(θ) = −2 log(L(θ)) + 2k

where k is the number of free parameters that are estimated in the model. After the

introduction of AIC, many other Model Criteria functions were introduced, such

as Bayesian Information Criterion Schwarz (1978), Minimum Description Length

Rissanen (1983), Consistent AIC Bozdogan (1987), and many more. The author

of Rumantir (1999) has illustrated that BIC, MDL, CAIC, and many other Model

Criteria functions are able to find the true model, if a true model exists, or some

approximate parsimonious model, otherwise. However, these methods only compute

model complexity in terms of the number of estimated parameters, rather than also

including the effect of parameter interactions.

Given that these previous Model Criteria functions compute model complexity

without considering parameter interactions, we decided to use the Information

Complexity (ICOMP) Bozdogan and Haughton (1998) Criteria. To the best of our

knowledge, ICOMP is the only Model Criteria function that measures parameter

interaction without the risk of under-fitting the model like CAICF(Bozdogan (1987)).

The ICOMP Criteria function is defined as follows:

ICOMP(IFIM) = −2 log(L(θ)) + 2C(F−1(θ))

where IFIM stands for Inverse Fisher Information Matrix and C is a specified

complexity function that maps F−1(θ), the estimated Inverse Fisher Information

Matrix, under the parameters θ, to a single complexity score. Note that lower values

of the ICOMP function are preferred. There are many different variants of ICOMP,

55



each with a different C complexity function and each with a different approximation

for Σ(θ) Bozdogan (2003). This proposal focuses on ICOMP(IFIM)Misspec, since it is

scale invariant, considers skewness and kurtosis within the model, and helps protect

against over-fitting when the L(θ) function is incorrectly specified Bozdogan (2003).

ICOMP(IFIM)Misspec is defined as follows:

ICOMP(IFIM)Misspec = −2 log(L(θ)) + 2C1(Cov(θ)Misspec)

where Cov(θ)Misspec
† and C1(Σ) are defined as:

Cov(θ)Misspec = F−1RF−1

C1(Σ) =
p

2
log(

tr(Σ)

p
)− 1

2
|Σ|

Additionally, Bozdogan (2003) illustrates that when applying ICOMP(IFIM)Misspec

to regression models, F−1 and R are defined as:

F−1 =

 σ2(XTX)−1 0

0 2σ4

n



R =

 1
σ4X

TD2X X ′1 Sk
2σ3

(X ′1 Sk
2σ3 )′ (n−q)(Kt−1)

4σ4


where D2 = diag{ε2

1, ..., ε
2
n} and ε2

i is the squared residual error for target yi, X

represents the input data to the regression model, Sk is skewness within the residual

errors, and Kt is kurtosis.

† Cov(θ)Misspec is dependent upon the likelihood function and the learning system, and must be
derived for different combinations of the two.

56



4.2 Genetic Algorithm for Subset Selection

A Genetic Algorithm solves a search problem by considering several candidate

solutions in parallel and combining good solutions from the pool of candidate solutions

to create new candidate solutions. The hope is that each time the algorithm

creates new candidate solutions, they will be superior to the previous candidate

solutions. This process is implemented through a set of fairly simplistic, but powerful,

operations called selection, crossover, and mutation, which are performed on the

current population, or candidate solution set, with respect to a user-defined fitness

function that measures solution quality. A candidate solution for our Genetic

Algorithm Wrapper for sensor selection is a binary string with a length equal to

the number of sensors within the dataset; sensor xi is included in the solution if the

solution has a 1 at index i.

The selection operator determines which candidate solutions will enter the new

population without modification and which solutions will be used for constructing

new candidate solutions. This process can either uniformly select solutions from the

population, select solutions according to a probability distribution derived from each

solutions’ quality, or select according to a probability distribution defined over the

current solution rankings. The latter option is used in this research.

The crossover operation uses the selection operator to pick two candidate solutions

from the population and to probabilistically create either one or two candidate

solutions. There are many different types of crossover operators; the method used

in this research is called scattered crossover. This method selects two candidate

solutions p1 and p2 from the population and generates a random binary string. The

new candidate solution copies all elements from p1 that correspond with a 1 in the

binary string and all elements from p2 that correspond with a 0 in the binary string.

Mutation uses the selection operation to pick a small percentage of the candidate

solutions, roughly one or two percent, and then probabilistically determines if it

should alter the selected candidate solutions. The alteration is based on a Bernoulli

57



experiment performed on each binary bit of the selected candidate solutions. This

means that with probability p, a single binary bit could change from 1 to 0 or vice

versa. There is much controversy over whether or not mutation contributes to finding

good candidate solutions, so p is generally set fairly small.

A Genetic Algorithm combines these operators to optimize a fitness function,

where the fitness function measures the quality for a candidate solution. In this

particular feature selection application, we follow the work presented in Bozdogan

(2003), which suggests and illustrates the previously mentioned ICOMP(IFIM)

measure as the fitness function, because of its previously stated beneficial properties.

4.3 Stepwise Selection

Stepwise Selection is a greedy search algorithm that attempts to minimize bias

by only including variables that contribute statistically significant improvements in

performance. This process is carried out iteratively using two passes across the

parameter space, where the first pass is a variable inclusion step and the second

pass is a variable elimination step. The inclusion pass starts by initializing an initial

variable set m, which is generally empty, and iterates over the variable space in a

fixed linear order x1, x2, ...xn. At each iteration i, the algorithm tests to see if the

current model m is statistically worse than the new model m′ that includes variable

xi. Model m and model m′ are compared using the F-Test to either accept or reject

the null hypothesis that variable xi does not increase model m’s performance. If the

null hypothesis is rejected with error confidence ρ, then the variable xi is added to

the current model m.

The variable elimination pass starts with model m after completing the inclusion

step, and iterates over the variable space in the same fixed linear order. However,

at each iteration i, the algorithm tests to see if the current model m is statistically

better than model m′′ that does not include variable xi. Model m and model m′′

are compared using the same F-Test procedure, but the null hypothesis is now

58



reformulated as m′′ having worse performance than m. If there is not sufficient

evidence to reject the null hypothesis with error confidence ρ′, then variable xi is

removed from model m.

The inclusion and elimination steps can be repeated until it is either no longer

possible to add or remove a variable from the subset, or for a fixed number of iterations

if convergence is not possible. In this research, the Stepwise Selection procedure is

performed until convergence, with ρ set to five percent and ρ′ set to ten percent.

4.4 Auto Relevance Detection

Auto Relevance Detection (ARD) is a Bayesian approach to parameter regularization

and estimation. General Bayesian methods use an assumed prior distribution over

the model parameters and try to find model parameters that maximize the posterior

distribution. That is to say, rather than maximizing the likelihood function P (X|θ),

the Bayesian methods attempts to maximize the posterior distribution P (X|θ)P (θ)

where P (θ) is the assumed prior distribution over the model parameters P (θ).

However, ARD methods assume a prior distribution per model parameter, and

a a prior distribution over the hyperparameters‡ for the model parameter priors.

According to Tipping (2001), these priors over the hyper parameters can allow

individual model parameter distributions to adjust towards a posterior distribution

where the MAP estimate is generally zero. Tipping (2001) also states that this result

is also based on the data supporting this hypothesis. In other words the sparse model

parameters are strictly dependent upon the data. This means that ARD can be used

for feature selection, but like the Wrapper methods it does not provide guarantees

that the selected features are the true dependent features. That is to say, relevant

features will have non-zero weights and irrelevant features will have approximately

zero weights.

‡ The term hyperparameters is used to describe external parameters that are not included in the
final model’s parameter space.

59



However, ARD’s key disadvantage is that this feature selection attribute may

not correspond with variable selection. Li (2007) illustrates this point by noting

methods that depend on using model weights for selecting variables are only able

to select basis vectors when applied to kernel methods. This means that it may be

difficult to use ARD based methods to directly select dependent variables. While

it may be possible to address this issue via a transformation between the linear

model parameters and the nonlinear model parameters like the work in Li (2007)§,

it is not clear that a transformation will exist between a linear and nonlinear ARD

estimated model. However, it is possible to use ARD to select variables directly in

other nonlinear models, such as Feed Forward Neural Networks (FFNN). For example,

the original ARD work in MacKay et al. (1994) was used to learn regularized FFNNs.

While MacKay et al. (1994) did not focus on variable selection, it should be possible

to devise a variable selection method using the learned FFNN’s weights.

4.5 Feature Ranking

Since we are interested in finding which variables are most useful for building a general

prediction model, we framed the problem as a model selection problem. However, each

Wrapper method might produce a different best model answer when presented with

different subsets of the original dataset. For example, if one uses 75% of a dataset for

learning and the remaining 25% for testing purposes, the learning system can provide

consistently different best models each time one resamples the data into learning and

testing sets. This leaves two options — search for the best model among all possible

best models or derive a method to combine the best models seen so far to construct

a ranking for each selected variable.

§ The work in Li (2007) proved that it is possible to transform a linear Lasso regression problem
into a nonlinear SVM regression problem. This transformation allows the author to use another
embedded method (i.e., SVM’s sparsity property) to directly select variables via the linear Lasso
regression solution. However, this selection method is not based on ARD

60



Option one is viable, because we are able to use ICOMP(IFIM) to directly compare

all seen best models, by selecting the model with the lowest ICOMP(IFIM) score.

However, there is an infinite number of best models, and it is not guaranteed that

one will find the true best model. As will be seen in Section 4.6, the best model may

not always have the smallest ICOMP(IFIM) score, but rather the smallest variance.

That is to say, the best sensor subset model will generally have a small variance over

a wide range of different learning and testing sets.

Alternatively, one could devise a method for combining each model’s best variable

subset through voting, since each model is a best model over some set of learning

and testing configurations. In our opinion, the voting scheme for combining the best

seen subset models should be preferred for models with low ICOMP(IFIM) scores,

which have low variance in addition to their low score. Therefore, our voting scheme

is defined as follows:

v =
ICOMP(IFIM)max − ICOMP(IFIM)m

σ2
m

where v is model m’s voting power, ICOMP(IFIM)max is the score for the worst

variable subset in the collection of seen models, and σ2
m is model m’s ICOMP(IFIM)

variance. We then allow each model to cast a positive vote v for each variable present

in the model and a negative vote −v for each variable not present in the model. If we

sum the votes for each variable, we are able to assign a rank to each variable based

on the currently observed best models, by simply sorting all variables final scores in

descending order.

4.6 Feature Selection Results

We have organized our feature selection experimental results according to the

following order: Campbell Creek House 1, Campbell Creek House 2, Campbell

Creek House 3, Across All Houses, Variable Ranking results, and comparisons

61



against Ground Truth. The individual house sections and the Across All Houses

section contain results generated from the selected eight best models. The Variable

Ranking section contains results from applying our sensor ranking method mentioned

in Section 4.5. The Ground Truth Comparison section presents the results from

comparing the best sensors subsets with sizes one through four against the best

Markov Order 1 models and the best top 10 sensor sets selected using our ranking

method.

4.6.1 Campbell Creek House 1

Figure 4.1 illustrates the experimental results of comparing the Genetic Algorithm and

Stepwise Selection Wrappers based on lowest ICOMP(IFIM) variance, for Campbell

Creek House 1. In addition, variables that have missing values were dropped, leaving

each method with 87 candidate sensors. Under this particular best model selection,

Figure 4.1 shows that the Genetic Algorithm Wrapper finds a more general subset of

sensors for Markov Orders 1, 2, and 3. Interestingly, the model selected by the Genetic

Algorithm uses more parameters than the model selected with Stepwise Selection for

all Markov Orders. The Genetic Algorithm subset uses 57 sensors for Markov Order

1, 69 sensors for Markov Order 2, and 80 sensors for Markov Order 3, while the

Stepwise Selection model uses 48 sensors, 58 sensors, and 69 sensors, respectively.

This means that the Genetic Algorithm finds sensors it can incorporate without

increasing the model complexity, while still producing a slightly better goodness-of-fit

as the Stepwise Selection Wrapper (Figure 4.1(e)).

If we change the best model selection policy for the Campbell Creek House 1

dataset with the same 87 candidate sensors to selecting the model with the lowest

mean ICOMP(IFIM), then the Genetic Algorithm method shows slight improvement

in overall ICOMP(IFIM) criteria, and the Stepwise Selection method’s overall

ICOMP(IFIM) improves greatly for Orders 2 and 3. However, the goodness-of-

fit (Figure 4.2(e)) for Genetic Algorithm methods show improvements over the

62



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.1: These graphs illustrate the experimental results from applying the models
with the lowest ICOMP(IFIM) variances on Campbell Creek House 1. Variables with
missing data were removed from the dataset for these results.

63



best variance model (Figure 4.1(e)), while the Stepwise Selection Method shows

degradation in performance. It may not be statistically different with a 95%

confidence, but the Genetic Algorithm method appears to fit the data better in

higher orders. While the overall ICOMP(IFIM) criteria mostly improves, note a

slight increase in the overall error range, meaning that these models are possibly more

variable than best variance models. This means that when selecting the appropriate

sensor subset one needs to consider the possible variance in performance in addition to

overall performance. The Stepwise Selection method increases the number of sensors

it selects for Markov Orders 1 and 2 in this set of experiments, using 50 sensors, 62

sensors, and 68 sensors. Additionally, the Genetic Algorithm method increases the

number of sensors included in Markov Order 1 and 2. It uses 58 sensors, 73 sensors,

and 78 sensors for these results.

Using the data from the same house, except that missing values are now set to

zero and the number of candidate sensors is now 95, Figure 4.3 compares results for

the Genetic Algorithm and Stepwise Selection methods based on the model with the

lowest ICOMP(IFIM) variance. Under these new conditions, the Genetic Algorithm’s

ICOMP(IFIM) values are significantly worse than the two models selected when

dropping variables with missing values (Figure 4.1(b) and Figure 4.2(b)). Similarly,

the Stepwise Selection method’s ICOMP(IFIM) values are significantly worse for

Markov Orders 1 and 2, but its value for Markov Order 3 is substantially better. It is

not quite clear why this Stepwise Selection model performs better than the previous

Stepwise Selection models for only Order 3. It could be because the overall fit is

better when compared to the previous Stepwise Selection models, and the complexity

is higher for order 1 and 2 causing the model to incur an additional penalty for the

improved fit. The Genetic Algorithm’s fit is significantly worse than the previous

lowest ICOMP(IFIM) mean value model (Figure 4.2(b)), yet there is only a slight

degradation when compared to the previous lowest variance ICOMP(IFIM) (Figure

4.1(b)). The Genetic Algorithm model used 57 sensors, 73 sensors, and 77 sensors

and the Stepwise Selection model used 54 sensors, 66 sensors, and 73 sensors.

64



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.2: These graphs illustrate the experimental results from applying the models
with the lowest mean ICOMP(IFIM) on Campbell Creek House 1. Variables with
missing data were removed from the dataset for these results.

65



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise’s Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.3: These graphs illustrate the experimental results from applying the models
with the lowest ICOMP(IFIM) variance on Campbell Creek House 1. All missing
values in the data were set to zero for these results.

66



If we change the best model selection policy for the Campbell Creek House 1

dataset with the same 95 candidate sensors to selecting the model with the lowest

mean ICOMP(IFIM), then the Genetic Algorithm model’s ICOMP(IFIM) values

(Figure 4.4(b)) are much closer to Genetic Algorithm results seen in Figures 4.1(b)

and 4.2(b). Also, the Stepwise Selection model’s ICOMP(IFIM) values are the best

results for this model selection on Campbell Creek House 1. The fit for the Genetic

Algorithm model, Figure 4.4(e), is slightly better than the models seen in Figure

4.1(e) and Figure 4.3(e), but is worse than the Genetic Algorithm model in Figure

4.2(e). The Stepwise selection model’s fit is mostly identical to the fit seen in Figure

4.1(e). This means the Stepwise Selection model is using sensors that were originally

removed from the dataset, and these sensors provide improvement by reducing model

complexity. This Stepwise Selection model increased the number of sensors used for

Markov Order 1 and 2, compared to the lowest ICOMP(IFIM) variance Stepwise

Selection model. It uses 59 sensors, 71 sensors, and 73 sensors, while the Genetic

Algorithm model uses 58 sensors, 72 sensors, and 89 sensors.

From Figures 4.1, 4.2, 4.3, and 4.4, it is clear that the best Genetic Algorithm

Model for Campbell Creek House 1 is the model presented in Figure 4.2, and the

best Stepwise Selection Model is presented in Figure 4.4. The dropped variables had

a very large impact on the Stepwise Selection method, making it very difficult to

find good models under the ICOMP(IFIM) criteria. However, the Genetic Algorithm

method in both cases was able to find better models than the Stepwise Selection

method, but its best model was found when the variables with missing values were

dropped. Ultimately, the Genetic Algorithm method is finding better models than

Stepwise Selection on Campbell Creek House 1.

4.6.2 Campbell Creek House 2

Figure 4.5 compares the results of the Genetic Algorithm and Stepwise Selection

Wrappers when selecting the best model, based on lowest ICOMP(IFIM) variance,

67



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise’s Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.4: These graphs illustrate the experimental results from applying the models
with the lowest mean ICOMP(IFIM) on Campbell Creek House 1. All missing values
in the data were set to zero for these results.

68



for Campbell Creek House 2. In addition, variables that have missing values were

dropped, leaving each method with 84 candidate sensors. Note that under the

lowest variance model selection, the Genetic Algorithm finds a better model under

the ICOMP(IFIM) metric on this dataset, too. The Genetic Algorithm model uses

considerably more sensors for all Markov Orders — 57 sensors, 67 sensors, and 73

sensors, while the Stepwise Selection model uses 46 sensors, 54 sensors, and 53 sensors.

The differences in the numbers of sensors explains why the Genetic Algorithm model

has a slightly better goodness-of-fit than the Stepwise Selection model (Figure 4.6(e)),

because additional sensors included in the model can only increase goodness-of-fit;

this is demonstrated with the fully saturated model (Figure 4.6(e)) where a fully

saturated model is defined as one that uses all available sensors.

Changing the best model selection strategy to selecting the model with the

lowest mean ICOMP(IFIM) increases overall performance on the Campbell Creek

House 2 dataset with 84 candidate sensors for the model generated using Stepwise

Model Selection (Figure 4.6(b)). The Genetic Algorithm model presents very minor

improvements for Markov Order 2 and 3. This stems from the Genetic Algorithm’s

goodness-of-fit (Figure 4.6(e)) and model complexity (Figure 4.6(d)) not significantly

changing because the number of sensors included in the model remains roughly the

same as the best variance model. The Genetic Algorithm model in Figure 4.6 uses

60 sensors, 69 sensors, and 73 sensors. Conversely, the Stepwise Selection model’s

goodness-of-fit appears to increase very slightly. The goodness-of-fit’s means are

shifted slightly lower than the original means (Figure 4.6(e) and Figure 4.5(e)). The

increase stems from the Stepwise Selection method adding additional sensors to the

model, using 51 sensors, 62 sensors, and 60 sensors.

Using the data from the same house, except missing values are now set to zero

and the number of candidate sensors is now 103, Figure 4.7 compares results for

the Genetic Algorithm and Stepwise Selection methods based on the model with

the lowest ICOMP(IFIM) variance. The Genetic Algorithm’s overall ICOMP(IFIM)

scores show decreases in performance, when compared to results shown in Figure

69



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise’s Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.5: These graphs illustrate the experimental results from applying the models
with the lowest ICOMP(IFIM) variances on Campbell Creek House 2. Variables with
missing data were removed from the dataset for these results.

70



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise’s Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.6: These graphs illustrate the experimental results from applying the models
with the lowest mean ICOMP(IFIM) on Campbell Creek House 2. Variables with
missing data were removed from the dataset for these results.

71



4.6(b) and Figure 4.5(b). The overall ICOMP(IFIM) scores for Stepwise Selection are

slightly better than the results seen in Figure 4.5(b), but are considerably worse than

the results shown in Figure 4.6(b). Additionally, the goodness of fit is slightly worse

for both the Genetic Algorithm and Stepwise Selection compared to the previous

models. The Genetic Algorithm uses 67 sensors for Markov Order 1, 85 sensors for

Markov Order 2, and 91 sensors for Markov Order 3, while the Stepwise Selection

method uses 63 sensors, 62 sensors, and 67 sensors, respectively.

Changing the best model selection strategy to selecting the model with the lowest

mean ICOMP(IFIM) increases overall performance on the Campbell Creek House

2 dataset with 103 candidate sensors. The models generated using Stepwise Model

Selection for Markov Orders 1 and 3 (Figure 4.8(b)) perform better than all other

Stepwise Models on Campbell Creek House 2. However, its performance for Order 2

remains essentially the same as all other Stepwise Models. Additionally, the Genetic

Algorithm method finds the best performing model in terms of ICOMP(IFIM),

compared to the other models presented in Figures 4.6(b), 4.5(b), and 4.7(b). The

Genetic Algorithm method uses 69 sensors, 78 sensors, and 93 sensors. The best

performing Stepwise Selection method uses 61 sensors, 62 sensors, and 68 sensors.

From Figures 4.5, 4.6, 4.7, and 4.8, it is clear that the best Genetic Algorithm

Model for Campbell Creek House 2 is the model presented in Figure 4.8, and the

best Stepwise Selection Model is presented in Figure 4.8. Similar to House 1, the

dropped variables had a very large impact on the Stepwise Selection method, making

it very difficult to find good models under the ICOMP(IFIM) criteria. However, the

Genetic Algorithm method in both cases was able to find better models than the

Stepwise Selection method, but its best model was found when the variables with

missing values were dropped. Ultimately, the Genetic Algorithm method is finding

better models than Stepwise Selection on Campbell Creek House 2.

72



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.7: These graphs illustrate the experimental results from applying the models
with the lowest ICOMP(IFIM) variance on Campbell Creek House 2. All missing
values in the data were set to zero for these results.

73



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.8: These graphs illustrate the experimental results from applying the models
with the lowest mean ICOMP(IFIM) on Campbell Creek House 2. All missing values
in the data were set to zero for these results.

74



4.6.3 Campbell Creek House 3

Figure 4.9 compares the results of the Genetic Algorithm and Stepwise Selection

Wrappers when selecting the best model based on lowest ICOMP(IFIM) variance

on Campbell Creek House 3. In addition, variables that have missing values were

dropped, leaving each method with 77 candidate sensors. Recall that House 3 is

the house for which a linear regression technique is not able to obtain a near-perfect

mapping from xt to yt, while these mappings were successfully found for Houses

1 and 2. With this in mind, note that the ICOMP(IFIM) scores are considerably

higher (and thus worse) compared to the ones seen for Houses 1 and 2. Additionally,

for all Markov Orders, the model selected with the Genetic Algorithm is better in

terms of ICOMP(IFIM) and model complexity (Figure 4.9(b) and Figure 4.9(d)), but

the goodness-of-fit is essentially the same as the Stepwise Selection model (Figure

4.9(e)). The model selected by the Genetic Algorithm uses 41 sensors, 48 sensors,

and 56 sensors, while the model selected by Stepwise Selection uses 49 sensors, 52

sensors, and 53 sensors.

Changing the best model selection strategy to one of selecting the model with the

lowest mean ICOMP(IFIM) value on the House 3 dataset, with 77 candidate sensors,

shows improvement for Markov Order 3 in term of ICOMP(IFIM) values for both

methods, but little to no increase for goodness-of-fit. Figures 4.9 and 4.10 strongly

suggest that a different approach is required for modeling House 3, because the overall

model complexity for the fully saturated model is extremely low (Figure 4.9(c)) when

compared to the overall model complexity for the fully saturated model on Houses 1

and 2 (Figure 4.1(c) and Figure 4.7(c)). This argues that there are complex nonlinear

relationships between House 3’s sensor data and the actual energy consumption; we

currently believe this difference stems from the fact that House 3 has the capability to

produce a portion of its own electricity using solar panels. However, one can clearly

see that the Stepwise Selection and Genetic Algorithm methods still minimize the

75



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.9: These graphs illustrate the experimental results from applying the models
with the lowest ICOMP(IFIM) variances on Campbell Creek House 3. Variables with
missing data were removed from the dataset for these results.

76



selected model complexity, even though a Linear Regression Model may not be the

most appropriate Learning method.

Using the data from the same house, except missing values are now set to zero

and the number of candidate sensors is 128, Figure 4.11 compares results for the

Genetic Algorithm and Stepwise Selection methods based on the model with the

lowest ICOMP(IFIM) variance. Comparing the ICOMP(IFIM) values from the

Genetic Algorithm and Stepwise Selection models (Figure 4.11(b)) against previous

ICOMP(IFIM) values (Figure 4.10(b) and Figure 4.9(b)), one will see that there is

considerable degradation in the Genetic Algorithm’s performance, while the Stepwise

Selection is showing increases in performance for all orders. However, the model

generated by Stepwise Selection for Markov Order 3 has a fairly large standard

deviation, implying the model is highly variable and unstable. In addition, one should

notice that both methods are more than likely over-fitting or under-fitting the training

examples as the Markov Order increases, which is clearly visible from the decreasing

performance in the goodness-of-fit (Figure 4.11(e)). The Genetic Algorithm uses 63

sensors, 93 sensors, and 109 sensors, while Stepwise Selection uses 71 sensors, 91

sensors, and 75 sensors.

Changing the best model selection strategy to selecting the model with the lowest

mean ICOMP(IFIM) increases overall performance on the Campbell Creek House

3 dataset with 128 candidate sensors for all models generated by both methods

(Figure 4.12(b)). However, Stepwise Selection has a slightly better goodness-of-fit

for orders 2 and 3 compared to the Genetic Algorithm (Figure 4.12(e)), but Stepwise

Selection’s model complexity is much higher than the model complexity for the

Genetic Algorithm for order 2. Yet, both methods have equivalent complexity for

Markov Order 3, making the Stepwise Selection model the best model compared to

the previous models in Figure 4.11(e), Figure 4.9(e), and Figure 4.10(e). In addition,

the Stepwise Selection method uses 76 sensors, 86 sensors, and 85 sensors, while the

Genetic Algorithm method uses 77 sensors, 88 sensors, and 107 sensors. This implies

77



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.10: These graphs illustrate the experimental results from applying the
models with the lowest mean ICOMP(IFIM) on Campbell Creek House 3. Variables
with missing data were removed from the dataset for these results.

78



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.11: These graphs illustrate the experimental results from applying the
models with the lowest ICOMP(IFIM) variance on Campbell Creek House 3. All
missing values in the data were set to zero for these results.

79



that the model generated from using the Genetic Algorithm in Figure 4.11 is over-

fitting for higher Markov Orders, and the model generated from Stepwise Selection,

also shown in Figure 4.11, is under-fitting for Markov Order 3 and over-fitting for

Markov Order 2.

From Figures 4.9, 4.10, 4.11, and 4.12 it is clear that the best Genetic Algorithm

Model and Stepwise Selection Model for House 3 are the models presented in Figure

4.12. Additionally, we observe, yet again, that dropping variables with missing

values had a significant impact on the Stepwise Selection method, and setting missing

values to zero showed impact on the Genetic Algorithm method. While the Genetic

Algorithm is for the most part producing better models on this data set, Stepwise

Selection produced the best model, Markov Order 3 model in Figure 4.12, making it

the better choice for this particular dataset.

4.6.4 Across All Houses

Figure 4.13 compares the results of the Genetic Algorithm and Stepwise Selection

Wrappers when selecting the best model based on lowest ICOMP(IFIM) variance,

across all Campbell Creek Houses. In addition, variables that have missing values

were dropped, leaving each method with 75 candidate sensors. According to the

ICOMP(IFIM) values in Figure 4.13(a), the Genetic Algorithm is generating better

models than Stepwise Selection for all Markov Orders. The goodness-of-fit is

equivalent for all models generated with each method (Figure 4.13(e)), implying that

the Genetic Algorithm is consistently minimizing model complexity and maintaining

goodness-of-fit. The Genetic Algorithm is using 50 sensors, 61 sensors, and 69 sensors,

while Stepwise Selection is using 56 sensors, 63 sensors, and 62 sensors.

Changing the best model selection strategy to one of selecting the model with the

lowest mean ICOMP(IFIM) value across all houses, with 75 candidate sensors, one will

see that the Genetic Algorithm’s ICOMP(IFIM) values in Figure 4.14(b) indicate no

changes in performance quality. However, comparing the Stepwise Selection results

80



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.12: These graphs illustrate the experimental results from applying the
models with the lowest mean ICOMP(IFIM) on Campbell Creek House 3. All missing
values in the data were set to zero for these results.

81



One Two Three
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−2000

−1500

−1000

−500

0

500

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.13: These graphs illustrate the experimental results from applying the
models with the lowest ICOMP(IFIM) variance across all houses. Variables with
missing data were removed from the dataset for these results.

82



in the same Figure to the results in Figure 4.13(b), one sees a slight increase in

performance for Markov Order 2, and the results for Markov Order 1 and 3 are about

the same. In addition, the goodness-of-fits for these models (Figure 4.14(e)) are

identical to the goodness-of-fits observed in Figure 4.13(e). The Genetic Algorithm

is using 62 sensors, 62 sensors, and 68 sensors, while Stepwise Selection is using 55

sensors, 61 sensors, and 67 sensors.

Using the same data, except missing values are now set to zero and the number

of candidate sensors is 141, Figure 4.15 compares results for the Genetic Algorithm

and Stepwise Selection methods based on the model with the lowest ICOMP(IFIM)

variance. Figure 4.15(b) shows that the Genetic Algorithm and Stepwise Selection

methods’ ICOMP(IFIM) values have a very large increase in performance compared

to previous results in Figure 4.13(b) and Figure 4.14(b). The increase performance

mainly stems from both methods showing decreases in model complexity (Figure

4.15(d)), but there are slight improvements in goodness-of-fit (Figure 4.15(e)) as well.

The Genetic Algorithm uses 93 sensors, 123 sensors, and 118 sensors, while Stepwise

Selection uses 98 sensors, 107 sensors, and 109 sensors.

Changing the best model selection strategy to selecting the model with the

lowest mean ICOMP(IFIM) increases overall performance across all houses with

141 candidate sensors for all models generated by both methods (Figure 4.16(b)).

Comparing the model complexity for both models in Figure 4.16(d) with all previous

models on this data set, one will see that these models obtain the lowest complexity

for Markov Orders 2 and 3, and the same model complexity as the models seen in

Figure 4.15(d), for Markov Order 1. Additionally, the goodness-of-fit (Figure 4.16(e))

for these models is essentially the same as the goodness-of-fit presented for the models

seen in Figure 4.15(e). This best performing Genetic Algorithm algorithm model uses

95 sensors, 123 sensors, and 124 sensors, while the best performing Stepwise Selection

uses 85 sensors, 104 sensors, and 110 sensors.

From Figures 4.13, 4.14, 4.15, and 4.16 it is clear that the best Genetic Algorithm

Model and Stepwise Selection Model across all houses are presented in Figure 4.16.

83



One Two Three
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Model’s ICOMP

One Two Three
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−2000

−1500

−1000

−500

0

500

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Model’s Complexity

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.14: These graphs illustrate the experimental results from applying the
models with the lowest mean ICOMP(IFIM) across all houses. Variables with missing
data were removed from the dataset for these results.

84



One Two Three
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−2000

−1500

−1000

−500

0

500

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.15: These graphs illustrate the experimental results from applying the
models with the lowest ICOMP(IFIM) variance across all houses. All missing values
in the data were set to zero for these results.

85



One Two Three
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model and GA−Subset Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−2000

−1500

−1000

−500

0

500

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Stepwise−Subset Model and GA−Subset Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.16: These graphs illustrate the experimental results from applying the
models with the lowest mean ICOMP(IFIM) across all houses. All missing values
in the data were set to zero for these results.

86



In the previously presented results, Stepwise Selection was generally the only method

significantly affected by dropping variables with missing values; however, the Genetic

Algorithm method was greatly affected as well on this data set. The key reason for

this change is due to the fact that not all the houses have the same sensors, and

dropping sensors with missing values greatly limits the number of available sensors,

which greatly restricts the Genetic Algorithm’s search space.

4.6.5 Variable Ranking

Figures 4.17, 4.18, 4.19, and 4.20 present the results from applying our sensor ranking

technique to determine the best model, when variables with missing values were

removed. Recall that the sensor ranking method combines all best models found for

each method, and then selects the top k sensors from the list to use in the final model.

For all of these results, we heuristically set k equal to the number of sensors whose

total vote is greater than zero. Additionally, Tables 4.1 and 4.2 show the top ten

sensors for both methods on Markov Order 1.

Comparing the results from Figure 4.17 with the previous results for Campbell

Creek House 1 (Figures 4.1, 4.2, 4.3, and 4.4), one can see that the Rank Model

created from combining all the models generated by the Genetic Algorithm is better

than the previously seen best models on House 1 (Figure 4.4). However, the Rank

model constructed from the Stepwise Selection models in Figure 4.17 is worse than

the previously seen best Stepwise Selection model on House 1 (Figure 4.4), but is

better than the model seen in Figure 4.1 for all Markov Orders, and is better than

the model in Figure 4.3 for Markov Order 1 and 2. Combining Stepwise models, where

variables with missing values were removed, gives some improvement in performance,

but most likely the removed variables are contributing to the poor performance. This

Stepwise Rank Model is created using models that have previously demonstrated poor

performance, because the variables with missing data were removed. This means one

cannot expect a large performance increase when the base models are poor.

87



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.17: Experimental results for Campbell Creek House 1’s Rank Models with
dropped variables that have missing data.

88



On Campbell Creek House 2, the Rank Model created from combining the Genetic

Algorithm subset models compared to all previously presented models (Figures 4.5,

4.6, 4.7, and 4.8) is the worst model (Figure 4.18). The model’s complexity is fairly

close to the fully Saturated Model (Figure 4.22(c)) for all Markov Orders, making

it much more undesirable than the previously presented models. The Rank Model

constructed from the Stepwise Selection models performs much better than the Rank

Genetic Algorithm model, but is not better than the best model seen in the previously

presented House 2 results. The Stepwise Rank Model’s Markov Order 3 (Figure

4.18(a)) has better performance than the Stepwise Selection model for the Markov

Order 3 seen in Figure 4.6(a), but worse performance on Markov Order 1 and 2.

Additionally, comparing the same rank model to the Stepwise Selection results in

Figure 4.5(a), we observe that Rank Model’s Markov Order 1 performance is worse,

but the performance is better for the other Markov Orders. Comparing the Stepwise

Rank Model’s result against the Stepwise selected models without removed variables,

we see that previous results in Figure 4.8 are better for all Markov Orders, and the

results in Figure 4.7 are better for Markov Order 1 and 2.

Comparing the Rank Model created from the Genetic Algorithm for House 3

(Figure 4.19), where variables with missing values were dropped, against all previously

presented results for House 3 (Figures 4.9, 4.10, 4.11, and 4.12), one can see that the

rank model for Markov Order 2 and Markov Order 3 has better performance than

the Genetic Algorithm results in Figure 4.10, and Markov Order 1 performance is the

same. In addition, the Genetic Algorithm results in Figure 4.9 are worse than the

Genetic Rank Model for Markov Orders 2 and 3, but the same for Markov Order 1.

Comparing the Genetic Rank Model results against the Genetic Algorithm results in

Figure 4.12, one will see that the Genetic Rank Model is worse for all Markov Orders.

Yet, the Genetic Rank Model produces better results than the Genetic Algorithm

results presented in Figure 4.11. The Stepwise Rank Model results are generally

similar to the previous Stepwise Selection results on House 3, and only present better

performance when compared against the poorer performing Stepwise models.

89



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated and GA Models’ ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(b) Stepwise Model’s ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated and GA Models’ Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(d) Stepwise Model Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.18: Experimental results for Campbell Creek House 2’s Rank Models with
dropped variables that have missing data.

90



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.19: Experimental results for Campbell Creek House 3’s Rank Models with
dropped variables that having missing data.

91



Table 4.1: Top 10 Sensors from the Voted Markov Order 1 models per house.
The Markov Order 1 models were constructed by combining all the best Stepwise
Selection subsets, using the voting process discussed in Section 4.5. Additionally, the
best Stepwise Selection subsets were computed using datasets where variables with
missing values were removed.

House 1 House 2 House 3 Across All
HW Tot HW Tot HP1 in Tot HP1 in Tot

bathup lts Tot bathup lts Tot HP1 out Tot HP1 out Tot
LVL1 lts Tot LVL1 lts Tot HP1 back Tot HP1 in fan Tot
Kit tmp Avg wash Tot HP1 comp Tot HP2 in Tot

BedB tmp Avg LVL1 plg Tot FanTech Tot HP2 out Tot
Nrake1 tmp Avg RoofN tmp Avg solar HW pump Tot FanTech Tot
Nrake2 tmp Avg AtticN tmp Avg bathup lts Tot solar HW pump Tot
Srake1 tmp Avg WallNcav tmp Avg LVL1 lts Tot HW Tot
Attic tmp Avg BedM tmp Avg bed Tot bathup lts Tot

WashHot flow Tot Bed2 tmp Avg dryer Tot LVL1 lts Tot

Lastly, the rank models created from the Genetic Algorithm and Stepwise

Selection models across all houses perform the same as the results presented in Figure

4.9 and Figure 4.10. This shows that the ranking process is not degrading performance

across all the houses, but it is not improving performance like it has for certain models

on House 1 and House 2.

Figures 4.21, 4.22, 4.23, and 4.24 present the results from applying our sensor

ranking technique to determine the best model, when missing values are set to zero.

In addition, Tables 4.3 and 4.4 show the top ten sensors for both methods on Markov

Order 1. All the Stepwise rank models shown in these figures are extremely similar

to the previous Stepwise rank models (Figures 4.17, 4.18, 4.19, and 4.20) and do not

provide performance increases, but do not decrease performance drastically either.

In addition, the Genetic Rank Model on House 2 performs poorly in terms of model

complexity, just like the Genetic Rank Model seen in Figure 4.18.

The key observation is that the Genetic Rank models in Figures 4.21, 4.23, and

4.24 present the best model for House 1, House 3, and across all houses. On House 1,

92



One Two Three
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−2000

−1500

−1000

−500

0

500

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.20: Experimental results for Rank Models across all houses with dropped
variables that have missing data.

93



Table 4.2: Top 10 Sensors from the Voted Markov Order 1 models per house. The
Markov Order 1 models were constructed by combining all the best Genetic Algorithm
subsets, using the voting process introduced in Section 4.5. Additionally, the best
Genetic Algorithm subsets were computed using datasets where variables with missing
values were removed.

House 1 House 2 House 3 Across All
gar ext lts Tot LVL1 lts Tot bathup lts Tot HP1 out Tot
LVL1 lts Tot gar ext plg Tot LVL1 lts Tot FanTech Tot
bath plg Tot CantFlr RH Avg dryer Tot LVL1 lts Tot

gar ext plg Tot AtticN HFT Avg wash Tot bed Tot
bed Tot HP1ret tmp Avg micro Tot dryer Tot
dish Tot Attic RH Avg range Tot wash Tot

RoofS HFT Avg FreshAir Flow Tot FanTexh RH Avg LVL1 plg Tot
fridge Tot gar ext lts Tot HW Tot gar ext plg Tot

CondenHP1 Tot CondenHP1 Tot WallScav RH Avg micro Tot
HP2sup RH Avg WallScav RH Avg FanTech ToT dish Tot

the Markov Order 3 model provides the best goodness-of-fit compared to all previous

results and has better model complexity than all previous models. The Genetic Rank

model across all houses has the best goodness-of-fit and best complexity compared

to all previous models as well. Lastly, the Genetic Rank Model improves model

complexity greatly on House 3, making it the best performing model in terms of

ICOMP(IFIM) for all Markov Orders.

4.6.6 Ground Truth Comparison

An advantage of our model selection approach is that it can allow a practical search

over a large solution space to find good solutions that work well in practice. Compar-

ing it to the “Ground Truth” solution is computationally infeasible. Nevertheless,

it is informative to calculate the exact solution for small problems, in order to

provide comparative results to our approach. We, therefore, calculated the best

sensor subsets, “Restricted Ground Truth,” with cardinality up to four. We refer to

these sensor subsets as “Restrict Ground” because they are globally optimal solutions

94



Table 4.3: Top 10 Sensors from the Voted Markov Order 1 models per house.
The Markov Order 1 models were constructed by combining all the best Stepwise
Selection subsets, using the voting process discussed in Section 4.5. Additionally, the
best Stepwise Selection subsets were computed with missing data values set to zero.

House 1 House 2 House 3 Across All
bathup lts Tot bathup lts Tot HP1 in Tot bathup lts Tot

bed Tot LVL1 lts Tot HP1 out Tot LVL1 lts Tot
dish Tot wash Tot HP1 back Tot wash Tot

range Tot LVL1 plg Tot HP1 comp Tot micro Tot
WallScav tmp Avg RoofN tmp Avg bathup lts Tot dish Tot

BedM tmp Avg AtticN tmp Avg LVL1 lts Tot CantFlr tmp Avg
Bed3 tmp Avg WallNcav tmp Avg bed Tot BedM tmp Avg
BedB tmp Avg BedM tmp Avg wash Tot Bed3 tmp Avg

Nrake1 tmp Avg Bed2 tmp Avg micro Tot Bed2 tmp Avg
Nrake2 tmp Avg Mbath tmp Avg RoofS tmp Avg BedB tmp Avg

Table 4.4: Top 10 Sensors from the Voted Markov Order 1 models per house. The
Markov Order 1 models were constructed by combining all the best Genetic Algorithm
subsets, using the voting process introduced in Section 4.5. Additionally, the best
Genetic Algorithm subsets were computed with missing data values set to zero.

House 1 House 2 House 3 Across All
HWcold tmp Avg wash Tot wash Tot HWhot tmp Avg

dish Tot HWcold tmp Avg HP1 out Tot washHot tmp Avg
LVL1 lts Tot gar ext lts Tot WashHot flow Tot HP1ret RH Avg

HWhot tmp Avg gar ext plg Tot SlrW1 Avg Nrake5 tmp Avg
TrueNetEnergy bed Tot gar ext lts Tot dishHot tmp Avg
BedB tmp Avg CantFlr RH Avg HP1 comp Tot WallScav RH Avg

HP2sup tmp Avg fridge Tot HWHXtoTank tmp Avg LVL1 lts Tot
RoofS HFT Avg Nrake5 tmp Avg AtticFlrS HFT Avg HWcold tmp Avg
bathup lts Tot Shower tmp Avg dryer Tot CondenHWHP Tot
gar ext lts Tot WallScav RH Avg bed Tot HP1 in fan Tot

95



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 1

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.21: Experimental results for Campbell Creek House 1’s Rank Models with
missing data values set to zero.

96



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated and GA Models’ ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(b) Stepwise Model’s ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated and GA Models’ Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

(d) Stepwise Model’s Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 2

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.22: Experimental results for Campbell Creek House 2’s Rank Models with
missing data values set to zero.

97



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House 3

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.23: Experimental results for Campbell Creek House 3’s Rank Models with
missing data values set to zero.

98



One Two Three
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(a) Saturated Model’s ICOMP

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(b) GA and Stepwise Models’ ICOMP

One Two Three
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(c) Saturated Model’s Complexity

One Two Three
−2000

−1500

−1000

−500

0

500

1000

Order

C
1
 M

o
d

e
l 
C

o
m

p
le

x
it

y
 M

e
a
s
u

re

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
C1 Measure on House All

 

 

Stepwise−Subset Model

GA−Subset Model

(d) GA and Stepwise Models’ Complexity

One Two Three
3000

3500

4000

4500

5000

5500

6000

6500

7000

Order

−
2
 x

 L
O

G
−

L
ik

e
li
h

o
o

d
(i

.e
. 
F

it
)

Rank Stepwise−Subset Model, Rank GA−Subset Model, and Saturated Model’s
−2 x Maximum Log−likelihood fit on House All

 

 

Stepwise−Subset Model

GA−Subset Model

Saturated Model

(e) Goodness-of-Fit

Figure 4.24: Experimental results for applying Rank Models across all houses with
missing data values set to zero.

99



Table 4.5: The House 1 Table compares House 1’s “Restricted Ground Truth” subsets
against the best Markov Order 1 Rank Model seen in Figure 4.17 and against the
Top 10 Sensor list for House 1 in Table 4.2. The House 2 Table compares House
2’s “Restricted Ground Truth” subsets against the best Markov Order 1 Genetic
Algorithm Model seen in Figure 4.6 and the best Top 10 Sensor list for House 2
(Table 4.1). Variables with missing data were removed for these comparisons.

Houses 1
Best Four Sensors Best Four Best Model Top 10 Sensors

HW Tot RMSE 1162.98±28.8959 1053.13±25.6179 1604.09±44.8236
LVL1 LTS Tota MAPE 41.098±0.974165 35.9376±1.15145 67.0153±1.89464

Dryer Tot CV 41.4157±0.661293 37.505±0.642408 57.1235±1.09945
EstimateNetEnergy MBE 0.0393377±1.06234 0.0656687±1.09142 0.668442±1.76908

ICOMP(IFIM) 2166.43±1.63914 1903.04±11.9395 2139.39±3.54907

Houses 2
Best Four Sensors Best Four Best Model Top 10 Sensors

HP1 back Tot RMSE 799.769±18.2186 687.117±11.7289 972.158±20.0695
HP1 comp Tot MAPE 38.1217±1.45629 32.0021±1.27032 54.0946±2.11265
LVL1 Lts Tot CV 43.0711±0.81126 37.0045±0.433794 52.3549±0.836793

Wash Tot MBE 0.207401±0.642866 -0.0373696±0.630909 0.0936422±1.06155
ICOMP(IFIM) 2165.98±0.896068 1881.83±7.9845 2151.16±2.36627

Table 4.6: The House 3 Table compares House 1’s “Restricted Ground Truth” subsets
against the best Markov Order 1 Rank Model seen in Figure 4.19 and against the
Top 10 Sensor list for House 3 in Table 4.2. The Across All Table compares the
“Restricted Ground Truth” subsets across all houses against the best Markov Order
1 Rank Model seen in Figure 4.20 and the best Top 10 Sensor list across all houses
(Table 4.2). Variables with missing data were removed for these comparisons.

Houses 3
Best Four Sensors Best Four Best Model Top 10 Sensors
HP1 in Fan Tot RMSE 761.539±14.8683 660.814±9.79829 839.712±21.7697

Wash Tot MAPE 42.7805±1.02704 34.5621±0.84633 51.3902±0.751316
CantFlr tmp Avg CV 48.7213±0.716605 42.2796±0.56895 53.7194±1.01782

Kit tmp Avg MBE -0.173105±0.641638 -0.114178±0.949378 -0.172517±1.34433
ICOMP(IFIM) 2158.29±0.672128 1988.92±5.9571 2121.49±3.46866

Houses All
Best Four Sensors Best Four Best Model Top 10 Sensors

HP1 in Tot RMSE 988.897±12.9624 886.097±14.0127 1196.59±12.0652
HP1 out Tot MAPE 44.8416±0.572332 36.8267±0.6752 52.505±0.979291
HP2 in Fan CV 47.6745±0.683444 42.7179±0.676298 57.6865±0.569256

LVL1 lts Tot MBE 0.416336±0.500918 0.2335±0.526657 0.653978±0.819731
ICOMP(IFIM) 6531.88±1.0026 6234.23±6.21427 6502.32±8.61767

100



Table 4.7: The House 1 Table compares House 1’s “Restricted Ground Truth” subsets
against the best Markov Order 1 Rank Model seen in Figure 4.21 and against the
best Top 10 Sensor list for House 1 (Table 4.4). The House 2 Table compares House
2’s “Restricted Ground Truth” subsets against the best Markov Order 1 Genetic
Algorithm Model seen in Figure 4.8 and the best Top 10 Sensor list for House 2
(Table 4.3). Missing data values were set to zero for these comparisons.

Houses 1
Best For Sensors Best Four Best Model Top 10 Sensors

HW Tot RMSE 1128.13±33.8483 930.84±36.4096 1137.83±35.4406
Dryer Tot MAPE 41.1941±0.626537 30.8483±0.808462 40.4656±0.835134

WashHot tmp Avg CV 39.8526±0.962945 32.8796±1.02213 40.1942±0.988229
EstimateNetEnergy MBE 0.251124±1.39711 0.205174±1.01119 0.0539458±1.25084

ICOMP(IFIM) 2167.74±3.79636 1842.51±23.959 2126.39±3.46705

Houses 2
Best Four Sensors Best Four Best Model Top 10 Sensors
Nrake2 tmp Avg RMSE 811.081±17.7065 696.098±11.3641 928.39±17.1124
Nrake4 tmp Avg MAPE 38.6717±1.56478 32.089±1.64436 49.495±1.8304

BonusFlr HFT Avg CV 43.6259±0.944585 37.4407±0.571278 49.9339±0.802609
EstimateNetEnergy MBE 0.476007±1.0076 0.133703±0.910032 -0.12749±0.905776

ICOMP(IFIM) 2183.98±1.17292 1823.16±12.9824 2157.26±2.38136

Table 4.8: The House 3 Table compares House 1’s “Restricted Ground Truth” subsets
against the best Markov Order 1 Rank Model seen in Figure 4.23 and against the
best Top 10 Sensor list for House 3 (Table 4.4). The Across All Table compares the
“Restricted Ground Truth” subsets across all houses against the best Markov Order
1 Rank Model seen in Figure 4.24 and the best Top 10 Sensor list across all houses
(Table 4.4). Missing data values were set to zero for these comparisons. SSE stands
for Sum of Squared Error.

Houses 3
Best Four Sensors Best Four Best Model Top 10 Sensors

Wash Tot RMSE 738.163±29.3591 682.365±61.5981 780.885±28.3228
FanTsup tmp Avg MAPE 41.7311±0.882484 35.0396±0.951685 45.8574±0.867198

HWcolToHX tmp Avg CV 47.4257±1.57935 43.8143±3.4824 50.1698±1.43239
EstimateNetEnergy MBE 0.250537±1.10433 0.582986±0.932043 0.612654±0.959586

ICOMP(IFIM) 2156.82±1.82757 1864±38.3738 2125.13±1.71237

Houses All
Best Four Sensors Best Four Best Model Top 10 Sensors

HW Tot RMSE 957.374±6.45585 828.045±6.0353 1233.62±16.5752
Dryer Tot MAPE 42.282±1.1681 35.747±0.860365 58.1792±0.92238

AtticN RH Avg CV 45.9085±0.490904 39.706±0.346226 59.1546±0.884414
EstimateNetEnergy MBE -0.181538±0.669515 -0.121514±0.537264 -0.179211±0.63554

ICOMP(IFIM) 6532.19±1.50444 5907.77±15.648 6496.73±1.14173

101



to a smaller problem. Tables 4.5 and 4.6 show the “Restricted Ground Truth” subsets

for datasets with removed missing data variables, while Tables 4.7 and 4.8 show the

“Restricted Ground Truth” subsets for datasets with missing data values set to zero.

These subsets were computed in a brute force fashion by selecting the best subset from

all possible subsets that minimized the linear regression’s residual SSE (Sum Squared

Error). These tables compare the “Restricted Ground Truth’s” energy prediction

metrics and ICOMP scores against the best found Genetic Algorithm Models with

Markov Order 1 and the best Top 10 Sensor lists on each respective dataset. This

means that we are only comparing “Restricted Ground Truth” results for a dataset

against models that were found using the same dataset. The “Top 10 Sensors” results

in Tables 4.5 and 4.6 were generated using the sensor listings found in Table 4.2 for

House 1, 3, and across all, while the results for House 2 were generated using the

sensor listings found in Table 4.1. The “Top 10 Sensors” results in Tables 4.7 and 4.8

were generated using the sensor listings found in Table 4.4.

Analyzing Tables 4.5 and 4.6 shows that there is a large difference in performance

between the “Restricted Ground Truth” and the best Genetic Algorithm models with

Markov Order 1, seen in Figures 4.17, 4.6, 4.19, and 4.20. The Genetic Algorithm

Models have much better performance in terms of energy prediction metrics and

ICOMP, which implies that the best performing optimal subset is larger than the

ones we have computed. However, these best performing approximations use 50 or

more sensors. This makes it very difficult to estimate the best performing optimal

subset’s actual size and to estimate whether one can feasibly compute it directly.

Comparing the same “Restricted Ground Truth” results with the best “Top 10

Sensor” lists results shows that the voting scheme is able to produce lower ICOMP

values, but overall worse energy prediction results. This implies solving for a small

subset directly is better than selecting a small subset using our variable ranking

procedure. However, if one is concerned about the best subset being generalizable,

then one can solve directly for the best subset using ICOMP as the criteria function

rather than SSE.

102



Tables 4.7 and 4.8 illustrate that the best Genetic Algorithm Models with Markov

Order 1 in Figures 4.21, 4.8, 4.23, and 4.24 have better energy prediction metrics

and better ICOMP scores than the “Restrict Ground Truth” subsets. This provides

additional evidence that the best performing optimal subset is larger than four sensors.

However, comparing the “Top 10 Sensor” results with the same “Restricted Ground

Truth” results further reinforces that solving for a small subset directly is better than

using our ranking procedure to select a small set of variables.

In summary, if one wishes to find the best performing optimal subset, it is

computationally infeasible in the general case because computing sensor subsets with

four sensors takes three hours, five sensors takes three to four days, six sensors takes

75 days, and seven or more sensors takes years. However, one can produce reasonably

good approximations using our approach. On the other hand, if one is interested in

solving for a small optimal subset and one has enough computing resources, then it

is best to compute it directly.

4.7 Results Summary

The results presented in Sections 4.6.1, 4.6.2, 4.6.3, and 4.6.4 show that the Genetic

Algorithm with the ICOMP(IFIM) model criteria as the fitness function is able to find

better models than the Stepwise Selection method. In addition, these sections show

that the best models were found with Markov Order 3, and that setting missing values

equal to zero is better than removing sensors that have missing values. Applying our

voting technique to the Genetic Algorithm models allows us to find a better model

(Figures 4.21, 4.23, and 4.24) than the best single Genetic Algorithm model (Figures

4.4, 4.12, and 4.16) on House 1, House 3, and across all houses. Therefore, on future

homes we recommend comparing the best single Genetic Algorithm model with the

model made from our voting process and then selecting the best performing model

from these two. However, if one is interested in finding the best model for a sufficiently

small sensor subset, e.g., up to 5 sensors, it is recommended that one solve for this

103



best model directly, because it should be computationally feasible to test all possible

subsets.

4.8 Computer Science Contribution Summary

While the wrapper methods and our novel feature selection process were used to

solve a domain specific problem, these methods are all general and application

independent, which is well demonstrated in the literature Bozdogan and Haughton

(1998); Bozdogan (2003). This means our voting method combined with ICOMP will

out perform the traditional stepwise feature selection method on most problems¶.

In addition, our voting method usually out performs stand alone ICOMP feature

selection. This result imply that analyzing the model selection criteria’s variance

and stability has a large impact on the overall selection process, which is directly

incorporated into our voting algorithm.

¶ This statement is based on ICOMP out performing stepwise, backwards, and forwards selection
in the literature and the results in this dissertation

104



Chapter 5

Simulation Approximation

Even with a 40% reduction in runtime from E+ 6.0 to E+ 7.0 (Chapter 2), manually

tuning E+ building models is still a very slow and tedious process. For example,

an engineer manually tuning a simulation is not likely to wait the 2-3 minutes

required to run an E+ simulation before proceeding to the next tuning step; likewise,

the Autotune methodology runs 1024 simulations, which at only three minutes per

simulation would require over two days. The overall computational burden is generally

reduced by constructing surrogates or meta-models Ong et al. (2003); Jin et al. (2001);

Qian et al. (2006). Surrogates are simplified models that approximate the original

model and require less computational resources. These surrogates are generally

statistically generated models, but there are other methods for producing simplified

approximation models, such as coarse-grid approximations Kaminski et al. (1999) or

proper orthogonal decomposition Willcox and Peraire (2002). In this work, we focus

solely on statistical and machine learning generated surrogates.

While a surrogate model provides computational advantages, its calibration utility

is completely dependent upon the model’s accuracy. However, to the best of our

knowledge, very little work focuses on whole-building E+ simulation surrogates within

the building spaces domain. In fact, the few available studies only explored a limited

number of envelope parameters, operation parameters, and outputs. Tresidder et al.

105



(2011, 2012) used 10 envelope parameters, while Tian and Choudhary (2012) used

16 envelope and operational parameters. All three studies’ surrogate models only

estimate a single output. A vast majority of surrogate studies in other engineering

disciplines only use a limited number of inputs and outputs as well. Therefore, it is

difficult to ascertain how well a surrogate model can approximate E+ on a large-scale

relative to other studies.

This study explores machine learning and statistical techniques for constructing

large scale E+ surrogate models. Two surrogate models were constructed using Feed

Forward Neural Networks (FFNN) and Lasso regression. The surrogate models were

generated using three very large E+ simulation data sets for a residential building.

The data sets cover fine grain parameter sweeps over seven envelope parameters

with 80 simulation outputs and coarse broad parameter sampling over 156 envelope

parameters with 90 simulation outputs. The data sets are covered in more detail in

Section 2.2.3. Using these data sets, we evaluate the two surrogate models’ abilities

to approximate larger E+ simulations in comparison to previous studies.

The remainder of this chapter is organized as follows: Section 5.1 discusses our

approximation methods; Section 5.2 presents our evaluation criteria; Section 5.3

presents our approximation results; Section 5.4 discusses our prediction results and

interesting observed phenomena found through the experimentation process; and

Section 5.5 summarizes our findings and conclusions.

5.1 Approach

We explored two different methods for approximating E+. The first method utilizes

standard FFNN with a modified training process. We adjusted the training process to

accommodate our large data sets, which ultimately allows computationally tractable

large scale FFNN learning. FFNN background information is presented in Section

3.4 and our training procedure is presented in Section 5.1.1.

106



The second approach uses Lasso regression, a linear model, which has the ability to

automatically select relevant input variables. This allows us to determine whether we

have sufficient information within our datasets to produce predictions and determine

if a complex nonlinear model, i.e. FFNN, is actually required. However, the

standard Lasso regression learning algorithms are not designed to support large-

scale learning. To overcome this difficulty, we use a recently developed decentralized

optimization framework, called Alternating Direction Method of Multipliers (ADMM)

Boyd et al. (2011). This method supports arbitrary large-scale learning by dividing

the original problem into smaller local optimization problems. These problems are

either distributed across multiple computers or solved locally on a single memory

constrained computer that uses the hard drive as additional storage. We discuss

general Lasso regression information in Section 5.1.2, ADMM’s framework in Section

5.1.3, and Lasso regression’s ADMM formulation in Section 5.1.4. Finally, we discuss

how we select the best parameter settings for the Lasso and FFNN models (Section

5.1.5).

5.1.1 Large Scale-Feed Forward Neural Network Training

There are two gradient based methods for training FFNN: stochastic and batch. The

stochastic method uses a single observation to compute the gradient and update

the network. This method is extremely scalable to large data sets, because it

makes updates per training example. However, stochastic gradient descent only

approximates the gradient using local information, which means it lacks the global

information required to follow the objective function’s true gradient. While this allows

the stochastic gradient descent method to scale well, it may produce less accurate

models, because an approximate gradient is substituted for the exact gradient.

The batch gradient descent method uses all training examples to compute the

gradient and update the network. This method is much less scalable than the

stochastic method, because it has to process all the examples per update. Computing

107



the gradient using the entire data set allows this method to produce better gradient

estimates, which may lead to more accurate networks. However, this method is not

typically practical since it will require hundreds of passes over a gigabyte data set.

Given that both approaches provide different useful benefits, we used a hybrid

method for training the FFNN. The hybrid method we used is a stochastic gradient

descent that performs updates using mini-batches, rather than updates per single

training example. This allows us to balance training time performance and gradient

estimation quality. In our approach, we select a random simulation and divide the

simulation into mini-batches. Before constructing the mini-batches, each sampled

simulation is randomly shuffled. Randomly sampling the simulations and shuffling

the internal simulation data provides the stochastic gradient characteristics. In

addition, making network updates per randomized mini-batch provides a pseudo

batch gradient descent characteristic. In summary, we sample a simulation, randomize

the simulation’s data vectors, divide the data into mini-batches, and update the

network using each mini-batch.

5.1.2 Lasso Regression

Standard Lasso regression fits a linear model by modifying a multiplicative weighting

factor for each input and adding the weighted inputs to create the outputs. The

final model has the same functional form as linear regression and ridge regression,

but the learning criteria inserts a term to penalize the absolute size of the regression

coefficients. This allows automatic feature selecting and also overcomes standard

regression problems with over weighting highly correlated predictors. The following

equation shows the Lasso regression optimization criteria:

n∑
i=1

(yi − b− wT(~xi)) + λ||w||

108



where ~xi is an input vector, yi is the response, w is the model weights, b is the y

intercept, and λ produces a trade-off between fitting and sparsity. Increasing λ leads

to a model with more zero value weights. This means, under an appropriate λ value,

irrelevant inputs in ~xi are ignored, which results in a sparser and more robust model.

Note that robustness is defined based on the idea that a simplistic model is most likely

to generalize to new scenarios, which is based on model complexity studies Akaike

(1973); Schwarz (1978); Bozdogan and Haughton (1998).

Lasso regression can easily be extended to nonlinear functions using kernels, but

we have not explored that direction within this work. There are two reasons to use the

linear model over the nonlinear model in this particular study. First, we have observed

excellent performance using nonlinear FFNNs, but the computational training time

for these models is fairly high. Depending on the optimization method, the Lasso

regression’s linear model can be solved much faster. In addition, the linear model will

indicate whether a nonlinear model is required. If a linear model is sufficient, then

we can substantially reduce the overall training time for larger data sets.

The second reason is based on Lasso’s regression variable selection capabilities.

This particular feature allows the learned models to be directly interpretable based on

the learned values for w. More importantly, it allows us to analyze which information

is currently important for making predictions, and can help us ascertain if required

information is missing within the data set.

5.1.3 Alternating Direction Method of Multipliers

Lasso regression models are learned using quadratic programming methods, which

include interior point (Nesterov et al., 1994), gradient methods, and many more.

However, traditional quadratic programming methods scale poorly to large datasets

(Joachims, 1999b). Improving optimization algorithms’ performance and scalability

is an active research area. As a result, there are many different methods that

are able to scale well to different problem types (Chang and Lin, 2011b; Collobert

109



and Bengio, 2001; Teo et al., 2007; Franc and Sonnenburg, 2009). For example,

the Convex Bundle Cutting Plane (CBCP) method (Teo et al., 2007) is a highly

scalable optimization algorithm that uses piecewise linear components to iteratively

approximate the criteria function and find a solution.

The methods investigated vary in their scalability in relation to parallelizing

across multiple processing cores and utilizing the underlying hardware efficiently.

For example, the CBCP method parallelizes fairly well by splitting large data sets

across multiple computers, but the parallel algorithm uses a master-slave paradigm, in

which the slave computers solve subproblems, while the master computer aggregates

the sub-solutions and solves an additional optimization problem over the available

information. While the master computer is solving its optimization problem, the slave

computers are idle, which reduces overall resource efficiency. In order to maximize

resource utilization, we elected to use Alternating Direction Method of Multipliers

(ADMM) (Boyd et al., 2011) over other equally capable distributed optimization

methods because it does not use a master-slave paradigm. While the following

detailed ADMM description illustrates solving a redundant secondary optimization

problem per computer, the optimization problem in practice is extremely light-weight,

which makes it more efficient to redundantly solve the problem locally, rather than

communicate the solution to slave computers.

ADMM is a fully decentralized distributed optimization method that can scale

to very large machine learning problems. ADMM solves the optimization problem

directly without using approximations during any phase of the optimization process.

The optimization process works by splitting the criteria function into separate sub-

problems and optimizing over those individual problems with limited communication.

The following is a formal explanation from (Boyd et al., 2011):

minimizef(x) + g(z)

110



with the constraints Ax+Bz = c, where c is a targeted response or agreed target value

that correlates the two functions. In addition, f and g are convex, closed, and proper

functions. The functions f(x) and g(z) are independent, which means both can be

minimized in parallel. In addition, the equality constraint provides consensus across

the two functions. More importantly, (Boyd et al., 2011) introduces the following

Lagrangian for this particular optimization problem:

Lp(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22

where ρ defines a tunable parameter that determines the trade off between violating

the equality constraint and fitting the target function. Boyd et al. (Boyd et al., 2011)

recommends setting ρ to 1 and notes that finding ideal ρ values is based on manual

trial and error, rather than an automated selection process. After some additional

algebraic simplifications of the above Lagrangian, the final ADMM optimization

process is as follows:

xk+1 = argmin
x

(f(x) +
ρ

2
||Ax+Bzk − c+ uk||22) (5.1)

zk+1 = argmin
z

(g(z) +
ρ

2
||Axk+1 +Bzk − c+ uk||22) (5.2)

uk+1 = uk + xk+1 − zk+1 (5.3)

where superscript k indicates the current iteration values and k + 1 represents the

values for the next iteration. Iterating over these optimization equations provides

guaranteed convergence, and establishes a method to minimize x and z independently

with limited communication between the two optimization problems.

The above form can be deconstructed further into multiple sub-problems across

f(x) by sub-dividing the function across the independent components within x. This

creates independent sub-problems that are solved locally via the first minimization

step (Eq. 5.1), which allows multiple computers to optimize f(x) locally, and

pass information to other computers or processes about xk+1, resulting in a global

111



optimization over zk+1 at each individual process (Eq. 5.2). This means all processes

can work to optimize and compute their individual updates by only communicating

their local beliefs for xk+1. Eq. 5.3 represents an updated cost penalty trade off

versus accuracy per data element, which is a standard component with all penalized

optimization problems.

5.1.4 Large-Scale Lasso Regression

There exist several common substructures for constrained convex optimization

problems (Boyd et al., 2011). In particular, the general minimization problem is

defined as follows:

minimizef(x)

with the constraints x ∈ C, where C defines a constrained solution space. This

general minimization problem is formulated as the following under ADMM:

minimizef(x) + g(z)

with the constraint x − z = 0, where g is an indicator function. Using an indicator

function for g allows ADMM to represent the original convex optimization constraints,

and the x − z = 0 constraint guarantees that the x that minimizes f(x) obeys the

original constraints.

While (Boyd et al., 2011) used this general solution format to solve many different

convex optimization problems, we are only interested in the version used to solve

Lasso regression. The distributed optimization steps for solving large scale linear

112



Lasso regression problems are presented below∗:

xk+1
i = argmin

xi

(
1

2
||Aixi − bi||22 +

ρ

2
||xi − zk + uki ||22) (5.4)

zk+1 = S λ
ρN

(x̄k+1 + ūk) (5.5)

uk+1
i = uki + xk+1

i − zk+1 (5.6)

The individual local subproblems are solved using ridge regression (Eq 5.4), and the

global z (Eq. 5.5) values are computed by evaluating a soft thresholding function S

(Eq. 5.7).

S λ
ρN

(v) = max(0, v − λ

ρN
)−max(0,−v − λ

ρN
) (5.7)

N represents the total number of training examples and λ is the Lasso regularization

parameter. The soft thresholding function (Eq. 5.7) applies the Lasso regression

sparsity constraints over z, which are incorporated into the local subproblem solutions

on the next optimization iteration.

The key advantage behind this particular Lasso regression formulation is that the

main heavy lifting step is solved exactly once. The direct method for computing xk+1
i

requires computing (ATA+ρI)−1. The resulting matrix never changes throughout the

entire optimization process. Storing this result allows the distributed optimization

method to perform a very computationally intensive task once and reduce all future

xk+1
i computations steps. Caching the values used to compute xk+1

i to disk allows

a 2.2GHz Intel Core i7 laptop to solve a univariate 3.9GB Lasso regression problem

in approximately 17 minutes. The best FFNN model with 15 hidden units and 10

outputs completed training in 24 hours on the same 3.9GB data set.

∗ This version assumes we are only splitting the optimization problem across the training samples,
and not the features. It is possible to split across both. (Boyd et al., 2011) presents the ADMM
formulation for supporting this functionality.

113



5.1.5 Model selection

The final Lasso regression model’s performance is greatly dependent upon the λ

value used during the training process. Similarly, a FFNN’s performance is greatly

dependent upon the total number of hidden units selected. Selecting a λ value that

is too small can result in overfitting, while selecting a value that is too large can lead

to underfitting. The same possibilities apply to FFNN, but selecting too few hidden

units can lead to underfitting, and selecting too many can lead to overfitting.

Selecting the best parameter setting is achieved by evaluating a model selection

criteria, which measures how well the learned model will generalize to unseen

examples. There are several different model selection techniques. For example,

cross-validation methods estimate how well a model generalizes to unseen data by

periodically testing the current model on a validation set. An online validation process

is one that terminates the learning process when the model begins to perform poorly

on the validation set. K-Folds cross-validation is another approach that divides the

data into K partitions, and builds a model using K − 1 partitions as training data.

The omitted partition is used to evaluate the model as testing data. This training

and testing process is repeated such that each partition is used as the testing set at

least once. K-Folds’ primary advantage over other methods is that it can provide an

almost unbiased error estimate for any particular model as K approaches the data

set’s sample size Cawley and Talbot (2010).

Ideally, we would use a combination of cross-validation and K-Folds to select the

best parameter values. Cross-validation enables online FFNN learning termination,

and K-Folds facilitates selecting the correct number of hidden units. On the other

hand, Lasso regression uses the validation set to select λ and K-Folds to approximate

the model’s overall error. However, the large data set makes K-Folds cross-validation

computationally difficult to perform. Therefore, we elected to use a pure cross-

validation method for parameter selection. Each model has a training set, a single

validation set, and a testing set. For the FFNN models, we use the validation set

114



to prevent overfitting and we compare hidden unit settings using the unseen testing

data. The Lasso regression models use the validation set to select the best λ value

by picking the one that maximizes prediction accuracy for the validation set. This

parameter selection method allows us to estimate the Lasso regression model’s true

prediction capabilities by using the unseen testing data. In addition, the testing data

results can be directly compared with the FFNN results.

5.2 Methods

5.2.1 Experimental Design

Given the need for scalability and performance, we optimized the FFNN network

structure by determining that the maximum number of outputs per network should

be 10. This means that we use eight FFNNs to model the FG data set’s 80 outputs,

and nine FFNNs to model the MO1 data set’s 90 outputs†. In addition, the outputs

for each network were selected by grouping the variables based on the order they were

stored. While this grouping may seem arbitrary, all simulation variables were stored

next to variables with the same scientific units, as well as variables that represented

very similar components within the simulation.

While we optimized the total number of FFNN models, we were not able to

minimize the total number of linear models. The Lasso regression method used within

our work is only able to approximate univariate response variables. This means we

created a linear model per simulation output. This restriction results in using 80

linear functions to model the FG data set, and 90 linear functions to model the MO1

data set. While the overall model count is high, the overall training time scales very

well using the ADMM optimization technique. In fact, the computation time scaled

better than the FFNN models on average.

† The MO1 and MO2 data sets originally contained 96 outputs, but six output variables for all
simulations never changed and were removed.

115



Using the previously mentioned data sets and our model, we conducted two

experiments. The first experiment tests how accurately a model approximates E+

when only seven simulation variables are varied (FG data set). This allows us

to estimate how sensitive the learned models are to fluctuations in the building

parameter inputs by using a very densely sampled simulation input set. In this

particular experiment, we selected the best FFNNs by testing models with 5, 10, and

15 hidden neurons, and we selected the best Lasso regression model by testing λ values

between 0 and 1 using 0.15 increments. The training set contains 250 simulations and

the testing set contains 750 simulations; we selected the models that performed best

overall on the testing set.

The second experiment measures how well our models approximate E+ when

presented with a very coarse sampling of the simulation input parameters. Using the

MO1 data set, mentioned in Section 2.2.3, we train a FFNN and Lasso regression

model. We tested the FFNN models with 5, 10, and 15 hidden nodes. For the

Lasso regression models, we searched for the best λ value between 0 and 1 using

0.15 increments. We used 300 randomly sampled simulations from the slightly denser

MO2 data set for testing and comparing both methods.

5.2.2 Performance Metrics

Within the building community, there are three accepted default metrics for

comparing prediction accuracies – Coefficient of Variance (CV) (Kreider and Haberl,

1994), Mean Bias Error (MBE) (Kreider and Haberl, 1994), and Mean Absolute

Percentage of Error (MAPE) (Edwards et al., 2012). This work uses the first metric,

CV, to evaluate performance and does not utilize the other two common metrics.

These metrics are not used because they are primarily used as tie breaking metrics

within the building energy modeling community (Kreider and Haberl, 1994; Edwards

116



et al., 2012). The CV metric is defined as follows:

CV =

√
1

N−1

∑N
i=1(yi − ŷi)2

ȳ
× 100 (5.8)

where ŷi is the predicted energy consumption, yi is the actual energy consumption,

and ȳ is the average actual energy consumption. The CV value determines how much

the overall prediction error varies with respect to the target’s mean. A high CV score

indicates that a model has a high error range.

In addition to the CV metric, we rely on the Root Mean Square Error metric

(RMSE) to evaluate model prediction quality. The RMSE metric represents a model’s

average error rate per estimate. Additionally, the RMSE metric is a subcomponent

used in computing the CV metric; it is the numerator in the CV metric equation (Eq

5.8). We use the RMSE error metric to facilitate broader comparisons, because the

CV, MBE, and MAPE metrics are not scale invariant, which means these metrics can

provide a false impression about model accuracy. For example, a target variable with

a mean less than zero will produce very large metric values, even when the RMSE

metric presents an acceptable error rate. The inverse problem applies to variables

with large means as well; these metrics can produce low values even with a large

error rate. However, the large mean scenario produces less overexaggerated metric

measures, and is still reliable.

5.3 Results

Both data sets contain a large number of output variables. This makes it difficult

to present the variables in a table. Therefore, we have elected to use figures, rather

than tables, to provide broader comparisons across the models. In addition, we have

split the output variable figures into two groups. The first group depicts non-load

variable results, while the second depicts load variables. All non-load variables are

only referenced by a number rather than their actual name. However, we provide

117



explicit names for the load variables within this section to facilitate discussion in

Section 5.4. In addition, we provide a detailed variable list in Appendix 6.10

Our broad comparison figures do not directly present the CV metric. Rather,

the figures present the two values used to compute the CV metric. The left y-axis

represents the RMSE metric and right y-axis represents a response variables’ mean

(MTR). Normally, we would present the ratio between these two values, the CV

metric, but several response variables’ are small. This leads to misleading CV values

that show poor relative performance whereas the absolute performance is good. When

reading and interpreting these performance figures, the distance between the RMSE

and MTR indicates overall performance. If the distance is large and the RMSE is

below the MTR, then the prediction performance is excellent. However, if the RMSE

is above the MTR, then prediction performance is poor. Finally, all non-load figures

restrict the y-axis to [0, 50] for RMSE and MTR, and the RMSE error values in all

figures never exceed the range, but a few MTR values are either significantly beyond

this range or hidden behind the figure’s legend. This means if a corresponding MTR

is not observed for an RMSE data point, then the MTR value’s scale exceeds the

current figure’s range.

5.3.1 Fine Grain

Figure 5.1 presents the FFNN non-load variable prediction results for our experiments

on the FG data set. Most models perform the same on the response variables, but

a few variables do present noticeable differences across the different models — in

particular, the environmental and electrical variables between 1 and 16, as well as the

envelope’s heat gain and loss variables between 20 and 28. The variables between 1

and 16 present the best performance with 10 hidden units (Figure 5.1(b)). Analyzing

the figure closely reveals that variable 10 has a much better error rate with 15 hidden

units. Even though the performance for the other variables between 1 and 16 produce

similar performance with 15 hidden units (Figure 5.1(c)), 10 hidden units is considered

118



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5

10
15
20
25
30
35
40
45
50

Fine Grain with 5 Hidden Unit FFNN

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(a) 5 Hidden Units

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5

10
15
20
25
30
35
40
45
50

Fine Grain with 10 Hidden Unit FFNN

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(b) 10 Hidden Units

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5

10
15
20
25
30
35
40
45
50

Fine Grain with 15 Hidden Unit FFNN

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(c) 15 Hidden Units

Power

Heat Gain

Heat Loss

Solar Beam

Surface Temp Outside

Surface Temp Inside

Surface Conduction

Temperature

Infiltration

Relative Humidity

RMSE

MTR

Figure 5.1: FFNN prediction results for the FG non-load variables with 5 (Figure
5.1(a)), 10 (Figure 5.1(b)), and 15 (Figure 5.1(c)) hidden units. Error bars are not
presented to enhance figure readability, all standard deviations are less than 0.447.

119



the better model since it takes less time to calculate and is more likely to generalize

to new data.

The 15 hidden unit model presents the best performance on the variables between

21 and 28. These results suggest that the best approach for modeling the FG data

set involves using the 10 hidden unit network to model all variables, except the ones

between 21 and 28. Those variables should be modeled by the network with 15

hidden units. Our network design makes this simple, since there is a network per 10

output variables. This means either producing redundant estimates for variables 20

and 29 or allowing the 15 hidden unit network to estimate these variables as well.

The secondary option is sufficient considering the 10 and 15 hidden unit networks’

performance on 20 and 29 is similar.

While we consider the non-load prediction performance excellent, the FFNN load

prediction performance shows room for improvement. The load variables in Figure 5.2

represent the Sensible Heat, Latent Heat, Sensible Cooling, and Latent Cooling for

four different zones in the following order: living room (LR – variables 65-68), master

bedroom (MB – 69-72), basement (BM – 73-76), and second floor (SF – 77-80).

Analyzing Figures 5.2(a) and 5.2(c) show that the 5 and 15 hidden unit models

present the best prediction results overall. However, the 5 hidden unit model has

the least variance within its RMSE error, which means this model is more stable

than the 15 hidden unit model. In addition, the 5 hidden unit model has less model

complexity. Therefore, the 5 hidden unit FFNN is considered best for predicting the

FG load variables.

Figure 5.3 presents the results from testing the linear model on the FG data set.

The model performs well on the non-load variables and is fairly competitive with

the previous FFNN models. However, some error rates have much higher variance

than the best FFNN model (Figure 5.1(c)) for variables 7 and 20-28. In addition, all

error rates for these variables are statistically worse than the FFNN error rates. This

means these variables have a nonlinear relationship with their inputs, and the Lasso

regression is not as capable a methodology for capturing these patterns.

120



 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5 Fine Grain Loads with 5 Hidden Unit FFNN

E+ Load Variables
R

M
S

E

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(a) 5 Hidden Units

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5 Fine Grain Loads with 10 Hidden Unit FFNN

E+ Load Variables

R
M

S
E

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(b) 10 Hidden Units

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5 Fine Grain Loads with 15 Hidden Unit FFNN

E+ Load Variables

R
M

S
E

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(c) 15 Hidden Units

Sensible Latent RMSE MTR

Figure 5.2: FFNN prediction results for the FG load variables with 5 (Figure 5.2(a)),
10 (Figure 5.2(b)), and 15 (Figure 5.2(c)) hidden units.

121



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5

10
15
20
25
30
35
40
45
50

Fine Grain with Lasso Regression

E+ Non−Load Variables
R

M
S

E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

Power

Heat Gain

Heat Loss

Solar Beam

Surface Temp Outside

Surface Temp Inside

Surface Conduction

Temperature

Infiltration

Relative Humidity

RMSE

MTR

Figure 5.3: Lasso regression model’s performance on the FG data set’s non load
variables. Error bars are not presented to enhance figure readability, most standard
deviations are less than 1. However, variables 5, 22, 23, 25, and 26 have standard
deviations between 2 and 6. Variable 24’s RMSE is 84.45±22.4921 and its MTR is
122.56±0.00.

While the other non-load variables are all statistically worse than the FFNN

models, the Lasso method only uses an input subset‡ to make all the predictions,

which means the linear model is using less information than the FFNN. In addition,

most variables are only marginally worse, e.g., 0.2 - 5.0 difference in RMSE. However,

a few variables differ in RMSE by 20 or more. This implies that the Lasso regression

method is fitting simpler models by reducing the number of input variables used

within the model, which results in a simpler model, but not always a better performing

model. However, simplistic models are more likely to generalize to unseen events. In

addition, the Lasso models learn much faster than the FFNNs, as previously discussed

in Section 5.1.4.

The Lasso regression load prediction results (Figure 5.4) are very similar to the

FFNN results (Figure 5.2). While the Lasso regression results are worse, the model

‡ The subset refers to the inputs that have a non-zero weight in the model.

122



 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5 Fine Grain Loads with Lasso Regression

E+ Load Variables
R

M
S

E

 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

Sensible Latent RMSE MTR

Figure 5.4: Lasso regression model’s performance on the FG data set’s load variables.

performed best on the same variables that the FFNN models were able to predict –

variables 65, 67, 71, 73, 77, and 79. However, the other load variables were not fit

well by either method, which implies that there is not sufficient information within

the raw data set to predict the other load variables.

5.3.2 Markov Order 1 & 2

Our experiments with the MO1 and MO2 data sets are more challenging than the

experiments with the FG data set, because we are testing how well our models

generalize when trained with a limited representation of the input space, i.e., trained

using the entire sparse MO1 data set. The extra difficulty is introduced by testing

with sampled MO2 simulations, which contain input combinations that will never

appear within the training set and may lead to very inaccurate predictions.

Figure 5.5 presents the MO1 experimental results for non-load variables and Figure

5.6 presents the MO1 experimental results for the load variables. Prediction for non-

load variables is slightly better than the results presented on the FG data set, but

this is primarily attributed to adding additional equipment related output variables,

123



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5

10
15
20
25
30
35
40
45
50

Order 1 with 5 Hidden Unit FFNN

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(a) 5 Hidden Unit

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5

10
15
20
25
30
35
40
45
50

Order 1 with 10 Hidden Unit FFNN

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(b) 10 Hidden Unit

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5

10
15
20
25
30
35
40
45
50

Order 1 with 15 Hidden Unit FFNN

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(c) 15 Hidden Unit

Power

Heat Gain

Heat Loss

Solar Beam

Surface Temp Outside

Surface Temp Inside

Surface Conduction

Temperature

Infiltration

Relative Humidity

RMSE

MTR

Figure 5.5: FFNN prediction results for MO2 non-load variables with 5 (Figure
5.5(a)), 10 (Figure 5.5(b)), and 15 (Figure 5.5(c)) hidden units. Models were trained
using all MO1 data. Error bars are not presented to enhance figure readability,
variable standard deviations are less than or equal to 1.21. Only variable 10 has a
larger standard deviation, 6.86.

124



which are modeled efficiently by the operation schedule. All models produce about

the same performance results on the non-load variables. However, the model with

15 hidden units performs stastistically better than the other models on variables 32

through 36. This means the 15 hidden unit FFNN best models the non-load variables.

Similar to the FG data set, load variables remain difficult to predict and require

further analysis to improve their prediction accuracy. Additional analysis and

improvement directions are discussed in Section 5.4. However, the FFNN models

were able to predict variables 74, 76, 78, and 82 (Figure 5.6). However, we observed

that the 10 hidden unit FFNN produced the best performance on the MO2 data set.

We based this conclusion on variables 78, 82, and 86’s different performance between

the two models.

The Lasso regression results for the MO2 non-load variables are shown in Figure

5.7. These results illustrate that many variables within the MO1 and MO2 data

set can be modeled using linear models. In addition, it highlights the variables that

require a nonlinear model as can be seen in Figure 5.5(c). The variables between 6

and 12 as well as 28 and 36 are fit better by the FFNN model.

However, both models present a high variance on variable 10. The high variance

is directly associated with the sparse parameter sampling found in the MO1 data set.

This particular variable has instances where it produces different response behavior,

as seen in Figure 5.8. The response behavior completely differs in scale for a few

simulations used within the test data set. This means that coarse parameter sampling

used to generate MO1 may have limited abilities to produce meaningful general

purpose models. However, it also implies that models created from the MO2 data set

will have similar deficiencies, because a limited sampling can only represent a fraction

of the entire domain’s behavior. Ultimately, we would like to explore simulation

parameter sampling strategies that consider the learner’s fitting capabilities as well

as implement methods that can estimate the variance associated with each prediction.

Similar to the FG data set results (Figure 5.4), the load predictions with Lasso

regression (Figure 5.9) are all worse than all the best FFNN results (Figure 6.7(b)).

125



 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5 Order 1 Loads with 5 Hidden Unit FFNN

E+ Load Variables
R

M
S

E

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(a) 5 Hidden Unit

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5 Order 1 Loads with 10 Hidden Unit FFNN

E+ Load Variables

R
M

S
E

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(b) 10 Hidden Unit

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5 Order 1 Loads with 15 Hidden Unit FFNN

E+ Load Variables

R
M

S
E

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

(c) 15 Hidden Unit

Sensible Latent RMSE MTR

Figure 5.6: FFNN prediction results for the MO2 load variables with 5 (Figure 6.7(a)),
10 (Figure 6.7(b)), and 15 (Figure 6.7(f)) hidden units. Models were trained using
all MO1 data.

126



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5

10
15
20
25
30
35
40
45
50

Order 1 with Lasso Regression

E+ Non−Load Variables

R
M

S
E

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
0
5
10
15
20
25
30
35
40
45
50

M
ea

n 
T

ar
ge

t R
es

po
ns

e

Power

Heat Gain

Heat Loss

Solar Beam

Surface Temp Outside

Surface Temp Inside

Surface Conduction

Temperature

Infiltration

Relative Humidity

RMSE

MTR

Figure 5.7: Lasso regression model’s performance on the MO2 data set’s non-load
variables. The model was trained using all MO1 data. Error bars are not presented
to enhance figure readability, variable standard deviations are less than or equal to
1.20. Only variable 10 has a larger standard deviation, 6.47.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

500

1000

1500

2000

Time

W
a
tt
s

Dryer’s Total Heat Gain Rate

 

 

Nominal

Abnormal

Figure 5.8: Compares the average MO2 dryer heat gain response against an observed
scale shifted response. Two other MO2 test simulations present the same scale shift
response behavior.

127



 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5 Order 1 Loads with Lasso Regression

E+ Load Variables
R

M
S

E

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

Sensible Latent RMSE MTR

Figure 5.9: Lasso regression model’s performance on the MO2 data set’s load
variables. The model was trained using all MO1 data.

Table 5.1: Illustrates all model’s Whole Building Energy consumption (MO2 Variable
90) prediction accuracy. Several standard deviations were very small, making them
essentially zero.

Model RMSE (W) MEAN (W) CV (%)
FFNN 5 9.125±0.00 1756.8±0.00 0.519±0.00
FFNN 10 1.164±0.00 1756.8±0.00 0.066±0.00
FFNN 15 1.061±0.00 1756.8±0.00 0.060±0.00
Lasso 4.797±1.61 1756.8±0.00 0.273±0.09

However, the Lasso regression method was able to fit the same load variables as the

FFNN model – variables 74, 76, 78, and 82. This result continues to imply that there

is not enough information to model the other load variables using the raw data set.

The MO2 data set’s 90th simulation output variable represents Whole Building

Energy (WBE) consumption, which is not present in the FG data set. Table 5.1

presents the WBE prediction results for all models. These results illustrate that

the Lasso model provides a better fit than the 5 hidden node FFNN model, but

provides a worse fit than the 10 and 15 hidden node models. While the Lasso model

does not perform as well, its overall training time is substantially better than the

128



Table 5.2: The first column represents the single MO1 model training time, and the
second column is the necessary time to train all MO1 models in serial. The prediction
time represents single model execution time.

Model Training Total Training Prediction
Time (Hr) Time (Hr) Time (sec)

FFNN 5 ∼2 ∼18 ∼2.70
FFNN 10 ∼8 ∼72 ∼2.85
FFNN 15 ∼24 ∼216 ∼2.93
Lasso ∼0.2833 ∼25.50 ∼2.90

FFNN 10 and 15 hidden node models (Table 5.2). These performance characteristics

indicate that it is best to use the Lasso regression model to predict all variables that

can be sufficiently represented using a linear model. This is especially true when

one has sufficient computational resources to run the learning algorithms in parallel.

The Total Training Time represents the execution time associated with training each

individual model in serial. A more parallel approach will converge to the single model

training time. Lastly, the overall prediction time represents the parallel execution

speed for running the nine MO1 FFNN models in parallel and running the entire

Lasso regression model as a single matrix multiplication. This indicates that the

Lasso regression method’s testing speed scales better than the FFNN when parallel

execution is not possible.

5.4 Discussion

Several interesting findings have been observed in regards to both data sets and

prediction accuracy. First, we have observed a simulation clustering phenomenon,

which may provide insight into E+ approximation efforts, and illustrates how

prediction accuracy varies as a function of simulation data. Second, we discuss HVAC

schedule features for improving overall heating and cooling load predictions.

129



0 100 200 300 400 500 600 700 800

30

32

34

36

38

40
FG Variable 65’s CV Error Clustering

Simulation

C
V

 E
rr

o
r 

M
e
tr

ic

 

 

Group 1

Group 2

Group 3

Figure 5.10: Illustrates the FFNN model’s CV error clustering into distinct clusters
on the Fine Grain dataset.

0 100 200 300 400 500 600

1

2

3

4

5
FG Variable 52’s CV Error Clustering

Simulation

C
V

 E
rr

or
 M

et
ric

 

 

Group 1
Group 2
Group 3

(a) Lasso Cluster

0 100 200 300 400 500 600
0

0.5

1

1.5

2
FG Variable 63’s CV Error Not Clustering

Simulation

C
V

 E
rr

or
 M

et
ric

(b) Lasso No Cluster

Figure 5.11: Illustrates that the Lasso regression models can produce distinct clusters
when a linear model captures the full relationship between inputs and outputs (Figure
5.11(a)). When a nonlinear model is required, Lasso regression fails to produce the
distinct clustering (Figure 5.11(b)).

130



0 50 100 150 200 250 300 350
34

36

38

40

42

44
Order 1 Variable 75’s CV Error Group

Simulation

C
V

 E
rr

o
r 

M
e
tr

ic
 

 

Group

Unkown

Figure 5.12: Illustrates the FFNN model’s CV error clustering into a distinct cluster
on the Markov Order 2 dataset.

Through this work we have noticed several interesting properties exhibited by the

predictive models. For example, the CV error metric measured for FFNN prediction

on FG data set’s variable 65 constructs well defined clusters (Figure 5.10). These well

defined clusters are created by the FFNN and Lasso regression models for multiple

variables. However, the Lasso regression model does not always exhibit the clustering

behavior; it only occurs if the variable is sufficiently well predicted by a linear model

(Figure 5.11(a) and 5.11(b)). Neither model exhibits the same clustering behavior in

the MO1 experiments. The MO1 experiments show a single group (Figure 5.12). This

clustering property suggests that, as we increase the E+ parameter sampling density

(i.e., sample the data more finely), we will most likely see the number of clusters

increase. This is even more likely if we expand on the total number of parameters

that are sampled. In such a case, ensemble learning for specialization in predicting

each cluster may be fortuitous.

Another important observation is the fact that each cluster, representing sim-

ulations that are equally misinterpreted by the predictive model, means the best

E+ approximation model should be built for each cluster. For example, in

Sections 3.7 and 3.8, we discuss two methods for predicting future hourly residential

electrical consumption via clusters determined by C-means and Hierarchical Mixture

of Experts. While our results here imply these model types will produce better

131



performance on densely sampled simulations, this performance increase has not

yet been quantified through experimentation, due to the scalability improvements

necessary for handling such large data.

In particular, the clustering process needs to group the E+ data by simulation.

However, this is a difficult problem due to the curse of dimensionality Hinneburg

et al. (1999), which in this instance means that producing accurate clustering

becomes increasingly difficult as dimensionality increases. Each simulation contains

35,040 simulation output vectors. The FG data set contains 80 outputs while the

MO1 data set contains 90 outputs. This makes it possible for typical clustering

metrics (e.g., Euclidian distance) to produce meaningless similarity measures. The

more appropriate approach is clustering the individual output vectors, establishing

individual cluster membership probabilities based on each simulation’s distribution

across the clusters, and constructing the final model cluster centroids using the

membership probabilities and the input vectors§. While these various challenges

illustrate that approximating E+ or large data is difficult, it establishes many

directions for future research within the machine learning field and building spaces

community. We discuss these directions in more detail in the future work section.

In an effort to improve overall heating and cooling load predictions, we added

features related to HVAC operation schedule and temperature gradients to the input

set. The temperature gradient features include the inside and outside temperature

gradient. The inside temperature gradient represents the average temperature

change across the building zones. In our experiments the building zones correspond

to the living room, master bedroom, basement, and second floor. The outside

temperature gradient represents the change in dry bulb temperature. Using these

temperature gradient features, we manually constructed a heuristic indicator function

that estimates whether the HVAC is currently heating, cooling, or neither. The

indicator function first uses the time and region information to determine whether

§ All clusters must ultimately relate to the input vectors, because testing a simulation parameter
setting does not have corresponding output.

132



heating or cooling loads are realistic¶. The function allows heating to be active only

during October through March and allows cooling to be active during the remaining

months. Finally, we use the gradient direction to estimate the on or off state. If the

inside gradient is increasing and the outside gradient is decreasing, then the heat is

activated, provided the time corresponds with a heating month. The inverse is used

to establish when the cooling is active.

Using these features and the FFNN model, we repeated the FG and MO1

experiments on the heating and cooling load variables. The FG load results are shown

in Table 5.4. Analyzing the FG table illustrates that the HVAC operation features

and temperature gradient features produce statistically better prediction results with

95% confidence on the LR, MB, and BM sensible heating loads (variables 65,69, and

73) as well as LR’s latent heating and cooling loads, and MB’s latent cooling load

(variables 66, 68, and 72). Lastly, the LR’s sensible cooling load and MB’s latent

heating load were unchanged (variables 67 and 70). All other FG variable predictions

are worse.

The MO1 experiments (shown in Table 5.4) with the HVAC operation and

temperature gradient features produce statistically better LR, BM, and Second Floor

(SF) sensible heating load predictions (variables 74, 82, and 86). In addition, the

features produce statistically better MB latent heating load predictions (variable 79).

The load predictions for variables 75, 77, 81, 83, 85 and 89 were not statistically

different. All other load predictions were statistically worse (variables 76, 78, 80, 84,

86, 87, 88).

Incorporating these additional features into the learning systems clearly provides

mixed results since not all load predictions improved. In addition, the improved

variables did not reach prediction rates similar to the better sensible load predictions

(e.g., LR’s sensible heating and cooling). Incorporating these findings with the Lasso

regression results from Section 5.3, which suggest that necessary information for

¶ The simulations in all experiments use a constant set point for the entire year.

133



Table 5.3: Compares the best FG FFNN model results, without HVAC features,
against the best FG FFNN model with HVAC operation features. Both models use
15 hidden units. Variables that show improvement are marked in blue and those show
degradation are marked in red.

Variable RMSE MEAN CV
(#×105 J) (#×105 J) (%)

65-Old 1.4022±0.1624 4.2998±0.2505 32.522±2.175
65-New 1.3596±0.1721 - 31.516±2.420
66-Old 1.0741±0.0334 0.4286±0.0134 250.657±4.533
66-New 1.0618±0.0333 - 247.796±4.536
67-Old 1.6204±0.2621 4.1195±0.1343 39.170±5.088
67-New 1.6216±0.2683 - 39.195±5.238
68-Old 1.3304±0.0158 0.4729±0.0111 281.406±3.914
68-New 1.3182±0.0148 - 278.826±4.124
69-Old 0.2922±0.0624 0.7780±0.0539 37.366±6.505
69-New 0.2764±0.0652 - 35.308±6.922
70-Old 0.1081±0.0043 0.0816±0.0076 133.239±9.119
70-New 0.1075±0.0042 - 132.564±9.041
71-Old 0.3848±0.0742 0.8996±0.0404 42.490±6.344
71-New 0.3913±0.0789 - 43.190±6.835
72-Old 0.4452±0.0295 0.2237±0.0050 198.806±8.934
72-New 0.4374±0.0309 - 195.306±9.626
73-Old 0.9445±0.3328 1.5752±0.5593 63.423±21.675
73-New 0.9123±0.3572 - 60.302±19.348
74-Old 0.5032±0.0064 0.2076±0.0082 242.661±8.171
74-New 0.5129±0.0064 - 247.333±8.410
75-Old 0.6210±0.1473 0.5637±0.2172 131.310±87.927
75-New 0.6621±0.1437 - 137.680±81.744
76-Old 0.4475±0.0061 0.1470±0.0032 304.523±4.892
76-New 0.4495±0.0060 - 305.913±4.947
77-Old 0.6698±0.0972 1.0371±0.0537 64.311±6.454
77-New 0.6681±0.1022 - 64.131±6.947
78-Old 0.3876±0.0105 0.2231±0.0092 173.867±5.115
78-New 0.3925±0.0105 - 176.058±5.192
79-Old 0.8449±0.1765 1.7647±0.0457 47.654±8.738
79-New 0.9044±0.1788 - 51.024±8.785
80-Old 0.4372±0.0070 0.1573±0.0037 277.937±2.613
80-New 0.4366±0.0068 - 277.518±2.708

134



Table 5.4: Compares the best MO2 FFNN model results, without HVAC features,
against the best MO2 FFNN model with HVAC operation features. Both models use
10 hidden units. Variables that show improvement are marked in blue and those that
show degradation are marked in red.

Variable RMSE MEAN CV
(#×105 J) (#×105 J) (%)

74-Old 1.6084±0.0165 4.1829±0.0670 38.461±0.654
74-New 1.5322±0.0173 - 36.641±0.723
75-Old 0.4831±0.0132 0.1470±0.0048 328.746±9.685
75-New 0.4815±0.0130 - 327.704±9.755
76-Old 2.8421±0.0290 4.3868±0.0512 64.792±0.6371
76-New 2.9108±0.0349 - 66.356±0.605
77-Old 0.5497±0.0229 0.1812±0.0049 303.245±8.912
77-New 0.5519±0.0226 - 304.489±8.8140
78-Old 0.4313±0.0056 1.1951±0.0175 36.092±0.597
78-New 0.4653±0.0068 - 38.934±0.557
79-Old 0.1044±0.0026 0.1238±0.0043 84.380±1.939
79-New 0.1032±0.0025 - 83.396±2.042
80-Old 0.4558±0.0187 0.5947±0.0091 76.640±1.551
80-New 0.4713±0.0129 - 79.241±1.679
81-Old 0.0665±0.0021 0.0512±0.0017 130.159±5.149
81-New 0.0664±0.0021 - 129.885±5.121
82-Old 1.0850±0.0371 2.902±0.1096 37.476±2.840
82-New 1.0372±0.0371 - 35.820±2.678
83-Old 0.3082±0.0025 0.1178±0.0021 261.775±8.171
83-New 0.3080±0.0026 - 261.556±2.642
84-Old 0.1228±0.0155 0.0225±0.0071 564.939±111.943
84-New 0.0798±0.0175 - 364.840±81.744
85-Old 0.2670±0.0590 0.0693±0.0038 383.244±47.206
85-New 0.2669±0.0589 - 383.040±47.123
86-Old 0.7264±0.0101 0.9751±0.0256 74.531±1.813
86-New 0.6800±0.0114 - 69.761±1.483
87-Old 0.3379±0.0038 0.1372±0.0023 246.346±3.786
87-New 0.3405±0.0037 - 248.260±3.814
88-Old 1.8742±0.0609 1.7166±0.0337 109.169±2.408
88-New 1.9058±0.0666 - 111.002±2.753
89-Old 0.1583±0.0111 0.0728±0.0013 217.361±14.703
89-New 0.1600±0.0111 - 219.708±14.657

135



predicting latent loads is missing, shows that improving overall load predictions is a

challenging problem when relying on only the building envelope parameters, operation

schedule, and weather information to make predictions. This leaves two directions –

1) Bottom-up feature synthesis from existing data; or 2) Top-down analysis, through

continued interaction with domain experts, to determine additional E+ information

that could improve approximations.

Figures 5.13(a) and 5.13(b) show our HVAC heating and cooling (on/off) features

and the MO1 latent cooling and heating loads for the LR zone. Figure 5.13(a) shows

that the HVAC heating is on mostly when the latent loads are non-zero and similarly

for latent cooling loads in Figure 5.13(b). Our current HVAC features correlate well

with the MO1 sensible and latent loads, so improvement in a model’s prediction

accuracy could only be achieved through additional information.

However, Figures 5.14(a) and 5.14(b) illustrate that the FG LR latent loads are

uniformly distributed throughout the year. These latent loads are not indicative of the

HVAC’s operation. Identifying and recording the necessary information will require

executing additional simulations. In addition, we need to ensure that all information

gathered from the E+ internals is used in a repeatable manner, i.e., the information is

not used in such away that we can not use the models to provide E+ approximations

for other buildings. This issue is discussed further in future work.

5.5 Results Summary

Using FFNN and Lasso regression, we demonstrated the ability to produce E+

approximation models for a residential building. Our models use building envelope

parameters selected by domain experts, an operation schedule, and weather data.

These models are able to successfully predict a majority of the domain expert selected

output variables. We are able to identify which output variables require a nonlinear

model, based on comparing the FFNN and Lasso models directly. However, these

136



models only have moderate success at predicting sensible heating and cooling loads,

and are unsuccessful at predicting the latent cooling and heating loads.

In an effort to improve the load predictions, we incorporated HVAC operating

heating and cooling features, which indicates the on and off states for these respective

operating conditions. These new features present mixed results. Some load

predictions show improvement, while others remain the same or diminish. Based on

these results and Lasso regression’s ability to automatically select relevant inputs, we

concluded that either better use of existing information or additional information

is necessary to better predict the latent load variables. We continue to analyze

additional features and internal E+ variable information that can be incorporated

into our prediction process without diminishing the E+ approximation’s generality.

The Lasso model is able to predict an entire yearly simulation in ∼3 seconds, and

the FFNN models can achieve the same execution time when run in parallel. These

runtimes are considerably faster than the average E+ runtime (∼2-3 minutes). This

performance increase will provide improvement to the overall building calibration

process, when using the well predicted variables in the tuning objective.

Lastly, the three data sets (FG, MO1 and MO2) allowed us to determine that the

best E+ approximation model requires multiple models, as discussed in Section 5.4,

which can tailor the learning to individual cluster attributes.

137



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

0.5

1

1.5

2

Time (Hours)

HVAC Heating ON/OFF vs MO1 LR Latent Heating

 

 

ON
OFF
Latent

(a) MO1 LR Latent Heating

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

0.5

1

1.5

2

Time (Hours)

HVAC Cooling ON/OFF vs MO1 LR Latent Cooling

 

 

ON
OFF
Latent

(b) MO1 LR Latent Cooling

Figure 5.13: The HVAC on and off operating feature overlayed onto a sample MO1 LR
latent heating (Figure 5.13(a)) and sample MO1 LR latent cooling (Figure 5.13(b)).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

0.5

1

1.5

2

Time (Hours)

HVAC Heating ON/OFF vs FG LR Latent Heating

 

 

ON
OFF
Latent

(a) FG LR Latent Heating

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

0.5

1

1.5

2

Time (Hours)

HVAC Heating ON/OFF vs FG LR Latent Cooling

 

 

ON
OFF
Latent

(b) FG LR Latent Heating

Figure 5.14: The HVAC on and off operating feature overlayed onto a sample FG LR
latent heating (Figure 5.14(a)) and sample FG LR latent cooling (Figure 5.14(b))

138



Chapter 6

Learning Simulation Variable

Relationships

Tuning the EnergyPlus (E+) simulation model requires that one understands how

all the input variables interact and the effects these variables have on the simulation

output. This knowledge is clearly required for tuning the E+ input parameters,

because improving the simulation quality requires understanding how to adjust input

parameters to improve the output. In addition, approximating the E+ simulation

clearly requires understanding the relationships between the input and output

variables, because a model that approximates E+ must be able to map a provided set

of inputs to the correct set of output variables. Therefore, fundamentally tuning and

approximating E+ both require solving the same core problem: “Determine a model

that describes the relationships between the E+ variables”.

If one views the E+ input and output variables as a set of random variables,

e.g., {X1, X2, ..., XN}, then learning the relationship between the variables can be

formulated as learning the joint probability distribution, P (X1, X2, ..., XN), over these

variables. This means that the true joint distribution defines a probabilistic surface

over the random variables, which implies that the joint distribution represents all

the complex relationships between the E+ variables. The joint distribution can be

139



used to tune E+ models, and likewise it has the ability to approximate the E+

simulation. The tuning problem can be solved by using reference output data or real

world sensor data to find the input variables that maximize the posterior probability.

In mathematical notation, one wants to maximize the following probability:

ΠN
i=1P (X|Yi)P (X) (6.1)

where X denotes the E+ building specification variables and Y denotes the observed

output data or real world sensor data, weather data, and operation schedule. This

equation assumes that all observations are independent and identically distributed.

Applying Bayes’ Theorem allows 6.1 to be written as:

ΠN
i=1P (X, Yi) (6.2)

which is the joint probability distribution. Conversely, the approximation process

requires maximizing the following posterior probability:

ΠN
i=1P (Yi|X)P (Yi) (6.3)

where X represents the inputs and observed operation schedule, and Yi represents a

single output sample. This approximation method requires finding multiple samples

that maximize the posterior probability, rather than a single assignment. However,

forward approximating E+ using this method is computationally slower than using

our surrogate models. Therefore, we are only focusing on estimating building

parameters and only present the other capability for completeness.

The remainder of this chapter is organized as follows: Section 6.1 provides

background information on Probabilistic Graphical Models (PGMs); Sections 6.2,

6.3, and 6.4 provide a comprehensive review on structure learning methods; Section

6.5 presents our approach; Section 6.6 presents our experimental setup; Sections 6.7.1,

140



6.7.2, and 6.7.3 presents our experimental results; Section 6.8 provides discussion; and

Section 6.9 summarizes all findings within this chapter.

6.1 Probabilistic Graphical Models

Learning the true joint probability distribution directly in the general case is com-

putationally intractable, especially when dealing with a large number of continuous

random variables. In general, it is assumed the joint probability factorizes into several

smaller more manageable computational problems. The factorization is based purely

on conditional independence and is represented using a graphical model G, where G

is a graph with V nodes representing random variables and E edges. The edges in E

represent conditional dependencies between the random variables in the graph G. The

graph structure is intended to represent the true factorization for the joint probability

distribution into simpler components. These types of models have been applied to

many fields and produced great results, such as topic classification Blei et al. (2003),

document classification Bernardo et al. (2003), activity recognition Zhang and Parker

(2011), disease diagnosis Jordan et al. (1999), and many more.

The graphs used to represent factorized joint probability distributions are either

direct acyclic graphs (DAG), or they have bidirectional edges. The first form assumes

that the graph represents a Bayesian Network and the latter form assumes that the

graph represents a Markov Network. These graph types both assume that a joint

probability distribution factorizes according to their structure. However, a Bayesian

Network assumes a much simpler probabilistic dependency between the variables,

in which a variable is conditionally independent of all other variables given its

parents. On the other hand, a Markov network assumes variables X are conditionally

independent from variables Y provided that they are d-separated by variables Z. X

and Y are said to be d-separated by Z if and only if there does not exist a path from the

variables in X to the variables Y that does not pass through the variables Z Koller and

Friedman (2009). Clearly, the Bayesian Network makes stronger assumptions about

141



independence, but these assumptions make it easier to perform exact interference. In

contrast, Markov Networks use approximate inference methods, such as Loopy Belief

Propagation. Even though a Markov Network is more computationally expensive

than a Bayesian Network, it is a more preferred graph structure because it has much

more representational power within the model. Therefore, a Markov Network should

be preferred over a Bayesian Network, if it is computationally feasible to use one to

approximate the joint distribution for the E+ variables.

While these graphical models are able to adequately represent joint distributions,

the graph structures are generally predetermined. Given the total number of random

variables within an E+ (∼300 for our experiments) simulation, it is not feasible to

specify the single best graph structure in advance. Therefore, algorithmic techniques

must be used to find the best graph structure that matches the true joint probability

distribution without overfitting the observed training samples. There are three

categories of algorithms that aim to solve this problem, two of which are conventional

methods. The first conventional method is Score and Search (Section 6.2), and

is generally used to learn Bayesian Network structures. The second conventional

approach is Constraint Based (Section 6.3) methods, which have been used to learn

Bayesian and Markov Networks. The unconventional method uses strong probability

assumptions combined with regression based feature selection methods to determine

dependencies among the random variables (Section 6.4).

6.2 Score and Search

Score and Search algorithms try to search through the space of all possible models

and select the best seen model. The best model is selected by using a global criteria

function, such as the likelihood function. However, the most common criteria function

is the Bayesian Information Criteria (BIC) Schwarz (1978):

BIC(Data; G) = L(Data;G, θ) +
logM

2
∗Dim[G] (6.4)

142



where Dim[G] represents the number of parameters estimated within the graph, M

is the total number of samples, and L is the the log-likelihood function.

These Score and Search methods are generally used to try and find the best

structure for Bayesian Networks, because the log-likelihood function factorizes into

a series of summations. This factorization makes it very easy to modify an existing

Bayesian Network and compute the modified score without recomputing the entire

score. For example, adding an edge to an existing Bayesian network requires

computing the new and previous conditional probability involving the child of the

new edge, and adding the difference to the previous BIC score. Updating the penalty

term is achieved by simply adding N logM
2

to the updated BIC score, where N is the

number of newly estimated parameters.

The most common method for performing Score and Search within the literature

is Greedy Hill Climbing Russell and Norvig (2010). The algorithm starts with a

candidate graph and explores valid augmentations to the graph. These augmentations

include deleting edges, adding edges, and changing the direction for edges. The best

valid augmentation is selected according to the defined criteria function, generally

BIC, and a new candidate graph is generated. Note that an augmentation is only

valid if the resulting candidate graph is a valid Bayesian Network. This greedy search

approach is able to guarantee a locally optimal solution that will maximize the criteria

function, but could be far away from the true model.

There are two algorithms that extend the basic greedy hill climbing algorithm by

constraining the network search space, which allows for better solutions. The first

algorithm is the Sparse Candidate method Friedman (1999). This method assumes

that random variables that have a high measure of mutual information should be

located closer to each other in the final network than variables with low mutual

information. The mutual information for two discrete random variables, X and Y , is

defined as follows:

I(X, Y ) =
∑
x,y

P (x, y)log

(
P (x, y)

P (x)P (y)

)
(6.5)

143



In the case of continuous random variables, the summation is replaced by integration.

In addition to using the mutual information within the data to restrict the search,

the method restricts the total possible number of parents to a user specified value

k. Combining the restricted number of parents with the mutual information criteria,

the greedy algorithm selects the best candidate parent set for each random variable.

Using the candidate parent set, an approximate Bayesian network is constructed. The

network is approximate, because it may not actually be a valid Bayesian network.

Standard greedy hill climbing is then applied to the approximate Bayesian network,

but the valid augmentations are now restricted according to the best candidate parent

set.

The Sparse Candidate algorithm is able to scale to large Bayesian Networks with

hundreds of random variables, but selecting the correct value for k has a large

impact on the approach and can greatly reduce solution quality if set incorrectly

Tsamardinos et al. (2006). In addition, the method assumes that computing I(X, Y )

is feasible through sampling in the discrete case with roughly 1000 samples Friedman

(1999). However, approximating the I(X, Y ) in the continuous case may not be

feasible with so few samples, may be too computationally expensive, or produce poor

approximations. In the latter case, greedy hill climbing may search a model space

that does not contain the true candidate model resulting in a misspecified model.

The second algorithm, Max-Min Hill-Climb (MMHC Tsamardinos et al. (2006)),

extends the basic greedy hill climbing algorithm by using a Constraint Based

algorithm (Section 6.3) called Max-Min Parents and Children (MMPC Tsamardinos

et al. (2003)) to determine the underlying undirected structure for each random

variable. Given the approximate optimal substructure per variable, the algorithm

proceeds to apply greedy hill climbing to find the DAG that maximizes the criteria

function. However, edges can only be added to the graph if they follow the constraints

specified by the undirected model. The advantage that this algorithm provides over

the Sparse Candidate algorithm is a tighter upper bound on the run time; this

algorithm also removes the parent restriction. However, the algorithm replaces the

144



parent restriction with a restriction on the size of the subsets that will be used

for the MMPC’s conditional independence testing. The algorithm’s run time is

O(|V |2|PC|l+1) where |V | represents the total number of random variables, |PC|

represents the largest set of parents and children, and l represents the maximum

subset size allowed for conditional independence testing.

There are many other search methods that have been applied to try and find the

best structure, such as genetic algorithms Larrañaga et al. (1996), best first search

Russell and Norvig (2010), and equivalence class searches Chickering (2002). The last

method searches through Bayesian Network equivalence classes rather than network

structures directly. While some of these methods have been shown to scale well to

large datasets, the methods that involve optimizing a BIC, likelihood, or posterior

probability criteria function will ultimately not scale well to Markov Networks. The

criteria function for an undirected model does not factorize in a manner that avoids

recomputing the entire score. It is possible to use a Bayesian network rather than

a Markov Network, but a Bayesian Network makes strong assumptions about the

underlying distribution that are greatly relaxed by Markov Networks. This means

Score and Search algorithms are one possible approach to explore; however, this

approach is not preferred because of overfitting concerns, the size of the search space,

and the fact that it can only learn Bayesian networks. While Bayesian Networks may

be powerful in some domains, it is better to pursue approaches that have better

guarantees and more representational power, such as Regression Based methods

(Section 6.4).

6.3 Constraint Based

Constraint based algorithms focus on learning the graph structure through conditional

independence testing. These methods assume that it is possible to recover the dis-

tribution’s factorization by statistically analyzing the data with standard hypothesis

testing methods, such as X 2 tests. Note that hypothesis testing with continuous

145



random variables is much more challenging and can be intractable in some cases. Since

the constraint based approaches are only dependent upon statistical testing, they are

better suited for learning Markov networks than the Score and Search algorithms.

This benefit is derived from the fact that these methods do not need to compute a

global criteria function; however, the lack of a global criteria function can also be

viewed as a drawback.

This drawback is best understood by analyzing the simplest constraint based

algorithm, SGS Spirtes et al. (1989), that attempts to perform every possible

conditional independence test. The SGS algorithm starts with a fully connected

graph, and deletes edges that directly connect random variables if those variables

are independent. However, two variables are only determined to be independent

if they are conditionally independent for all possible random variable subsets that

do not include those two variables. This algorithm clearly does not scale to large

problems, because the total number of possible conditional independence tests grows

combinatorially. While this method will find the true factorization if all statistical

tests are sound, it is not possible to apply to real applications. This means that the

total number of conditional independence tests needs to be restricted, and without a

global criteria all approximate algorithms lose the guarantee of even a local maximum

in the general case.

While there are no guarantees in the general case, under certain assumptions most

constraint based algorithms perform well and can scale to larger data sets. The Grow

and Shrink algorithm (GS) is able to scale to very large data sets by estimating the

Markov blanket for each random variable Margaritis and Thrun. (1999). Given the

estimated Markov blanket for each random variable, the GS algorithm then recovers

a Bayesian Network from the local information. This algorithm’s runtime is O(m2 +

n3|D|), where |D| is size of the training set, n is the number of random variables,

and m is the number of edges in the graph. While this algorithm may scale well

to a large number of random variables, it will not scale well on E+ data for two

reasons: the size of the E+ dataset (millions of data vectors Sanyal et al. (2012)) and

146



the total number of random variables being modeled (∼300). Ignoring the dataset

cardinality issue, the cubic run time results in a very large number of computational

steps. Additionally, the number of conditional independence tests required by this

algorithm are only polynomial if the Markov blanket for each random variable is

bounded. In the worst case the algorithm reverts to an exponential problem, because

it will require an exponential number of conditional independence tests.

Another work Pellet and Elisseeff (2008) shows that algorithms that approximate

the Markov blanket perform better at extracting casual structures and scale better to

large datasets. While we are interested in a method for approximating an undirected

graph, approximating the Markov blanket for each random variable easily allows

an algorithm to extract the undirected model. In fact this work proves that if an

algorithm has the exact Markov blanket for each random variable, then the algorithm

will find the true casual model. A casual model is a Bayesian Network in which edges

imply causality, which represents a stronger probabilistic relationship. The process

requires the algorithm to construct the moral graph for the causal model, where a

moral graph is the undirected graphical model that represents the same distribution

as the directed model.

While it is computationally intractable to extract the exact Markov blanket

for each random variable in large problems, the algorithm uses a different method

than GS to determine the Markov blanket. The algorithm uses feature selection

algorithms to determine the Markov blanket for each random variable by using

backward-selection based linear regression and stepwise selection linear regression.

The authors of Pellet and Elisseeff (2008) also explored a backward-selection method

combined with SVM regression, called Recursive Feature Elimination (RFE) Guyon

et al. (2002), but determined that the method is too computationally expensive

even though it allows for the discovery of nonlinear dependencies within the Markov

blanket. Feature selection was discussed previously in Chapter 4. In addition, a wide

assortment of regression methods are described in Chapter 3. While the proposed

algorithm in Pellet and Elisseeff (2008) is more computationally appealing than

147



the existing Constraint Based and Score and Search methods, it assumes that each

variable is Gaussian distributed for use within their feature selection algorithms,

making it less general than the other methods. In addition, this dissertation’s

results illustrate that a genetic algorithm combined with ICOMP(IFIM) is better

at feature selection than stepwise selection when using linear regression models.

Stepwise selection also generally selects better features than backwards and forwards

selection Miller (2002). Therefore, methods that use feature selection to determine the

dependent variables are much more computationally feasible. While all components

used in Pellet and Elisseeff (2008) have polynomial runtimes (except for the algorithm

used to convert a moral graph into a causal model, which is exponential in the worst

case), the feature selection methods used are not adequate. However, the idea to use

feature selection to determine dependent variables via regression is very intriguing

and has lead us to explore other feature selection based methods. These types of

approaches are referred to as Regression Based methods and are discussed further

in Section 6.4, because they are much more scalable methods than the conventional

Score and Search and Constraint Based methods. In addition, the regression based

methods presented in this report have a polynomial worst case runtime, while all the

other methods are exponential in the worst case.

6.4 Regression Based Method

The regression based structure learning method assumes that it is possible to

determine all conditional dependencies among the random variables by assuming that

each variable is a functional result from a subset of all random variables. This concept

is best presented in Linear Gaussian Bayesian Networks, where each random variable

is Gaussian distributed, but each dependent random variable’s Gaussian distribution

is a linear combination of its parents. Therefore, one can clearly learn the structure

for a Linear Gaussian Bayesian Network by performing a series of linear regressions

with feature selection.

148



While the regression based approach is less conventional, it has proven to be

extremely scalable. For example, in Gustafsson et al. (2004) regression based methods

were used to learn large undirected graphical model structures in Gene Regulatory

Networks. Microarray data generally contains thousands of random variables and

very few samples. In that particular work the algorithm for building the graph

structure is fairly straightforward. If the regression coefficients are non-zero, then

there exists a dependency between the response random variable and the random

variable associated with each non-zero regression coefficient. While the concept

is simplistic, the work used lasso regression to determine the dependencies, which

tends to have the ability to weight irrelevant features towards zero. This makes

it an ideal approach for determining the graphical structure, because it has built-

in feature selection through its regularization term. While this method can learn

a general undirected graph structure, it may not be possible to extract an overall

joint distribution from the resulting graph. In fact, the work focused on analyzing

the overall graphical structure and the distribution over the number of dependencies

within the graph, rather than the actual joint distribution represented by the graph.

Another regression based work Dobra et al. (2004) focuses on recovering a joint

distribution from the factorized graph. In addition, this method is presented in a

general manner and allows for the use of any feature selection method. However,

this method assumes that the overall joint distribution is sparse and represented by a

Gaussian with N (0,Σ). This type of Markov Network is called a Gaussian Graphical

Model (GGM), and it is assumed that the joint probability is represented by the

following:
1

(2π)
n
2 |Σ| 12

exp(−1

2
(x− µ)TΩ(x− µ)) (6.6)

where Σ is the covariance matrix, µ is the mean, and Ω is the inverse covariance

matrix or precision matrix. While this assumption is strong, the method assumes

that the data is centered prior to application. Based on this assumption and the

assumption that the residual error for a variable is also N (0,Ψ), it appears that

149



the work assumes application of standard linear regression combined with Bayesian

feature selection via a Wishart prior. Nonetheless, this approach learns a Bayesian

network over the variables. The Bayesian network is then converted to an GGM by

using the regression coefficients and the variance for each regression to extract the

precision matrix Ω. The precision matrix is recovered by the following computation:

Ω = (1− Γ)TΨ−1(1− Γ) (6.7)

where Γ represents an upper triangular matrix with zero diagonals and the non-

zero elements represent the regression coefficients, and Ψ−1 represents a diagonal

matrix containing the variances for each performed regression. There are methods for

statistically learning Ω from the data directly, but these methods requires computing

Σ−1, the inverse covariance matrix, which is equivalent to Ω. The inverse operation

requires an O(V 3) runtime, where V is the total number of random variables. In

addition, it is not guaranteed that Ω will be sparse when estimating Ω directly.

Avoiding the computational overhead cost for computing Ω directly is very important

when V is very large, which is the case with the E+ random variable set.

In addition, this work illustrates that it is possible to recover the Σ using the

precision matrix, but it is not necessary because inference in a GGM can be performed

by using the informational form of the distribution:

p(x) ∝ exp(xTJx+ hTx) (6.8)

where J = Ω and h is the potential vector; this method assumes that h is a vector of

zeros. Based on the work presented in Willsky et al. (2008), it is possible to relax the

assumption that h is zero. However, computing h requires Σ by inverting Ω, which is

computationally expensive even with the efficient method presented in Dobra et al.

(2004).

150



Overall, this particular regression based approach is fairly robust and computa-

tionally feasible for a large number of random variables. However, the method will

produce different joint probability models if the variable ordering is changed. Thus,

the resulting joint probability distribution is heavily dependent upon the considered

variable ordering, because the method assumes that only future variables in the order

can be predictors for the current variable under regression analysis. This assumption

ensures that the resulting graph structure is well formed and produces a valid Bayesian

Network, but requires the method to search the set of all possible orders to determine

the best structure. This problem is addressed by scoring the individual variables and

greedily ordering the variables in ascending order based on their assigned score.

While Dobra et al. (2004) also presents a method for greedily selecting a good

order, Li (2007) builds on this approach and removes the order requirement without

adding additional assumptions. The method presented in Li (2007) applies the

Wishart prior to the precision matrix, and uses modified Lasso regression to perform

feature selection. By shifting the prior to the precision matrix from the individual

lasso regression coefficients, it is possible to propagate the prior distribution to the

regression coefficients, allowing the modified Lasso regression method to perform

Bayesian feature selection. In addition, shifting where the prior is applied allows

Li (2007) to prove that regardless of variable order, all possible resulting Bayesian

networks encode the same undirected GGM joint probability. This means that it is

possible to compute the MAP estimate of Ω, which has very appealing properties

such as avoiding overfitting. In addition, the method introduces a way to transform

the Lasso regression formulation into an SVM regression problem, where the solution

to the SVM regression problem is also the solution to the Lasso regression problem.

This transformation allows the method to detect nonlinear dependencies among the

random variables.

While the method presented in Li (2007) can efficiently estimate the GGM that

governs the joint distribution over the E+ random variables, it is not clear how it

will perform on the E+ data set Sanyal et al. (2012), which has many more samples

151



than variables. The method is intended to work with small sample size data sets

that contain a large number of features, such as microarray data. The generated E+

data sets contain 30,540 data vectors per simulation and approximately 300 random

variables. This means that traditional methods for solving the Lasso regression

method are not able to scale to our problem size. We discuss addressing this issue in

Section 5.1.4.

Additionally, adjusting the data set’s density could result in an estimated

Ω that is not sparse. The Lasso regression to SVM regression transformation

requires transforming the initial data matrix before computing the kernel matrix

and transforming the response signal as well. The standard linear data matrix X has

dimensions N × P , with N samples and P features. Under this nonlinear method,

the data matrix is transformed to XT , while the response, Y , is transformed to XTY .

The data matrix transformation causes the data matrix to become an P ×N matrix.

This means that the resulting kernel matrix has dimensions P ×P . While the kernel

matrix will now fit in memory, solving the SVM optimization method with such a

dense kernel matrix may produce a regression solution that is not sparse∗. This

means that the transformed Lasso regression method may lose its ability to select

sparse predictor features, which in turn can deteriorate the quality of the estimated

Ω. Another thing that must be considered is whether Lasso regression (or the modified

version) selects the true predictors. Even though the SVM and Lasso methods, based

on the hyper parameter settings, will find the globally optimal regression parameters,

there are no true guarantees that the resulting model will be the most parsimonious

model. Therefore, we are avoiding Li (2007)’s Lasso to SVM transformation, and only

exploring the linear dependencies among the variables, because we can use the E+

approximation models (Chapter 5) to fine tune parameter estimates directly, which

will compensate for under represented nonlinear dependencies.

∗ Sparse in this instance means that most of the predictors have a zero coefficient

152



Despite the shortcomings with these previous approaches, regression based

methods are the most computationally feasible and scalable method currently

presented in the literature. Therefore, it is the most ideal approach to tackle

approximating E+. However, this approach does require assuming the joint

distribution is approximately Gaussian as well as and finding a method that facilitates

solving arbitrarily large Lasso regression problems.

6.5 Approach

Given that the regression structure learning method has the most scalability, we

only need to address the Lasso regression component’s scalability. Using the Lasso

regression technique presented in Section 5.1.4, it is possible to solve arbitrarily large

Lasso regression problems. This means we are able to use the regression approach

to learn a GGM model either using the method outlined in Section 6.5.1 or Section

6.5.2.

6.5.1 Direct GGM Learning

Combining the Gaussian formulation with a scalable Lasso regression method allows

us to fit a GGM model directly. The direct method makes zero assumptions about

local priors or a global prior, the Bayesian method assumes a global Wishart prior

and is discussed in the next section. The learning process directly solves for Γ by

using a user defined variable order and solving N − 1 regression problems, where N

is the total number of variables. The variable order specifies a presumed dependency

structure, because variables are only dependent upon the ones following them in the

order. In more mathematical terms, we solve the following regression problem:

xi =
N∑

j=i+1

βjxj + εi (6.9)

153



where xi represents the response variable, or child variable in graphical model terms,

xj represents the predictors, or the potential parent variables, and εi represents the

Gaussian error term, N(0, ψi). Under this assumed relationship, we fit a Lasso

regression model to the first N − 1 variables and use the resulting β’s to construct

the triangular matrix Γ.

After determining βj, we estimate Ψi using the standard unbiased regression

variance estimator, which is defined as follows:

ψi =

∑|D|
n=1(xni −

∑N
j=i+1 βjxnj)

2

|D| − 2
(6.10)

where |D| represents the total number of samples. We estimate the variance for the

first N − 1 variables in the order, and the final variable’s variance, ψN , is estimated

by fitting a N(0, ψN) to variable xN . Computing the final GGM’s precision matrix,

Ω, requires computing the inverse variance for all variables, Ψ−1. While the matrix

inverse operation is generally expensive, the matrix Ψ is a diagonal matrix, which

makes the inverse operation O(N) rather than O(N3). The Ψ matrix contains each

variables’ estimated variance along the diagonal.

Once we obtain Γ and Ψ−1, we estimate the precision matrix using Eq 6.7.

Having an estimate for Ω allows us to perform inference over the N variables without

performing any matrix inverse operations. While avoiding the O(N3) operation for

∼300 variables provides small computational savings, it will provide much more

computational savings if we scale to a few thousand variables. In addition, it allows us

to perform inference without computing marginals, because we use the unnormalized

joint distribution directly, discussed in Section 6.5.3

6.5.2 Bayesian GGM Learning

Unlike the direct method, the Bayesian approach assumes a global Wishart prior

for the precision matrix. Using this global prior over the precision matrix allowed

154



Li (2007) to prove that the Bayesian approach estimates a globally optimal precision

matrix over all possible variable orders. That is to say, under the Bayesian formulation

presented in Li (2007), all variable orderings should theoretically produce the same

precision matrix.

The Wishart prior used in Li (2007) is defined as W (δ, T ). δ represents a user

defined hyperparameter and T is a hyperparameter diagonal matrix whose entries are

governed by the following distribution:

P (θi) =
γ

2
exp(
−γθi

2
) (6.11)

where γ is a user defined hyperparameter. Using the above prior and some

additional derivations, Li (2007) derived the following maximum a posteriori (MAP)

distributions for all β and all ψ−1:

P (βi|ψi, D) ∝ exp

(∑D
n=1(xni −

∑N
j=i+1 βijxnj)

2 +
√
γΨi

∑N
j=i+1 |βij|

−ψi

)
(6.12)

P (ψ−1
i |θi, βi, D) ∝ P (D|Ψ−1

i , βi, θi)P (βi|Ψ−1
i , θi)P (ψ−1

i |θi) ∼

Gamma

(
δ + 1 +N − 2i+ |D|

2
,

∑N
j=i+1 β

2
ijθ
−1
i + θ−1

i +
∑|D|

n=1(xni −
∑N

j=i+1 βjxnj)
2

2

)
(6.13)

Maximizing P (βi|ψi, D) with respect to βi is equivalent to solving a Lasso regression

problem with the regularization hyperparameter λ set to
√
γψi Li (2007). The original

authors derived these formulations to work with microarrays, which typically contain

10,000 to 12,000 variables, but have very few samples. This allowed the authors to use

conventional optimization methods to solve for βi. However, the E+ data set used in

this work contains several million data vectors, which mostly invalidates conventional

155



optimization approaches. Rather than using the fast grafting algorithm† used by Li

(2007), we solve the Lasso regression problems using ADMM (Section 5.1.4).

After obtaining βi’s MAP estimate, it can be used to maximize P (ψ−1
i |θi, βi, D)

with respect to ψi. However, P (ψ−1
i |θi, βi, D) is dependent upon the hyperparameter

θi and Li (2007) noted that there is not a known method to analytically integrate out

the hyperparameter. This means numerical methods are required to approximate the

integral over the hyperparameter. There are many numerical methods for computing

approximates to definite integrals, such as Trapezoidal method and Simpson’s Rule.

However, the integral over θi is unbounded from above, because θi’s values exist in

the interval 0 to∞, which means Eq. 6.13 must be transformed to a bounded integral

for the numerical methods to be applicable. Given, Eq 6.13’s complex nature and

Li’s Li (2007) recommendation to use sampling to approximate ψ−1
i , we elected to use

E[ψ−1
i |θi, βi, D] as our estimate for ψ−1

i , which is the MAP estimate under a Gamma

distribution:

ψ−1
i =

δ − 1 +N − 2i+ |D|∑N
j=i+1 β

2
ijθ
−1
i + θ−1

i +
∑|D|

n=1(xni −
∑N

j=i+1 βijxnj)
2

(6.14)

Given a fixed θ−1
i , we can estimate a ψ−1

i sample by computing the maximum

likelihood estimate (MLE) (Eq 6.14). By computing multiple MLE samples according

to the θi’s distribution defined in Eq 6.11, we are able to estimate E[ψ−1
i |θi, βi, D] using

weighted sampling. In order to use weighted sampling, we sample Eq 6.11 using its

CDF and a uniform distribution on the interval [0,1]. This means our final ψ−1
i

estimate is computed using the following equation:

ψ−1
i =

1

M

M∑
j=1

ψ̂j
−1
P (θj) (6.15)

† A gradient based constrained set optimization method.

156



where M is the total number of samples and ψ̂i
−1

is a sample computed using Eq.

6.14. After a few iterations between estimating βs and ψ−1s, we use the final estimates

to compute the GGM’s precision matrix (Eq. 6.7).

6.5.3 Inference

Given a GGM, we can estimate the E+ building parameters using the GGM’s

informational form, which is presented in Eq 6.8, to solve the original optimization

problem presented in the introduction (Eq 6.1). Using Eq 6.8 to perform inference

allows us to avoid computing the normalization component, which requires inverting

Ω. Applying the informational form to Eq 6.1 allows us to convert the original

probability equation into the following log likelihood equation:

logP (X) = −
|X|∑
i=1

xTi Jxi + hTxi (6.16)

where xi represents a complete data vector and hT represents the GGM’s mean, which

is assumed to be zero for this work.

In order to perform inference, we simply must fix the observations, i.e., the known

observations or evidence, per vector xi and fill in the building parameter values

that maximize Eq 6.16. We may use any optimization method to maximize the log

likelihood function with respect to the building parameters. For example, we could use

gradient ascent by computing derivatives with respect to the building parameters or

hill-climbing with random restart. In this work, we elected to use a genetic algorithm

to optimize the building parameters. Specific genetic algorithm details are discussed

at length in Section 4.2. We set the GA’s population size to 200, max generations to

10, and used single point cross-over. Mutation was not allowed.

However, we used a gradient optimization method on our MO2 experiments

described in Section 6.6. Our results show that the GA is adequate for a small

parameter space inference, but the gradient methods are best for a larger parameter

157



space. Our discussion section provides a detail analysis between the two optimization

methods (Section 6.8).

6.6 Experiments

In order to initially assess how well the GGM estimates building parameters, we

sampled 10 building simulations for fitting the models. These simulations were

sampled from the Markov Order 1 (MO1) residential building simulation data set. The

MO1 simulation data set contains 299 simulations. Each simulation has 90 outputs,

156 building parameters, an operation schedule, and a weather file. Two simulations

were run per building parameter. One simulation with a building parameter was set

to its maximum value and the other with the same variable set to its minimum value.

All other building parameters remained at their average value.

Using these simulations, we built two GGM models. The first GGM was built

using the Direct method described in Section 6.5.1 and the other was built using the

Bayesian method described in Section 6.5.2. Both GGM models were tested using 50

simulations randomly sampled from the remaining 289 MO1 simulations. These test

simulations have ground truth building parameters associated with their simulation

output, allowing us to directly estimate how closely the models approximate the

known answer.

In addition, we computed a random guess for each test simulation using a uniform

distribution as well. The random solutions provide a baseline performance that can be

compared against the GGMs. While it may seem uninformative to compare against

uniform random guessing, a vast majority of the MO1 parameter buildings are set

to their average value, which maps to 0.5 when normalized using a min/max scaling

approach. This means the random guessing method should be fairly competitive

because the expected value for a uniform distribution between 0 and 1 is 0.5.

We also built a GGM using 250 Fine Grain (FG) simulations sampled at random

without replacement. The FG data set contains building simulations built using a

158



brute force sweep over 14 building parameters. The FG GGM was evaluated using 150

simulations sampled from the FG data, after the training simulations were removed.

In addition to these two experiment sets, we built a GGM using the full MO1

data set. Using this model, we tested parameter inference on 300 sampled MO2

simulations. These simulations are the same ones that we used in Chapter 5’s

experiments.

6.7 Results

In order to enforce any building parameter value constraints, we standardized all

data using the allowed or expected minimum and maximum values. This means the

transformed minimum value now corresponds to 0 and the transformed maximum

value now corresponds to 1. After scaling the data, the means for each variable are

estimated independently and subtracted from all samples. This step is required to

comply with the model’s assumption that the data is normally distributed according

to N(0,Σ). In addition, we used the absolute error difference between the predicted

value and the exact building parameter value. Given that all values are between 0

and 1, a squared error metric will produce overly optimistic performance estimates

by shrinking the error through the squaring operation. With this information in

mind, the Bayesian and Direct error figures are scaled between 0 and 1, which means

values closer to 1 represent poor performance and values closer to 0 represent good

performance. In addition, the Direct vs Randon and Bayesian vs Random are between

-1 and 1 due to the scaling.

The parameter inference results are organized as follows: Section 6.7.1 presents

inference results using the model built from 10 MO1 simulations; Section 6.7.2

presents inference results using the model built from 250 FG simulations; and Section

6.7.3 presents results from testing the GGM built with the MO1 data set on 300

simulations sampled from MO2 data set. Note, the method comparison figures in

Section 6.7.1 are read as follows: values closer to -1 indicate the first method performs

159



better than the second (i.e., Direct > Random), and values closer to 1 indicates the

second method performs better than the first (i.e., Random > Direct).

6.7.1 MO1 Results

Analyzing Figure 6.1 indicates that the learned Bayesian GGM is not able to infer

the building parameters for 9 variables – 3, 12, 19, 31, 38, 49, 62, 75, and 81. The

inability to properly infer these variables is either due to the small training set, the

model’s underlying Gaussian assumptions being invalid for these variables, or the

model not adequately capturing the probabilistic dependencies for these variables.

The first problem is a possibility, but is the least likely given the smooth variance

on all predictions. A key component within a Bayesian approach is its ability to

smooth prediction variability by incorporating priors. Comparing the error variance in

Figures 6.1 and 6.2 indicates the priors are indeed reducing the overall error variance

by producing more consistent estimates. However a consistent estimate does not

necessarily mean a more accurate estimate; it just implies predictions will concentrate

within a particular area due to the priors.

This leaves the other two options as the most likely reasons. However, we have

not yet verified which reason is leading to the poor estimation. Either the variables

have nonlinear dependencies, which are not possible to detect using a Lasso regression

structure learning approach, due to the model’s linear nature, or the true distribution

for these variables is not Gaussian. We could test whether the individual variables are

Gaussian distributed, but we need to actually verify whether or not the conditional

distributions for each individual variable are Gaussian distributed, which is much

harder to determine.

In addition, variables 113, 115, 117, and 120 have poor average performance

and high variance, which indicates the probabilistic relationship is only partially

represented for the variables. While slightly speculative, this is most likely due to the

160



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bayes Error
Variables 1 to 26

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bayes Error
Variables 27 to 52

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(b)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bayes Error
Variables 53 to 78

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(c)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bayes Error
Variables 79 to 104

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(d)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bayes Error
Variables 105 to 130

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(e)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bayes Error
Variables 131 to 151

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(f)

Figure 6.1: Bayesian GGM’s error on 50 randomly sampled MO1 simulations.

161



small number of training simulations‡. The Bayesian GGM provides better estimates

than the Direct GGM estimates for these building parameters (Figures 6.1 and 6.2),

which indicates the priors could be correcting for insufficient simulation samples.

Alternatively, these variables have linear and nonlinearnonlinearnonlinearnonlinear

dependencies, and the priors are correcting for the bias induced by the GGM model

only containing the linear dependencies.

Analyzing Figure 6.2 indicates that the GGM learned using the Direct method is

not able to estimate the building parameters for 14 variables – 3, 12, 19, 31, 38, 49,

62, 75, 81, 113, 115, 117, 120, and 123. However, despite the model’s higher error

variance, the Direct GGM produces better estimates for variables 3, 12, 19, 31, 38,

49, 62, 75, and 81 than the Bayesian GGM.

The most important conclusion is gained by analyzing Figures 6.1 and 6.2 together,

which shows that the Bayesian GGM and Direct GGM produce equivalent predictions

on average for a vast majority of the variables. However, the Bayesian GGM produces

more consistent estimates. This means the Bayesian GGM will either produce

consistently accurate estimations or consistently inaccurate estimations, rather than

producing highly variable estimations when the underlying structure is incorrect,

unlike the Direct GGM. However, the Bayesian GGM’s learning process is much

more computationally expensive, because it makes multiple iterations across the

entire data set. These multiple passes allow the method to refine the Lasso regression

regularization parameters for each variable. When all assumptions are met, this leads

to a more accurate GGM.

Figure 6.3 presents results from comparing the Bayesian GGM against randomly

guessing using a uniform distribution. The results indicate that the uniform

distribution is able to randomly produce better estimates for most variables between

1 and 26, 53 and 78, 79 and 104, and between 105 and 130. However, there are

also several variables that randomly guessing performs extremely poor on as well.

‡ We used 10 E+ simulations as training data, which contains 350,400 data vectors. Each data
vector has 300 variables.

162



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Direct Error

Variables 1 to 26

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Direct Error

Variables 27 to 52

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(b)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Direct Error

Variables 53 to 78

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(c)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Direct Error

Variables 79 to 104

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(d)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Direct Error

Variables 105 to 130

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(e)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Direct Error

Variables 131 to 151

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(f)

Figure 6.2: Direct GGM’s error on 50 randomly sampled MO1 simulations.

163



0 5 10 15 20 25
−1

−0.5

0

0.5

1

Bayes Error vs Rand Error
Variables 1 to 26

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(a)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Bayes Error vs Rand Error
Variables 27 to 52

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(b)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Bayes Error vs Rand Error
Variables 53 to 78

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(c)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Bayes Error vs Rand Error
Variables 79 to 104

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(d)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Bayes Error vs Rand Error
Variables 105 to 130

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(e)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Bayes Error vs Rand Error
Variables 131 to 151

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(f)

Figure 6.3: Shows Bayesian GGM’s error compared against the error from randomly
estimating building parameters using a uniform distribution.

164



This means the results are fairly mixed on this particular data set. In order to fully

demonstrate the GGM’s capabilities, we need to experiment on data sets whose values

mostly map to a uniform distributions expected value.

Figure 6.4 illustrates similar mixed results for comparing the Direct GGM against

the uniform distribution. Although, the similar results are expected given the similar

performance shown between the Bayesian GGM and Direct GGM models (Figures

6.1 and 6.2). In addition, the difference between the Direct GGM and the uniform

distribution has higher variance than the difference between the Bayesian GGM and

the uniform distribution. This further confirms that the Direct GGM’s error has

higher variance than the Bayesian GGM’s error.

6.7.2 FG Results

While the MO1 results are mostly inconclusive, they do illustrate that the Bayesian

GGM model produces less variable estimates. Therefore, we only experimented with

the Bayesian GGM with the FG data, which has resulted in much more definitive

evidence that the GGM is performing better than randomly guessing. Analyzing

Figure 6.5 illustrates that the building parameter estimates using the GGM are

mostly better than the estimates generated by randomly guessing using a [0, 1]

random distribution. The overall GGM’s absolute error rate is statistically better with

95% confidence than the uniform distribution’s error rate – 4.05±0.98 vs 5.07±1.01.

However, only the error rates for variables 1, 2, 3, 8, 10, 11, 12, 13, and 14 are

statistically better than their random guessing counterpart. The other variables have

a lower mean but are not statistically different with high enough confidence.

While the other variables are not statistically different, there is not a clear

indication that the GGM model fails to represent these variables. Unlike the results in

Figure 6.1, the under performing variables are not grossly inaccurate. This indicates

that the GGM overall is successfully modeling the FG building parameters. In fact

analyzing Figures 6.5(c) indicates that the GGM isolates the building parameter’s

165



0 5 10 15 20 25
−1

−0.5

0

0.5

1

Direct Error vs Rand Error

Variables 1 to 26

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(a)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Direct Error vs Rand Error

Variables 27 to 52

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(b)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Direct Error vs Rand Error

Variables 53 to 78

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(c)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Direct Error vs Rand Error

Variables 79 to 104

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(d)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Direct Error vs Rand Error

Variables 105 to 130

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(e)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Direct Error vs Rand Error

Variables 131 to 151

Variables

D
if
fe

re
n

c
e

 i
n

A
b

s
o

lu
te

 E
rr

o
r

(f)

Figure 6.4: Shows Direct GGM’s error compared against the error from randomly
estimating building parameters using a uniform distribution.

166



means very well. While the uniform distribution matches the mean and variances

(Figure 6.5(d)), it appears the matching is only possible because the actual building

parameters have a large distribution range, which mostly centers at 0.5, the uniform

distribution’s expected value.

6.7.3 MO2 Results

Similar to the FG data set results, the Bayesian GGM presents excellent performance

(Figure 6.6). In the previous two result sections, we compared the overall error

average per variable between these two methods. However unlike the MO1 results,

these results are very definitive and do not require further elaboration with additional

figures. The Bayesian method is better at estimating all building parameters than a

uniform distribution, which is clearly seen by comparing Figure 6.6 and 6.7.

The Bayesian GGM has statistically better overall error — 13.01±0.85 vs

41.6936±2.13. In addition, the model produces statistically better predictions for all

variables. While we did not build a GGM using the direct method on this data, we

are fairly confident that it will not perform better than the Bayesian model, because

it achieves worse performance on the small scale MO1 experiment.

6.8 Discussion

The MO1 versus MO2 experimental results leave a single unanswered question — why

are the MO2 results superior to the MO1 results? We believe the answer is actually

fairly straightforward. The MO1 and MO2 data sets have building parameters that

tend to be very close to their mean values through out all simulations. This means

there is a very precise value or target for each building parameter, which is indicated

by the actual building parameter variance seen in Figure 6.6. This is why the uniform

distribution performed very well on average, but with high variance, on the building

parameters that centered at 0.5. Given such a narrow parameter range, a genetic

167



0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2
Bayes FG Error

Variables

D
iff

er
en

ce
 in

A
bs

ol
ut

e 
E

rr
or

(a) Bayesian

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2
Rand FG Error

Variables

D
iff

er
en

ce
 in

A
bs

ol
ut

e 
E

rr
or

(b) Random

0 5 10 15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Bayesian Parameter Estimation

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15

0

0.2

0.4

0.6

0.8

1

P
ar

am
et

er
 V

al
ue

s

Estimate
Actual

(c) Bayesian Estimates

0 5 10 15

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Random Parameter Estimation

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15

0

0.2

0.4

0.6

0.8

1
P

ar
am

et
er

 V
al

ue
s

Estimate
Actual

(d) Random Estimates

Figure 6.5: This figure compares Bayesian GGM’s error against a [0, 1] uniform
distribution’s error on estimating FG building parameters. In addition, it illustrates
how the two estimates align with the actual building parameter values.

168



0 5 10 15 20 25

0.5

1

1.5

Bayesian Parameter Estimates
Variables 1 to 26

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.5

1

1.5

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(a)

0 5 10 15 20 25

0.5

1

1.5

Bayesian Parameter Estimates
Variables 27 to 52

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.5

1

1.5

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(b)

0 5 10 15 20 25

0.5

1

1.5

Bayesian Parameter Estimates
Variables 53 to 78

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.5

1

1.5

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(c)

0 5 10 15 20 25

0.5

1

1.5

Bayesian Parameter Estimates
Variables 79 to 104

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.5

1

1.5

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(d)

0 5 10 15 20 25

0.2
0.4
0.6
0.8

1
1.2

Bayesian Parameter Estimates
Variables 105 to 130

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.2
0.4
0.6
0.8
1
1.2

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(e)

0 5 10 15 20 25

0.3
0.4
0.5
0.6
0.7

Bayesian Parameter Estimates
Variables 131 to 151

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.3
0.4
0.5
0.6
0.7

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(f)

Figure 6.6: Bayesian GGM’s parameter estimates compared against the actual
parameter values on 300 randomly sampled MO2 simulations.

169



0 5 10 15 20 25

0.2
0.4
0.6
0.8

1

Random Parameter Estimates
Variables 1 to 26

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.4
0.6
0.8
1
1.2
1.4

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(a)

0 5 10 15 20 25

0.5

1

Random Parameter Estimates
Variables 27 to 52

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

1

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(b)

0 5 10 15 20 25

0.5

1

Random Parameter Estimates
Variables 53 to 78

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

1

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(c)

0 5 10 15 20 25

0.5

1

Random Parameter Estimates
Variables 79 to 104

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

1

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(d)

0 5 10 15 20 25

0.2
0.4
0.6
0.8

1

Random Parameter Estimates
Variables 105 to 130

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.2
0.4
0.6
0.8
1
1.2

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(e)

0 5 10 15 20 25

0.5

1

Random Parameter Estimates
Variables 131 to 151

Variables

P
ar

am
et

er
 E

st
im

at
es

 

 

0 5 10 15 20 25

0.5

1

P
ar

am
et

er
 V

al
ue

sEstimate
Actual

(f)

Figure 6.7: Random parameter estimates sampled from a [0, 1] uniform distribution
compared against the actual parameter values on 300 randomly sampled MO2
simulations.

170



0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5
FG Building Parameter 2

Simulations

P
ar

am
et

er
 V

al
ue

s

 

 
Aactual
Gradient−Est
GA−Est

Figure 6.8: This figure compares parameter values estimated using a Genetic
Algorithm and a standard gradient optimization algorithm.

algorithm will maximize the likelihood function, but not as finely as a gradient

approach. However, on a small enough parameter space, the genetic algorithm is able

to achieve excellent performance as seen in Figure 6.5. This implies that as the overall

parameter space increases, a slower gradient method is much more advantageous for

estimating the building parameters.

In fact, Figure 6.8 compares the gradient and GA estimates from the FG data

set on building parameter two. The gradient method produces estimates that are

much closer to the building parameter’s mean value. In addition, the estimates have

much less variability than the GA estimates. However, the gradient’s error rate,

0.25±0.17, and the GA’s error rate, 0.31±0.22, are only statistically different with

85% confidence. While the confidence is not high enough (95%), this comparison

suggests that large parameter estimation problems will be much less accurate when

using a GA, because the overall variance in estimation will be magnified as the overall

number of building parameters increases. However, this does not imply that a GA

can not produce fast parameter estimates, which may be very beneficial in some

applications, but it does imply that it is best to use a gradient method for larger

parameter estimation problems.

171



0 50 100 150 200 250 300

0

0.5

1

1.5

2

Simulation

P
ar

am
et

er
 V

al
ue

MO2 Building Parameter 3

 

 

One−Act
Zero−Act
Est
Zero−Est

Figure 6.9: This figure highlights that building parameter three has values that
occasionally differ greatly from the parameter’s mean. In addition, it presents how
the Bayesian GGM’s estimates correlate with these large deviations.

While the parameters in MO1 and MO2 have well defined means, they have

instances where they significantly deviate from their estimated means, which is not

well implied by their variances in Figure 6.6. Figure 6.9 illustrates that variable three

from Figure 6.6(a) is occasionally zero, which is vastly different from its estimated

mean from the MO1 data set — 0.996. In fact, under a standard Gaussian model

these variable changes are essentially not representable, because these values are on

the distribution’s tail. However, it is not impossible for the model to estimate a

parameter value towards the distribution’s tail, if the observed evidence supports

that hypothesis. This implies that variables whose estimates do not have significant

shifts towards the tail, either have very little effect on the overall simulation’s output

as a whole or the model is does not represent the necessary dependencies to represent

the shift.

Figure 6.9 shows how the GGM estimates correspond with variable three overall,

as well as how they correspond with the building parameter being zero. When the

actual building parameter is zero, the simulation between 200 and 250’s parameter

estimate may be shifting towards the distribution’s tail, but the other estimates are

172



most definitely not shifting. In addition to variable three, other variables within the

MO1 data set and the MO2 data set present the same behavior.

However, the FG data set presents similar parameter estimation issues as well.

Figure 6.8 illustrates that parameter values which deviate from the mean are harder

to estimate as well. The GGM focuses primarily on predicting the parameter’s mean,

which is expected. A Gaussian model should focus its estimates around the mean,

and have difficulty estimating outlier or distance values, because their likelihood’s are

fairly low. This implies that our models, under their current hyperparameter values,

are fitting the means very closely and not allowing the model to explore other possible

assignments using a gradient inference method. Using different hyperparameter

settings may allow the model to introduce additional variance within the overall

estimation process, which may be desirable.

6.9 Results Summary

We have demonstrated that a GGM is able to infer building parameters for the MO1

data set. In addition, we illustrate that a GGM learned using the Bayesian method

is able to produce more consistent estimates than the GGM learned using the Direct

method. While consistent estimates does not necessarily imply better estimates, the

Bayesian method overall produces a better GGM than the Direct method. However,

we have not fully illustrated the GGM’s capabilities using the MO1 data set. Given

that most variables in the MO1 data set, when min/max scaled, map directly to

a [0, 1] uniform distribution’s expected value, it appears that randomly sampling

building parameters is fairly competitive with the GGM’s inferred parameters.

However, our MO2 experiments indicate that the uniform distribution is not

competitive with building parameters estimates when using a gradient optimization

method. This implies that our MO1 results have reduced quality from the variance

introduced by the GA optimization method. In addition, we compare the GA and

gradient optimization results in Figure 6.8 using the FG data set results. This

173



comparison confirms that the GA introduces more variance within the parameter

estimation process, and leads to our conclusion that it is best to use the slower

gradient method on large scale parameter estimation problems.

Additionally, our MO2 and FG experimental results indicated that the GGM

performs well at estimating building parameters. Overall, the Bayesian models

built using the FG and full MO1 data sets are statistically better than the

uniform distribution, which is expected. However, our current GGMs have difficulty

estimating parameters that deviate significantly from the mean. This implies we

need to explore different hyperparameter settings, which may induce more estimation

variance, or possibly a mixture model approach, which will allow more variable means.

6.10 Computer Science Contribution Summary

Learning and fitting distributions via structure identification, i.e. structure learning,

is a common problem within the Computer Science community. The paradigm

applies to web link analysis, human activity recognition, and many more areas.

This dissertation demonstrates using structure learning to fit a sparse GGM to E+

simulation data via a general Bayesian method introduced by Li (2007). While the

original Bayesian method will scale to an arbitrarily large number of variables, it

will not scale to arbitrarily large data sets, i.e., data sets that contain millions of

data vectors. The Bayesian method is dependent upon being able to solve multiple

Lasso regression problems, which become increasingly difficult as the total number

of examples increase. This dissertation addressed this issue by solving the Lasso

regression problems using ADMM (5.1.4), which allows the algorithm to truly scale

to large data sets. Essentially, it is now possible to use this approach to identify

variable structure and fit a corresponding GGM to any data set.

174



Conclusion

This dissertation proposes the following automatic simulation calibration process: 1)

Identify a model that accurately estimates the real world simulation calibration target

from measured sensor data (Chapter 3); 2) Identify the key real world measurements

that best estimate the simulation calibration target (Chapter 4)); 3) Construct a

mapping from the most useful real world measurements to actual simulation outputs;

4) Build fast and effective simulation approximation models that predict simulation

output using simulation input§ (Chapter 5); 5) Build a relational model that captures

inter-variable dependencies between simulation inputs and outputs (Chapter 6); and

finally 6) Use the relational model to estimate the simulation input variables from the

mapped sensor data, and use either the simulation model or approximate simulation

model to fine tune input simulation parameter estimates towards the calibration

system.

Step 1

This dissertation has introduced and demonstrated five out the six components

outlined above using the building energy simulation domain as the testing and

validation area. Given sensor data collected from three residential homes, step 1

is addressed by determining which machine learning technique performed best at

predicting whole building energy consumption for the next hour. The experimental

§ Only required if the overall simulation engine is extremely slow, making it difficult to run many
simulations

175



results show that LS-SVM is the best technique for modeling each residential home.

In addition, the results show that the previously accepted method, FFNNs, performs

worse than the newer techniques explored in this work: HME-FFNN, LS-SVM, and

FCM-FFNN. Lastly, these results show that SVR and LSSVM perform almost equally

with respect to CV and MAPE. However, experiments with SVR present poor MBE

results, which makes LS-SVM the preferred technique. This work was published in

Energy and Buildings Edwards et al. (2012).

In addition, these methods were validated by producing comparable results

on the Great Energy Prediction Shootout data set. These validation results are

consistent with the existing literature in concluding that FFNN performs best on

the original competition data set, and that other types of Neural Networks might

perform even better. In addition, these results show that the LS-SVM is the worst

performing technique for the Shootout data set, and that shuffling the data improves

its performance.

Step 2

Step 2 is addressed by determining which sensors are most important for predicting

whole building energy consumption for the next hour. The results demonstrate that a

Genetic Algorithm with the ICOMP(IFIM) multi-objective criteria function is able to

reduce model complexity, while still giving a reasonable goodness-of-fit. Additionally,

these results illustrated that the Stepwise Selection method is sometimes capable

of producing smaller sensor subsets than the Genetic Algorithm approach, but the

Stepwise Selection models are rarely less complex than the models generated by the

Genetic Algorithm, even when the Genetic Algorithm includes additional sensors

within the model. In addition, this research introduces a method for ranking the

sensors by combining all best models found from the Wrapper techniques, which

are able to produce the best models for House 1, House 3, and across all houses.

Additionally, using the ranking techniques and Wrapper methods, this work illustrates

176



some of the effects missing values have on the algorithms. Stepwise Selection performs

better when all missing values are set to zero, and the Genetic Algorithm method is

fairly indifferent to the missing data approaches. However, it finds its best results

generally when missing values are set to zero. Lastly, the Genetic Algorithm with

ICOMP(IFIM) and the voting wrapper selection results are compared against the

best possible subsets up to size four, which shows that it is computationally infeasible

to directly compute a large enough subset that approximates the true best subset.

Therefore, the Genetic Algorithm method is the ideal approach for sensor subset

selection.

Step 4

While step 4 is optional, the application domain’s simulation engine is slow enough

to require approximation. Using FFNN and Lasso regression with ADMM, the

optional step is addressed by producing E+ approximation models for a residential

building. The models use building envelope parameters selected by domain experts,

an operation schedule, and weather data. These models are able to successfully

predict a majority of the domain expert selected output variables. In addition,

this research identifies which output variables require a nonlinear model, based

on comparing the FFNN and Lasso models directly. However, these models only

have moderate success at predicting sensible heating and cooling loads, and are

unsuccessful at predicting the latent cooling and heating loads.

In an effort to improve the E+ approximation load predictions, we incorporate

HVAC operating heating and cooling features, which indicate the on and off states for

these respective operating conditions. These new features presented mixed results.

Some load predictions are improved, while others are unchanged or diminished. Based

on these results and Lasso regression’s ability to automatically select relevant inputs,

we conclude that either better use of existing information or additional information

is necessary to better predict the latent load variables.

177



The Lasso model is able to predict an entire yearly simulation in ∼3 seconds,

while the FFNN models can achieve the same execution time when run in parallel.

These runtimes are considerably faster than the average E+ runtime (∼2-3 minutes).

This performance increase provides improvement to the overall building calibration

process, when using the well predicted variables in the tuning objective.

Lastly, the three data sets (Fine Grain, Markov Order 1 and Markov Order 2) allow

us to determine that the best E+ approximation model requires multiple models, as

discussed in Section 5.4, which can tailor the learning to individual cluster attributes.

Step 5

Step 5 is addressed by adapting the Direct and Bayesian regression based structure

learning techniques for Gaussian Graphical Models (GGM) to work with arbitrarily

large data sets by leveraging Lasso regression with ADMM. Since both methods

are centered around using Lasso regression to determine inter-variable dependencies,

naturally extending the regression solver to this scale facilitates general purpose linear

dependency structure learning.

Step 6

This dissertation demonstrates that a GGM is able to infer building parameters for

the MO1, FG, and MO2 data sets. In addition, it illustrates that a GGM learned

using the Bayesian method is able to produce more consistent estimates than the

GGM learned using the Direct method. While consistent estimates do not necessarily

imply better estimates, the Bayesian method overall produces a better GGM than

the Direct method. However, the MO1 results do not fully illustrate the GGM’s

capabilities, because a uniform distribution is fairly competitive with the model’s

estimates. Additional exploration indicated that the poor performance is primarily

attributed to the GA optimization method. We demonstrated that the GA method

178



introduces additional variance, and that a gradient method produces estimates that

are more consistent with the parameter’s mean.

However, this dissertation illustrates that the GGM performs better than

randomly guessing on the FG and MO2 data set. The GGM model produces less

variance and better overall parameter estimates. In addition, the uniform distribution

would be less affective on all data sets if we shifted its range to [−1, 1] and shifted

the target parameters to have zero mean, which is required by the GGM model.

Contribution Summary

The following list summarizes all Building Spaces contributions:

• Best predictor for hourly residential electrical consumption (Chapter 3)

• Best sensors for predicting electrical consumption (Chapter 4)

• First general purpose large-scale E+ residential approximation (Chapter 5)

The following list summarizes all Computer Science contributions:

• A novel feature selection method, which uses the estimated ICOMP distribution

over the features to select the best ones via voting (Chapter 4)

• Adapting Bayesian and Direct regression structure learning to large-scale

datasets, via Alternating Direction Method of Multipliers (Chapter 6)

• General large-scale automated computer simulation calibration process (Figure

1)

Looking Forward

While we have demonstrated the relational model’s ability to estimate building

parameters estimates, we have only partially demonstrated Step 6. Complete

179



0 2000 4000 6000 8000 10000 12000
0

10

20

30

40
FG Variable 30’s CV Error Group

Simulation
C

V
 E

rr
or

 M
et

ric

 

 

Group 1
Group 2
Group 3
Unkown

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120
FG Variable 60’s CV Error Group

Simulation

C
V

 E
rr

or
 M

et
ric

 

 

Group 1
Group 2
Group 3
Unkown

Figure 6.10: Identifies three potential outlier simulations within the Fine Grain data
set. The outliers in each figure represent the same simulation across the two figures,
i.e. there are three outlier simulations and not six outliers.

demonstration requires estimating building parameters using the available WC1

sensor data and using the estimated building parameters to run E+ simulations.

Using our work, ORNL researchers can produce building parameter estimates and

repeatably build different GGM models by adjusting hyperparameters or changing

the variables used within the model. In addition, they can run the corresponding

E+ simulations, and compare the simulation output against the actual building’s

measurements as well as the building engineer’s manually calibrated simulations.

These comparisons will provide estimates for how much human time is saved using the

automated calibration process. The building engineer model required approximately

two months calibration time, which provides the base line for computing all savings

with respect to overall building electrical consumption.

Future Directions

Given the very rich E+ data sets and the available computing power to generate

millions of simulations, there are many directions in which this work may continue.

One possible direction focuses on improving the surrogate’s overall estimation

accuracy, by using domain experts to identify and isolate internal E+ variables to

improve prediction accuracy, which will likely require running additional simulations.

180



In addition, care must be given to ensure the predictive models are still applicable to

other residential buildings.

A second surrogate improvement direction, but a parallel option to the first, is

continuing to explore features synthesized from existing data. Using the existing

simulation information, we can build new features or approximations based on expert

selected features. This direction does not require running additional simulations, but

would require additional expert time and computational cost for synthesizing general

features.

Alternatively, exploring the observed E+ clustering may potentially lead to models

for E+ simulation anomaly detection. Using the E+ clustering property, it may

be possible to identify outlier simulations or simulation subroutines. These outlier

simulations could either be other undiscovered clusters, actual simulation anomalies,

or bugs within the E+ simulation software. Figure 6.10 illustrates an example. In

this figure, there are three outlier simulations, which were detected in the Fine Grain

dataset.

Comparing the full calibration system against the partial calibration system used

for E+ will also be a fruitful study. In this work, domain experts select the most

important sensors and specify their mappings to the simulation outputs. While

the mapping specification may be required, it would be interesting to see how the

calibration process performs using the sensors selected by our voting feature selection

method and the sensors selected directly by ICOMP. However, speculations about

the result is not possible until estimates for the WC1 building parameters and their

corresponding building simulations are available.

Finally, exploring methods for automatically mapping sensor data to simulation

output is definitely an interesting area to explore. This problem is especially

difficult, because the sensor data is only statistically dependent upon the true building

parameters, if and only if the simulation is physically accurate as well. This means

exploring models that represent how building parameters influence sensor data, which

will ultimately lead to a model that estimates building parameters directly from sensor

181



data. However, collecting enough data will be non-trivial. The simulation relational

model requires generating simulation data using computing power, while correlating

sensor data and building parameters requires collecting multiple data sets from many

different buildings over time. In addition, it requires a model that is able to handle the

sparse under-sampled parameter space. In addition, unlike the simulation data, real

world sensor data will always contain missing measurements, which makes relational

learning even more difficult.

182



Bibliography

183



Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. In Proceedings of the Second International Symposium on Information

Theory, pages 267–281. B.N. Petrov and F. Caski, eds., Akademiai Kiado,

Budapest, Hungary. 54, 109

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

(2009). 2009 ASHRAE Handbook - Fundamentals. D&R International, Ltd. 25

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., West, M.,

et al. (2003). Hierarchical bayesian models for applications in information retrieval.

In Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting,

page 25. 141

Blei, D., Ng, A., and Jordan, M. (2003). Latent dirichlet allocation. The Journal of

Machine Learning Research, 3:993–1022. 141

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed

optimization and statistical learning via the alternating direction method of

multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122. 14, 107,

110, 111, 112, 113

Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The

general theory and its analytical extensions. Psychometrika, 52(3):345–370. 55

Bozdogan, H. (2003). Intelligent statistical data mining with information complexity

and genetic algorithms. Proceeding of JISS 2003, Lisbonne, 2:15–56. 56, 58, 104

184



Bozdogan, H. and Haughton, D. (1998). Informational complexity criteria for

regression models. Computational Statistics & Data Analysis, 28(1):51–76. 55,

104, 109

Cawley, G. and Talbot, N. (2010). On over-fitting in model selection and subsequent

selection bias in performance evaluation. The Journal of Machine Learning

Research, 11:2079–2107. 114

Chang, C.-C. and Lin, C.-J. (2011a). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 32, 47

Chang, C.-C. and Lin, C.-J. (2011b). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 109

Chickering, D. (2002). Learning equivalence classes of bayesian-network structures.

The Journal of Machine Learning Research, 2:445–498. 145

Christian, J., Gehl, A., Boudreaux, P., New, J., and Dockery, R. (2010). Tennessee

Valley Authoritys Campbell Creek Energy Efficient Homes Project: 2010 First

Year Performance Report July 1, 2009 August 31, 2010. pages 1–126. http:

//info.ornl.gov/sites/publications/files/Pub26374.pdf. 20

Collobert, R. and Bengio, S. (2001). SVMTorch: support vector machines for large-

scale regression problems. J. Mach. Learn. Res., 1:143–160. 109

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), 39(1):1–38. 36

Dobra, A., Hans, C., Jones, B., Nevins, J., Yao, G., and West, M. (2004). Sparse

graphical models for exploring gene expression data. Journal of Multivariate

Analysis, 90(1):196–212. 149, 150, 151

185

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://info.ornl.gov/sites/publications/files/Pub26374.pdf
http://info.ornl.gov/sites/publications/files/Pub26374.pdf


Dodier, R. and Henze, G. (2004). Statistical analysis of neural networks as applied

to building energy prediction. Journal of solar energy engineering, 126:592. 30

DOE (2011). Doe releases new version of energyplus modeling software. http://

apps1.eere.energy.gov/news/progress_alerts.cfm/pa_id=651. 19

DOE (2012a). Energyplus. http://energyplus.gov. 19

DOE (2012b). Energyplus licensing. http://apps1.eere.energy.gov/buildings/

energyplus/energyplus_licensing.cfm. 18

DOE (2012c). Getting started with energyplus: Basic concepts manual - essential

information you need about running energyplus. http://apps1.eere.energy.

gov/buildings/energyplus/pdfs/gettingstarted.pdf. 19

DOE (2012d). Tips & tricks for using energyplus: Insider secrets to using

energyplus. http://apps1.eere.energy.gov/buildings/energyplus/pdfs/

tips_and_tricks_using_energyplus.pdf. 19

Dong, B., Cao, C., and Lee, S. (2005). Applying support vector machines to predict

building energy consumption in tropical region. Energy and Buildings, 37(5):545–

553. 16

Edwards, R. E., New, J., and Parker, L. E. (2012). Predicting future hourly residential

electrical consumption: A machine learning case study. Energy and Buildings,

49:591–603. 25, 116, 176

Feuston, B. and Thurtell, J. (1994). Generalized nonlinear regression with ensemble

of neural nets: the great energy predictor shootout. ASHRAE Transactions., (5-

1080). 15

Franc, V. and Sonnenburg, S. (2009). Optimized cutting plane algorithm for large-

scale risk minimization. The Journal of Machine Learning Research, 10:2157–2192.

110

186

http://apps1.eere.energy.gov/news/progress_alerts.cfm/pa_id=651
http://apps1.eere.energy.gov/news/progress_alerts.cfm/pa_id=651
http://energyplus.gov
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_licensing.cfm
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_licensing.cfm
http://apps1.eere.energy.gov/buildings/energyplus/pdfs/gettingstarted.pdf
http://apps1.eere.energy.gov/buildings/energyplus/pdfs/gettingstarted.pdf
http://apps1.eere.energy.gov/buildings/energyplus/pdfs/tips_and_tricks_using_energyplus.pdf
http://apps1.eere.energy.gov/buildings/energyplus/pdfs/tips_and_tricks_using_energyplus.pdf


Friedman, N. (1999). Learning bayesian network structure from massive datasets:

The sparse candidate algorithm background: Learning structure. Science, pages

206–215. 143, 144

Gonzalez, P. and Zamarreno, J. (2005). Prediction of hourly energy consumption

in buildings based on a feedback artificial neural network. Energy and buildings,

37(6):595–601. 30, 40

Gustafsson, M., Hornquist, M., and Lombardi, A. (2004). Large-scale reverse

engineering by the lasso. Arxiv preprint q-bio/0403012. 149

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3:1157–1182. 52

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. Machine learning, 46(1):389–422. 147

Helton, J., Johnson, J., Sallaberry, C., and Storlie, C. (2006). Survey of sampling-

based methods for uncertainty and sensitivity analysis. Reliability Engineering

& System Safety, 91(10):1175 – 1209. The Fourth International Conference on

Sensitivity Analysis of Model Output (SAMO 2004). 13

Hendron, R., Engebrecht, C., and (US), N. R. E. L. (2010). Building America House

Simulation Protocols. National Renewable Energy Laboratory. http://www.nrel.

gov/docs/fy11osti/49246.pdf. 20

Hinneburg, A., Keim, D., et al. (1999). Optimal grid-clustering: Towards breaking

the curse of dimensionality in high-dimensional clustering. In Proceedings of the

25th VLDB Conference. 132

Hoegaerts, L., Suykens, J., Vandewalle, J., and De Moor, B. (2004). A comparison

of pruning algorithms for sparse least squares support vector machines. In Neural

Information Processing, pages 1247–1253. Springer. 33

187

http://www.nrel.gov/docs/fy11osti/49246.pdf
http://www.nrel.gov/docs/fy11osti/49246.pdf


Hong, T., Buhl, F., Haves, P., Selkowitz, S., and Wetter, M. (2008). Comparing

computer run time of building simulation programs. http://escholarship.org/

uc/item/6504q6d0#page-1. 19

Ibargüengoytia, P. H., Sucar, L. E., and Vadera, S. (2001). Real Time Intelligent

Sensor Validation. IEEE Transactions on Power Systems, 16(4):770–775. 27

Iijima, M., Takeuchi, R., Takagi, K., and Matsumoto, T. (1994). Piecewise-linear

regression on the ashrae time-series data. ASHRAE Transactions, 100(2):1088–

1095. 15

Jin, R., Chen, W., and Simpson, T. (2001). Comparative studies of metamodelling

techniques under multiple modelling criteria. Structural and Multidisciplinary

Optimization, 23(1):1–13. 13, 105

Joachims, T. (1999a). Making large-scale SVM learning practical. MIT press. 23

Joachims, T. (1999b). Making large-Scale SVM Learning Practical. Advances in

Kernel Methods Support Vector Learning, pages 169–184. 109

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction to

variational methods for graphical models. Machine learning, 37(2):183–233. 141

Jordan, M. and Jacobs, R. (1992). Hierarchies of Adaptive Experts. Advances in

Neural Information Processing Systems 4, pages 985–993. 35

Jordan, M. and Jacobs, R. (1994). Hierarchical Mixtures of Experts and the EM

Algorithm. Neural computation, 6(2):181–214. xiii, 33, 35, 36

Kaminski, T., Heimann, M., Giering, R., et al. (1999). A coarse grid threedimensional

global inverse model of the atmospheric transport: 2. inversion of the transport of

co2 in the 1980s. J. Geophys. Res, 104(18):555–18. 105

188

http://escholarship.org/uc/item/6504q6d0#page-1
http://escholarship.org/uc/item/6504q6d0#page-1


Karatasou, S., Santamouris, M., and Geros, V. (2006). Modeling and predicting

building’s energy use with artificial neural networks: Methods and results. Energy

and buildings, 38(8):949–958. 16, 24, 30, 40, 42

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and

techniques. The MIT Press. 141

Kolter, J. and Ferreira Jr, J. (2011). A large-scale study on predicting and

contextualizing building energy usage. In Twenty-Fifth AAAI Conference on

Artificial Intelligence. 17, 28

Kreider, J. and Haberl, J. (1994). Predicting hourly building energy use: the

great energy predictor shootout- overview and discussion of results. ASHRAE

Transactions, 100(2):1104–1118. 14, 24, 40, 42, 116

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., and Kuijpers, C. (1996).

Structure learning of bayesian networks by genetic algorithms: A performance

analysis of control parameters. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 18(9):912–926. 145

Li, F. (2007). Structure learning with large sparse undirected graphs and its

applications. PhD thesis, Carnegie Mellon University. 60, 151, 152, 155, 156,

174

Li, K., Su, H., and Chu, J. (2011). Forecasting building energy consumption using

neural networks and hybrid neuro-fuzzy system: a comparative study. Energy and

Buildings. 16, 24, 42, 45

Lima, C., Coelho, A., and Von Zuben, F. (2009). Pattern classification with mixtures

of weighted least-squares support vector machine experts. Neural computing &

applications, 18(7):843–860. 36

MacKay, D. et al. (1994). Bayesian nonlinear modeling for the prediction competition.

Ashrae Transactions, 100(2):1053–1062. 14, 60

189



Margaritis, D. and Thrun., S. (1999). Bayesian network induction via local

neighborhoods. Trans. on Pattern Analysis and Machine Intelligence. 146

Martin, D., Fowlkes, C., and Malik, J. (2004). Learning to detect natural image

boundaries using local brightness, color, and texture cues. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 26(5):530–549. 47

Miller, A. (2002). Subset selection in regression, volume 95. CRC Press. 148

Nesterov, Y., Nemirovskii, A., and Ye, Y. (1994). Interior-point polynomial algorithms

in convex programming, volume 13. SIAM. 109

Ong, Y., Nair, P., and Keane, A. (2003). Evolutionary optimization of

computationally expensive problems via surrogate modeling. AIAA journal,

41(4):687–696. 105

Pedrini, A., Westphal, F., and Lamberts, R. (2002). A methodology for building

energy modeling and calibration in warm climates. Building and Environment,

37(89):903 – 912. 11

Pellet, J. and Elisseeff, A. (2008). Using markov blankets for causal structure learning.

The Journal of Machine Learning Research, 9:1295–1342. 147, 148

Peter Ellis, B. L. S. (2012). Epx, a modified version of energyplus. http:

//bigladdersoftware.com/epx/. 18

Qian, Z., Seepersad, C., Joseph, V., Allen, J., and Wu, C. (2006). Building surrogate

models based on detailed and approximate simulations. Transactions-American

Society of Mechanical Engineers Journal of Mechanical Design, 128(4):668. 105

Raftery, P., Keane, M., and ODonnell, J. (2011). Calibrating whole building energy

models: An evidence-based methodology. Energy and Buildings, 43(9):2356 – 2364.

11

190

http://bigladdersoftware.com/epx/
http://bigladdersoftware.com/epx/


Rissanen, J. (1983). A universal prior for integers and estimation by minimum

description length. The Annals of statistics, 11(2):416–431. 55

Rumantir, G. (1999). Comparison of second-order polynomial model selection

methods: an experimental survey. In Proceedings of the National Conference on

Artificial Intelligence, pages 980–980. John Wiley & Sons LTD. 55

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach.

Prentice Hall series in artificial intelligence. Prentice Hall. 27, 143, 145

Sanyal, H., Al-Wadei, Y. H., Bhandari, M. S., Shrestha, S. S., Karpay, B., Garret,

A. L., Edwards, R. E., Parker, L. E., and New, J. R. (2012). Poster: Building

energy model calibration using energyplus, supercomputing, and machine learning.

Proceedings of the 5th National SimBuild of IBPSA-USA. 22, 146, 151

Schaller, R. (1997). Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–

59. 26

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics,

6(2):461–464. 55, 109, 142

Shalev-Shwartz, S. and Srebro, N. (2008). Svm optimization: inverse dependence on

training set size. In Proceedings of the 25th international conference on Machine

learning, pages 928–935. ACM. 23

Smola, A.J. and Schólkopf, B. (2004). A tutorial on support vector regression.

Statistics and computing, 14(3):199–222. 31, 32

Spirtes, P., Glymour, C., and Scheines, R. (1989). Causality from probability.

Carnegie-Mellon University, Laboratory for Computational Linguistics. 146

Storlie, C. B., Swiler, L. P., Helton, J. C., and Sallaberry, C. J. (2009).

Implementation and evaluation of nonparametric regression procedures for

191



sensitivity analysis of computationally demanding models. Reliability Engineering

& System Safety, 94(11):1735 – 1763. 13

Suykens, J., Gestel, T. V., Brabanter, J. D., Moor, B. D., and Vandewalle, J. (2002a).

Least squares support vector machines. World Scientific Pub Co Inc. 33, 47

Suykens, J., J., D. B., L., L., and J., V. (2002b). Weighted least squares support vector

machines: robustness and sparse approximation. Neurocomputing, 48(1-4):85–105.

33, 36

Teo, C. H., Le, Q., Smola, A., and Vishwanathan, S. V. N. (2007). A scalable modular

convex solver for regularized risk minimization. In KDD. ACM. 110

Tian, W. and Choudhary, R. (2012). A probabilistic energy model for non-domestic

building sectors applied to analysis of school buildings in greater london. Energy

and Buildings, 54(0):1 – 11. 12, 13, 106

Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. The

Journal of Machine Learning Research, 1:211–244. 59

Tresidder, E., Zhang, Y., and Forrester, A. (2011). Optimisation of low-energy

building design using surrogate models. 12th Conference of International Building

Performance Simulation Association, Syndey AUS. 105

Tresidder, E., Zhang, Y., and Forrester, A. (2012). Acceleration of building design

optimisation through the use of kriging surrogate models. First Building Simulation

and Optimization Conference Loughborough, UK. 106

Tsamardinos, I., Aliferis, C., and Statnikov, A. (2003). Time and sample efficient

discovery of markov blankets and direct causal relations. In Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 673–678. ACM. 144

192



Tsamardinos, I., Brown, L., and Aliferis, C. (2006). The max-min hill-climbing

bayesian network structure learning algorithm. Machine learning, 65(1):31–78. 144

Vapnik, V. (1999). An overview of statistical learning theory. Neural Networks, IEEE

Transactions on, 10(5):988–999. 16

Westphal, F. S. and Lamberts, R. (2005). Building simulation calibration using

sensitivity analysis. In Building Simulation, volume 9, pages 1331–1338. Citeseer.

12

Willcox, K. and Peraire, J. (2002). Balanced model reduction via the proper

orthogonal decomposition. AIAA journal, 40(11):2323–2330. 105

Willsky, A., Malioutov, D., et al. (2008). Approximate inference in Gaussian graphical

models. PhD thesis, Massachusetts Institute of Technology. 150

Yang, J., Rivard, H., and Zmeureanu, R. (2005). On-line building energy prediction

using adaptive artificial neural networks. Energy and buildings, 37(12):1250–1259.

30

Yoon, J.-H. and Lee, E.-J. (1999). Calibration procedure of energy performance

simulation model for a commercial building. In Proceedings from the Building

Simulation Conference, volume 3, pages 1439–1446. 11

Zeng, X., Drewniak, B. A., and Constantinescu, E. M. (2013). Calibration of the crop

model in the community land model. Geoscientific Model Development Discussions,

6:379–398. 12

Zhang, H. and Parker, L. (2011). 4-dimensional local spatio-temporal features for

human activity recognition. In Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on, pages 2044–2049. IEEE. 141

193



Appendix

194



Appendix A

Variable Tables

This appendix contains tables that map variable numbers to the real world variable

name.

195



Table 1: MO1 and MO2 input variables 1 - 52.

Variable Number Name
1 North Axis
2 Terrain
3 Loads Convergence Tolerance Value
4 Temperature Convergence Tolerance Value
5 Solar Distriburtion
6 Maximum Number of Warmup Days
7 Calculation Frequency
8 Maximum Figures in Shadow Overlap Calculations
9 SurfaceConvectionAlgorithm:Inside
10 SurfaceConvectionAlgorithm:Outside
11 Timestep
12 Schedule:Compact IO12
13 Material: Gypsum board 5/8” Smooth: Thickness
14 Material: Gypsum board 5/8” Smooth: Conductivity
15 Material: Gypsum board 5/8” Smooth: Density
16 Material: Gypsum board 5/8” Smooth: Specific Heat
17 Material: Gypsum board 5/8” Smooth: Thermal Absorptance
18 Material: Gypsum board 5/8” Smooth: Solar Absorptance
19 Material: Gypsum board 5/8” Smooth: Visible Absorptance
20 Material:Culture Stone VeryRough: Thickness
21 Material:Culture Stone VeryRough: Conductivity
22 Material:Culture Stone VeryRough: Density
23 Material:Culture Stone VeryRough: Specific Heat
24 Material:Culture Stone VeryRough: Thermal Absorptance
25 Material:Culture Stone VeryRough: Solar Absorptance
26 Material:Culture Stone VeryRough: Visible Absorptance
27 Material:Glass Fiber insulation 2 3/8” Smooth: Thickness
28 Material:Glass Fiber insulation 2 3/8” Smooth: Conductivity
29 Material:Glass Fiber insulation 2 3/8” Smooth: Density
30 Material:Glass Fiber insulation 2 3/8” Smooth: Specific Heat
31 Material:Concrete Foundation Wall Medium Smooth: Thickness
32 Material:Concrete Foundation Wall Medium Smooth: Conductivity
33 Material:Concrete Foundation Wall Medium Smooth: Density
34 Material:Concrete Foundation Wall Medium Smooth: Specific Heat
35 Material:Concrete Foundation Wall Medium Smooth: Thermal Absorptance
36 Material:Concrete Foundation Wall Medium Smooth: Solar Absorptance
37 Material:Concrete Foundation Wall Medium Smooth: Visible Absorptance
38 Material:StandingSeamMetal Roofing Smooth: Thickness
39 Material:StandingSeamMetal Roofing Smooth: Conductivity
40 Material:StandingSeamMetal Roofing Smooth: Density
41 Material:StandingSeamMetal Roofing Smooth: Specific Heat
42 Material:StandingSeamMetal Roofing Smooth: Thermal Absorptance
43 Material:StandingSeamMetal Roofing Smooth: Solar Absorptance
44 Material:StandingSeamMetal Roofing Smooth: Visible Absorptance
45 Material:Plywood 1/2” MediumSmooth: Thickness
46 Material:Plywood 1/2” MediumSmooth: Conductivity
47 Material:Plywood 1/2” MediumSmooth: Density
48 Material:Plywood 1/2” MediumSmooth: Specific Heat
49 Material:Concrete Slab 4” MediumRough: Thickness
50 Material:Concrete Slab 4” MediumRough: Conductivity
51 Material:Concrete Slab 4” MediumRough: Density
52 Material:Concrete Slab 4” MediumRough: Specific Heat

196



Table 2: MO1 and MO2 input variables 53 - 104.

Variable Number Name
53 Material:Concrete Slab 4” MediumRough: Thermal Absorptance
54 Material:XPS Ridge Insulation 1” Smooth: Thickness
55 Material:XPS Ridge Insulation 1” Smooth: Conductivity
56 Material:XPS Ridge Insulation 1” Smooth: Density
57 Material:XPS Ridge Insulation 1” Smooth: Specific Heat
58 Material:Gravel 4” VeryRough: Thickness
59 Material:Gravel 4” VeryRough: Conductivity
60 Material:Gravel 4” VeryRough: Density
61 Material:Gravel 4” VeryRough: Specific Heat
62 Material:OSB 7/16” MediumSmooth: Thickness
63 Material:OSB 7/16” MediumSmooth: Conductivity
64 Material:OSB 7/16” MediumSmooth: Density
65 Material:OSB 7/16” MediumSmooth: Specific Heat
66 Material:OSB 7/16” MediumSmooth: Thermal Absorptance
67 Material:EPS 5 + 5/8” MediumSmooth: Thickness
68 Material:EPS 5 + 5/8” MediumSmooth: Conductivity
69 Material:EPS 5 + 5/8” MediumSmooth: Density
70 Material:EPS 5 + 5/8” MediumSmooth: Specific Heat
71 Material:EPS 9 + 3/8” Medium Smooth: Thickness
72 Material:EPS 9 + 3/8” Medium Smooth: Conductivity
73 Material:EPS 9 + 3/8” Medium Smooth: Density
74 Material:EPS 9 + 3/8” Medium Smooth: Specific Heat
75 Material:Hardie Cladding 1/4” Gray MediumRough: Thickness
76 Material:Hardie Cladding 1/4” Gray MediumRough: Conductivity
77 Material:Hardie Cladding 1/4” Gray MediumRough: Density
78 Material:Hardie Cladding 1/4” Gray MediumRough: Specific Heat
79 Material:Hardie Cladding 1/4” Gray MediumRough: Thermal Absorptance
80 Material:Hardie Cladding 1/4” Gray MediumRough: Solar Absorptance
81 Material:Hardie Cladding 1/4” Gray MediumRough: Visible Absorptance
82 Material:Hardie Cladding 1/4” Dark Green MediumRough: Thickness
83 Material:Hardie Cladding 1/4” Dark Green MediumRough: Conductivity
84 Material:Hardie Cladding 1/4” Dark Green MediumRough: Density
85 Material:Hardie Cladding 1/4” Dark Green MediumRough: Specific Heat
86 Material:Hardie Cladding 1/4” Dark Green MediumRough: Thermal Absorptance
87 Material:Hardie Cladding 1/4” Dark Green MediumRough: Solar Absorptance
88 Material:Hardie Cladding 1/4” Dark Green MediumRough: Visible Absorptance
89 Material:NoMass:Building Wrap Smooth: Thermal Resistance
90 Material:AirGap:Dimpled Space Mat: Thermal Resistance
91 WindowMaterial:SimpleGlazing System: Window A: U-Factor
92 WindowMaterial:SimpleGlazing System: Window A: Solar Heat Gain Coefficient
93 WindowMaterial:SimpleGlazing System: Window B: U-Factor
94 WindowMaterial:SimpleGlazing System: Window B: Solar Heat Gain Coefficient
95 WindowMaterial:SimpleGlazing System: Window C: U-Factor
96 WindowMaterial:SimpleGlazing System: Window C: Solar Heat Gain Coefficient
97 WindowMaterial:SimpleGlazing System: Window D: U-Factor
98 WindowMaterial:SimpleGlazing System: Window D: Solar Heat Gain Coefficient
99 WindowMaterial:SimpleGlazing System: Window E: U-Factor
100 WindowMaterial:SimpleGlazing System: Window E: Solar Heat Gain Coefficient
101 WindowMaterial:SimpleGlazing System: Window F: U-Factor
102 WindowMaterial:SimpleGlazing System: Window F: Solar Heat Gain Coefficient
103 WindowMaterial:SimpleGlazing System: Window G: U-Factor
104 WindowMaterial:SimpleGlazing System: Window G: Solar Heat Gain Coefficient

197



Table 3: MO1 and MO2 input variables 104 - 156.

Variable Number Name
105 WindowMaterial:SimpleGlazing System: Window H: U-Factor
106 WindowMaterial:SimpleGlazing System: Window H: Solar Heat Gain Coefficient
107 WindowMaterial:SimpleGlazing System: Window I: U-Factor
108 WindowMaterial:SimpleGlazing System: Window I: Solar Heat Gain Coefficient
109 ShadingProperty:Ref lectance:South Overhand Lower Roof East: Diffuse Solar Reflectance
110 ShadingProperty:Ref lectance:South Overhand Lower Roof East: Diffuse Visible Reflectance
111 Lights:Bathroom (1st and 2nd floor): Fraction Radiant
112 Lights:Bathroom (1st and 2nd floor): Fraction Visible
113 Lights:Bedroom (Master and 2nd floor bed rooms): Fraction Radiant
114 Lights:Bedroom (Master and 2nd floor bed rooms): Fraction Visible
115 Lights:Level 1 Lights(Kitchen and Dining): Fraction Radiant
116 Lights:Level 1 Lights(Kitchen and Dining): Fraction Visible
117 ElectricEquipment:Dryer: Fraction Latent
118 ElectricEquipment:Dryer: Fraction Radiant
119 ElectricEquipment:Dryer: Fraction Lost
120 ElectricEquipment:Oven and Microwave: Radiant
121 ElectricEquipment:Dishwasher: Fraction Latent
122 ElectricEquipment:Dishwasher: Fraction Radiant
123 ElectricEquipment:Dishwasher: Fraction Lost
124 ElectricEquipment:Refrigerator: Fraction Radiant
125 ElectricEquipment:Clothes Washer: Fraction Latent
126 ElectricEquipment:Clothes Washer: Fraction Lost
127 ElectricEquipment:Clothes Washer: Fraction Radiant
128 ElectricEquipment:Bathroom Plugs (Heater on 2nd Floor): Fraction Radiant
129 ElectricEquipment:Dining Room Plugs: Fraction Radiant
130 ElectricEquipment:Basement Plugs: Fraction Radiant
131 ElectricEquipment:ERV Energy:Basement: Fraction Radiant
132 ElectricEquipment:ERV Energy:Basement: Fraction Latent
133 ZoneInfiltration:FlowCoefficient:Living: Flow Coefficient
134 ZoneInfiltration:FlowCoefficient:Master Bedroom: Flow Coefficient
135 ZoneInfiltration:FlowCoefficient:Basement: Flow Coefficient
136 ZoneInfiltration:FlowCoefficient:Second Floor: Flow Coefficient
137 ZoneHVAC:IdealLoadAirSystem:Living Room: Maximum Heating Supply Air Temperature
138 ZoneHVAC:IdealLoadAirSystem:Living Room: Minimum Cooling Supply Air Temperature
139 ZoneHVAC:IdealLoadAirSystem:Living Room: Maximum Heating Supply Air Humidity Ratio
140 ZoneHVAC:IdealLoadAirSystem:Living Room: Minimum Cooling Supply Air Humidity Ratio
141 ZoneHVAC:IdealLoadAirSystem:Living Room: Cooling Sensible Heat Ratio
142 ZoneHVAC:IdealLoadAirSystem:Master Bedroom: Maximum Heating Supply Air Temperature
143 ZoneHVAC:IdealLoadAirSystem:Master Bedroom: Minimum Cooling Supply Air Temperature
144 ZoneHVAC:IdealLoadAirSystem:Master Bedroom: Maximum Heating Supply Air Humidity Ratio
145 ZoneHVAC:IdealLoadAirSystem:Master Bedroom: Minimum Cooling Supply Air Humidity Ratio
146 ZoneHVAC:IdealLoadAirSystem:Master Bedroom: Cooling Sensible Heat Ratio
147 ZoneHVAC:IdealLoadAirSystem:Basement: Maximum Heating Supply Air Temperature
148 ZoneHVAC:IdealLoadAirSystem:Basement: Minimum Cooling Supply Air Temperature
149 ZoneHVAC:IdealLoadAirSystem:Basement: Maximum Heating Supply Air Humidity Ratio
150 ZoneHVAC:IdealLoadAirSystem:Basement: Minimum Cooling Supply Air Humidity Ratio
151 ZoneHVAC:IdealLoadAirSystem:Basement: Cooling Sensible Heat Ratio
152 ZoneHVAC:IdealLoadAirSystem:Second Floor: Maximum Heating Supply Air Temperature
153 ZoneHVAC:IdealLoadAirSystem:Second Floor: Minimum Cooling Supply Air Temperature
154 ZoneHVAC:IdealLoadAirSystem:Second Floor: Maximum Heating Supply Air Humidity Ratio
155 ZoneHVAC:IdealLoadAirSystem:Second Floor: Minimum Cooling Supply Air Humidity Ratio
156 ZoneHVAC:IdealLoadAirSystem:Second Floor: Cooling Sensible Heat Ratio

198



Table 4: MO1 and MO2 output variables 1 - 40

Variable Number Name
1 BATHROOM LIGHTS (1ST AND 2ND FLOOR)ENERGY:Lights Electric Power
2 BATHROOM LIGHTS (1ST AND 2ND FLOOR)ENERGY:Lights Total Heat Gain Rate
3 BEDROOM LIGHTS AND PLUGS (MASTER AND 2ND FLOOR BED ROOMS)

ENERGY:Lights Electric Power
4 BEDROOM LIGHTS AND PLUGS (MASTER AND 2ND FLOOR BED ROOMS)

ENERGY:Lights Total Heat Gain Rate
5 LEVEL 1 LIGHTS (KITCHEN AND DINING) ENERGY:Lights Electric Power
6 LEVEL 1 LIGHTS (KITCHEN AND DINING) ENERGY:Lights Total Heat Gain Rate
7 WAHP AUXILLIARY HEAT ENERGY:Electric Equipment Total Heat Gain Rate
8 IHP INDOOR FAN ENERGY:Electric Equipment Total Heat Gain Rate
9 DRYER ENERGY:Electric Equipment Electric Power
10 DRYER ENERGY:Electric Equipment Total Heat Gain Rate
11 OVEN/MICROWAVE ENERGY:Electric Equipment Electric Power
12 OVEN/MICROWAVE ENERGY:Electric Equipment Total Heat Gain Rate
13 DISHWASHER ENERGY:Electric Equipment Electric Power
14 DISHWASHER ENERGY:Electric Equipment Total Heat Gain Rate
15 REFRIGERATOR ENERGY:Electric Equipment Electric Power
16 REFRIGERATOR ENERGY:Electric Equipment Total Heat Gain Rate
17 KITCHEN PLUGS ENERGY:Electric Equipment Electric Power
18 KITCHEN PLUGS ENERGY:Electric Equipment Total Heat Gain Rate
19 CLOTHER WASHER ENERGY:Electric Equipment Electric Power
20 CLOTHER WASHER ENERGY:Electric Equipment Total Heat Gain Rate
21 BATHROOM PLUGS (HEATER ON 2ND FLOOR)

ENERGY:Electric Equipment Electric Power
22 BATHROOM PLUGS (HEATER ON 2ND FLOOR)

ENERGY:Electric Equipment Total Heat Gain Rate
23 DINNING ROOM PLUGS (1ST FLOOR HEATER)

ENERGY:Electric Equipment Electric Power
24 DINNING ROOM PLUGS (1ST FLOOR HEATER)

ENERGY:Electric Equipment Total Heat Gain Rate
25 BASEMENT PLUGS ENERGY:Electric Equipment Electric Power
26 BASEMENT PLUGS ENERGY:Electric Equipment Total Heat Gain Rate
27 ERV ENERGY:Electric Equipment Electric Power
28 ERV ENERGY:Electric Equipment Total Heat Gain Rate
29 WAHP:Electric Equipment Total Heat Gain Rate
30 WWHP LOAD:Hot Water Equipment Total Heat Gain Rate
31 LIVING WINDOW NORTH A2:Window Heat Gain
32 LIVING WINDOW NORTH A2:Window Heat Loss
33 NORTH ROOF HFT:Surface Ext Solar Incident
34 MB WINDOW SOUTH A1:Window Heat Gain
35 MB WINDOW SOUTH A1:Window Heat Loss
36 SOUTH ROOF HFT:Surface Ext Solar Beam Incident
37 STAIRWELL EAST WINDOW H1:Surface Inside Temperature
38 STAIRWELL EAST WINDOW H1:Surface Outside Temperature
39 FOYER NORTH WALL HFT:Surface Inside Temperature
40 FOYER NORTH WALL HFT:Surface Outside Temperature

199



Table 5: MO1 and MO2 output variables 41 - 90

Variable Number Name
41 FOYER NORTH WALL HFT:Opaque Surface Inside Face Conduction
42 LIVING WINDOW NORTH A2:Surface Inside Temperature
43 LIVING WINDOW NORTH A2:Surface Outside Temperature
44 LIVING WINDOW WEST A2:Surface Inside Temperature
45 LIVING WINDOW WEST A2:Surface Outside Temperature
46 LIVING ROOM WEST WALL HFT:Opaque Surface Inside Face Conduction
47 NORTH ROOF HFT:Surface Inside Temperature
48 NORTH ROOF HFT:Surface Outside Temperature
49 NORTH ROOF HFT:Opaque Surface Inside Face Conduction
50 MB SOUTH WALL HFT:Surface Inside Temperature
51 MB SOUTH WALL HFT:Surface Outside Temperature
52 MB SOUTH WALL HFT:Opaque Surface Inside Face Conduction
53 MB WINDOW SOUTH A1:Surface Inside Temperature
54 MB WINDOW SOUTH A1:Surface Outside Temperature
55 MB EAST WALL HFT:Opaque Surface Inside Face Conduction
56 BM SOUTH WALL EAST:Surface Inside Temperature
57 BM SOUTH WALL EAST:Surface Outside Temperature
58 SOUTH ROOF HFT:Surface Inside Temperature
59 SOUTH ROOF HFT:Surface Outside Temperature
60 SOUTH ROOF HFT:Opaque Surface Inside Face Conduction
61 LIVING:Zone Mean Radiant Temperature
62 LIVING:Zone Mean Air Temperature
63 MASTER BEDROOM:Zone Mean Air Temperature
64 BASEMENT:Zone Mean Air Temperature
65 SECOND FLOOR:Zone Mean Air Temperature
66 LIVING:Zone Infiltration Air Change Rate
67 MASTER BEDROOM:Zone Infiltration Air Change Rate
68 BASEMENT:Zone Infiltration Air Change Rate
69 SECOND FLOOR:Zone Infiltration Air Change Rate
70 LIVING:Zone Air Relative Humidity
71 MASTER BEDROOM:Zone Air Relative Humidity
72 BASEMENT:Zone Air Relative Humidity
73 SECOND FLOOR:Zone Air Relative Humidity
74 LIVING ROOM ZONE IDEAL LOADS AIR:Ideal Loads Sensible Heating Energy
75 LIVING ROOM ZONE IDEAL LOADS AIR:Ideal Loads Latent Heating Energy
76 LIVING ROOM ZONE IDEAL LOADS AIR:Ideal Loads Sensible Cooling Energy
77 LIVING ROOM ZONE IDEAL LOADS AIR:Ideal Loads Latent Cooling Energy
78 MB ZONE IDEAL LOADS AIR:Ideal Loads Sensible Heating Energy
79 MB ZONE IDEAL LOADS AIR:Ideal Loads Latent Heating Energy
80 MB ZONE IDEAL LOADS AIR:Ideal Loads Sensible Cooling Energy
81 MB ZONE IDEAL LOADS AIR:Ideal Loads Latent Cooling Energy
82 BASEMENT ZONE IDEAL LOADS AIR:Ideal Loads Sensible Heating Energy
83 BASEMENT ZONE IDEAL LOADS AIR:Ideal Loads Latent Heating Energy
84 BASEMENT ZONE IDEAL LOADS AIR:Ideal Loads Sensible Cooling Energy
85 BASEMENT ZONE IDEAL LOADS AIR:Ideal Loads Latent Cooling Energy
86 SF ZONE IDEAL LOADS AIR:Ideal Loads Sensible Heating Energy
87 SF ZONE IDEAL LOADS AIR:Ideal Loads Latent Heating Energy
88 SF ZONE IDEAL LOADS AIR:Ideal Loads Sensible Cooling Energy
89 SF ZONE IDEAL LOADS AIR:Ideal Loads Latent Cooling Energy
90 Whole Building:Total Building Electric Demand

200



Table 6: FG input variables 1 - 50

Variable Number Name
1 ZEBRAllianceHouseNo 1 SIP House:North Axis
2 ZEBRAllianceHouseNo 1 SIP House:Terrain
3 ZEBRAllianceHouseNo 1 SIP House:LoadsConvergenceToleranceValue
4 ZEBRAllianceHouseNo 1 SIP House:TempConvergenceToleranceValue
5 ZEBRAllianceHouseNo 1 SIP House:Solar Distribution
6 ZEBRAllianceHouseNo 1 SIP House:Maximum Number of Warmup Days
7 ShadowCalculation:Calculation Frequency
8 ShadowCalculation:Max Figures in Shadow Overlap Calculations
9 SurfaceConvectionAlgorithm:Inside:Algorithm
10 SurfaceConvectionAlgorithm:Outside:Algorithm
11 Timestep:Number of Timesteps per Hour
12 Overhang:Field 4
13 Gypsum Board 5/8:Thickness
14 Gypsum Board 5/8:Conductivity
15 Gypsum Board 5/8:Density
16 Gypsum Board 5/8:Specific Heat
17 Gypsum Board 5/8:Thermal Absorptance
18 Gypsum Board 5/8:Solar Absorptance
19 Gypsum Board 5/8:Visible Absorptance
20 Cultured Stone:Thickness
21 Cultured Stone:Conductivity
22 Cultured Stone:Density
23 Cultured Stone:Specific Heat
24 Cultured Stone:Thermal Absorptance
25 Cultured Stone:Solar Absorptance
26 Cultured Stone:Visible Absorptance
27 Glass Fiber Insulation 2 3/8:Thickness
28 Glass Fiber Insulation 2 3/8:Conductivity
29 Glass Fiber Insulation 2 3/8:Density
30 Glass Fiber Insulation 2 3/8:Specific Heat
31 Concrete Foundation Wall:Thickness
32 Concrete Foundation Wall:Conductivity
33 Concrete Foundation Wall:Density
34 Concrete Foundation Wall:Specific Heat
35 Concrete Foundation Wall:Thermal Absorptance
36 Concrete Foundation Wall:Solar Absorptance
37 Concrete Foundation Wall:Visible Absorptance
38 Standing Seam Metal Roofing:Thickness
39 Standing Seam Metal Roofing:Conductivity
40 Standing Seam Metal Roofing:Density
41 Standing Seam Metal Roofing:Specific Heat
42 Standing Seam Metal Roofing:Thermal Absorptance
43 Standing Seam Metal Roofing:Solar Absorptance
44 Standing Seam Metal Roofing:Visible Absorptance
45 Plywood 1/2:Thickness
46 Plywood 1/2:Conductivity
47 Plywood 1/2:Density
48 Plywood 1/2:Specific Heat
49 2x6 Wood Studs:Thickness
50 2x6 Wood Studs:Conductivity

201



Table 7: FG input variables 51 - 100

Variable Number Name
51 2x6 Wood Studs:Density
52 2x6 Wood Studs:Specific Heat
53 2x6 Wood Studs:Thermal Absorptance
54 3/4 T&G Plywood Decking:Thickness
55 3/4 T&G Plywood Decking:Conductivity
56 3/4 T&G Plywood Decking:Density
57 3/4 T&G Plywood Decking:Specific Heat
58 3/4 T&G Plywood Decking:Thermal Absorptance
59 3/4 T&G Plywood Decking:Solar Absorptance
60 3/4 T&G Plywood Decking:Visible Absorptance
61 Concrete Slab 4:Thickness
62 Concrete Slab 4:Conductivity
63 Concrete Slab 4:Density
64 Concrete Slab 4:Specific Heat
65 Concrete Slab 4:Thermal Absorptance
66 XPS Rigid Insulation 1:Thickness
67 XPS Rigid Insulation 1:Conductivity
68 XPS Rigid Insulation 1:Density
69 XPS Rigid Insulation 1:Specific Heat
70 Gravel 4:Thickness
71 Gravel 4:Conductivity
72 Gravel 4:Density
73 Gravel 4:Specific Heat
74 OSB 7/16:Thickness
75 OSB 7/16:Conductivity
76 OSB 7/16:Density
77 OSB 7/16:Specific Heat
78 OSB 7/16:Thermal Absorptance
79 EPS 5 + 5/8:Thickness
80 EPS 5 + 5/8:Conductivity
81 EPS 5 + 5/8:Density
82 EPS 5 + 5/8:Specific Heat
83 EPS 9 + 3/8:Thickness
84 EPS 9 + 3/8:Conductivity
85 EPS 9 + 3/8:Density
86 EPS 9 + 3/8:Specific Heat
87 Hardie Cladding 1/4 Gray:Thickness
88 Hardie Cladding 1/4 Gray:Conductivity
89 Hardie Cladding 1/4 Gray:Density
90 Hardie Cladding 1/4 Gray:Specific Heat
91 Hardie Cladding 1/4 Gray:Thermal Absorptance
92 Hardie Cladding 1/4 Gray:Solar Absorptance
93 Hardie Cladding 1/4 Gray:Visible Absorptance
94 Hardie Cladding 1/4 Dark Green:Thickness
95 Hardie Cladding 1/4 Dark Green:Conductivity
96 Hardie Cladding 1/4 Dark Green:Density
97 Hardie Cladding 1/4 Dark Green:Specific Heat
98 Hardie Cladding 1/4 Dark Green:Thermal Absorptance
99 Hardie Cladding 1/4 Dark Green:Solar Absorptance
100 Hardie Cladding 1/4 Dark Green:Visible Absorptance

202



Table 8: FG input variables 101 - 150

Variable Number Name
101 Hardie Cladding 1/4 Cream:Thickness
102 Hardie Cladding 1/4 Cream:Conductivity
103 Hardie Cladding 1/4 Cream:Density
104 Hardie Cladding 1/4 Cream:Specific Heat
105 Hardie Cladding 1/4 Cream:Thermal Absorptance
106 Hardie Cladding 1/4 Cream:Solar Absorptance
107 Hardie Cladding 1/4 Cream:Visible Absorptance
108 Building Wrap:Thermal Resistance
109 Dimpled Spacer Mat:Thermal Resistance
110 Window A:U-Factor
111 Window A:Solar Heat Gain Coefficient
112 Window B:U-Factor
113 Window B:Solar Heat Gain Coefficient
114 Window C:U-Factor
115 Window C:Solar Heat Gain Coefficient
116 Window D:U-Factor
117 Window D:Solar Heat Gain Coefficient
118 Window E:U-Factor
119 Window E:Solar Heat Gain Coefficient
120 Window F:U-Factor
121 Window F:Solar Heat Gain Coefficient
122 Window G:U-Factor
123 Window G:Solar Heat Gain Coefficient
124 Window H:U-Factor
125 Window H:Solar Heat Gain Coefficient
126 Window I:U-Factor
127 Window I:Solar Heat Gain Coefficient
128 SouthOverhangLowerRoofEast:DiffSolarReflUnglazedPartShadingSurf
129 SouthOverhangLowerRoofEast:DiffVisibReflUnglazedPartShadingSurf
130 Bathroom Lights (1st and 2nd floor),Energy:Fraction Radiant
131 Bathroom Lights (1st and 2nd floor),Energy:Fraction Visible
132 Bedroom LightsPlugs(master n 2 flr bedrm)Energy:FractionRadiant
133 Bedroom LightsPlugs(master n 2 flr bedrm)Energy:FractionVisible
134 Level 1 Lights (kitchen and dining), Energy:Fraction Radiant
135 Level 1 Lights (kitchen and dining), Energy:Fraction Visible
136 Dryer Energy:Fraction Latent
137 Dryer Energy:Fraction Radiant
138 Dryer Energy:Fraction Lost
139 Oven/Microwave Energy:Fraction Radiant
140 Dishwasher Energy:Fraction Latent
141 Dishwasher Energy:Fraction Radiant
142 Dishwasher Energy:Fraction Lost
143 Refrigerator Energy:Fraction Radiant
144 Clother Washer Energy:Fraction Latent
145 Clother Washer Energy:Fraction Radiant
146 Clother Washer Energy:Fraction Lost
147 Bathroom Plugs (Heater on 2nd floor), Energy:Fraction Radiant
148 Diding Room Plugs (1st floor heater), Energy:Fraction Radiant
149 Basement Plugs Energy:Fraction Radiant
150 ERV Energy:Fraction Radiant

203



Table 9: FG input variables 151 - 180

Variable Number Name
151 ERV Energy:Fraction Lost
152 WWHP:Fraction Latent
153 WWHP:Fraction Radiant
154 WWHP:Fraction Lost
155 WAHP:Fraction Radiant
156 WAHP:Fraction Lost
157 Infiltration Living Zone:Flow Coefficient
158 Infiltration Master Bedroom:Flow Coefficient
159 Infiltration Basement:Flow Coefficient
160 Infiltration Second Floor:Flow Coefficient
161 LivingRoomZoneIdealLoadsAir:MaxHeatingSupplyAirTemp
162 LivingRoomZoneIdealLoadsAir:MinCoolingSupplyAirTemp
163 LivingRoomZoneIdealLoadsAir:MaxHeatingSupplyAirHumidityRatio
164 LivingRoomZoneIdealLoadsAir:MinCoolingSupplyAirHumidityRatio
165 LivingRoomZoneIdealLoadsAir:CoolingSensibleHeatRatio
166 MBZoneIdealLoadsAir:MaxHeatingSupplyAirTemp
167 MBZoneIdealLoadsAir:MinCoolingSupplyAirTemp
168 MBZoneIdealLoadsAir:MaxHeatingSupplyAirHumidityRatio
169 MBZoneIdealLoadsAir:MinCoolingSupplyAirHumidityRatio
170 MBZoneIdealLoadsAir:CoolingSensibleHeatRatio
171 BasementZoneIdealLoadsAir:MaxHeatingSupplyAirTemp
172 BasementZoneIdealLoadsAir:MinCoolingSupplyAirTemp
173 BasementZoneIdealLoadsAir:MaxHeatingSupplyAirHumidityRatio
174 BasementZoneIdealLoadsAir:MinCoolingSupplyAirHumidityRatio
175 BasementZoneIdealLoadsAir:CoolingSensibleHeatRatio
176 SFZoneIdealLoadsAir:MaxHeatingSupplyAirTemp
177 SFZoneIdealLoadsAir:MinCoolingSupplyAirTemp
178 SFZoneIdealLoadsAir:MaxHeatingSupplyAirHumidityRatio
179 SFZoneIdealLoadsAir:MinCoolingSupplyAirHumidityRatio
180 SFZoneIdealLoadsAir:CoolingSensibleHeatRatio

204



Table 10: FG output variables 1 - 40

Variable Number Name
1 Environment:Outdoor Dry Bulb
2 Environment:Outdoor Relative Humidity
3 Environment:Outdoor Barometric Pressure
4 Environment:Wind Speed
5 Environment:Liquid Precipitation
6 BATHRM LIGHTS(1 N 2ND FLR)ENERGY:Lights Total Heat Gain Rate
7 BEDRM LIGHTS PLUGS(MASTR 2 FLR)ENRGY:Lights Total Heat Gain Rate
8 WAHP AUXILARY HEAT ENRGY:Electric Equipment Total Heat Gain Rate
9 IHP INDOOR FAN ENERGY:Electric Equipment Total Heat Gain Rate
10 DRYER ENERGY:Electric Equipment Total Heat Gain Rate
11 OVEN/MICROWAVE ENERGY:Electric Equipment Total Heat Gain Rate
12 DISHWASHER ENERGY:Electric Equipment Total Heat Gain Rate
13 REFRIGERATOR ENERGY:Electric Equipment Total Heat Gain Rate
14 KITCHEN PLUGS ENERGY:Electric Equipment Total Heat Gain Rate
15 CLOTHER WASHER ENERGY:Electric Equipment Total Heat Gain Rate
16 BATH PLGS(HEATR 2 FLR)ENRGY:ElectricEquipment TotalHeatGain Rate
17 DININGRM PLG(1FLR HEATR)ENRGY:ElectricEquipmentTotalHeatGainRate
18 BASEMENT PLUGS ENERGY:Electric Equipment Total Heat Gain Rate
19 ERV ENERGY:Electric Equipment Total Heat Gain Rate
20 WWHP:Hot Water Equipment Total Heat Gain Rate
21 WAHP:Other Equipment Total Heat Gain Rate
22 LIVING WINDOW NORTH A2:Window Heat Gain
23 LIVING WINDOW NORTH A2:Window Heat Loss
24 NORTH ROOF HFT:Surface Ext Solar Incident
25 MB WINDOW SOUTH A1:Window Heat Gain
26 MB WINDOW SOUTH A1:Window Heat Loss
27 SOUTH ROOF HFT:Surface Ext Solar Beam Incident
28 STAIRWELL EAST WINDOW H1:Surface Inside Temperature
29 STAIRWELL EAST WINDOW H1:Surface Outside Temperature
30 FOYER NORTH WALL HFT:Surface Inside Temperature
31 FOYER NORTH WALL HFT:Surface Outside Temperature
32 FOYER NORTH WALL HFT:Opaque Surface Inside Face Conduction
33 LIVING WINDOW NORTH A2:Surface Inside Temperature
34 LIVING WINDOW NORTH A2:Surface Outside Temperature
35 LIVING WINDOW WEST A2:Surface Inside Temperature
36 LIVING WINDOW WEST A2:Surface Outside Temperature
37 LIVING ROOM WEST WALL HFT:Opaque Surface Inside Face Conduction
38 NORTH ROOF HFT:Surface Inside Temperature
39 NORTH ROOF HFT:Surface Outside Temperature
40 NORTH ROOF HFT:Opaque Surface Inside Face Conduction

205



Table 11: FG input variables 41 - 80

Variable Number Name
41 MB SOUTH WALL HFT:Surface Inside Temperature
42 MB SOUTH WALL HFT:Surface Outside Temperature
43 MB SOUTH WALL HFT:Opaque Surface Inside Face Conduction
44 MB WINDOW SOUTH A1:Surface Inside Temperature
45 MB WINDOW SOUTH A1:Surface Outside Temperature
46 MB EAST WALL HFT:Opaque Surface Inside Face Conduction
47 BM SOUTH WALL EAST:Surface Inside Temperature
48 BM SOUTH WALL EAST:Surface Outside Temperature
49 SOUTH ROOF HFT:Surface Inside Temperature
50 SOUTH ROOF HFT:Surface Outside Temperature
51 SOUTH ROOF HFT:Opaque Surface Inside Face Conduction
52 LIVING:Zone Mean Radiant Temperature
53 LIVING:Zone Mean Air Temperature
54 MASTER BEDROOM:Zone Mean Air Temperature
55 BASEMENT:Zone Mean Air Temperature
56 SECOND FLOOR:Zone Mean Air Temperature
57 LIVING:Zone Infiltration Air Change Rate
58 MASTER BEDROOM:Zone Infiltration Air Change Rate
59 BASEMENT:Zone Infiltration Air Change Rate
60 SECOND FLOOR:Zone Infiltration Air Change Rate
61 LIVING:Zone Air Relative Humidity
62 MASTER BEDROOM:Zone Air Relative Humidity
63 BASEMENT:Zone Air Relative Humidity
64 SECOND FLOOR:Zone Air Relative Humidity
65 LIVING RM ZONE IDEAL LOADS AIR:IdealLoadsSensibleHeating Energy
66 LIVING RM ZONE IDEAL LOADS AIR:IdealLoadsLatentHeating Energy
67 LIVING RM ZONE IDEAL LOADS AIR:IdealLoadsSensibleCooling Energy
68 LIVING RM ZONE IDEAL LOADS AIR:IdealLoadsLatentCooling Energy
69 MB ZONE IDEAL LOADS AIR:IdealLoadsSensibleHeating Energy
70 MB ZONE IDEAL LOADS AIR:IdealLoadsLatentHeating Energy
71 MB ZONE IDEAL LOADS AIR:IdealLoadsSensibleCooling Energy
72 MB ZONE IDEAL LOADS AIR:IdealLoadsLatentCooling Energy
73 BASEMENT ZONE IDEAL LOADS AIR:IdealLoadsSensibleHeating Energy
74 BASEMENT ZONE IDEAL LOADS AIR:IdealLoadsLatent Heating Energy
75 BASEMENT ZONE IDEAL LOADS AIR:IdealLoadsSensibleCooling Energy
76 BASEMENT ZONE IDEAL LOADS AIR:IdealLoadsLatentCooling Energy
77 SF ZONE IDEAL LOADS AIR:IdealLoadsSensibleHeating Energy
78 SF ZONE IDEAL LOADS AIR:IdealLoadsLatentHeating Energy
79 SF ZONE IDEAL LOADS AIR:IdealLoadsSensibleCooling Energy
80 SF ZONE IDEAL LOADS AIR:IdealLoadsLatentCooling Energy

206



Vita

Richard E. Edwards is a Graduate Research Assistant under Dr. Lynne E. Parker

in the Distributed Intelligence Laboratory. All work for his PhD dissertation was

funded through Dr. Joshua New from Oak Ridge National Lab’s Whole Building &

Community Integration Group. After completing his PhD in Spring 2013, Richard

will relocate to Seattle Washington to work at Amazon.

Richard received his Bachelors of Science in Computer Science from the University

of Texas at Austin in Spring 2007. Afterwards, he moved to Knoxville Tennessee to

pursue a Masters in Computer Science, which he completed in Spring 2010 with heavy

focus on machine learning. After completing his masters, he stayed at the University

of Tennessee to work on his doctorate degree under Dr. Parker.

207


	Automating Large-Scale Simulation Calibration to Real-World Sensor Data
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	Introduction
	1 Related Work
	1.1 Simulation Calibration
	1.2 Surrogate Modeling
	1.3 Sensor Modeling

	2 Preliminaries
	2.1 E+
	2.2 Data Sets
	2.2.1 Campbell Creek
	2.2.2 Wolf Creek
	2.2.3 E+ Simulations

	2.3 Dealing with Large Datasets

	3 Sensor-based Modeling
	3.1 Traditional Modeling vs Sensor-Based Modeling
	3.2 Problem Statement
	3.3 Linear Regression
	3.4 Feed Forward Neural Network
	3.5 Support Vector Regression
	3.6 Least Squares Support Vector Machine
	3.7 Hierarchical Mixture of Experts
	3.8 Fuzzy C-Means with Feed Forward Neural Networks
	3.9 Temporal Dependencies
	3.10 Model Selection
	3.11 Performance Metrics
	3.12 Predicton Results
	3.12.1 Great Energy Prediction Shootout
	3.12.2 Campbell Creek House 1
	3.12.3 Campbell Creek House 2
	3.12.4 Campbell Creek House 3

	3.13 Results Summary
	3.14 Discussion

	4 Sensor Selection
	4.1 Model Criteria
	4.2 Genetic Algorithm for Subset Selection
	4.3 Stepwise Selection
	4.4 Auto Relevance Detection
	4.5 Feature Ranking
	4.6 Feature Selection Results
	4.6.1 Campbell Creek House 1
	4.6.2 Campbell Creek House 2
	4.6.3 Campbell Creek House 3
	4.6.4 Across All Houses
	4.6.5 Variable Ranking
	4.6.6 Ground Truth Comparison

	4.7 Results Summary
	4.8 Computer Science Contribution Summary

	5 Simulation Approximation
	5.1 Approach
	5.1.1 Large Scale-Feed Forward Neural Network Training
	5.1.2 Lasso Regression
	5.1.3 Alternating Direction Method of Multipliers
	5.1.4 Large-Scale Lasso Regression
	5.1.5 Model selection

	5.2 Methods
	5.2.1 Experimental Design
	5.2.2 Performance Metrics

	5.3 Results
	5.3.1 Fine Grain
	5.3.2 Markov Order 1 & 2

	5.4 Discussion
	5.5 Results Summary

	6 Learning Simulation Variable Relationships
	6.1 Probabilistic Graphical Models
	6.2 Score and Search
	6.3 Constraint Based
	6.4 Regression Based Method
	6.5 Approach
	6.5.1 Direct GGM Learning
	6.5.2 Bayesian GGM Learning
	6.5.3 Inference

	6.6 Experiments
	6.7 Results
	6.7.1 MO1 Results
	6.7.2 FG Results
	6.7.3 MO2 Results

	6.8 Discussion
	6.9 Results Summary
	6.10 Computer Science Contribution Summary

	Conclusion
	Bibliography
	Appendix A Variable Tables
	Vita

