20,726 research outputs found

    Adaptive self-management of teams of autonomous vehicles

    Get PDF
    Unmanned Autonomous Vehicles (UAVs) are increasingly deployed for missions that are deemed dangerous or impractical to perform by humans in many military and disaster scenarios. Collaborating UAVs in a team form a Self- Managed Cell (SMC) with at least one commander. UAVs in an SMC may need to operate independently or in sub- groups, out of contact with the commander and the rest of the team in order to perform specific tasks, but must still be able to eventually synchronise state information. The SMC must also cope with intermittent and permanent communication failures as well permanent UAV failures. This paper describes a failure management scheme that copes with both communication link and UAV failures, which may result in temporary disjoint sub-networks within the SMC. A communication management protocol is proposed to control UAVs performing disconnected individual operations, while maintaining the SMCs structure by trying to ensure that all members of the mission regardless of destination or task, can communicate by moving UAVs to act as relays or by allowing the UAVs to rendezvous at intermittent intervals. Copyright 2008 ACM.Accepted versio

    Adaptive self-management of teams of autonomous vehicles

    Full text link

    Self-management Framework for Mobile Autonomous Systems

    Get PDF
    The advent of mobile and ubiquitous systems has enabled the development of autonomous systems such as wireless-sensors for environmental data collection and teams of collaborating Unmanned Autonomous Vehicles (UAVs) used in missions unsuitable for humans. However, with these range of new application domains comes a new challenge – enabling self-management in mobile autonomous systems. The primary challenge in using autonomous systems for real-life missions is shifting the burden of management from humans to these systems themselves without loss of the ability to adapt to failures, changes in context, and changing user requirements. Autonomous systems have to be able to manage themselves individually as well as to form self-managing teams that are able to recover or adapt to failures, protect themselves from attacks and optimise performance. This thesis proposes a novel distributed policy-based framework that enables autonomous systems to perform self management individually and as a team. The framework allows missions to be specified in terms of roles in an adaptable and reusable way, enables dynamic and secure team formation with a utility-based approach for optimal role assignment, caters for communication link maintenance among team members and recovery from failure. Adaptive management is achieved by employing an architecture that uses policy-based techniques to allow dynamic modification of the management strategy relating to resources, role behaviour, team and communications management, without reloading the basic software within the system. Evaluation of the framework shows that it is scalable with respect to the number of roles, and consequently the number of autonomous systems participating in the mission. It is also shown to be optimal with respect to role assignments, and robust to intermittent communication link disconnections and permanent team-member failures. The prototype implementation was tested on mobile robots as a proof-ofconcept demonstration

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

    Full text link
    The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.Comment: Transport Reviews, 201

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore