1,019 research outputs found

    Optimal Control of Unknown Nonlinear System From Inputoutput Data

    Get PDF
    Optimal control designers usually require a plant model to design a controller. The problem is the controller\u27s performance heavily depends on the accuracy of the plant model. However, in many situations, it is very time-consuming to implement the system identification procedure and an accurate structure of a plant model is very difficult to obtain. On the other hand, neuro-fuzzy models with product inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership functions can be easily trained by many well-established learning algorithms based on given input-output data pairs. Therefore, this kind of model is used in the current optimal controller design. Two approaches of designing optimal controllers of unknown nonlinear systems based on neuro-fuzzy models are presented in the thesis. The first approach first utilizes neuro-fuzzy models to approximate the unknown nonlinear systems, and then the feasible-direction algorithm is used to achieve the numerical solution of the Euler-Lagrange equations of the formulated optimal control problem. This algorithm uses the steepest descent to find the search direction and then apply a one-dimensional search routine to find the best step length. Finally several nonlinear optimal control problems are simulated and the results show that the performance of the proposed approach is quite similar to that of optimal control to the system represented by an explicit mathematical model. However, due to the limitation of the feasible-direction algorithm, this method cannot be applied to highly nonlinear and dimensional plants. Therefore, another approach that can overcome these drawbacks is proposed. This method utilizes Takagi-Sugeno (TS) fuzzy models to design the optimal controller. TS fuzzy models are first derived from the direct linearization of the neuro-fuzzy models, which is close to the local linearization of the nonlinear dynamic systems. The operating points are chosen so that the TS fuzzy model is a good approximation of the neuro-fuzzy model. Based on the TS fuzzy model, the optimal control is implemented for a nonlinear two-link flexible robot and a rigid asymmetric spacecraft, thus providing the possibility of implementing the well-established optimal control method on unknown nonlinear dynamic systems

    State-of-the-art in Comprehensive Cascade Control Approach through Monte-Carlo Based Representation

    Get PDF
    The research relies on the comprehensive cascade control approach to be developed in the area of spacecraft, as long as Monte-Carlo based representation is taken into real consideration with respect to state-of-the-art. It is obvious that the conventional methods do not have sufficient merit to be able to deal with such a process under control, constantly, provided that a number of system parameters variations are to be used in providing real situations. It is to note that the new insights in the area of the research’s topic are valuable to outperform a class of spacecrafts performance as the realizations of the acquired results are to be addressed in both real and academic environments. In a word, there are a combination of double closed loop based upon quaternion based control approach in connection with Euler based control approach to handle the three-axis rotational angles and its rates, synchronously, in association with pulse modulation analysis and control allocation, where the dynamics and kinematics of the present system under control are analyzed. A series of experiments are carried out to consider the approach performance in which the aforementioned Monte-Carlo based representation is to be realized in verifying the investigated outcomes

    Nano-satellite attitude control system based on adaptive neuro-controller

    Get PDF
    The current research focuses on designing of an intelligent controller for attitude control system (ACS) of nano-satellite. The nanosatellite namely Innovative Satellite (InnoSAT) was organized by Agensi Angkasa Negara (ANGKASA) to attract the interest of Malaysian universities in satellite development.In this study, an intelligent controller based on Hybrid Multi Layered Perceptron (HMLP) network was developed. The network used model reference adaptive control (MRAC) system as a control scheme to control a time varying systems where the performance specifications are given in terms of a reference model.The Weighted Recursive Least Square (WRLS) algorithm will adjust the controller parameters to minimize error between the plant output and the model reference output.The objective of this paper is to analyze the tracking performance of ANC based on HMLP network and ANC based on standard MLP network for controlling a satellite attitude. The simulation results indicate that ANC based on HMLP network gave better performance than ANC based on standard MLP network

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 187

    Get PDF
    This supplement to Aerospace Medicine and Biology lists 247 reports, articles and other documents announced during November 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Emphasis is placed on applied research, but reference to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the bibliography consists of a bibliographic citation accompanied in most cases by an abstract

    Autonomous Neuro-Fuzzy Solution for Fault Detection and Attitude Control of a 3U Cubesat

    Get PDF
    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, algorithms involving artificial intelligence (i.e. neural networks and fuzzy logics) have began to spread even in the space applications. Nowadays, thanks to these reasons, the implementation of such techniques is becoming realizable even on smaller platforms, such as CubeSats. The paper presents an algorithm for the fault detection and for the fault-tolerant attitude control of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves fuzzy logic and multi-layer feed-forward online-trained neural network (percep- tron). It is utilized in a simulation of a CubeSat satellite placed in LEO, considering as available attitude con- trol actuators three magnetic torquers and one reaction wheel. In particular, fuzzy logics are used for the fault detection and isolation, while the neural network is employed for adapting the control to the perturbation introduced by the fault. The simulation is performed considering the attitude of the satellite known without measurement error. In addition, the paper presents the system, simulator and algorithm architecture, with a particular focus on the design of fuzzy logics (connection and implication operators, rules and input/output qualificators) and the neural network architecture (number of layers, neurons per layer), threshold and activation func- tions, offline and online training algorithm and its data management. With respect to the offline training, a model predictive controller has been adopted as supervisor. In con- clusion the paper presents the control torques, state variables and fuzzy output evolution, in the different faulty configurations. Results show that the implementation of the fuzzy logics joined with neural networks provide good ro- bustness, stability and adaptibility of the system, allowing to satisfy specified performance requirements even in the event of a malfunctioning of a system actuator

    Magnetometer-Only Kalman Filter Based Algorithms for High Accuracy Spacecraft Attitude Estimation (A Comparative Analysis)

    Get PDF
    Kalman Filter (KF) based algorithms are the most frequently employed attitude estimation algorithms. Typically, a fully observable system necessitates the use of two distinct sensor types. Therefore, relying on a single sensor, such as a magnetometer, for spacecraft attitude estimation is deemed to be a challenge. The present investigation centers on utilizing magnetometers as the exclusive sensor. Several KF based estimation algorithms have been designed and evaluated to give the designer of spacecraft Attitude and Orbit Control System (AOCS) the choice of a suitable algorithm for his mission based on quantitative measures. These algorithms are capable of effectively addressing nonlinearity in both process and measurement models. The algorithms under examination encompass the Extended Kalman Filter (EKF), Sequential Extended Kalman Filter (SEKF), Pseudo Linear Kalman Filter (PSELIKA), Unscented Kalman Filter (USKF), and Derivative Free Extended Kalman Filter (DFEKF). The comparison of the distinct algorithms hinges on key performance metrics, such as estimation error for each axis, computation time, and convergence rate. The resulting algorithms provide numerous benefits, such as diverse levels of high estimation accuracy (with estimation errors ranging from 0.014o to 0.14o), varying computational demands (execution time ranges from 0.0536s to 0.0584s), and the capability to converge despite large initial attitude estimation errors (which reached 170o). These properties render the algorithms appropriate for utilization by spacecraft designers in all operational modes, supplying high-precision attitude estimations better than (0.5o) despite high magnetometer noise levels, which reached (200 nT)

    Observer-based event-triggered and set-theoretic neuro-adaptive controls for constrained uncertain systems

    Get PDF
    In this study, several new observer-based event-triggered and set-theoretic control schemes are presented to advance the state of the art in neuro-adaptive controls. In the first part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for uncertain linear systems. These comprehensive designs offer flexibility to choose a design depending upon system performance requirements. Stability proofs for each scheme are presented and their performance is analyzed using benchmark examples. In the second part, the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case of precision formation flight of the microsatellites at the Sun-Earth/Moon L1 libration point. This dynamic system is selected to evaluate the performance of the ETNAC techniques in a setting that is highly nonlinear and chaotic in nature. Moreover, factors like restricted controls, response to uncertainties and jittering makes the controller design even trickier for maintaining a tight formation precision. Lyapunov function-based stability analysis and numerical results are presented. Note that most real-world systems involve constraints due to hardware limitations, disturbances, uncertainties, nonlinearities, and cannot always be efficiently controlled by using linearized models. To address all these issues simultaneously, a barrier Lyapunov function-based control architecture called the segregated prescribed performance guaranteeing neuro-adaptive control is developed and tested for the constrained uncertain nonlinear systems, in the third part. It guarantees strict performance that can be independently prescribed for each individual state and/or error signal of the given system. Furthermore, the proposed technique can identify unknown dynamics/uncertainties online and provides a way to regulate the control input --Abstract, page iv

    Classifying intelligence in machines : a taxonomy of intelligent control

    Get PDF
    The quest to create machines that can solve problems as humans do leads us to intelligent control. This field encompasses control systems that can adapt to changes and learn to improve their actions—traits typically associated with human intelligence. In this work we seek to determine how intelligent these classes of control systems are by quantifying their level of adaptability and learning. First we describe the stages of development towards intelligent control and present a definition based on literature. Based on the key elements of this definition, we propose a novel taxonomy of intelligent control methods, which assesses the extent to which they handle uncertainties in three areas: the environment, the controller, and the goals. This taxonomy is applicable to a variety of robotic and other autonomous systems, which we demonstrate through several examples of intelligent control methods and their classifications. Looking at the spread of classifications based on this taxonomy can help researchers identify where control systems can be made more intelligent
    corecore