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Abstract: The quest to create machines that can solve problems as humans do leads us to intelligent
control. This field encompasses control systems that can adapt to changes and learn to improve
their actions—traits typically associated with human intelligence. In this work we seek to determine
how intelligent these classes of control systems are by quantifying their level of adaptability and
learning. First we describe the stages of development towards intelligent control and present
a definition based on literature. Based on the key elements of this definition, we propose a novel
taxonomy of intelligent control methods, which assesses the extent to which they handle uncertainties
in three areas: the environment, the controller, and the goals. This taxonomy is applicable to a variety
of robotic and other autonomous systems, which we demonstrate through several examples of
intelligent control methods and their classifications. Looking at the spread of classifications based on
this taxonomy can help researchers identify where control systems can be made more intelligent.

Keywords: intelligent control; taxonomy; robotics; neural network control; fuzzy logic control;
evolutionary algorithms; artificial intelligence

1. Introduction

Over the past century, more advanced methods have become necessary to handle an increase
in the complexity of control problems. We now require control systems which can operate in very
challenging environments with limited knowledge. This motivated the use of AI techniques in control
to incorporate human reasoning. The combination of AI with theories from automatic control and
operations research is referred to as “Intelligent Control” [1].

IC has received a great deal of attention in many control applications since the term was first coined
by Fu [2]. Its applications are wide ranging and especially useful in robotics and other autonomous
machines that seek to minimise human intervention. Due to its wide use, a “terminology war” ensued
where there were several competing definitions for different concepts in IC—especially “adaptive” and
“learning” control [3]. Following this era, there are now concrete definitions for the various concepts
relating to IC. The definition of IC we present here is based on the work of Saridis and Antsaklis,
which both give clear definitions [1,4]. Under this definition there are still many different types of
control systems that can be classed as IC with varying levels of complexity. The goal of this work is to
quantify the similarities and differences between these control systems by defining levels of intelligence
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that an IC system can possess. This allows comparisons to be made between different methods and
applications and highlights gaps where further research is needed to develop IC techniques.

When considering the intelligence of machines, it is clear that “intelligence” cannot be a binary
label but rather a scale from non-intelligent to highly-intelligent. As pointed out in [3], it is hard to
strictly define a threshold for something to be considered intelligent, as for some definitions even
a thermometer could be classed as intelligent. Obviously, in this extreme example a thermometer
possesses a very low level of intelligence—if any. The problem then becomes quantifying how
intelligent a controller is, but this measurement will certainly be subjective.

From the initial development of control theory up to the present day, one key concept in control
has been uncertainty. This is where some aspect of a system is unknown due to lack of knowledge or
stochastic behaviour. As control systems developed over the past century they have expanded their
ability to autonomously deal with uncertainties to a point where they require human-like behaviours
such as reasoning and learning. This can be considered intelligence [5]. A control problem where
everything about the system is known can be very simple to solve using long known and understood
methods. Accounting for uncertainties makes this more difficult. Here we suggest that the level of
intelligence of a control system is related to the level of uncertainty at design time: more intelligent
controllers cope with greater levels of uncertainty.

In this work, we propose a novel taxonomy of IC, which classifies the level of intelligence
of a controller. A contribution of this work is the multi-dimensional view of IC, which considers
different aspects of these systems that can possess intelligence. There are other works that attempt to
classify levels of IC such as that of Krishnakumar [6]. This has four levels of intelligence that focus on
a controller’s ability to self-improve and does not consider how it deals with uncertainties. Furthermore,
each level in their classification is additive to the previous. Here we show that, in practice, control
systems can have different levels of classification in each of the dimensions of IC, which are independent
of each other and therefore not additive. An aerospace industry survey from the American Institute
of Aeronautics and Astronautics also defines six “stages of intelligent reasoning” for spacecraft [7].
These classifications are specific to spacecraft operations. Here we demonstrate through examples that
the taxonomy can be applied to any field that uses IC.

The remainder of this paper is organised as follows. Section 2 describes the development of
control systems towards intelligent control with a particular focus on the ability to handle uncertainties.
Based on literature we provide a definition of IC in section 3 and describe the dimensions of IC.
From these dimensions we propose a taxonomy of IC in section 4. Finally we demonstrate the
application of the taxonomy in section 5 with some relevant examples and show the current spread of
methods and their classifications.

2. Path to Intelligent Control

Control of dynamical systems has been of fundamental importance in engineering for centuries
and remains a widely studied field. One of the earliest examples of a control system is Watt’s flyball
governor from the late 18th century [8]. This is designed to relieve steam pressure in an engine
by means of rotating masses. It can also be considered to be one of the first examples of feedback
control, where the controller measures a quantity in the system and uses this to dictate its actions.
The governor also demonstrates the importance of mathematical models for designing and operating
control systems, which was important in refining the design and explaining unexpected behaviour
observed in operation. Modern control theory originated more recently in the early 20th century and
has developed rapidly since. Here we describe this progression and how it leads towards the modern
definition of intelligent control.

At its most fundamental, a controller is designed to make a system behave in a desired manner.
To do this a controller takes actions on the system through potentially several types of actuator.
The simplest type of control system does not observe measurements from the system and decides
what actions to take based only on the desired system state. This is called open-loop control (Figure 1).
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Designing an effective open-loop control system in practice requires a precise model of the system
being controlled. A simple controller can then be the inverse model of the system, which takes desired
states as input and returns the necessary actions to achieve that state. These types of controllers that do
not observe the system are not intelligent and are generally incapable of coping with any uncertainties.

desired
state plantcontroller

Figure 1. Open loop control scheme.

In most real systems, we expect their mathematical models to be imperfect. For this reason,
most controllers use measurements of the system’s state to dictate their control actions. This is feedback
control, also known as closed loop control (Figure 2). The earliest literature discussing feedback control
comes from Nyquist in 1932 [9]—also referred to as ‘regeneration’ in his work. Feedback is the
foundation of most modern control systems. The analysis of these closed-loop systems yields very
important concepts for control systems such as stability and tracking error. Having feedback from
the system removes the requirement for a precise model; however, to design an effective feedback
controller without online adaptation still requires knowledge of the system dynamics.

plantcontrollerdesired
state

-

+

Figure 2. Feedback control scheme.

Within the realms of feedback control there are a multitude of methods and architectures
for designing controllers. In engineering this naturally leads to the question of how to create the
“best” control system. The concept of creating a controller with the quantifiably best performance
is encapsulated in the field of optimal control. Techniques from optimal control solve the problem
of maximising or minimising a measurable characteristic of a dynamical system. This field has its
origins from Bellman whose pioneering work in dynamic programming defined criteria for optimal
systems [10]. Theories from optimal control are still very influential in the design of modern controllers.

The control systems we have considered until now only deal with uncertainties, which is due to
our lack of knowledge of the system. When we consider systems that behave in a non-deterministic
manner, we require further advanced methods to deal with these types of uncertainty. This falls into
the class of control systems known as stochastic control (Figure 3). In this case, uncertainties about the
system are modelled as probability densities and cannot be specified as exact values [1].

At this point in the development of control systems, lack of system knowledge becomes
a more significant issue. The control schemes described previously require knowledge of the system
dynamics and any uncertainties must be statistically quantifiable. Beyond these systems that can be
modelled, there are classes of systems where the dynamics may change over time, which degrades the
controller’s performance. Furthermore, for certain systems the dynamics may be entirely unknown or
incompletely known and so the methodologies discussed so far cannot be used. These are referred to as
Self-Organising Control (SOC) systems, simply defined as any system with features “beyond stochastic
control systems” [1].

Adaptive control methods handle changing environments by adjusting the control scheme
online. This means the controller maintains a favourable performance even as the environment
varies. These methods broadly fall under two categories: direct and indirect. Indirect adaptive control
schemes do not alter the controller directly, but instead adapt other components that affect the control
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scheme, such as a system model. Direct adaptive control schemes adapt the controller parameters
themselves instead. These approaches can also be referred to as Parameter-Adaptive (indirect) or
Performance-Adaptive (direct) SOC. Online adaptation is not only desirable in changing environments.
Where the system being controlled is deterministic and “static”, adaptive control can also be used
to tune the controller performance online. Most often, however, adaptive control is used where the
environment behaviour is broadly understood at design time, but subject to significant uncertainties,
for example, in parameters of the mathematical model.

plantcontrollerdesired
state

-

+

unknown
disturbances

sensor
noise

+
+

+
+

Figure 3. Stochastic control scheme.

Learning control is the final step towards intelligent control methods. This can be seen as a more
specific form of Self-Organising Control (SOC) where the controller retains information pertaining to
the system’s operation and uses this knowledge to alter its control scheme (Figure 4). This is where
control systems begin to incorporate planning, where future actions can be selected by the system
in advance based on its knowledge. At this level of development we also begin to see the more
behavioural approach towards control where we aim to mimic human problem solving. As learning is
a fundamental aspect of human intelligence, so the ability to learn about a system demonstrates
a degree of intelligence in that control system. Learning can occur offline such that the control
system is trained before operation, or online where knowledge is accumulated during its operation.
This distinction is important when it comes to intelligent control systems, as will be discussed.

plantcontrollerdesired
state

-

+

unknown
disturbances

sensor
noise

adaptation/learning
mechanism

+
+

+
+

Figure 4. Adaptive or learning control scheme.
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3. Defining Intelligent Control

As with many new concepts, the term “Intelligent Control” very quickly became widely used
and often abused by many scholars both from the control community and wider fields. This made
it difficult to create a suitable definition for IC since it was so commonly used to describe disparate
concepts. As a result, in 1993 the IEEE Control Systems Society designated a task force to research
and define “Intelligent Control” [4]. In their report they gave the following defining characteristics of
IC systems:

“An intelligent control system is designed
so that it can autonomously achieve a
high level goal, while its components,
control goals, plant models and control
laws are not completely defined, either
because they were not known at the
design time or because they changed
unexpectedly.”

This importantly shows that IC systems deal not only with system uncertainties, but also cases
where the controller does not have specifically defined goals or structures. Saridis gives a more general
definition of IC as an interaction between three fields: Artificial Intelligence, Operations Research,
and Automatic Control Systems (Figure 5) [1]. This builds on the definition given by Fu, who originally
described IC systems as the “intersection of artificial intelligence and automatic control” [2].

Considering the definitions of conventional control methodologies presented previously, direct or
indirect adaptive control systems and learning control systems can be considered intelligent where
they incorporate AI techniques. It is important to note, however, that not all adaptive control systems
are intelligent since it is possible to derive adaptive systems using analytical formulations, therefore
missing the AI component. Similarly, a controller is not necessarily intelligent if it is derived using AI
techniques as it must still show adaptivity or learning online to be classed as intelligent. Both these
points represent the most common misunderstandings in what is, and is not, classed as IC. For example,
a controller may use AI to define its control scheme offline using a system model and then, when in
operation, not update its control scheme further. Such a controller is not classed as IC since it does not
adjust to substantial environmental uncertainties.

Figure 5. Intelligent control is the interaction of the fields of artificial intelligence, operations research,
and automatic control.
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3.1. Methods for Intelligent Control

While the methods within the three fields of automatic control, artificial intelligence,
and operations research are broad ranging, there are a few notable techniques from AI that are most
commonly used for IC. These are Machine Learning (ML), Evolutionary Computing (EC), and Fuzzy
Logic (FL). Other intelligent techniques do appear in control, however these are the most frequently
seen in the literature. Furthermore, there are significant synergies between these methods, which means
they are often combined in control systems, as shown schematically in Figure 6.

Figure 6. Synergies of artificial intelligence techniques used for intelligent control.

Below we briefly describe how each method listed above can be incorporated into intelligent
control schemes. This is not an exhaustive list but demonstrates the most common architectures of
intelligent controllers.

3.1.1. Machine Learning

Since these techniques are by definition used to learn, they are well suited to being used
in IC. Of all the techniques classed as Machine Learning (ML), Neural Networks (NNs) and
their closely related counterparts Support Vector Machines (SVMs) are by far the most common.
While traditionally used in classification problems, these architectures can also be used as non-linear
function approximators. This means they can be used to approximate uncertainties, model entire
systems, or directly incorporated as controllers [11].

3.1.2. Evolutionary Computing

This broad field of AI encompasses Evolutionary Algorithms (EAs), Genetic Algorithms (GAs),
and Genetic Programming (GP). While these have subtle differences in approach, they are all based
on biological evolution and develop solutions by “evolving” populations of potential solutions,
which are evaluated based on a fitness function. They are often very computationally expensive,
which can be prohibitive for online learning, however there are still several applications where
Evolutionary Computing (EC) is used for online parameter adjustment in IC [12].

3.1.3. Fuzzy Logic

The name of this field reflects its main characteristic of dealing with partial truth to develop
reasoning. One of the advantages of Fuzzy Logic (FL) is its ability to incorporate expert knowledge
when designing a controller and thus the interpretability of the derived control scheme. FL control
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schemes are also commonly used in a non-intelligent manner where its control law is not updated
online, but it can also be used intelligently by adjusting its parameters while operating [13].

3.1.4. Hybrid Methods

Due to the different strengths and weaknesses of each of the methods listed previously, they are
often combined to exploit the advantages of each method. For example, a Neural Network (NN) can
be used to approximate membership functions in a Fuzzy Logic (FL) controller, or a Neural Network
(NN) can have its structure updated using Evolutionary Computing (EC). Any IC methods which
employ multiple AI techniques are here referred to as “hybrid” methods.

3.2. Dimensions of Intelligent Control

Since IC deals primarily with substantial uncertainties, it is sensible to define the level of
intelligence of a controller in terms of the level of uncertainty in its task. In the task force definition of
IC, there are three clear dimensions where uncertainty can be present: the environment (represented
by plant models and the environment models in which the plant has to operate), the controller laws
and components, and the control goals. In more abstract terms, this is what is being controlled, how it is
being controlled, and why it is being controlled.

3.2.1. Environment

We consider knowledge of the environment to be the ability to express a model of the environment
mathematically, where under the term environment we consider both the plant model and the
environment model in which it has to operate. The design of a control system conventionally requires
such a model and the level of knowledge of the model affects the level of intelligence necessary in the
controller. Equation (1) shows the general form of a non-linear system being controlled:

ẋ = f (x, u) (1a)

y = h (x) (1b)

where y is the system output, u is the system input, x is the system’s state variables, and the functions
f and h are mappings (linear or non-linear) from their inputs to appropriately dimensioned vectors.
In the following equations, for simplicity we will only consider expressions for ẋ. The environment
model may also contain some parameters, A = {a1, a2, . . . , ana}, which vary with time. In this case
the deterministic mapping from current state and control action to system output in Equation (1) no
longer applies and now becomes time dependent. This is shown in Equation (2)

ẋ = f (x, u, A(t)) (2)

Thus far we have assumed the function f to be known to a precision that allows reasonable
tracking accuracy between the model and real environment. This is not possible when the
environment’s dynamics are poorly understood. We indicate this in Equation (3) with the function f̂
representing an uncertain mapping.

ẋ = f̂ (x, u, A(t)) (3)

3.2.2. Controller

Similarly to the environment, a controller can be mathematically modelled with varying levels of
knowledge about its components. More intelligent controllers are more flexible and have less precise
knowledge of their control laws at design time. A general feedback controller is described as follows:

u = g (e) (4)
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where e = yd − y is the error between the desired system output, yd and actual system output.
This represents a controller with fixed parameters that are selected at design time. A general
adaptive controller has control parameters K = {k1, k2, . . . , knk}, which can vary with any number of
observations. Such a controller is described in Equation (5).

u = g (e, K(·)) (5)

The error e between desired and true system output can also be subject to significant uncertainties
relating to the behaviour of sensors and actuators. Even if the environment itself is stationary and
deterministic, there may be errors, for example, in the measurements or unmodelled actuator dynamics.
This case is described as shown:

u = g (ê, K(·)) (6)

where ê = yd − ŷ is the measured error given the measured and uncertain state variables ŷ.
The controller must then cope with these uncertain measurements. More sophisticated controllers
display more significant variations in their structure than just the control parameters. In this case,
there may be several different control laws to select based on observations, or new control laws may
be derived online. A general form of such a controller is given here:

u =


g1 (ê, K1(·))
g2 (ê, K2(·))

...
gng (ê, Knk(·))

(7)

3.2.3. Goals

Compared to the previous two dimensions, goals are more abstract in general and less rigorously
mathematically defined. The level of knowledge of goals can then be thought of as how well it could
be expressed mathematically, as well as the level of awareness of goals in the controller. In most cases
a controller’s goal is defined as fulfilling some stability criterion or maintaining some performance
measure across its operating range. In this case, the goal is entirely defined at design time and the
controller has no awareness of this goal.

Another approach to defining control goals is to have some cost function that gives the controller
an indication of its performance in a task. The controller then seeks to minimise this cost function with
its control policy. In doing so the controller now has some awareness of its goals and creates ways to
achieve them instead of following prescribed routines to achieve a predetermined level of performance.

Beyond control systems with defined goals or cost functions, the goals become more abstract
and defined in high level language rather than mathematically. In some cases, specific short-term
goals may change over time as determined by the controller’s internal planning. This is done with
respect to some global goal, which remains constant. In cases where a global goal cannot be defined
mathematically and the controller can only be given high level goals, this requires an intelligent system
to deduce how to act appropriately and achieve such goals.

4. Taxonomy

As discussed in Section 3, IC methods are used where there is a substantial lack of knowledge at
design time. This lack of knowledge comes under three main categories: the environment, the controller,
and the goals. Within each of these categories, any controller, including conventional ones, can have
a varying degree of knowledge at design time. Here we present a classification scheme for IC methods,
which is based on the level of knowledge present in the control system at design time. In each case the
highest level of uncertainty, level 4, is the hypothetical maximum uncertainty.
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4.1. Environment Knowledge

1. Complete and precise environment model:

If the environment is precisely known (where Equation (1) captures all dynamics), an open loop
controller could be used, thus requiring no degree of intelligence. In reality there are often aspects
of the system that are not perfectly modelled or subject to uncertainties. This then requires a more
sophisticated controller.

2. Complete environment model subject to minor variations:

Any real system can only be modelled to a certain degree of precision. At this level we
consider environments which have bounded uncertainties that are small enough such that simple
feedback controllers can be used with little or no need for adaptation. These controllers are not
necessarily intelligent, since they only require low levels of adaptation for dealing with slight
uncertainties and do not learn online. There are still some examples of intelligent controllers
within this category.

3. Environment subject to change during operation:

At this level the environment has time-varying parameters that describe its behaviour
(Equation (2)). Now a higher degree of intelligence is required, since substantial changes in
the environment cannot always be predicted or may be too complex to model. At this level of
uncertainty, some conventional adaptive control methods can still perform sufficiently as well as
intelligent ones.

4. Underlying physics of environment not well defined:

Denoted here as an uncertain mapping from states and actions to future states as in
Equation (3). This is an uncommon scenario for Earth applications, however it is a fundamental
problem for many space applications, such as Mars entry vehicles. Here some information
about the environment is known, but there are still substantial knowledge gaps requiring
an intelligent controller.

5. No knowledge of environment:

Where no model exists for the environment and the control designer cannot incorporate any
environmental knowledge into the controller, this requires an intelligent control system to safely
explore its environment.

4.2. Controller Knowledge

1. Stationary, globally stable controller:

Most feedback controllers have guarantees of stability and maintain a certain level of performance
under given assumptions. In simple cases, these assumptions allow the control system to perform
well with a fixed set of parameters without any need for adaptation (Equation (4)).

2. Varying controller parameters:

There are many examples of intelligent and non-intelligent applications that vary some control
parameters online (Equation (5)). This accounts for a lack of knowledge in the controller
parameters, where fixed parameters at design time are insufficient to cover the entire operating
range of the system.

3. Unknown sensor/actuator behaviour:

This comes under the broad category of fault tolerant control, which itself has many
dimensions. Here we consider fault tolerance to represent a level of uncertainty in the controller,
where measurements may be erroneous and actions may not create the predicted effect
(Equation (6)). Some fault tolerant systems use simple thresholds for indicating faults that are
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specified at design time, but since these are known this does not fall under this category. Here we
are instead referring to a control system that must deal with unknown faults.

4. Varying controller configurations:

At higher levels of intelligence, a controller can alter its own control structure online (Equation (7)).
This is commonly done offline using techniques such as evolutionary computation to define the
controller structure. An intelligent controller requires online adaptation and therefore an efficient
means of adjusting its configuration while operating.

5. No known controller structure:

The controller itself designs the control system from scratch using, for example, mathematical
operations, control blocks, and intelligent architectures. An intelligent controller must be able to
do this online, but perhaps with a rudimentary initial controller to give a stable starting point.

4.3. Goal Knowledge

1. Goals entirely predetermined by designer:

Most control systems, including intelligent ones, have a clearly defined goal that entirely shapes
the control system design. In this case the control system is not ’aware’ of its goals and is
therefore unable to update its goals or improve its performance with respect to the current goals.
An example of such systems are those where the tracking error between a reference state and the
current state must be reduced to zero.

2. Goal specified implicitly, for example, as a reward function:

Many optimal control problems come under this category, since the aim of the controller is often
to minimise or maximise a defined cost function when the means of optimising this function
are not specified. The high level goal of the controller is then to derive a control policy which
achieves optimal control with respect to this cost function. This is also the case where the controller
is punished for detrimental actions and must find a control policy which avoids such actions.
These examples fit well into the framework of reinforcement learning control, where an agent
learns by interacting with the environment and observing its state and a reward.

3. Specific goals subject to change during operation with a globally defined goal:

In a dynamic environment, the definition of specific goals depends on contingent events and
observations. Moreover, if the allocation of goals is performed on ground, such as in a space
mission, the robot/spacecraft will have to wait for new instructions every time a new, unforeseen
event occurs or a new set of scientific data is available. This requires an intelligent goal planner to
elaborate new specific goals based on changes in the environment.

4. One or several abstract goals with no clear cost function:

There are cases where the goals cannot be easily defined mathematically and so the controller
requires an understanding of high level goals. For example, a controller’s goal might be “capture
images of scientifically interesting events” or “explore this region and collect data”. The controller
must be able to decide what events are scientifically interesting or which data are worth collecting.

5. No knowledge of goals:

The controller has to deduce what actions to take when, to begin with, it has no knowledge or
indication of what actions are favourable.

5. Classification of Relevant Examples

Using the taxonomy presented here, we now give some examples of intelligent controllers and
their classification. The specific examples detailed here are used to illustrate the applicability of the
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taxonomy to a range of methods with varying levels of intelligence. The following notation is used in
the classification below:

– G: Goal Knowledge
– E: Environmental Knowledge
– C: Controller Knowledge

Table 1 shows the classification of IC methods presented in numerous papers with references,
also grouped by the AI technique employed. For clarity, only levels of classification observed in
the reviewed applications are listed in the table. Figure 7 presents these classifications in a parallel
coordinate plot. As with Table 1, the applications are divided into different levels of intelligence and
the colours and line thicknesses indicate the number of applications found in the respective level of
intelligence. We add an additional dimension of publication year to show the spread of dates over
which these are published. This shows there are no examples with a goal classification greater than
two. The most common classification is G-0, E-1, C-1 (20 applications) by a significant margin—the
second most populated intelligence level is G-0, E-2, C-1 (9 applications). The years of publication of
the reviewed works are well spread from 1990 to 2020.

As discussed in Section 3.1, different AI techniques can be used for IC applications, but most
of them come under Machine Learning (ML) (especially Neural Network (NN) and Support Vector
Machine (SVM)), Fuzzy Logic (FL), Evolutionary Computing (EC) or hybrid methods. We quantify the
distribution of these methods in Figure 8 from which we see that the majority of analysed applications
make use of Neural Networks (NNs) (51%). These controllers also cover a broad range of intelligence
levels. Evolutionary Computing (EC) and Fuzzy Logic (FL) are employed on a similar number of
applications but with different levels of goal knowledge. In general, Evolutionary Computing (EC)
is employed for symbolic regression—as in the case of Genetic Programming (GP)—or optimisation
applications, especially coupled with other AI techniques, while Fuzzy Logic (FL) appears more often
in higher intelligence applications (e.g., G-2). In particular, FL is often employed where human-like
reasoning is desired. Hybrid methods are also widely used (24%) and among them the most common
is the combination of Neural Network (NN) and FL.

Table 1. Artificial intelligence techniques used for intelligent control applications.

G0 G1 G2

E0 E1 E2 E3 E0 E1 E2 E3 E1 E2

C2 C1 C2 C3 C1 C2 C1 C0 C1 C4 C1 C2 C4 C0 C1 C1

FL [14,15] [16] [17]

NN [18–30] [31] [32–36] [37] [38] [39] [40–42] [43]

SVM [44,45]

EC [46] [47,48] [49] [50]

Other [51] [52]

Hybrid Methods [53] [54,55] [56] [57–60] [61,62] [63] [64]
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Figure 7. Parallel coordinate plot of the observed levels of intelligence. The colour scale and the different
line thickness refers to the number of applications observed in the considered intelligence level.

Figure 8. AI methods used for intelligent control (IC).

In the following we give a short description of an application for each intelligence level observed.
These applications are from various engineering domains related to robotics, which are all systems
that achieve their goals without human intervention.

• G-0, E-0, C-2:

In the work of Kankar et al. [53], Neural Network (NN) and Support Vector Machine (SVM)
are compared on the task of predicting ball bearing failures. Both techniques prove to be useful
for this application. While the presented system is not a complete controller itself, it is a fault
detection system that can be integrated in a controller for a rotating machine.

• G-0, E-1, C-1:

Ichikawa and Sawa give an early example of Neural Networks (NNs) being used as direct
controllers [55]. In their paper they combine a direct NN controller with genetic model reference
adaptive control, which trains the NN based on a model of the ideal plant dynamics. This system
is designed to deal with changing environment dynamics and continually updates its network to
optimise performance.
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• G-0, E-1, C-2:

A common technology for intelligent control and particularly Fault Detection, Isolation,
and Recovery (FDIR) is Adaptive Network-based Fuzzy Inference System (ANFIS), which was
developed by Jang [65]. An example of such an application of Adaptive Network-based Fuzzy
Inference System (ANFIS) is presented by Wang et al. [66]. Their system comprises an adaptive
backstepping sliding mode controller augmented with an Adaptive Network-based Fuzzy
Inference System (ANFIS) Fault Detection, Isolation, and Recovery (FDIR) system that controls
a robotic airship. The ANFIS observer predicts the environment state at each time step. If these
values disagree with those from the sensors, then a sensor fault is declared and the ANFIS output
is used as input to the controller. The level of Goal knowledge is 0 since the goal of the control
system is to minimise a tracking error following a predetermined trajectory.

• G-0, E-1, C-3:

The Neural Network (NN) controller proposed by Wu et al. [31] has a unique feature which
makes its classification C-3. The controller can change the network topology and its parameters
online based on the output of a learning algorithm. Such a change in the topology requires a
trade-off between maintaining sufficient computational speed for online usage and the required
precision in its output values.

• G-0, E-2, C-1:

One of the most popular IC methods is the neuro-fuzzy controller, which combines the adaptability
of a Neural Network (NN) with the human-like reasoning of fuzzy controllers [59]. In this example,
the authors apply a neuro-fuzzy model reference adaptive control scheme to an electric drive
system. They show the controller is robust to changes in the environment parameters and adapts
quickly to suppress vibrations and improve tracking accuracy.

• G-0, E-2, C-2:

Another example of Fault Detection, Isolation, and Recovery (FDIR) incorporated into control
systems is presented in [37]. Here a fault tolerant control scheme based on a backstepping
controller integrated with a Neural Network (NN) is used to recognise unknown faults,
with online adaptation of the NN weights. The overall system uses two networks to approximate
unknown system faults and compensate for their effect. NN weights are updated online using
a modified back-propagation algorithm.

• G-0, E-3, C-1:

Such an uncertain environment as a Mars entry vehicle benefits from having an intelligent control
system [38]. In this paper the authors develop a Neural Network (NN) based sliding-mode
variable structure controller. This controller has a fast loop, which is a conventional PID controller,
and a slow loop, which contains the adaptive NN element. The goal is completely defined by the
user through the definition of a nominal entry trajectory.

• G-1, E-0, C-0:

In this control system of modest intelligence—classified as G-1—a Genetic Algorithm (GA) is used
to optimise the temperature for ethanol fermentation online [46]. This process is not an online
adaptation of the controller parameters, but instead the optimal fermentation temperature is
obtained online in a manner similar to optimal control approaches. What makes this system
intelligent, in contrast to classical optimal control approaches, is that the optimisation is performed
online according to the plant states.

• G-1, E-1, C-1:

As discussed in Section 3, it can be advantageous for IC methods to combine different AI
techniques to exploit their benefits. Handelman et al. create such a system which comprises
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a Knowledge Based System (KBS) for devising learning strategies and a Neural Network (NN)
controller, which learns the desired actions and performs these consistently in real-time [61].
This is designed to mimic human learning, which combines rule based initial learning and fine
tuning by repetitive learning. The environment and controller considered here have low levels of
uncertainty, and the control goals are only implicitly defined.

• G-1, E-1, C-4:

Despite being a well known technique for symbolic regression applications, Genetic Programming
(GP) is still not widely used in IC. An example of the use of Genetic Programming (GP) for control
purposes is presented in [49], where it is used to derive a control law for a mobile robot moving
in an environment with both known and unknown obstacles. The use of GP to create a control
law gives this system a controller classification of C-4 since it derives the control law only using
predefined mathematical functions without any prior knowledge of the controller structure.
The environment has slight uncertainty from the unknown obstacles.

• G-1, E-2, C-1:

Kawana and Yasunobu present an intelligent controller capable of dealing with a failure in the
actuators [16]. Since the introduced failure is known and defined by the user, this example is
not classified as G-2, but does constitute a major change in the environment. The peculiarity
of this controller is its ability to generate a model of the environment through online learning.
This model is then used to update the fuzzy control rules.

• G-1, E-2, C-2:

Talebi et al. give another example of Fault Detection, Isolation, and Recovery (FDIR) enhanced
with IC [43]. Here two recurrent Neural Networks (NNs) are employed to detect and isolate
faults—one for sensor faults and another for actuator faults. These NNs also compensate for these
faults directly without the need for an additional subsystem for fault isolation.

• G-1, E-3, C-4:

An approach similar to [49], which also uses Genetic Programming (GP), is proposed by
Marchetti et al. [50]. Here GP generates a control law online and the controller is tested on different
failure scenarios. In addition to these, they consider the case of an unknown environment model
at design time.

• G-2, E-1, C-0:

In the work of Ceriotti et al. [51], they design a controller capable of modifying the goal of
a planetary rover during its mission. The controller fuses navigation data with pieces of scientific
data from different sources to yield a single value of “interest” for each point on the map.
This map evolves during the mission depending on observed data. The fusion of data from
different sensors is realised using the Dezert-Smarandache Theory (DSmT) of plausible and
paradoxical reasoning, which can overcome the limitations of both fuzzy logic and evidence
theory. In particular, paradoxical reasoning is able to provide a solution even in the case of
conflicting information.

• G-2, E-1, C-1:

The Autonomous Sciencecraft Experiment onboard NASA’s Earth Observing One is one of the
most advanced satellite IC systems [52]. As with many intelligent control systems, this system
has a hierarchical structure. In this case the highest level in the control hierarchy is the CASPER
planner, which uses information from the onboard science to plan its activities. This is fed to
the spacecraft command language, which then carries out the plan using lower level actions.
This level can also adapt to environmental changes and make control adjustments as necessary.
Below this level is conventional software, which simply carries out control actions as instructed
by higher levels. While this system does not operate in a substantially varying environment,
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it alters its controller parameters online and contains highly autonomous decision making and
goal updating.

• G-2, E-2, C-1:

WISDOM is a control system for rovers, which is capable of high level planning and adaptive
control [64]. Again this control system has a hierarchical structure with three layers. The top
layer is responsible for generating plans, which are fed to the adaptive controller at a lower level.
This adaptive system deals with immediate changes in the environment and gives instructions to
the lowest level in the hierarchy, which is connected directly to the actuators. This system adapts
to changing or uncertain environments and has varying parameters. The goals are also evolved
over time in the system’s planner.

With the examples listed above we show the applicability of the taxonomy to a range of fields
and applications involving IC. To demonstrate the consistency of the taxonomy, here we show how
different applications using different AI techniques can be grouped in the same classification according
to the task they perform. A few examples are listed below:

• Activity planning—G2: All reviewed applications involving planning and reasoning were classified
as G2. Although they use a variety of AI techniques, in all these cases the controller needs to
choose its desired states and how to achieve them. For example, in [52] the control system
uses information from the onboard science subsystem to plan its activities. In [63] a reasoning
strategy based on forward chaining is adopted to find optimal concentrations of chemicals for
an electrolytic process.

• Robotic navigation and manipulation—E2: Robotic systems that operate in the presence of unknown
obstacles or environment characteristics are classified as E2. Under this category fall control
systems that deal with parametric uncertainties in the dynamic models of the plant as in [35,36]
and robotic exploration in an uncertain environment [64].

• Adaptive intelligent control—C1: Where the system is not subject to unknown faults, all control
systems that adapt their parameters online are classified as C1. This can be achieved with various
AI techniques, but the common aspect within this category is some adaptation mechanism that
updates the control law parameters. By comparing two different applications like [17] and [29],
it can be seen that despite the different AI techniques they employ (in this case Fuzzy Logic (FL)
and Neural Network (NN)) and their differing overall goal, they are both classified as C1 since
they both adjust control law parameters online.

• Fault Detection, Isolation, and Recovery (FDIR)—C2: This encompasses control systems that can
deal with failures in its sensors or actuators. An often used technique in this category is Adaptive
Network-based Fuzzy Inference System (ANFIS) as in [56] for fault detection and diagnosis of an
industrial steam turbine and in [66] where a controller is designed to reliably track the trajectory
of a robotic airship in the presence of sensor faults.

6. Conclusions

It is clear that the use of intelligent control covers many classes of systems that require various
levels of intelligence. Simpler environments can benefit from low levels of intelligence to tune their
performance online, whereas more complex and uncertain environments require much higher levels of
intelligence to operate effectively. This level of intelligence can be related to the extent to which the
control system deals with uncertainties.

Here we have proposed a taxonomy of IC that classifies control systems based on their level of
knowledge in three dimensions: goals, environment, and controller. From the applications studied,
it seems most IC systems focus on the environment and controller dimensions, which tend to have
higher levels of intelligence than the goal dimension. Some more recent references show development
towards higher levels of intelligence in each dimension, however there is still work to be done
developing the level of intelligence with respect to goal knowledge.
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We expect future intelligent controllers will continue to find useful applications with lower levels
of intelligence. However, as we require more autonomous machines, we will also see more applications
at higher levels of intelligence. Future work will likely investigate how to create controllers able to
deal with much higher level of uncertainty for goals, which is needed, for example, in developing
controllers for machines that can explore new and unknown environments. The recent developments
in AI and Explainable AI will also see a growth in applications in intelligent control, where human
operators can have access to autonomous goal decisions and reasoning process explanations. This will
be a fundamental step toward the building of trustworthy systems.
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