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Abstract: Joint sparse representation classification (JSRC) is a representative spectral–spatial classifier
for hyperspectral images (HSIs). However, the JSRC is inappropriate for highly heterogeneous areas
due to the spatial information being extracted from a fixed-sized neighborhood block, which is
often unable to conform to the naturally irregular structure of land cover. To address this problem,
a superpixel-based JSRC with nonlocal weighting, i.e., superpixel-based nonlocal weighted JSRC
(SNLW-JSRC), is proposed in this paper. In SNLW-JSRC, the superpixel representation of an HSI is
first constructed based on an entropy rate segmentation method. This strategy forms homogeneous
neighborhoods with naturally irregular structures and alleviates the inclusion of pixels from different
classes in the process of spatial information extraction. Afterwards, the superpixel-based nonlocal
weighting (SNLW) scheme is built to weigh the superpixel based on its structural and spectral
information. In this way, the weight of one specific neighboring pixel is determined by the local
structural similarity between the neighboring pixel and the central test pixel. Then, the obtained
local weights are used to generate the weighted mean data for each superpixel. Finally, JSRC is
used to produce the superpixel-level classification. This speeds up the sparse representation and
makes the spatial content more centralized and compact. To verify the proposed SNLW-JSRC method,
we conducted experiments on four benchmark hyperspectral datasets, namely Indian Pines, Pavia
University, Salinas, and DFC2013. The experimental results suggest that the SNLW-JSRC can achieve
better classification results than the other four SRC-based algorithms and the classical support vector
machine algorithm. Moreover, the SNLW-JSRC can also outperform the other SRC-based algorithms,
even with a small number of training samples.

Keywords: spatial–spectral fusion; joint sparse representation classification (JSRC); hyperspectral
imaging; superpixel; nonlocal weighting

1. Introduction

Hyperspectral imaging collects the spectral response of the Earth’s surface from
the visible to the infrared spectrum with a high spectral resolution, which enables the
discrimination of different materials using the acquired rich spectral information. In
particular, hyperspectral image (HSI) classification is used to assign a category label to
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each pixel for understanding the land cover and even its conditions. As a result, HSIs have
been successfully applied in many application fields, such as urban planning [1], land use
mapping [2], and natural resource monitoring [3].

In the past few decades, many approaches have been developed for the classification
of HSIs, based mainly on the spectral information, such as the support vector machine
(SVM) [4], multinomial logistic regression [5], and artificial neural network (ANN) [6],
etc. However, noise is inevitably present in these methods, mainly due to the fact that
they ignore the high spatial consistency of land cover [7]. Many attempts have been made
recently to incorporate spatial information to promote the classification of HSIs [8–19].
Typical methods include the Gabor filter [9], extended random walker [10], morphological
attribute profiles [11,12], edge preserving filters (EPF) [13,14,20], and the two-dimensional
version of singular spectrum analysis (SSA) [15,16,19]. Moreover, to deal with the two
typical problems of HSIs, i.e., the curse of dimensionality and small sample problems, a
series of methods for dimensionality reduction and representation/useful feature learning
have been developed [21–25]. These methods each have their own advantages.

More recently, researchers have introduced deep learning algorithms such as convolu-
tional neural networks to HIS classification, which extract spatial information through local
receptive fields [17,26]. Furthermore, several deeper networks and 2/3D CNN models have
been investigated in HSI classification [18,27]. The deep learning-based classification meth-
ods have achieved superior classification accuracy, but they are usually time-consuming
and require large amounts of training samples [28].

In recent years, sparse representation (SR) has attracted increasing attention in the field
of face recognition [29] and signal processing [30,31], where a signal can be linearly repre-
sented or reconstructed by using a few determined elemental atoms in a low-dimensional
subspace. By applying SR to HSI, sparsity can be adopted from the highly redundant
spectral dimension for SR classification (SRC) of HSIs [32–36]. Due to the effect of noise,
conventional pixelwise SRC has limitations when only spectral information is used for the
classification of land cover. Therefore, joint sparse representation classification (JSRC) is
proposed to combine both spatial and spectral information for more robust SRC in HSI [35].
JSRC performs classification by extending each pixel to a block of pixels centered at the
given pixel, usually with a fixed size, and assuming that all pixels within the block belong to
the same class. However, the fixed size of image blocks popularly adopted by JSRC-based
methods is problematic, which has two main drawbacks. One is the inability to sufficiently
exploit the structure diversity of land cover, and the other is the inclusion of noisy and
heterogeneous pixels within the block, especially at the boundary of different classes.

Superpixel segmentation is a widely applied method for tackling the structure diver-
sity of land cover, with typical segmentation methods including simple linear iterative
clustering (SLIC) [37], graph-based image segmentation [38–41], and entropy rate super-
pixel (ERS) [42]. From the plentiful applications, it is concluded that SLIC focuses more
on seeking the structural equilibrium of the segmented units [43]. Graph-based methods
cannot accurately reflect the object boundary when the boundary is weak or with complex
noise [39]. By contrast, ERS shows a better ability to delineate the boundary of targets.
For the sparse-representation-based methods, Fang et al. [32] proposed a multiscale JSRC
method with an adaptive sparsity strategy. It can achieve good performance only when
proper scales are selected. Some researchers introduced superpixels to HSI classification,
which are adaptively formed from over-segmented images for the effective description
of land cover structures [33,44,45]. There is also a shape adaptive method [34] proposed
to determine a polygon to represent spatial information, based on the similarity between
the pixels in different directions and the center pixel. However, in practice, superpixels or
adaptive shapes have to face internal heterogeneity and outliers [45] due to inherent noise
in the image.

As the spatial information of fixed-sized blocks is degraded by heterogeneous and
noisy pixels, some methods are employed to increase the contribution of the central pixel
whilst decreasing the influence of noisy pixels in a block. For instance, Tu et al. [46] used
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correlation coefficients between the central pixel and samples to enhance classification
decisions. A weighted joint nearest-neighbor method is applied to improve the reliability
of the classification performance [47]. These methods, however, are highly dependent on
the training samples. Additionally, a neighborhood weighting strategy is also used for
the suppression of heterogeneous pixels within the fixed-sized block. For example, Qiao
et al. [48] proposed a weighting scheme based on spectral similarity, where the weights are
based on an implicit assumption that the center pixels of blocks are noise-free, which is
hardly satisfied. Zhang et al. [49] proposed a nonlocal weighting scheme (NLW) based on
the local self-similarity of images. NLW can preserve pixels with local self-similarity in a
smooth region.

In summary, neither the adaptive neighborhood nor weighting-based methods can
fully solve the aforementioned two drawbacks in JSRC, i.e., the structure diversity of land
cover and noisy pixels. To this end, in this paper, we propose a superpixel-based nonlocal
weighted JSRC (SNLW-JSRC) for HSI classification. By combining nonlocal weighting
and the adaptive neighborhood together, the two drawbacks faced by JSRC can be solved
simultaneously. Specifically, the superpixel-based weighting scheme (SNLW) is conducted
to select pixels within superpixels according to their associated structural and spectral
similarity measurements.

The major purposes of this paper can be concluded as follows:

(1) To simultaneously and adaptively extract land cover structures while removing the
effects of noise and outliers;

(2) To fully explore the advantages of the superpixel and nonlocal weighting scheme for
spectral–spatial feature extraction in HSI;

(3) To outperform several classical SRC approaches and achieve improved data classifica-
tion results of HSI.

The remainder of this paper is organized as follows. Section 2 introduces the traditional
SRC and nonlocal weighted SRC. In Section 3, the detailed introduction of the proposed
SNLW-JSRC is presented. The experimental results and analysis are given in Section 4.
Finally, Section 5 provides some concluding remarks.

2. Nonlocal Weighted Sparse Representation for HSI Classification

For an HSI image, pixels from the same category lie in a low-dimensional subspace;
thus, these pixels can be represented linearly by a small number of pixels from the same
class [35]. This has formed the theoretical basis for SR classification (SRC) of HSI. Denote
a pixel of HSI as a vector x ∈ RB, where B is the number of spectral bands, and in
total, the pixels are in C classes. We select Ni training samples from the i-th class to
form an overcomplete dictionary Di ∈ RB×Ni , and the pixel x of the i-th class can be
reconstructed by [35]:

x = Di · ai (1)

where ai ∈ RNi represents the sparsity coefficient of x with respect to Di.
As the class of x is unknown before classification, we need to build a dictionary D

that contains all the classes, i.e., D = [D1, D2, . . . , Di, . . . , DC] ∈ RB×N , where N = ∑ Ni,
i = 1, 2,..., C. Accordingly, x can be reconstructed by [35]:

x = D · a (2)

where a = [a1, a2, . . . , ai, . . . , aC] ∈ RN is the sparse coefficient of x with respect to
D. In order to obtain a sparse enough solution of a, we need to solve the following
optimization problem [35]:

min ‖a‖0
s.t. x = D · a (3)
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where ‖·‖0 represents the number of non-zero elements of a. This is an NP-hard problem
and can be solved by using the orthogonal matching pursuit (OMP) [50]. After determining
a, the class of x can be determined as follows [35]:

class(x) = arg min‖x−Di · ai‖F, i = 1, 2, . . . , C (4)

Since the SRC is based on the spectral characteristics of a single pixel, the spatial
information of the pixel is ignored. As a result, it may lead to limited accuracy or sensitivity
to noise [51]. To tackle this problem, joint sparse representation classification (JSRC)
considering the spatial information of the pixel has been used to incorporate spectral–spatial
information [35]. For a pixel x, its spatial neighborhood is denoted as X ∈ RB×K, where K
denotes the number of pixels in x. The JSRC of x in relation to x can be derived as [47]:

X = D ·A (5)

where A = [A1, A2, . . . , Ai, . . . , AC] ∈ RN×K represents the sparse coefficient of X with
respect to D, and Ai ∈ RNi×K denotes the sparse coefficient of X with respect to Di. Specifi-
cally, each column in A shares the same sparse elements; hence, the spatial information of
the land cover can be jointly utilized. In order to derive a solution of A, we need to solve
the following objective function [47]:

min ‖A‖row,0
s.t. X = D ·A (6)

where ‖·‖row,0 represents the number of non-zero rows. Similarly, the optimization of
Equation (6) is an NP-hard problem, which can be approximated by a variant of OMP called
simultaneous OMP (SOMP) [52]. After obtaining A, the class of x can be determined by [47]:

class(x) = arg min‖x−Di ·Ai‖F, i = 1, 2, . . . , C (7)

However, spectral–spatial information extracted by JSRC is easily affected by hetero-
geneous pixels in the defined neighborhood region X. In [49], a nonlocal weighting scheme
(NLW) is developed to solve this problem. For a given test sample x, a fixed-sized block X
is obtained, centering on x. The weight of a neighboring pixel yi within X is determined
as follows [49]:

ω
′
(x, yi) = f (‖J(x)− J(yi)‖), i = 1, 2, . . . , T (8)

where J(·) is a joint neighborhood definition function, and J(x) and J(yi) refer to x-centric
and yi-centric HSI neighborhood blocks, respectively. ‖J(x)− J(yi)‖ represents the spectral–
spatial difference between the two blocks, and T is the number of neighboring pixels. f (·)
denotes a Tukey weight function [49] to weigh the spectral–spatial differences.

With the determined weights, a weighted region XW centered on x can be obtained
as below [49]:

XW = ωX ·X
where ωX =

[
ω
′
(x, y1), ω

′
(x, y2), . . . , ω

′
(x, yT)

] (9)

where ωX is a vector of the weights for neighboring pixels in X. Finally, JSRC is performed
on XW, using Equations (6) and (7) to obtain the labeled value of x. However, the weighted
results of NLW cannot completely suppress the effects of noise and heterogeneous pixels,
especially at the edges of land cover. Therefore, this paper proposes the SNLW scheme,
which will be introduced in the following section.

3. The Proposed Superpixel-Based Nonlocal Weighted JSRC
3.1. Motivation

In addition to the NLW-based scheme, superpixel-based JSRC is another alternative
for improving the accuracy. Figure 1 shows the different neighborhoods in JSRC.
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Figure 1. The illustration of different neighborhoods in JSRC: (A) superpixel neighborhood, (B) non-
local weighted neighborhood, and (C) superpixel-based nonlocal weighted neighborhood. Three
points a–c are pixels; a is a testing pixel, and b and c are neighboring pixels. X is the neighborhood of
pixel a, and it is a superpixel in (A,C) and a square block in (B).

As shown in Figure 1, they both have their own limitations. Figure 1A shows the
superpixel neighborhood. As shown, a superpixel X can give a good boundary partition
of the building. However, there are still noisy pixels and outliers. For example, the red
points a and b, which, respectively, represent red and black targets, are quite different from
the building. Figure 1B shows the NLW-based weighting scheme, where X is the defined
neighborhood block for the central pixel a. Points b and c are two pixels within X. The
red boxes denote the local structures for the three pixels, whose weights are calculated
using Equation (10). Visually, pixels a and c have similar local structures (red boxes). Thus,
the pixel c will be assigned a large weight to the test pixel a. This is clearly unreasonable
since the pixel c itself is in a different class with respect to the test pixel a. In addition,
although the pixel b is the same class as the test pixel a, its weight will be small because the
local structures of a and b are quite different, as shown in Figure 1B. Obviously, the NLW
neighborhood needs further improvement.

As for Figure 1C, it shows the proposed superpixel-based nonlocal weighting (SNLW)
scheme. The superpixel is the neighborhood X of the test pixel a, where X includes
pixel b but not pixel c. The red boxes also illustrate the local structures of the three
pixels a, b and c. In the SNLW scheme, to eliminate the inclusion of pixels from different
classes (such as pixel c), the local regions are further refined by the overlapped regions of
X and the red boxes, as illustrated in Figure 1C. As shown, the neighborhood is defined
as the overlapping region filled with blue dashed lines in the close-up view for pixel a.
Accordingly, the weights of pixels are calculated on these overlapping regions, which
prevents the effects of external pixels. As a result, pixel b will be assigned a large weight
with respect to test pixel a, and pixel c is naturally excluded. This illustrates how the
proposed SNLW-JSRC works more effectively to make use of spectral–spatial information
for improved HSI classification. The block diagram of the proposed approach is given
in Figure 2, which is actually composed of three main steps, i.e., the generation of the
superpixel, superpixel-based NLW, and JSRC for weighted mean superpixels. Details of
these are presented in the next three subsections.
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Figure 2. The workflow of the proposed SNLW-JSRC.

3.2. Generation of Superpixels

Superpixels can be formed by segmentation methods [42,43] for a single-band im-
age. In the case of HSI, the conventional segmentation methods are not applicable since
HSIs are three-dimensional tensor data. Therefore, it is generally necessary to perform
dimensionality reduction. The commonly used dimensionality reduction methods include
principal component analysis (PCA) [53], two-dimensional singular spectrum analysis
(2D-SSA) [15], etc.; PCA is used in this paper for its efficiency. After applying PCA on
HSI, the first PC is extracted, followed by the entropy rate segmentation (ERS) [42] to
segment the image. The first PC is treated as a base map G, and the ERS method divides
G into L closely connected pixel groups, namely superpixels. ERS first constructs an edge
set of E of G, which calculates the similarity between pairwise pixels. An edge subset
A ⊆ G is selected to construct the entropy rate H(A) and balance the item B(A). Finally,
superpixel segmentation is obtained by solving the objective function below [42]:

max
A
{H(A) + λB(A)} s.t. A ⊆ E (10)

where λ > 0 is a parameter to balance the contributions between H(·) and B(·).

3.3. Superpixel-Based Nonlocal Weighting Scheme (SNLW)

After deriving the superpixel map, the weighting process is implemented as follows.
Figure 3 shows three local structures (a–c) in superpixels.

Figure 3. The local structures in superpixels: (A,B) are two local structure samples, in which green
and blue pixels represent the local structures, and (C) denotes the calculation position (yellow pixels)
of structures a and b.
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To identify the similarity between local structures—for example, as shown in Figure 3—
the local structures in a (the green part) and b (the blue part) need be calculated first.
We measure the spectral and structural information to jointly determine the similarity.
However, when calculating the similarity between local structures, the local structures a
and b are unequal in size. As seen in Figure 3C, our solution is to calculate the overlapping
positions (the yellow part) of two local structures (a,b). Spectral information is obtained
by the mean vector of local structures (a,b). Specifically, with a given scale s, the local
structure L(x) of the test pixel x is extracted, and for another pixel y in the superpixel, the
local structure is L(y), and the overlap position of L(x) and L(y) is J(·).

By evaluating the difference between the local structures, the weighting of y can be
decided by:

ω′SP(x, y) = f (λ‖J(x)− J(y)‖+ (1− λ‖x− y‖))
where λ =

NJ(x)+NJ(y)
NL(x)+NL(y)

(11)

where λ is a weight item, and NL(·) and NJ(·) are the pixel numbers of L(·) and J(·),
respectively. x and y are the mean spectral information of all pixels in L(x) and L(y),
respectively. ‖J(x)− J(y)‖ and ‖x− y‖ can be calculated by [49]:

‖J(x)− J(y)‖ =
∣∣∣∣∣ 1
B

B

∑
k=1

(Jk(x)− Jk(y))⊗Θ

∣∣∣∣∣ (12)

‖x− y‖ = 1
B

∑
NL(x)
l=1 Ll,k(x)

NL(x)
− ∑

NL(y)
l=1 Ll,k(y)

NL(y)

 (13)

where Jk(·) denotes the k-th band in J(·), Ll,k(·) denotes the k-th band and l-th pixel in L(·),
B is the number of bands in the HSI, and ⊗ denotes the convolutional operator. Θ is a
Gaussian blur kernel, which measures the weights of the corresponding pixels within the
patch of J(x)− J(y). Note that the size of the Gaussian kernel is set to the size of the J(·).

In Equation (11), f (·) represents the weighting function; after the differences between
pixels are calculated, the weights are defined as:

ω′SP(x, y) =
(

1−
(

λ‖J(x)−J(y)‖+(1−λ‖x−y‖)
ρ

)α)2
, α ≥ 1

where ρ= max(‖λJ(x)− J(y) + ‖x− y‖‖)
(14)

Equation (14) is a monotonic descending function within [0, 1]; α controls the degree
of compression. When α is relatively large, only those pixels with large differences are
suppressed. ρ represents the decay and is set to the maximum difference value within the
superpixel, ensuring that the weighted results between two arbitrary pixels are the same.
For a superpixel, a symmetric weighted matrix is obtained, as shown in Figure 2, in which
each row represents a weighted result for a test pixel.

Furthermore, the weight matrix is processed as Equation (15) to better suppress
heterogeneous pixels and better enhance similar pixels, in which:

ωSP(x, y) =
{

0, 0 ≤ ω′SP(x, y) < OTSU
1, OTSU ≤ ω

′
SP(x, y) < 1

(15)

where OTSU is a threshold adaptively acquired by the Otsu threshold method [54], which
decides whether the corresponding pixel will be adopted or discarded.

3.4. JSRC for Weighted Mean Superpixels

In order to speed up the sparse representation and eliminate the effect of noisy pix-
els, we propose to centralize the information of similar pixels, i.e., weighted mean, in
our superpixel-based SR. For a given superpixel XSP = [x1, x2, . . . , xS] ∈ RB×S, S is the
number of superpixels, and xi is the i-th pixel within XSP. The weights of xi are defined as
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ωSP(xi) = [ωSP(xi, y1), ωSP(xi, y2), . . . , ωSP(xi, yS)]
T . The weighted mean pixel xi

wsp of xi
can be determined according to the weights by:

xi
wsp =

∑ ωSP(xi) ·XSP
T

∑ ωSP(xi)
(16)

The weighted mean of the superpixel, XWSP, is the collection of xi
wsp, i.e.,

XWSP =
[
xi

wsp, x2
wsp, . . . , xS

wsp

]
. Finally, we assume all pixels within a superpixel from

the same class and apply JSRC for classification, using Equations (6) and (7) to obtain
the label.

4. Experimental Results and Discussion

In the experimental part, the performance of the proposed SNLW-JSRC approach
is evaluated using four publicly available HSI datasets: Indian Pines, Pavia University
(PaviaU), Salinas, and 2013 GRSS Data Fusion Contest (DFC2013) [55]. The proposed
method was benchmarked with several classical HSI classification approaches, includ-
ing pixel-wise sparse representation classification (SRC) [29], joint sparse representation
classification (JSRC) [35], nonlocal weighted joint sparse representation (NLW-JSRC) [49],
superpixel-based joint sparse representation (SP-JSRC), its single-scale version in [33],
and SVM [4]. In these methods, SRC and SVM are typical pixel-wise classifiers; others
are spectral–spatial-based classifiers. The NLW-JSRC method uses the same weighting
scheme as ours, yet it is based on local self-similarity, i.e., spectral–spatial information. The
SP-JSRC is a superpixel-level spectral–spatial classifier. The quantitative metrics used in
this study include the overall accuracy (OA), the average accuracy (AA), and the Kappa
coefficient (Kappa) [32].

4.1. Datasets

The Indian Pines dataset was acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in Northwestern Indiana, USA. The spectral range is from
400 to 2450 nm. We removed 20 water absorption bands and used the remaining 200 bands
for experiments. The imaged scene had 145 × 145 pixels with a 20 m spatial resolution,
among which 10,249 pixels are labeled. The total number of classes in this dataset is 16.

The PaviaU dataset was acquired in Pavia University, Italy, by the Reflective Optics
System Imaging Spectrometer. The spatial resolution of the dataset is 1.3 m, while the
spectral range is from 430 nm to 860 nm. After removing 12 water absorption bands, we
keep 103 bands from the original 115 bands for the experiment. The imaged scene has
610 × 340 pixels, among which 42,776 pixels are labeled. The number of classes is 9.

The Salinas scene dataset was also collected by the AVIRIS sensor in Salinas Valley,
California, which has a continuous spectral coverage from 400 nm to 2450 nm. The spatial
resolution of the dataset is 3.7 m. There are 512 × 217 pixels, among which 54,129 pixels
were labeled and used for the experiment. After removing the water absorption bands, we
keep the remaining 204 bands in the experiments. The number of classes is 16.

The DFC2013 dataset is a part of the outcome of the 2013 GRSS Data Fusion Contest,
and it was acquired by the NSF-funded Center for Airborne Laser Mapping over the
University of Houston campus and its neighboring area in the summer of 2012. This dataset
has 144 bands in the 380–1050 nm spectral region. The spatial resolution of the dataset is
2.5 m. There are 349 × 1905 pixels, and 15029 of them were labeled as training and testing
pixels. The number of classes is 15.

4.2. Comparison of Classification Results

For SVM, we use the RBF kernel, where a fivefold cross-validation is used. The
parameters of SRC were tuned to the best. For all the SRC-based methods, the sparse level
was set to 3, as used in [18]. Additionally, the scale of local blocks is 5 × 5 for JSRC and
11 × 11 for NLW-JSRC. For SP-JSRC and SNLW-JSRC, the size of superpixels was chosen
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from a sequence, which is 400, 500, 600, 700, 800, 900, 1000, 1100, and 1200, and we chose
500 for Indian Pines, 1100 for PaviaU, 400 for Salinas, and 1000 for DFC2013. The parameter
α in Equation (14) is set to 3 in this paper.

The first experiment was on the Indian Pines, where 2.5% of samples in each class
were randomly selected for training, and the remaining (97.5%) for testing. The specific
numbers of training and testing samples for each class are summarized in Table 1. The
quantitative results for our approach and the benchmarking ones are given in Table 2 for
comparison, where the best results are highlighted in bold. Note that to reduce the impact
of randomness, all the experiments were repeated for 10 runs, where the averaged results
are reported. Figure 4 shows the classification maps of the last run.

Table 1. Class-based numbers of training and testing samples for Indian Pines.

Class Name Training Testing

1 Alfalfa 2 48
2 Corn-no till 38 1462
3 Corn-mintill 22 850
4 Corn 7 242
5 Grass-pasture 13 494
6 Grass-trees 20 747
7 Grass-pasture-mowed 1 29
8 Hay-windrowed 13 489
9 Oats 1 20
10 Soybean-notill 26 994
11 Soybean-mintill 65 2513
12 Soybean-clean 16 606
13 Wheat 6 209
14 Woods 34 1294
15 Bldg-grass-trees-drives 11 394
16 Stone-steel-towers 3 94

Total 278 10,485

Table 2. Accuracy of Indian Pines classification results (the best result in each row is highlighted
in bold).

Class SVM SRC JSRC NLW-JSRC SP-JSRC SNLW-JSRC

1 43.18 40.23 68.41 45.91 97.95 98.01
2 59.55 44.89 69.83 72.22 81.33 82.96
3 53.03 38.45 71.09 74.67 84.18 82.35
4 16.45 26.45 54.68 62.51 60.95 63.91
5 84.47 70.57 86.81 83.55 85.57 84.73
6 91.42 89.21 94.61 93.77 97.37 97.13
7 74.07 60.37 75.56 52.96 96.30 96.30
8 96.57 92.45 96.72 96.31 99.81 96.38
9 10.53 26.32 51.05 41.58 100.00 100.00
10 64.41 56.02 81.61 80.96 90.06 93.81
11 70.71 66.14 86.4 88.57 90.12 92.10
12 52.25 27.58 54.62 61.98 79.20 88.26
13 85.93 86.98 91.46 92.42 99.55 99.56
14 88.56 87.34 96.24 96.76 98.91 96.13
15 21.01 24.12 48.70 51.84 53.03 75.53
16 78.89 86.56 91.44 84.23 90.67 90.56

OA(%) 68.61 61.33 80.67 82.09 87.81 89.60
AA(%) 61.94 57.73 76.20 73.77 87.81 89.86
Kappa 0.64 0.56 0.78 0.79 0.86 0.88
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Figure 4. Indian Pines image: (A) composite color image and (B) ground truth; estimation map
obtained by (C) SVM; (D) SRC; (E) JSRC; (F) NLW-JSRC; (G) SP-JSRC; (H) SNLW-JSRC.

According to the visualization results of Figure 4, the classification map of pixel-
wise SRC has serious noise, while the classification results based on the spectral–spatial
information classifier are obviously superior in both quantitative and qualitative terms.
Although the classification result of JSRC suppresses the influence of noise, there is obvious
misclassification. For NLW-JSRC, partial misclassification of JSRC is solved, but because
NLW-JSRC cannot make good use of spectral–spatial information in the weighting process,
the improvement is limited. In SP-JSRC, due to the use of superpixels, good boundaries of
the classification map and higher accuracy were obtained, but the noise and outliers within
several superpixels brought misclassifications. For the SNLW-JSRC, the quantitative result
in Table 2 is the best among the comparison methods. In terms of qualitative results, the
classification map is almost immune to noise, has good boundaries, and overcomes the
problem of superpixel internal noise.

The second experiment was conducted on the PaviaU dataset. For each class of this
dataset, 50 samples were randomly selected as training samples, and the rest of the samples
were taken as testing samples. The specific numbers of training and testing samples are
shown in Table 3. The quantitative results for comparison methods and the proposed
method are tabulated in Table 4, in which the best results are in bold. As with Indian Pines,
all the results were averaged in 10 runs with different training sets. The obtained estimation
maps of the last run are given in Figure 5.

Table 3. Class-based numbers of training and testing samples for PaviaU.

Class Name Training Testing

1 Alfalfa 50 6881
2 Meadows 50 18,899
3 Graval 50 2349
4 Trees 50 3314
5 Metal sheets 50 1595
6 Bare soil 50 5279
7 Bitumen 50 1580
8 Bricks 50 3932
9 Shadows 50 1107

Total 450 44,936
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Table 4. Accuracy of PaviaU classification results (the best result in each row is highlighted in bold).

Class SVM SRC JSRC NLW-JSRC SP-JSRC SNLW-JSRC

1 76.02 57.02 46.69 51.54 65.58 82.90
2 84.16 71.23 85.62 87.95 89.43 94.46
3 89.56 67.44 88.09 88.07 95.48 97.33
4 87.23 89.01 92.84 93.09 83.38 81.47
5 98.84 99.40 99.52 99.68 94.32 98.30
6 83.37 62.10 78.03 80.28 93.37 96.93
7 93.75 85.45 98.35 97.28 100.00 100.00
8 75.66 67.35 83.43 85.45 93.23 96.26
9 100.00 96.06 68.75 61.40 85.03 95.89

OA(%) 83.63 70.51 79.57 81.62 86.75 92.64
AA(%) 87.62 77.23 82.37 82.75 88.87 93.73
Kappa 0.79 0.62 0.74 0.76 0.83 0.90

Figure 5. PaviaU image: (A) composite color image and (B) ground truth; estimation map obtained
by (C) SVM; (D) SRC; (E) JSRC; (F) NLW-JSRC; (G) SP-JSRC; (H) SNLW-JSRC.

As shown in Figure 5, compared to pixel-wise classifiers and block-based classifiers,
superpixel-based methods achieve better noise suppression and boundary division. How-
ever, the superpixel information used by the SP-JSRC method may contain noise and
outliers, thus causing misclassifications in the superpixel level. In SNLW-JSRC, these
misclassifications were well solved due to the SNLW strategy. The quantitative results
listed in Table 4 also confirm the superiority of SNLW-JSRC. In addition, the advantages of
SNLW-JSRC on PaviaU are more obvious than those on Indian Pines. This may be because
of the higher spatial resolution of the PaviaU dataset.

For the experiment of Salinas, we randomly selected 0.25% of the samples in each
category as training samples, and the rest (99.75%) were taken as testing samples. The
specific numbers of training and testing samples for each class are available in Table 5. The
quantitative and qualitative results for comparison methods and the proposed method are
tabulated in Table 6 and Figure 6, respectively. In Table 6, the best results of each row are in
bold. The results shown in Table 6 were also averaged in 10 runs with different training
sets, and the classification map was obtained from the last run.
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Table 5. Class-based numbers of training and testing samples for Salinas.

Class Name Training Testing

1 Weeds_1 6 2003
2 Weeds_2 10 3716
3 Fallow 5 1971
4 Fallow plow 4 1390
5 Fallow smooth 7 2671
6 Stubble 10 3949
7 Celery 9 3570
8 Grapes 29 11,242
9 Soil 16 6187
10 Corn 9 3269
11 Lettuce 4 wk 3 1065
12 Lettuce 5 wk 5 1922
13 Lettuce 6 wk 3 913
14 Lettuce 7 wk 3 1067
15 Vinyard untrained 19 7249
16 Vinyard trellis 5 1802

Total 143 53,986

Table 6. Accuracy of Salinas classification results (the best result in each row is highlighted in bold).

Class SVM SRC JSRC NLW-JSRC SP-JSRC SNLW-JSRC

1 98.60 97.37 99.83 99.91 100.00 100.00
2 99.25 97.67 99.74 99.72 99.53 99.42
3 82.29 76.29 84.32 83.91 89.49 80.55
4 98.13 98.91 88.05 95.99 96.13 99.93
5 96.18 96.44 93.38 99.23 99.29 99.26
6 96.35 99.42 99.71 99.99 99.79 99.67
7 99.44 98.98 99.17 99.82 99.73 99.05
8 72.37 66.05 76.84 75.00 86.27 91.23
9 98.84 97.08 99.92 99.97 99.86 99.41
10 85.56 79.49 90.81 93.67 95.74 88.18
11 88.17 92.14 96.42 99.56 98.54 98.37
12 97.97 93.95 86.20 97.98 100.00 100.00
13 97.81 95.90 93.92 98.74 97.82 97.91
14 91.28 85.64 92.25 97.96 95.14 90.95
15 56.09 56.78 70.94 69.38 80.85 91.80
16 95.12 74.03 94.98 94.01 97.01 91.34

OA(%) 85.37 82.52 88.42 89.19 93.45 94.88
AA(%) 90.84 87.89 91.66 94.05 95.95 95.44
Kappa 0.84 0.81 0.87 0.88 0.93 0.94

As shown in Figure 6, all the four SRC variants integrated with spatial information
have less salt and pepper noise compared to the spectral-reliant SVM and SRC. Moreover,
the misclassification of the proposed SNLW-JSRC is the lowest. This is also confirmed by
the quantitative results tabulated in Table 6. In addition, it is shown that although the
SNLW-JSRC still produced the best OA and Kappa, its advantages on the Salinas dataset are
not so remarkable as on the PaviaU dataset. This comes from the simple scene and lower
spatial resolution of Salinas, which make its spatial heterogeneity lower. From Table 6, we
can see that the performance of SP-JSRC and SNLW-JSRC is similar. This also indicates that
SNLW-JSRC has a better effect on the HSI with higher heterogeneity.

The last experiment was conducted on the DFC2013 dataset. In this paper, a central
part of the Houston University campus containing 336 × 420 pixels belonging to 11 classes
of targets is selected as the experimental area. For each class of this dataset, we selected
1% of samples as training samples, and the rest (99%) were taken as testing samples. The
specific numbers of training and testing samples for each class are shown in Table 7. The
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quantitative and qualitative results for comparison methods and the proposed method
are tabulated in Table 8 and Figure 7, respectively. The results shown in Table 8 were also
averaged in 10 runs with different training sets, in which the best results are in bold. The
classification map displayed in Figure 7 was obtained from the last run.

Figure 6. Salinas image: (A) composite color image and (B) ground truth; estimation map obtained
by (C) SVM; (D) SRC; (E) JSRC; (F) NLW-JSRC; (G) SP-JSRC; (H) SNLW-JSRC.

Table 7. Class-based numbers of training and testing samples for DFC2013.

Class Name Training Testing

1 Healthy grass 5 454
2 Stressed grass 3 211
3 Tree 2 137
4 Soil 2 153
5 Water 1 6
6 Residential 4 372
7 Commercial 1 54
8 Road 3 275
9 Parking lot 1 5 483
10 Parking lot 2 1 8
11 Tennis court 3 247

Total 30 2400

From Table 8, we can conclude that for the more complicated DFC2013 dataset, the
SNLW-JSRC performs with obvious superiority, with OA and Kappa equal to 86.83% and
0.85, respectively. Similar to the PaviaU dataset, the spatial resolution and heterogeneity of
DFC2013 are higher; this also reveals that the SNLW-JSRC can not only provide adaptive
neighborhood information following the irregular morphological characteristics of targets
but also eliminates the outliers and noise in the neighborhood. Especially for the targets
with confusing spectral characteristics, such as soil, residential areas, and parking lot areas,
the SNLW-JSRC shows better classification performance, as highlighted in Figure 7C–H by
the red circles.
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Table 8. Accuracy of DFC2013 classification results (the best result in each row is highlighted in bold).

Class SVM SRC JSRC NLW-JSRC SP-JSRC SNLW-JSRC

1 99.31 93.52 99.22 99.49 100 99.33
2 89.18 96.25 80.48 90.48 58.8 86.49
3 92.81 62.44 83.41 83.7 72.96 70.74
4 88.28 99.01 99.8 98.41 99.21 89.67
5 100 100 78 0 80 100
6 92.69 71.25 76.52 77.17 76.14 88.45
7 30.57 35.66 37.36 40.38 33.96 33.58
8 62.43 56.14 70.99 76.43 78.49 90.77
9 53.95 62.47 72.2 71.28 78.16 74.25
10 21.43 18.57 94.29 92.86 57.14 100
11 89.59 83.24 92.42 94.39 91.07 100

OA(%) 80.17 75.77 82.35 83.85 81.65 86.83
AA(%) 74.57 70.78 80.43 74.96 75.08 84.84
Kappa 0.77 0.72 0.79 0.81 0.79 0.85

Figure 7. DFC2013 image: (A) composite color image and (B) ground truth; estimation map obtained
by (C) SVM; (D) SRC; (E) JSRC; (F) NLW-JSRC; (G) SP-JSRC; (H) SNLW-JSRC.

To further test the computational efficiency of the proposed SNLW-JSRC, we calculated
the running time of each experiment. These experiments were conducted on a PC with an
Intel (R) Pentium (R) CPU 2.9 GHz and 6 GB RAM, and Matlab R2017b. The CPU times (in
seconds) of the compared methods are listed in Table 9.

Table 9. CPU times of compared methods.

Methods Indian Pines (s) PaviaU (s) Salinas (s) DFC2013 (s)

SVM 7 31 13 10
SRC 12 40 38 3
JSRC 44 75 65 23
NLW-JSRC 248 532 467 39
SP-JSRC 6 13 26 2
SNLW-JSRC 18 146 173 26

As shown, due to the first four algorithms paying more and more attention to the
use of spatial neighboring information, their CPU time increases. By contrast, the CPU
time of SP-JSRC is much lower since it performs superpixel-level sparse decomposition.
Compared to the SP-JSRC, the proposed SNLW-JSRC adds a more time-consuming SNLW-
based weighting procedure. Thus, the SNLW-JSRC consumes more computing time than
the SP-JSRC. Nevertheless, the SNLW-JSRC is clearly more efficient than the NLW-JSRC.
Overall, comprehensively considering its superior classification performance and efficiency,
the proposed SNLW-JSRC is a more preferable algorithm. Even so, mixed programming
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with C language and Matlab, as well as the use of GPU, will further speed up the calculation
process, and SNLW-JSRC is still optional.

4.3. Effect of Superpixel Numbers

The number of superpixels affects the size of the superpixel. Generally, the larger the
superpixel number, the smaller the superpixel size, and vice versa. Therefore, the number
of superpixels has a great influence on the quality of superpixel segmentation. Here, we set
up a sequence of superpixel numbers—400, 500, 600, 700, 800, 900, 1000, 1100, and 1200—to
explore the impact on SNLW-JSRC and SP-JSRC. In the experiment, the number of training
samples was 10%, 200, 1%, and 2% of each class for Indian Pines, PaviaU, Salinas, and
DFC2013, respectively. The remaining parameters were the same as those in Section 4.2.
The effect of the superpixel number on the Indian Pines, PaviaU Salinas, and DFC 2013
datasets is shown in Figure 8. As can be observed, for almost all the numbers of superpixels,
SNLW-JSRC has an obvious improvement over SP-JSRC due to better noise suppression
achieved by SNLW-JSRC. In addition, after an upward trend of accuracy, a downward trend
is presented. As the number of superpixels becomes larger and larger, the superpixel scale
becomes smaller and smaller, resulting in failure to provide sufficient spatial information
for proper classification. However, the decline in the accuracy of SNLW-JSRC is slower than
that of SP-JSRC, indicating that noise suppression promotes the robustness of classification.

Figure 8. Effects of the superpixel number on four datasets; (A–D) are based on Indian Pines, PaviaU,
Salinas, and DFC2013 images, respectively.

4.4. Effect of the Number of Training Samples

Here, we explore the impact of the number of training samples on different methods,
including JSRC, NLW-JSRC, SP-JSRC, and SNLW-JSRC, on four datasets. We set the
percentage of training samples as 1%, 2.5%, 5%, 10%, 15%, and 20% of each class for Indian
Pines, select 50, 100, 200, 300, 400, and 500 samples of each class for PaiviaU, and set the
percentage as 0.1%, 0.25%, 0.5%, 1%, 1.5%, and 2% of each class for Salinas and DFC2013.
The remaining parameters are the same as those in Section 4.2. The results are shown
in Figure 9. The overall trend is that the more training samples included, the higher the
classification accuracy of each method. When the sample percentage is 10% for Indian Pines,
200 for PaviaU, 1% for Salinas, and 2% for DFC 2013, the growth trend becomes slower.
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In particular, SNLW-JSRC is basically superior to other methods, especially for the more
complex PaviaU data, indicating that the proposed method is good at handling complex
data. When the training sample is small, SNLW-JSRC can achieve a better improvement
since SNLW-JSRC achieves good noise suppression and makes the classification more
robust to samples.

Figure 9. Effects of the number of training samples; (A–D) are based on Indian Pines, PaviaU, Salinas,
and DFC2013 images, respectively.

5. Conclusions

In this paper, we proposed superpixel-based nonlocal weighting joint sparse represen-
tation classification (SNLW-JSRC) for hyperspectral image classification. Firstly, superpixels
help to obtain a relatively spectral-consistent neighborhood. The nonlocal weighting is
used to further purify the spatial neighborhood, and finally, JSRC enables superpixel-level
classification. The results on four benchmark datasets show that the proposed method is su-
perior to the comparative methods in terms of improved classification accuracy, comparable
computing time, and robustness to small numbers of training samples. The analysis of the
classification results also shows that the proposed method can simultaneously solve the two
problems of block neighborhoods in JSRC, which not only provides adaptive neighborhood
information but also eliminates the outliers and noise in the neighborhood. However, the
results of this paper are still limited by the results of segmented superpixels; thus, serious
over-segmentation will also lead to a lack of spatial information. This will form the basis of
our future investigation.
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