348 research outputs found

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields

    Get PDF
    This paper introduces a new supervised classification method for hyperspectral images that combines spectral and spatial information. A support vector machine (SVM) classifier, integrated with a subspace projection method to address the problems of mixed pixels and noise, is first used to model the posterior distributions of the classes based on the spectral information. Then, the spatial information of the image pixels is modeled using an adaptive Markov random field (MRF) method. Finally, the maximum posterior probability classification is computed via the simulated annealing (SA) optimization algorithm. The combination of subspace-based SVMs and adaptive MRFs is the main contribution of this paper. The resulting methods, called SVMsub-eMRF and SVMsub-aMRF, were experimentally validated using two typical real hyperspectral data sets. The obtained results indicate that the proposed methods demonstrate superior performance compared with other classical hyperspectral image classification methods.Ritrýnt tímaritPeer Reviewe

    Spectral and spatial methods for the classification of urban remote sensing data

    Get PDF
    Lors de ces travaux, nous nous sommes intéressés au problème de la classification supervisée d'images satellitaires de zones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS). Deux stratégies ont été proposées. La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM) non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale et l'information spectrale extraites lors de la première phase. La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification, divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schéma de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé. Les différents résultats sont fusionnés à l'aide d'opérateurs flous. Les méthodes ont été validées sur des images réelles. Des améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature

    Multi-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines

    Get PDF
    Hyperspectral imaging is a new remote sensing technique that generates hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Supervised classification of hyperspectral image data sets is a challenging problem due to the limited availability of training samples (which are very difficult and costly to obtain in practice) and the extremely high dimensionality of the data. In this paper, we explore the use of multi-channel morphological profiles for feature extraction prior to classification of remotely sensed hyperspectral data sets using support vector machines (SVMs). In order to introduce multi-channel morphological transformations, which rely on ordering of pixel vectors in multidimensional space, several vector ordering strategies are investigated. A reduced implementation which builds the multi-channel morphological profile based on the first components resulting from a dimensional reduction transformation applied to the input data is also proposed. Our experimental results, conducted using three representative hyperspectral data sets collected by NASA's Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor and the German Digital Airborne Imaging Spectrometer (DAIS 7915), reveal that multi-channel morphological profiles can improve single-channel morphological profiles in the task of extracting relevant features for classification of hyperspectral data using small training sets

    An Approach for the Customized High-Dimensional Segmentation of Remote Sensing Hyperspectral Images

    Get PDF
    Abstract: This paper addresses three problems in the field of hyperspectral image segmentation: the fact that the way an image must be segmented is related to what the user requires and the application; the lack and cost of appropriately labeled reference images; and, finally, the information loss problem that arises in many algorithms when high dimensional images are projected onto lower dimensional spaces before starting the segmentation process. To address these issues, the Multi-Gradient based Cellular Automaton (MGCA) structure is proposed to segment multidimensional images without projecting them to lower dimensional spaces. The MGCA structure is coupled with an evolutionary algorithm (ECAS-II) in order to produce the transition rule sets required by MGCA segmenters. These sets are customized to specific segmentation needs as a function of a set of low dimensional training images in which the user expresses his segmentation requirements. Constructing high dimensional image segmenters from low dimensional training sets alleviates the problem of lack of labeled training images. These can be generated online based on a parametrization of the desired segmentation extracted from a set of examples. The strategy has been tested in experiments carried out using synthetic and real hyperspectral images, and it has been compared to state-of-the-art segmentation approaches over benchmark images in the area of remote sensing hyperspectral imaging.Ministerio de Economía y competitividad; TIN2015-63646-C5-1-RMinisterio de Economía y competitividad; RTI2018-101114-B-I00Xunta de Galicia: ED431C 2017/1

    Novel pattern recognition methods for classification and detection in remote sensing and power generation applications

    Get PDF
    Novel pattern recognition methods for classification and detection in remote sensing and power generation application

    Superpixel nonlocal weighting joint sparse representation for hyperspectral image classification.

    Get PDF
    Joint sparse representation classification (JSRC) is a representative spectral–spatial classifier for hyperspectral images (HSIs). However, the JSRC is inappropriate for highly heterogeneous areas due to the spatial information being extracted from a fixed-sized neighborhood block, which is often unable to conform to the naturally irregular structure of land cover. To address this problem, a superpixel-based JSRC with nonlocal weighting, i.e., superpixel-based nonlocal weighted JSRC (SNLW-JSRC), is proposed in this paper. In SNLW-JSRC, the superpixel representation of an HSI is first constructed based on an entropy rate segmentation method. This strategy forms homogeneous neighborhoods with naturally irregular structures and alleviates the inclusion of pixels from different classes in the process of spatial information extraction. Afterwards, the superpixel-based nonlocal weighting (SNLW) scheme is built to weigh the superpixel based on its structural and spectral information. In this way, the weight of one specific neighboring pixel is determined by the local structural similarity between the neighboring pixel and the central test pixel. Then, the obtained local weights are used to generate the weighted mean data for each superpixel. Finally, JSRC is used to produce the superpixel-level classification. This speeds up the sparse representation and makes the spatial content more centralized and compact. To verify the proposed SNLW-JSRC method, we conducted experiments on four benchmark hyperspectral datasets, namely Indian Pines, Pavia University, Salinas, and DFC2013. The experimental results suggest that the SNLW-JSRC can achieve better classification results than the other four SRC-based algorithms and the classical support vector machine algorithm. Moreover, the SNLW-JSRC can also outperform the other SRC-based algorithms, even with a small number of training samples

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems
    corecore