
Adaptive Self-Management of Teams of Autonomous
Vehicles

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay, Emil Lupu
Department of Computing, Imperial College London, London SW7 2RH

{e.asmare, a.gopalan, m.sloman, n.dulay, e.c.lupu}@imperial.ac.uk

ABSTRACT
Unmanned Autonomous Vehicles (UAVs) are increasingly
deployed for missions that are deemed dangerous or imprac-
tical to perform by humans in many military and disas-
ter scenarios. Collaborating UAVs in a team form a Self-
Managed Cell (SMC) with at least one commander. UAVs
in an SMC may need to operate independently or in sub-
groups, out of contact with the commander and the rest of
the team in order to perform specific tasks, but must still be
able to eventually synchronise state information. The SMC
must also cope with intermittent and permanent communi-
cation failures as well permanent UAV failures. This pa-
per describes a failure management scheme that copes with
both communication link and UAV failures, which may re-
sult in temporary disjoint sub-networks within the SMC. A
communication management protocol is proposed to control
UAVs performing disconnected individual operations, while
maintaining the SMC’s structure by trying to ensure that
all members of the mission regardless of destination or task,
can communicate by moving UAVs to act as relays or by
allowing the UAVs to rendezvous at intermittent intervals.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; C.2.4
[Distributed Systems]; C.2.8 [Mobile Computing]: Mo-
bile environments

Keywords
autonomic management, collaborating autonomous vehicles,
delay tolerant networking, communication failure recovery

1. INTRODUCTION
Unmanned Autonomous Vehicles (UAVs) are a type of robot
that are often used in civilian disaster relief missions and
military scenarios to reconnoiter or provide sensing in areas
which are dangerous or impractical for humans. Teams of
UAVs may need to cooperate to achieve a particular mission,
such as surveillance of a specific area or search for specific

targets. A challenge in using UAVs for these missions is en-
abling adaptive self-management so that they can automati-
cally adapt to changes in context and failures without human
intervention. Collaborating UAVs form a Self-Managed Cell
(SMC) [11], which is the general architectural principle for
realising self management of individual and groups of UAVs.
The SMC is an approach to support autonomic computing
[7]. A SMC group consists of multiple UAVs and at least one
commander, which could be a human or another UAV, to
effectively control the group. There could be back-up com-
manders in case the primary one fails or is lost. The SMC
is set up to perform a single mission based on the mission
specification received by the commander from its command
base. The mission specification defines how UAVs will be
assigned to perform specific roles within the SMC, based on
their credentials and capability description when they are
discovered during the course of the mission.

To ensure that the UAVs comprising the SMC perform their
tasks correctly, it is important to cope with different types
of failures. Consider a mission scenario that contains the
roles: a Commander (C), which has the initial mission spec-
ification, assigns roles and manages the SMC; an Aggre-
gator (A), which receives information from surveyors and
builds up a map, a Surveyor (S) containing a video camera,
a Hazardous-chemical detector (H) that has the required
chemical sensor, and a Relay (R) which maintains commu-
nication by relaying messages in an ad-hoc network. These
roles are initially assigned to the UAVs as a tree, with the
commander as the root (as shown in Figure 1). Each UAV
will send its state information periodically to its parent node
in the tree and in effect the commander will be able to know
the relevant membership and activation state of all UAVs
in the mission. The commander may backup this state in-
formation on other UAVs, one of which may be elected as a
commander should the current commander fail. Failures in
such missions can occur as a result of communication link
failure or individual node failure. The focus of this paper is
to detail algorithms and protocols that allow for the correct
functioning of a mission even in the presence of failures.

To alleviate the problem arising due to the aforementioned
failures, we propose a failure management scheme and a
communication management scheme. The failure manage-
ment scheme is used to cope with the disruptions that occur
as a result of intermittent communication link disconnec-
tion, permanent communication link failure or failure of one
or more UAVs. This scheme uses a management tree similar

H A

R S

C

Figure 1: Initial Management Tree consisting of

UAVs belonging to a SMC

to the one shown in Figure 1 to define management hierar-
chies as well as data aggregation hierarchies during execu-
tion of the mission. If the periodical state information is
not received within a specified length of time (a timeout), it
is considered that a failure has occurred. The timeouts are
used to differentiate between the types of failures and each
failure is handled accordingly.

While the failure management scheme copes with communi-
cation link failure and UAV failure, it is sometimes desirable
to make sure that the members of the team that form the
SMC maintain their communication links. For this purpose,
we propose the communication management scheme. Pre-
vious works ([1, 3, 12, 9, 10]) ensure this by making sure
that the team of robots either restrict their motion to en-
sure that they do not loose communication or follow each
other through line of sight. In our scheme, we follow a two
pronged approach. In the first approach, we use a similar
technique to the related works mentioned above by restrict-
ing the motion of some of the UAVs so as to perform a com-
munication relay function and ensure that communication
is not lost with distant UAVs. While this scheme does allow
UAVs in a mission to maintain communication links, it is
also very restrictive with respect to the motion of the UAV.
In the second approach, instead of restricting the motion of
the UAVs, we use the concept of a rendezvous area, at which
the UAVs belonging to the mission can gather at a specified
time so that they can exchange the requisite information.
In the event that an UAV is unable to reach the rendezvous
area, it is assumed to have failed and the appropriate failure
management mechanism is used.

The rest of this paper is organised as follows. Section 2 de-
tails the failure management scheme, while Section 3 details
the communication management scheme. Section 4 com-
pares our approach with related work. Section 5 concludes
the paper and provides ideas for future work.

2. FAILURE MANAGEMENT
This section presents our failure management scheme which
is used to cope with the disruptions that occur as a result of
intermittent communication link disconnection, permanent

communication link failure or failure of one or more UAVs.

2.1 Management Tree
As a means of decentralising discovery and role manage-
ment, the UAVs in a mission are arranged in the form of a
management tree during the role assignment process. Any
of the UAVs in the tree could perform discovery and role
assignment. This tree is used for defining management hi-
erarchies as well as for data aggregation during execution of
the mission. In this section, we present the algorithm used
to form the management tree.

Each UAV runs the tree formation algorithm which starts
by broadcasting a discovery message. UAVs receiving the
discovery-broadcast perform an authentication protocol if
they are not already a member of the SMC and reply with
a summary of their capability description if they can be as-
signed to a role, i.e., UAVs which are already assigned to a
role may ignore the broadcast message. Upon authenticat-
ing and receiving the capability summary, the broadcaster
decides whether to request a full capability description. The
authentication protocol is based on the use of public keys but
will not be described in this paper. The final decision of as-
signing the UAV to a role takes place after checking the full
capability description against the requirements of the role.
If the UAV is assigned to a role, the broadcaster will be the
parent for the UAV that replied and the UAV will be listed
as a child of the broadcaster (maintained as a list in C and
shown in lines 6 and 15 of Algorithm 1). The full steps are
shown in Algorithm 1. Algorithm 1 makes use of Algorithm
2 for performing the role assignment.

Algorithm 1 Management Tree Formation Algorithm

Mgmt-Tree-Form(IS ACTING CDR)

Input: IS ACTING CDR

1: Broadcast DISCOVERY MSG
2: Receive MSG
3: Authenticate sender of MSG
4: if IS ACTING CDR == TRUE then

5: if MSG != DISCOV ERY MSG then

6: Append Role-Assign(MSG) to C
7: end if

8: else

9: if MSG == DISCOV ERY MSG then

10: if PARENT == NULL then

11: Reply with capability summary
12: Handle further communications, if any
13: end if

14: if MSG == DISCOV ERY REPLY then

15: Append Role-Assign(MSG) to C
16: else

17: if MSG == ROLE ASSIGNMENT then

18: PARENT = sender of MSG

19: end if

20: end if

21: end if

22: end if

23: return

2.2 Failure Detection and Management
We categorise the possible types of failures into intermittent
communication link disconnections and UAV failures (per-

Algorithm 2 Role Assignment Algorithm

Role-Assign(MSG)

Input: MSG

Output: CHILD
1: Check capability summary
2: If the summary is viable, request for full capability de-

scription
3: If the description matches the requirement for one of the

roles, do role assignment
4: Add the assigned UAV to CHILD
5: return CHILD

manent communication link failure or failure of one or more
UAVs). Timeouts are used to differentiate between the two
types of failures. Each UAV periodically sends state infor-
mation to its parent in the management tree; if the state
information is not received within the specified length of
time it is considered that a failure has occurred. The time-
outs are defined as follows: (a) TC : the amount of time a
parent UAV waits for a state information from a child be-
fore it decides that the communication link between itself
and the child has failed and (b) TN : the amount of time a
parent UAV waits for a state information from a child before
it decides that the child UAV has failed (TN > TC).

Failure of a communication link and/or a UAV causes parti-
tioning of the team network as well as loss of functionality;
we use a systematically defined identity for UAVs to facili-
tate merging and re-joining of partitioned teams. The iden-
tity I of a UAV is defined as: I = [M | H | S] where: M is
the mission ID, H is the hierarchy level and S is a number-
ing system which puts all the UAVs in the management tree
in a total order. This identity lasts throughout the team
configuration and identifies the mission and hierarchy level
of a UAV in a management tree. The ability to identify this
level is useful in handling intermittent link disconnections
as discussed in Section 2.3.

2.3 Intermittent Link Disconnection
An intermittent communication link disconnection (failure)
may be caused by either a temporary signal blockage by
physical objects or movement out of the communication
range. Although local functions can keep operating, a tem-
porary partitioning of the logical (overlay) network over
which the management tree is formed can cause disruption
of state aggregation as well as the flow of management com-
mands. In addition, remote operations will also be affected.
The desired response to this type of failure is continuing mis-
sion execution with disconnected operations and to resolve
inconsistencies when the communication link reappears.

When the team network is partitioned as a result of failure,
one or more teams without commanders will be formed. In
order to keep the mission execution during the failure, the
top UAV on the hierarchy level will become the commander
of the team (Note that this UAV was already managing this
sub-team during normal functioning). Figure 2 illustrates
this process.

A partitioned sub-team can also admit new UAVs. When
communication has recovered and the sub-team rejoins the

Figure 2: Partitioning due to Link Failure

parent team, the sub-team commander reports its current
state to its parent and the domain structure of all UAVs
in the mission is updated to indicate new members. To
facilitate merging of partitioned teams, we define the hier-
archy level of the partitioned team as that of the level of its
manager. Merging is performed by placing the lower-level
hierarchy teams under the management of higher-level hier-
archy teams. Ideally, when there are more UAVs to choose
from, more demanding mission subsets (i.e. the ones with
more roles to give out) are given to more capable UAVs.
Hence, we should keep the more capable UAVs higher up in
the management hierarchy.

In this approach, there is no new role assignment in that
there is no new UAV assigned to one of the roles or reassign-
ment of existing UAVs to roles different from their original
ones. The result being, that the mapping of existing UAVs
to roles remains the same whereas the management tree can
be different, as it is assumed that the adaptation is tempo-
rary. Figure 3 illustrates this approach. The initial configu-
ration is shown in Figure 3 (a). When communication link
disconnection occurs, as shown in Figure 3 (b), partitioned
sub-teams are created. These sub-teams perform reconfigu-
ration where the partitioned role, H comes under the control
of the other sub-team as shown in Figure 3 (c).

2.4 UAV Failure
A UAV failure is caused by either a node failure or a per-
manent communication link failure. The effect of this type
of failure is the partitioning of the team network as well as
a loss of roles. The partitioning problem is addressed us-
ing the same approach as in the communication link failure.
The response to the loss of roles is as follows (in order of
priority): (i) use replicated roles, if available, (ii) if there
are newly arriving UAVs or previously discovered but unas-
signed UAVs, perform a role reassignment while keeping the
existing team configuration to replace the lost role(s), and
(iii) if none of the above is feasible, reconfigure the team by
swapping less crucial roles for more crucial roles.

Should the reconfiguration incur role replacement this takes
place only in subsets of the team which are lower in hierar-
chy than the failed UAV. This is based on the assumption
that roles assigned to higher hierarchy level UAVs are more
crucial to the mission. In the case of role re-assignment and
reconfiguration, state information migration takes place.

A permanent communication link failure is also treated as
a UAV failure because from the point of view of another
UAV it is not possible to infer whether the communication
link or the UAV has failed. Figure 3 illustrates how the
system adapts to UAV failures. The initial configuration
is shown in Figure 3 (a). When a UAV failure occurs, as
shown in Figure 3 (d), partitioned sub-teams are created.
The response to this problem can be either reconfiguration
as shown in Figure 3 (f), where the partitioned sub-teams are
moved up in the management hierarchy and now managed
by the main commander; or a role replacement where the
UAV which was previously assigned to role S is now re-
assigned to the supposedly crucial role A as shown in 3 (g).

3. COMMUNICATION MANAGEMENT
In this section, we present our communication management
protocol that tries to maintain the communication links be-
tween the UAVs involved in the mission. The communica-
tion management protocol uses two different approaches. In
the first approach, UAVs try and control their movement
so as to make sure that they stay within communication
range to perform a relay function (Section 3.1). Though
this approach allows UAVs involved in a mission to main-
tain communication links, it would not be feasible in the
scenario when UAVs need to reconnoiter. In the second ap-
proach (Section 3.2), instead of restricting the motion of
the UAVs, we allow UAVs to perform disconnected individ-
ual operations while maintaining the SMC structure by try-
ing to ensure that all members of the mission, regardless of
destination or task, communicate at intermittent intervals.
Before we discuss the algorithms and protocols involved in
the communication management scheme, we will list the as-
sumptions: (a) Each UAV knows its current location and
also its direction and speed of travel, (b) No clock synchro-
nisation is assumed (though the speed of the clock on the
UAVs is assumed to be nearly equal, for example, 20 minutes
on one UAV is more or less equal to 20 minutes on another),
(c) All UAVs have the same communication range (R) and,
(d) A global/local co-ordinate system exists for specifying
location and direction of travel.

Consider again the UAV management tree as shown in Fig-
ure 1. Each UAV periodically updates its state information
to its parent node in the tree and this information is passed
onto the commander. For the purpose of our schemes, we
augment these periodic messages by the current location and
speed of the UAV. This allows the commander to monitor
the current position of all the UAVs in the mission. We will
now discuss the two approaches in the next two sections.

3.1 Adapt Movement to Maintain Communi-
cation

In this section, we detail the approach that controls the
movement of the UAVs to ensure that they stay within com-
munication range.

Assume that the position at time T of the 5 UAVs listed in
the management tree in Figure 1, are as shown in Figure 4
(a). Starting at time T , UAV S starts to move from its cur-
rent location to its future location S′ with constant speed
and direction (Φ). Since the direction and speed of S are
available to the rest of the UAVs in the team, it is easy for

S

R

H

S’Φ

C A

(a)

Time = T
H

S’

C A

S’’

R’

(b)

Time = T’

Figure 4: Position of UAVs

them to predict the location of S at a later time (T ′). If
this position is beyond the communication range of the rest
of the UAVs in the mission, the closest UAV to S starts to
move in a manner so as to make sure that it still is within
communication range. As per the scenario mentioned above,
we can see from Figure 4 (a) that UAV R is the closest to
UAV S and it is R’s job to make sure S is within commu-
nication range and it moves accordingly. When S moves to
S′ at time T ′, R moves to R′ (Figure 4 (b)). The amount
that R has to move depends on its location and the location
of S. By time T ′, R moves in a straight line to R′, which is
the closest point to its current location that is within com-
munication range of S′.

If UAV S keeps moving in the same direction and moves from
position S′ to S′′ during the next time period, then R would
also move to keep S within communication range, provided
it does not loose communication with the rest of the group.
In the event that R along with S move out of communication
range with respect to the rest of the UAVs in the group, the
UAV closest to R will start following R to keep it within
communication range. If S keeps moving away, the rest of
the UAVs try and form a “chain” that allows them to keep
S within communication range. If it is not possible to cover
S, the protocol uses the scheme described in Section 3.2.

3.2 Rendezvous to Restore Communication
In this section, we will detail the approach that allows UAVs
to perform disconnected individual operations, while main-
taining the SMC structure by trying to ensure that all mem-
bers of the mission regardless of destination or task, com-
municate at intermittent intervals.

Consider again the UAV management tree as shown in Fig-
ure 1. If the commander UAV notices that the distance
between a child node and another member is greater than
or equal to the range threshold (TR, which is modelled as a %
of the communication range (R)), it initiates the rendezvous
algorithm (Algorithm 4). Using the current location, speed
and direction of the UAVs in the mission, Algorithm 4 cal-
culates a rendezvous area where all the UAVs are expected
to rendezvous after a specified time. Once an instance of the
rendezvous algorithm is running, future requests are ignored,
since the rendezvous area has already been calculated and
it is assumed that the newly departing UAV will eventually
rendezvous at the same area. After reaching the rendezvous
area, the algorithm is restarted only if the need arises again.

Algorithm 4 makes use of another algorithm (Algorithm

(a) (b) (c)

(d)

C

A A

S S S H

(e)

H

C

A A A

S S S HH

C

A A A

S S S HH

C

A A A

S S S HH

C

A A A

S S S HH S

C

A A

S

S S

H

H

(f) (g)

C

A A A

S S H H

Figure 3: Reconfiguration and Role Re-assignment to Adapt to Failure

3) that actually calculates the rendezvous area. The ren-
dezvous area is calculated as follows. The direction of travel
is calculated by averaging the angle of the direction of travel
of all the UAVs in the mission with respect to a common axis.
Once the direction is calculated, the rendezvous area is calcu-
lated to be the area surrounding the rendezvous point that is
achieved by projecting the speed of the slowest UAV starting
from the average location onto the direction of travel over
the requested time (T). The notations used in the two algo-
rithms are: REND MSG: requests the UAVs to send their
current location, speed and direction, n: number of member
UAVs that reply to REND MSG, L: list containing the lo-
cation of the UAVs, {(x1, y1), (x2, y2), ..., (xn, yn)}, V : list
containing the speed of the UAVs, {v1, v2, ..., vn}, A: list
containing the direction of the UAVs, {θ1, θ2, ..., θn}, vmin:
minimum speed from amongst {v1, v2, ..., vn}, θ: average
angle of the direction of travel, (X, Y): average location,
T : time to rendezvous (this time is relative to current time
and indicates the time in the future when the nodes have to
rendezvous), (XRP , YRP): rendezvous point, REND AREA:
rendezvous area - a suitable expression for an area around
REND PT, and D: distance to rendezvous.

4. RELATED WORK
In [1], the authors suggest a distributed algorithm that al-
lows autonomous mobile robots with limited visibility to
converge to a single point. The authors use their previous
works in [2, 5] that allows the autonomous mobile robots
to agree on a x − y coordinate system, the common origin
and the direction of the x-axis. This allows the autonomous
mobile robots to exchange their location information and
also use this information to converge to a single point. The
next position is calculated to be within the smallest region
containing the mobile robot and its neighbours.

Similar to [1], the authors in [8, 9] also address the collec-
tive behaviour of a group of mobile autonomous agents. The
authors discuss two different strategies that allow for mo-
bile autonomous agents to rendezvous at a single specified
location (called the multi-agent rendezvous problem). Both
strategies are “local” strategies, wherein each agent indepen-
dently calculates its new location based only on its neighbour
information. The first set of algorithms consists of strate-
gies that depend on a common synchronised clock between
the mobile agents. The second set of algorithms consists of

Algorithm 3 Calculate Rendezvous Area

Calc-Rend-Area(L, V , A)

Input: L, V , A

Output: REND AREA

1: θ = θ1 + θ2 + ... + θn

n

2: (X, Y) =

8

<

:

X = x1 + x2 + ... + xn

n

Y = y1 + y2 + ... + yn

n

3: D = T ∗ vmin

4: (XRP , YRP) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

0 ≤ θ ≤ π
2

:



XRP = X + D ∗ sinθ

YRP = Y + D ∗ cosθ

π
2

< θ ≤ π :



XRP = X − D ∗ sinθ

YRP = Y + D ∗ cosθ

π < θ ≤ 2π
3

:



XRP = X − D ∗ sinθ

YRP = Y − D ∗ cosθ

2π
3

< θ < 2π :



XRP = X + D ∗ sinθ

YRP = Y − D ∗ cosθ

5: Calculate REND AREA based on REND PT
6: return REND AREA

Algorithm 4 Rendezvous Algorithm

Rend-Alg()

1: Broadcast REND MSG
2: REND AREA = Calc-Rend-Area(L, V , A)
3: Send the REND AREA and T to the team members
4: return

strategies that can be implemented independently, without
the need for a synchronised clock.

Though the ideas and protocols provided in the above re-
lated works are similar to our idea of a rendezvous area,
Algorithm 4 is only executed as and when required. Also,
we do not restrict the movement of the UAVs since they are
free to move in any manner to reach the rendezvous area.

In [12, 4], the authors address the communication link prob-
lem in a team of mobile autonomous robots by co-ordinating
the movement of the mobile robots to keep them within
communication range. In [4], the authors use a collection

of robots to follow the “lead” robot as a convoy to ensure
that the lead robot does not loose communication link with
the base station. The collection of mobile robots act as a
relay between the lead robot and the base station and al-
lows the lead robot to carry on with its mission. In [12],
the authors develop a Line-Of-Sight communication model
and show how the constraints can be optimised for different
criteria that depend on the local state of the mobile robot.

Although the ideas suggested in the above works are similar
to our approach in Section 3.1, in our approach the robots do
not keep following the lead robot, but instead resort to the
approach in Section 3.2 to maintain communication links.

In [3, 10], the authors focus on the formation of geometric
patterns by a group of mobile autonomous robots. This is
helpful in coordinating a group of mobile autonomous robots
by allowing them to maintain a pre-agreed upon formation
that will ensure that they stay within communication range.
In our work, we chose not to take this approach since it is
very restrictive with respect to the motion of the robots.

In [13], the authors present a system called Jamp that uses
disconnected operations to handle communication link dis-
connections. They define an abstraction called container, in
order to facilitate the implementation of mobile applications.
A container is defined as a group of objects and classes that
can move into execution environments provided by nodes of
the fixed environment or mobile devices. An application in
Jamp is implemented as an interaction between containers,
since containers can be moved from node to node.

The container concept in the Jamp system and its mobility
is similar to our role concept. However, Jamp is not appli-
cable for sudden communication link disconnections since it
is not possible to transfer state information to the newly in-
stantiated container in another node. Our approach caters
for sudden disconnections by periodically collecting state in-
formation by using the management tree.

5. CONCLUSIONS
In this paper, we have proposed algorithms and protocols
that allow SMC missions consisting of groups of UAVs to
successfully complete in the presence of failures. The ap-
proach includes two schemes which augment each other: (a)
a failure management scheme that copes with the disrup-
tions that occur as a result of intermittent communication
link disconnections, permanent communication link failures
or failure to one or more UAVs and (b) a communication
management scheme that tries to maintain the communica-
tion links between the UAVs involved in the mission.

We are implementing these schemes using the Webots mo-
bile robotics simulator [14] which is a good prototyping envi-
ronment for modelling, programming and simulating actual
mobile robots and then moving the software to the physical
robots. Part of the failure management protocol has already
been implemented on the Koala robots [6], but since commu-
nication range and intermittent disconnections are difficult
to control, we are implementing the failure and communica-
tion management in the simulator so as to be able to test the
working of the protocol with larger groups of robots. The
simulator will also allow us to find out the optimal values

for range threshold (TR) and the time to rendezvous (T).

6. ACKNOWLEDGEMENTS
The work reported in this paper was funded by the Systems
Engineering for Autonomous Systems (SEAS) Defence Tech-
nology Centre established by the UK Ministry of Defence.

7. REFERENCES
[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita.

Distributed memoryless point convergence algorithm
for mobile robots with limited visibility. IEEE
Transactions on Robotics and Automation,
15(5):818–828, Oct 1999.

[2] H. Ando, I. Suzuki, and M. Yamashita. Formation and
agreement problems for synchronous mobile robots
with limited visibility. In Proceedings of the IEEE
International Symposium on Intelligent Control, 1995.

[3] E. Bicho and S. Monteiro. Formation control for
multiple mobile robots: A non-linear attractor
dynamics approach. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2003.

[4] H. Nguyen, N. Pezeshkian, M. Raymond, A. Gupta, J.
Spector. Autonomous communication relays for
tactical robots. In Proceedings of the International
Conference on Advanced Robotics, 2003.

[5] I. Suzuki and M. Yamashita. Distributed Anonymous
Mobile Robots—Formation and Agreement Problems.
In Proceedings of the 3rd International Colloquium on
Structural Information and Communication
Complexity, 1996.

[6] k-team. http://www.k-team.com.

[7] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):pp.
41–50, 2003.

[8] J. Lin. Distributed mobility control for fault-tolerant
mobile networks. In Proceedings of Systems
Communications, 2005.

[9] J. Lin, A. S. Morse, and B. D. O. Anderson. The
multi-agent rendezvous problem. part 1: The
synchronous case. SIAM J. Control Optim.,
46(6):2096–2119, 2007.

[10] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns.
SIAM J. Comput., 28(4), 1999.

[11] J. Sventek, N. Badr, N. Dulay, S. Heeps, E. Lupu, and
M. Sloman. Self-managed cells and their federation. In
Workshop Proceedings of the 17th Conference on
Advanced Information Systems Engineering.
Springer-Verlag LNCS, 2005.

[12] J. Sweeney, T. Brunette, Y. Yang, and R. Grupen.
Coordinated teams of reactive mobile platforms. In
Proceedings of IEEE International Conference on
Robotics and Automation, 2002.

[13] M. Valente, R. Bighonha, M. Bigonha, and
A. Loureiro. Disconnected Operation in a Mobile
Computation System. In Proceedings of the Workshop
on Software Engineering and Mobility, 2001.

[14] Webots. http://www.cyberbotics.com. Commercial
Mobile Robot Simulation Software.

