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ABSTRACT 

In this study, several new observer-based event-triggered and set-theoretic control 

schemes are presented to advance the state of the art in neuro-adaptive controls. In the first 

part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for 

uncertain linear systems. These comprehensive designs offer flexibility to choose a design 

depending upon system performance requirements. Stability proofs for each scheme are 

presented and their performance is analyzed using benchmark examples. In the second part, 

the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case 

of precision formation flight of the microsatellites at the Sun-Earth/Moon L1 libration 

point. This dynamic system is selected to evaluate the performance of the ETNAC 

techniques in a setting that is highly nonlinear and chaotic in nature. Moreover, factors like 

restricted controls, response to uncertainties and jittering makes the controller design even 

trickier for maintaining a tight formation precision. Lyapunov function-based stability 

analysis and numerical results are presented. Note that most real-world systems involve 

constraints due to hardware limitations, disturbances, uncertainties, nonlinearities, and 

cannot always be efficiently controlled by using linearized models. To address all these 

issues simultaneously, a barrier Lyapunov function-based control architecture called the 

segregated prescribed performance guaranteeing neuro-adaptive control is developed and 

tested for the constrained uncertain nonlinear systems, in the third part. It guarantees strict 

performance that can be independently prescribed for each individual state and/or error 

signal of the given system. Furthermore, the proposed technique can identify unknown 

dynamics/uncertainties online and provides a way to regulate the control input. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Adaptive control systems have started to play an important role in shaping human 

life and technology. These control systems are enabling technology in almost every field 

such as autopilot design in aerospace, precision flights in rockets and satellites, autonomy 

in automobiles, intelligence in robots, and automation in industrial plants. Design 

architecture of these controllers comprises of sensing and measurements, observers, and 

neural networks/machine learning algorithms. Modern control systems can handle many 

challenges which classical controllers were not able to address before. Modern controls are 

adaptive, intelligent and do not need perfect knowledge of the system model and can handle 

multivariable systems. These controllers, especially adaptive controllers can learn and 

improve their performance, cater to system and parameter uncertainties and are tuned to 

the actual need of the system. At the same time, in the system engineering side, factors like 

recent advancement in hardware technology, economical deployment, and 

design/operational flexibility have given rise to networked/swarm systems. Though these 

developments (modern controls and flexible networked system) came handy with 

traditional problems of not having operational flexibility or not being adaptable as per 

uncertainty, they led to new challenges, such as handling and processing of a lot of data, 

needed higher data communication, and higher processing power. This created the need for 

a controller which not only makes use of classical/modern control theory but also reduces 

communication and computational cost. This is where proposed controller designs, named 

as an event-triggered neuro-adaptive controller (ETNAC) come into play. ETNAC design 



 

 

2 

includes a neural network (NN) and machine learning (regression) based modified state 

observer (MSO), which makes it adaptive and intelligent so it can estimate the unknown 

system model or external disturbances. It has an event-triggering mechanism (ETM), which 

helps to reduce communication and computations cost and to utilize resources in an optimal 

way.  In Paper I, six different ETNAC schemes are presented for uncertain linear systems, 

offering flexibility to choose between them depending on the need of a given system. While 

in Paper II, ETNAC scope is extended to uncertain nonlinear systems, where its 

performance is tested for a very challenging problem of providing formation precision 

flying control and reduced jittering for microsatellites used in deep space missions. In paper 

III, a controller design for constrained uncertain nonlinear systems is considered. Many 

practical applications involve hardware limitations that put constraints on the system states. 

Most of the real-world systems are inherently nonlinear and cannot be controlled or 

stabilized in an efficient manner by using linearized models. At the same time, the presence 

of disturbances and uncertainties cannot be avoided. In addition, some priori prescribed 

tracking/stability performance is needed to be ensured all the time. This need comes from 

practical design requirements to avoid undesired operations. To address all these problems 

simultaneously, a barrier Lyapunov function (BLF)-based control architecture called the 

segregated prescribed performance guaranteeing neuro-adaptive control (SPPGNAC) is 

proposed in proposed in Paper III. 

1.2. CONTRIBUTIONS 

 The contributions of the first paper include the derivation and implementation of 

six different ETNAC schemes. This paper is comprehensive in the way that it contains one-
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way and two-way data exchange methods; it also gives the flexibility to choose between 

static or dynamic triggering. Triggering conditions have been developed to make the 

control design and execution efficient. Each scheme of the proposed ETNAC architecture 

is capable of closely approximating the uncertainty including during the inter-event time 

when actual measurements are not available and can identify the system behavior quite 

accurately. Event-triggering conditions are designed on the basis of real performance 

parameters as compared to extended time sampling which is commonly seen in existing 

Event-Triggered Control (ETC) papers. In the two-way data exchange methods, state 

information transmission depends on the state estimation error, and control transmission 

depends on estimator tracking error and on control sampling error. On the other hand, in 

the one-way method, both state and control transmission depend on tracking error. The 

potential of these new techniques in terms of data communication bandwidth and 

computational cost-effectiveness with control performance is evaluated in this paper. So, 

the contributions of the first study can be summarized as (i) a comprehensive design is 

proposed that incorporates different ETC architectures while offering the flexibility to 

choose between them depending on the need of a given system. (ii) System performance 

parameters based novel event-triggering architectures are designed to reduce the data 

communication bandwidth and to update the control based on actual system events. (iii) 

Using artificial neural network (ANN) and machine learning (polynomial regression), 

novel MSO designs are proposed to approximate uncertainty/unmolded dynamics in the 

system, including during the inter-event time.    

In the second paper, ETNAC design applicability is expanded to the control 

restricted uncertain nonlinear systems. The feasibility of the ETNAC providing precision 
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formation flying control and extended period of silence for microsatellites used in deep 

space missions is examined. A single microsatellite at the Sun-Earth/Moon L1 libration 

point is considered as a follower spacecraft in a formation with a single leader spacecraft. 

A halo orbit is generated as a reference trajectory for the leader spacecraft and modelled as 

a virtual node defined along the reference trajectory about which the follower spacecraft 

maintains its relative position. For such “smallsats,” limited capabilities of the platform, 

including restricted controls and actuation, and sensitive responses to uncertainties and 

jittering make the controller design challenging task for tight formation precisions. To 

address such challenges, two ETNAC schemes are derived and numerically simulations 

are performed. Lyapunov analysis is used to prove stability and derive the event-triggering 

conditions. Simulation results show that ETNAC can be an excellent solution for such 

highly nonlinear, sensitive, and resource-constrained problems.  

In the third paper, a BLF-based neuro-adaptive controller design is proposed that 

guarantees strict performance for the constrained uncertain nonlinear system. This 

performance can be independently prescribed for each individual/segregated state and/or 

error signal of the given system. Main features of the proposed design are (i) guaranteed 

priori user-defined tracking performance at all times (transient and steady-state) that can 

satisfy constraints on the state signals, (ii) flexibility to have different constraints on 

separate state and error signals, and not just on the norm of errors or states, (iii) flexibility 

to have symmetric/asymmetric constraints/bounds, (iv) change in control can be regulated 

in proportion to proximity of threshold which helps to avoid excessive input force, which 

is generally observed in BLF-based controls, (v) it can estimate uncertainties and can 
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identify unmodeled dynamics by using NN-based MSO. Benchmark numerical examples 

are used to show the effectiveness of the proposed technique.  

1.3. ORGANIZATION 

Organization of this dissertation is as follows. After this introductory section, Paper 

I presents the design and analysis of the ETNAC schemes for the uncertain linear systems. 

Paper II extends the ETNAC to uncertain nonlinear systems. Paper III presents a segregated 

prescribed performance guaranteeing neuro-adaptive control (SPPGNAC) for constrained 

uncertain nonlinear systems. Finally, overall conclusions from this study are summarized 

in Section 2, followed by Appendices where all proofs are given, Bibliography, and Vita. 
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PAPER 

I. DESIGN AND ANALYSIS OF EVENT-TRIGGERED NEURO-ADAPTIVE 

CONTROLLER (ETNAC) FOR UNCERTAIN SYSTEMS 

Abdul Ghafoor* and S. N. Balakrishnan  

Department of Mechanical and Aerospace Engineering, Missouri University of Science 

and Technology, Rolla, MO 65409 

ABSTRACT 

In this paper, six new event-triggered neuro-adaptive control (ETNAC) schemes 

are presented for uncertain linear systems. Novelty of this paper lies in (i) the construction 

of the proposed ETNAC schemes, (ii) the design of event-triggering conditions, and (iii) 

the design of an observer called the modified state observer (MSO). In the proposed 

schemes, the MSO, the controller, and the event-triggering mechanisms are constructed 

and organized in a way such that they provide the control system designer with flexibility 

to choose between the one-way or two-way data exchange and also between the dynamic 

or static triggering conditions. The event-triggering conditions are designed on the basis of 

real performance parameters, such as the estimation/tracking errors that render control 

updates more on actual system events instead of the often-used extended time sampling. 

Another unique feature of ETNAC is its online uncertainty approximation capability even 

during inter-event times, which makes the controller robust and efficient. This part is 

developed with the help of an artificial neural network (ANN) and a polynomial regression-

based MSO. The MSO formulations have two tuneable gains, which allow fast uncertainty 
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estimation without inducing high frequency oscillations, even while the system is in a 

transient state. Lyapunov analysis is used to show the stability of the system as well as to 

develop the event-triggering conditions. Effectiveness of the proposed controllers is 

demonstrated using benchmark numerical examples. 

 

1. INTRODUCTION 

 

Recent advancements in technology have resulted in systems where small chips 

have become an integral part of numerous applications. At the same time, economical 

deployment and increased flexibility have led to networked systems where different 

components, including actuators, controllers, and sensors, are distributed over networks. 

Microcontrollers and microprocessors are essential components for these networked 

systems, and they carry out data monitoring, transmission of information packets over the 

channels, dealing with unknown disturbances and uncertainties, and processing all 

information related to control calculations. This situation becomes even more complex 

when data needs to be transmitted continuously/periodically, which in general is the case. 

In order to cope with such challenges, six ETNAC designs are proposed in this paper. 

Depending upon the nature of the given problem, the most suitable architecture can be 

picked. 

In the ETNAC framework, state information transmission from physical systems to 

the controller and updated control transmission and execution are carried out only when 

certain triggering conditions come into play. This specific event-based aperiodic 

transmission/update is more practical than conventional periodic updates. ETNAC is not 
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only advantageous in reducing the frequency of communication, computations, and control 

execution, but at the same time allows for approximating uncertainties while guaranteeing 

stability and satisfactory closed loop performance.  

Gupta first came up with different techniques in 0 as to how to sample state 

efficiently, which led to the development of ETC strategies. Later, Tabuada provided a 

strong mathematical basis to ensure stability with event-triggered control in [2] . In [3], 

Heemel et al. presented event-triggered control for linear systems and proved input to state 

stability (ISS). 

Presence of uncertainties/disturbances is unavoidable in a system’s dynamics. 

Therefore, it is important for the controller to be adaptive and robust to counter 

uncertainties and disturbances. After McCulloch [4], the first to introduce the ANN, more 

and more researchers have been attracted by the power of neural networks (NN) and started 

using them to design adaptive controllers. In [5], Narendra considered the application of 

the neural network controller for nonlinear systems. Amongst other developments, Sanner 

et al. in [6] and Lewis in [7] used a different radial basis and a multilayer ANN in controls 

to approximate uncertainties. G. Zhang et al. in [8], presented a dynamical virtual ship 

(DVS) guidance principle and a robust controller design for underactuated marine vessels 

while in [10], the same authors modified DVS principle resulting in a guidance law to 

generate the real-time attitude reference capable to avoid multi-obstacles. They also 

presented an adaptive algorithm in [9] to investigate dynamic positioning vessel when input 

amplitude and rate are saturated. Some other recent contributions involve [11], [12], and 

[13], where authors used ANN and AI-based models for the uncertainty and function 

approximation. 
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Adaptive event-triggered control is a relatively recent topic in control theory. On 

this topic, Lunze and Lehmann [14] considered ETC for linear systems, assuming 

boundedness on disturbances. Liu and Jiang in [15] and Postoyan et al. in [16] came up 

with different novel ETC designs to address the nonlinear uncertainty while considering 

the input to state stability (ISS). In [17], Garcia and Antaklis proposed a model-based 

scheme for adaptive ETC. Wang et al. in [21]-[22] considered two-way data exchange, but 

this approach requires knowledge of the upper bound on the unknown gains from their 

parametrization of the uncertainty. On the other hand, Ali et al. [24]-[25] presented a 

scheme that allows two-way data communication without any such assumption. 

Furthermore, Sahoo et al. [19]-[20] proposed a dynamic event-triggering condition for one-

way data exchange. The concept of MSO was originally proposed by Padhi, Unnikrishnan, 

and Balakrishnan in [26] to estimate the unknown/un-modeled dynamics in a system. In 

[28], Abdul et al. presented an MSO-based decentralized control for large scale 

interconnected uncertain systems, while in [28] the scope of MSO was extended to event-

triggered control for affine nonlinear uncertain systems. In [30], an MSO-based event-

triggered control was developed for linear systems in which the observer has access to only 

sampled states. While in [31], an MSO-based dynamically triggered two-way ETNAC was 

presented and in [32], it was extended to enable formation flight of the microsatellies at 

libration points.  Some other recent researches on uncertain event-triggered control systems 

include [33], where Dong et al. proposed a delay system model-based event-triggered 𝐻∞ 

controller for the networked control systems. In [34], Tian et al. developed finite horizon 

𝐻∞ control architecture for the time varying systems to satisfy the prespecified 𝐻∞ 

disturbance attenuation and to ensure certain chance constraints on the output vector. Zhan 
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and Sun in [35] proposed an event-triggered control for uncertain linear systems. In their 

paper, parametric uncertainty was considered with some bounds, stability was investigated, 

and observer-related calculations were performed on the plant side. On the other hand Qi 

et al. [36], examined an uncertain switched linear system containing parametric 

uncertainties. They provide an upper bound on cost due to uncertainties. In [37], Tripathy 

et al. designed an event-trigger-based control to make linear discrete systems ISS. In [38], 

Riccati-based designs were proposed by Borgers et al. for dynamic and static triggering, 

but it is not shown how the disturbance is handled. Other examples include [39] and [42], 

where event-based robust controllers were devised for uncertain linear systems.  

Contributions of this paper include: the derivation and implementation of MSO-

based adaptive event-triggered controls. Now we will explain the differences between our 

own earlier conference papers and the current paper. This paper is comprehensive and 

contains one-way and two-way data exchange methods, it also gives the flexibility to 

choose between static or dynamic triggering. Triggering conditions have been developed 

to make the controller design and execution efficient. Each scheme of the proposed 

ETNAC architecture is capable of closely approximating the uncertainty, even during inter-

event time, and can identify the system behavior quite accurately. Event-triggering 

conditions are designed on the basis of real performance parameters as compared to 

extended time sampling which is common in existing ETC papers. In two-way data 

exchange methods, state information transmission depends on state estimation error and 

control transmission depends on estimator tracking error and control sampling error. On 

the other hand, in the one-way method both state and control transmission depend on 

tracking error. The potential of these new techniques in terms of data communication 
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bandwidth and computational cost effectiveness with control performance is evaluated in 

this paper. So, the contributions of this study can be summarized as: 

• A comprehensive design is proposed that incorporates different ETC 

architectures while offering the flexibility to choose between them depending 

on the need of a given system 

• System performance parameters-based novel event-triggering architectures are 

designed to reduce the data communication bandwidth and to update the control 

based on actual system events  

• Using ANN and machine learning (polynomial regression), novel MSO designs 

are proposed to approximate uncertainty/unmolded dynamics in the system, 

including during inter-event time    

The rest of the paper is organized such that Section 2 provides problem formulation 

while in Section 3, proposed ETNAC designs are given. Sections 4 presents numerical 

examples, including results and discussion. Finally, Section 5 presents the conclusions 

from this paper followed by acknowledgement, references, and appendices. 

 

2. PROBLEM FORMULATION 

 

In this paper, ℝ stands for the real numbers, ℕ+ for the set of positive integers, ℝ𝑛 

for the set of 𝑛 × 1 real column vectors, ℝ𝑛×𝑚 for the set of 𝑛 × 𝑚 real matrices, ℝ+ for 

the set of positive real numbers, 𝔻𝑛×𝑛 for the 𝑛 × 𝑛 diagonal matrices, 𝑡𝑖 is sampling time 

instant for the control update, 𝑡𝑖
𝑠 stands for the state sampling time instant to transmit to the 

feedback loop and observer, 𝜙(. ) for the basis functions used in uncertainty 
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approximations, 𝜆𝑚𝑎𝑥 (𝑄) and 𝜆𝑚𝑖𝑛 (𝑄)) respectively for the maximum and minimum 

eigenvalues of matrix 𝑄, and ‖. ‖ represents the Euclidean norm.              

The dynamics of an uncertain linear system can be represented as 

�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵( 𝑢(𝑡𝑖) + 𝑓(𝑥(𝑡)) )        𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1 (1) 

where 𝑥(𝑡) ∈ ℝ𝑛 is the state of the system, 𝐴 ∈ ℝ𝑛×𝑛 and 𝐵 ∈ ℝ𝑛×𝑚 are known matrices 

such that (s.t.) {𝐴, 𝐵} is controllable, 𝑓(𝑥(𝑡)): ℝ̅+ × ℝ
𝑛 → ℝ𝑚 is the unknown uncertainty 

in the system dynamics, and 𝑢(𝑡𝑖) ∈ ℝ
𝑚  is the sampled control input. 

  The objective here is to design an event-triggered neuro-adaptive controller for 

the system in (1) to make it follow the response of the reference system given by: 

�̇�𝑟(𝑡) = 𝐴𝑚𝑥𝑟(𝑡) + 𝐵𝑚𝑟(𝑡) (2) 

where 𝑥𝑟 ∈ ℝ
𝑛 is the reference state, 𝐴𝑚 ∈ ℝ

𝑛×𝑛 is Hurwitz, 𝐵𝑚 ∈ ℝ
𝑛×𝑞  (𝑞 ≤ 𝑚), and 

𝑟(𝑡) ∈ ℝ𝑞  is the bounded piecewise continuous reference input. 

 

3. PROPOSED SOLUTION: ETNAC SCHEMES WITH TRIGGERING 

CONDITIONS 

 

Proposed ETNAC schemes and event-triggering conditions are described in this section. 

3.1. TWO-WAY ETNAC 

3.1.1. Dynamically Triggered Two-Way ETNAC.  Before developing the 

controller design, some background and basic assumptions that are made for this study are 

given first. Unlike continuous data transmission, in the two-way ETNAC framework, 

signals from the physical system to the controller and signals from the controller to the 
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physical system are transmitted only at specific sampling instants. These instants for state 

transmission are determined when an event/interruption occurs, known as the event-

triggering condition 𝑇𝑟𝑔1𝑎
𝑠 , and is denoted as {𝑡𝑖

𝑠} 𝑖=1
∞ . Similarly, the control sampling 

instants are determined by other event-triggering conditions, 𝑇𝑟𝑔1𝑎
𝑢  & 𝑇𝑟𝑔1𝑏

𝑢 , and are 

denoted as {𝑡𝑖} 𝑖=1
∞ . Both satisfy the inequalities 𝑡𝑖+1 > 𝑡𝑖,   𝑡𝑖+1

𝑠 > 𝑡𝑖
𝑠     ∀𝑖 = 1,2, ...  where 

𝑡 = 0 is the initial sampling instant for the two-way updates. At each state sampling event, 

the sampled state 𝑥(𝑡𝑖
𝑠) is sent to the controller, overwriting the previous sampled state 

𝑥 (𝑡𝑖−1
𝑠  ) and held by using a Zero-Order-Hold (ZOH) at the controller until the next state 

is received. Similarly, the control values are sent and held by ZOHs until the next control 

update event occurs. Since the updates are event-based and aperiodic, errors are introduced, 

which are called state sampling error (𝑒𝑒𝑣𝑡) and control sampling errors (𝑢𝑒𝑣𝑡), given as 

𝑒𝑒𝑣𝑡 ≜ 𝑥(𝑡) − 𝑥(𝑡𝑖
𝑠)      𝑡𝑖

𝑠 ≤ 𝑡 < 𝑡𝑖+1
𝑠  (3) 

           𝑢𝑒𝑣𝑡 ≜ 𝑢(𝑡) − 𝑢(𝑡𝑖)       𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1.    ∀𝑖 = 1,2, … 

   

(4) 

Some standard assumptions are made in the development of the control schemes.  

𝐴ssumption 1: The system uncertainty can be linearly parametrized. From the 

universal function approximation property of NN, a real valued function 𝑓(𝑥(𝑡)) can be 

estimated with an accuracy of 𝜖, such that:  

𝑓(𝑥(𝑡)) = 𝑊𝑇𝜙(𝑥(𝑡)) + 𝜖(𝑡, 𝑥) (5) 

where 𝑊 ∈ ℝ𝑠×𝑚 (𝑠 ∈ ℕ+) is the unknown ideal weight matrix. It is assumed that for a 

compact set Ω, 𝑊 ∈ Ω, 𝑥 ∈ 𝐷𝑥 for sufficiently large compact set 𝐷𝑥, 𝜙(𝑥(𝑡)):ℝ𝑛 → ℝ𝑠, 

user-defined basis function is bounded s.t. ‖𝜙(𝑥)‖ ≤ 𝜙∗ and 𝜖(𝑡, 𝑥) is the residual error 

satisfying |𝜖(𝑡, 𝑥)| ≤ 𝜖∗. Also, it is assumed that all states are available for measurement. 
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Assumption 2: The basis functions 𝜙(. ) are locally Lipschitz continuous (LLC). 

‖𝜙(𝑥) − 𝜙(𝑦)‖ ≤ 𝐿 ‖𝑥 − 𝑦‖ (6) 

where 𝑥, 𝑦 ∈ 𝐷𝑥, 𝜙(. ) ∈ ℝ and 𝐿 ∈ ℝ+. In ETNAC design, an intermediate step is to 

formulate an appropriate MSO. Even though all states are assumed measurable here, the 

MSO notion is used because its inclusion in uncertainty estimation has been shown to avoid 

large oscillations during the system’s transient motion, which is a characteristic that is 

usually observed with a typical model reference adaptive controller. Note that the 

development and design of the MSO in this study is different in order to cater to the 

asymmetric data transfer to the feedback network. The relevant MSO equations are: 

MSO Model 1:    �̇̂�(𝑡) = 𝐴 �̂�(𝑡)  + 𝐵( 𝑢(𝑡) + 𝑓(𝑥(𝑡𝑖
𝑠)) )                      

𝑡𝑖
𝑠 < 𝑡 < 𝑡𝑖+1

𝑠  

(7a) 

  MSO Model 2:    �̇̂�(𝑡) = 𝐴 �̅�(𝑡) + 𝐵( 𝑢(𝑡) + �̂�𝑇𝜙(�̅�(𝑡)) ) − 𝐾2(�̅�(𝑡) − �̂�(𝑡))                                           

𝑡𝑖
𝑠 ≤ 𝑡 ≤ 𝑡𝑖+1

𝑠                                                                                                               (7b) 

where approximation  𝑓(�̅�(𝑡))  ≜ �̂�𝑇𝜙(�̅�(𝑡)) represents the estimation of 𝑓(𝑥(𝑡)),   �̂� 

is the estimate of 𝑊, 𝐾2 is a user-defined Hurwitz gain matrix, and �̅� is the interpolated 

state, given as  

�̅�(𝑡) ≜ {
          𝑥(𝑡)                                           𝑡 = 𝑡𝑖

𝑠

𝐶1𝑡
𝑛 + 𝐶2𝑡

𝑛−1…+ 𝐶𝑛𝑡 + 𝐶𝑛+1    𝑡𝑖
𝑠 ≤ 𝑡 < 𝑡𝑖+1

𝑠  (8) 

where 𝐶𝑖   𝑖 = 1,2, … 𝑛 are the polynomial curve fitting coefficients (PCFCs) computed by 

using machine learning (polynomial regression). These coefficients are determined in the 

system state measurement history in the inter-event time period. After the coefficients are 

determined, they are transmitted along with state information whenever an event is 
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triggered. Note that both MSO models have access to the state information only when the 

triggering switch is closed, and the latest state and PCFCs are transmitted.   

              Equations (7a/7b) may appear ambiguous, so we have added some explanation 

here. The MSO model 1 in Equation (7a) is used during the inter-event time to find the 

triggering instant 𝑡𝑖
𝑠 when the state triggering condition 𝑇𝑟𝑔1𝑎

𝑠 , defined in (21) later, 

becomes active. Note that the MSO model 1 is simulated without any weight update but 

uses the 𝑓(𝑥(𝑡𝑖
𝑠)) value obtained from the last sampling instant. However, once event 

𝑇𝑟𝑔1 𝑎/𝑏
𝑢  , defined in (22-23) happens, the MSO model 2 in equation (7b) is used to reset 

and update the observer. Though MSO model 2 is updated only at each sampling instant, 

it is basically simulated between the current and the past sampling time instants. The true 

state is interpolated using the PCFCs between the past and the current event time instants 

for use with the MSO model 2 and also for computing the error terms in the weight 

estimates. Before the next 𝑇𝑟𝑔1𝑎
𝑠 , the observer is simulated again using MSO model 1, 

starting with current values from MSO model 2. For example, let us suppose that the first 

event 𝑇𝑟𝑔1𝑎
𝑠  occurred at 𝑡1

𝑠, so we store the measured state at 𝑥(𝑡1
𝑠), use it as the initial state 

for the MSO model 1, and propagate it and use it to update the controller and to check the 

triggering condition for the next event 𝑇𝑟𝑔1𝑎
𝑠  which will occur at 𝑡2

𝑠. Whenever 𝑇𝑟𝑔1𝑎
𝑠  

occurs again at time instant 𝑡2
𝑠 and state 𝑥(𝑡2

𝑠) and PCFCs are received, then the MSO 

model 2 takes over and simulates �̂� between 𝑡1
𝑠 and the current time instant 𝑡2

𝑠 by making 

use of actual states 𝑥(𝑡1
𝑠) and 𝑥(𝑡2

𝑠) and its PCFCs for the time in between the events. In 

this way, the updated �̂�(𝑡2
𝑠) and NN weights �̂�(𝑡2

𝑠) at 𝑡2
𝑠 are used in the controller and as 

initial states for MSO model 1 to simulate the observer with �̂�(𝑡2
𝑠) until the next (third) 

event 𝑇𝑟𝑔1𝑎
𝑠  at 𝑡3

𝑠 . This pattern continues.  



 

 

16 

Now to get the interpolated state-based uncertainty approximation, 𝑊𝑇𝜙(𝑥(𝑡𝑖
𝑠)) is added 

and subtracted in (5), 

𝑓(𝑥(𝑡)) = 𝑊𝑇𝜙(𝑥(𝑡)) +𝑊𝑇𝜙(�̅�(𝑡𝑖
𝑠)) −𝑊𝑇𝜙(�̅�(𝑡𝑖

𝑠)) + 𝜖(𝑡, 𝑥) 

                                             = 𝑊𝑇𝜙(�̅�(𝑡𝑖
𝑠)) + 𝜖̌(𝑥, 𝑡, �̅�) (9) 

where 𝜖̌ ≜ 𝑊𝑇[𝜙(𝑥(𝑡)) − 𝜙(�̅�(𝑡𝑖
𝑠))] + 𝜖(𝑥, 𝑡). By substituting (9) into (1), we get 

�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵( 𝑢(𝑡𝑖) +𝑊
𝑇𝜙(�̅�(𝑡𝑖

𝑠)) + 𝜖̌(𝑥, 𝑡, �̅�)). (10) 

The feedback controller is generated as 

𝑢(𝑡) = 𝑢𝑛(𝑡) + 𝑢𝑎(𝑡𝑖
𝑠) (11) 

where 𝑢𝑛 ∈ ℝ
𝑚 is the nominal feedback control input given by 

𝑢𝑛(𝑡) = −𝐾1𝑥(𝑡𝑖
𝑠) + 𝐾3𝑟(𝑡) (12) 

where 𝐾1 ∈ ℝ
𝑚×𝑛 is the nominal feedback gain , 𝐾3 ∈ ℝ

𝑚×𝑞 is the feedforward gain such 

that 𝐴𝑚 ≜ 𝐴 − 𝐵𝐾1 and 𝐵𝑚 ≜ 𝐵𝐾3 [25], [44], and 𝑢𝑎 ∈ ℝ
𝑚 is the adaptive control input 

𝑢𝑎 = −𝑓(�̅�(𝑡𝑖
𝑠)) = −�̂�𝑇𝜙(�̅�(𝑡𝑖

𝑠)) (13) 

where �̂� is the estimate of 𝑊. Event-triggering condition 𝑇𝑟𝑔1𝑎 
𝑠 , triggers the current state 

transmission and event-triggering conditions 𝑇𝑟𝑔1 𝑎/𝑏
𝑢  trigger the updated control 

transmission. In most of ETC literature, the state sampling condition (here denoted 

as 𝑇𝑟𝑔1𝑎
𝑠 ) is based on extended time or state sampling error [2],[14], but in the proposed 

method, we came with the idea to relate the  𝑇𝑟𝑔1𝑎
𝑠  to the state estimation error. Similarly, 

relating 𝑇𝑟𝑔1 𝑎/𝑏
𝑢 (for control transmission) to the control sampling error and the estimator 

tracking error makes more sense, as event-triggering conditions will be directly related in 

this way to the desired objectives of tracking and estimation.  
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The tracking error is defined as  

𝑒𝑟(𝑡) ≜ 𝑥(𝑡) − 𝑥𝑟(𝑡). (14) 

Its dynamics are found by using (2) and (10). After some algebra, it is simplified as 

�̇�𝑟(𝑡) = 𝐴𝑚𝑒𝑟(𝑡) + 𝐵�̃�
𝑇𝜙(𝑥(𝑡𝑖

𝑠)) + 𝐵𝜖̌ + 𝐵𝐾1𝑒𝑒𝑣𝑡. (15) 

Similarly, the estimation error is defined as 

𝑒𝑎(𝑡) ≜ 𝑥(𝑡) − �̂�(𝑡). (16) 

Based on (7a) and (7b), the error dynamics are also found in two ways, given in Equations 

(17a/17b) 

 �̇�𝑎(𝑡) = 𝐴𝑚𝑒𝑎(𝑡) + 𝐵𝑚(𝑟(𝑡) − 𝑟(𝑡𝑖
𝑠)) + 𝐵𝐾1𝑒𝑒𝑣𝑡 + 𝐵𝑊

𝑇𝜙(𝑥(𝑡))

− 𝐵�̂�𝑇𝜙(�̂�(𝑡𝑖
𝑠)) 

(17a) 

         �̇�𝑎(𝑡) = 𝐾2𝑒𝑎(𝑡) + 𝐵𝑢𝑒𝑣𝑡 + 𝐵�̃�
𝑇𝜙(�̅�(𝑡𝑖

𝑠)) + 𝐵𝜖̌ + (𝐴 − 𝐾2)𝑒𝑖𝑛𝑡                   (17b)                                   

where 𝑒𝑖𝑛𝑡 ≜ 𝑥(𝑡) − �̅�(𝑡) is the interpolation error from polynomial regression. In (15) and 

(17), the terms 𝑒𝑖𝑛𝑡 and 𝑒𝑒𝑣𝑡 appear due to evet-triggered-based aperiodic sampling. These 

need to be bounded for the actual errors to be bounded.  

The neural network weights (NNWs) update rule for �̂� is given as: 

�̇̂� = 𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵) (18) 

where 

�̅�𝑎 ≜ {
𝑥(𝑡𝑖

𝑠) − �̂�(𝑡𝑖
𝑠)                             𝑡 = 𝑡𝑖

𝑠    

�̅�(𝑡) − �̂�(𝑡)                         𝑡𝑖
𝑠 < 𝑡 < 𝑡𝑖+1

𝑠   (19) 

where 𝛾 ∈ ℝ+ is the adaptation rate for the update rule of �̂�, and 𝑃𝑟𝑜𝑗𝑚 (. , . ) denotes a 

smooth projection operator [44]. Note that the projection operator guarantees that  �̂� ∈ Ω, 

and there exists 𝑊∗ ∈ Ω s.t.  ‖�̂�‖ ≤ 𝑊∗. Matrix 𝑃 is the solution for the Lyapunov 

equation: 
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0 = 𝐾2
𝑇𝑃 + 𝑃𝐾2 + 𝑄 (20) 

where 𝑄 > 0 and 𝐾2 < 0. We use three triggering conditions for this scheme. They are 

                    𝑇𝑟𝑔1𝑎
𝑠 :                           ‖𝑒𝑒𝑣𝑡‖

2 ≤ ∝𝑎 𝛽𝑎 ‖𝑒𝑎‖
2  (21) 

                    𝑇𝑟𝑔1𝑎
𝑢 :                             ‖𝑢𝑒𝑣𝑡‖

2 ≤ 𝛽𝑢  (22) 

                    𝑇𝑟𝑔1𝑏
𝑢 :                            ‖�̂�𝑟‖

2 ≤ 𝛽�̂�𝑟  (23) 

where 𝛽𝑎 ≜
(‖𝑃𝐵𝐾1‖

2+𝐿2)

𝜎
, 𝜎 ∈ ℝ+, 0 <∝𝑎≤ 1, and �̂�𝑟(𝑡) ≜ 𝑥𝑟(𝑡) − �̂�(𝑡). Parameter  ∝𝑎 

helps to tune 𝑇𝑟𝑔1𝑎
𝑠   to adjust the inter-event time duration for state events. On the other 

hand,  𝛽𝑢 and 𝛽�̂�𝑟 are user-defined thresholds for the control sampling error (𝑢𝑒𝑣𝑡) and the 

estimator tracking error (�̂�𝑟) respectively. Values for Lipschitz constant (L) are picked 

based on the chosen basis functions for a given problem. In this case it is taken from [19]. 

Note that the eigenvalues of 𝐾2 should be about equal or farther in the left half plane as 

compared to that of 𝐴𝑚. Figure 1 shows the overall block diagram of the proposed scheme. 

Theorem 1: Consider the system in (1) with the observer models in (7a/7b) and the 

desired system described by (2). Let assumptions 1 and 2 hold. Consider the NN 

approximation with the control generated by (11-13) and the weight update law in (18). 

Let the sampled state signal be transmitted from the plant to the controller at each event 

sampling instant when (21) is violated (the dynamic state event-triggering condition 

𝑇𝑟𝑔1 𝑎
𝑠 ), and let the control signal be transmitted to the plant when (22-23) are violated 

(the control event-triggering 𝑇𝑟𝑔1 𝑎/𝑏
𝑢 ). Then the state estimation error and tracking error 

are uniformly ultimately bounded (UUB). 

a. Proof: Proof of Theorem 1 is given in Appendix A. 
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 b. ISS Stability: An interesting point to note is that this formulation with theorem 

1 exhibits ISS characteristics as shown below whereas it is an assumption in [2] and [16].   

From (66), 𝐿(𝑒𝑟) is continuously differentiable, and since 𝜆𝑚𝑖𝑛 (𝑃)‖𝑒𝑟‖
2 + ‖𝛾−1‖‖�̃�‖ ≤

‖𝐿(𝑒𝑟)‖ ≤ 𝜆𝑚𝑎𝑥 (𝑃)‖𝑒𝑟‖
2 + ‖𝛾−1‖‖�̃�‖ , so ‖𝐿(𝑒𝑟)‖  is upper and lower bounded by 𝐾∞ 

functions. Also, (70) and (76) show that 𝑒𝑟 will stay bounded and �̇�(. ) is less than or equal 

to a negative definite function. Then by definition in [46], system 𝑒�̇� = 𝑓(𝑒𝑟(𝑡), 𝑒𝑒𝑣𝑡) is 

ISS. 

 

 

Figure 1. Block diagram for Two-Way ETNAC. 

 

c. Corollary 1: Ultimate Upper Bound on Tracking Error: From (70) and (76) it 

follows that �̇�(. ) ≤ 0 outside the compact set 𝐷𝑠: 
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𝐷𝑠 ≜ {𝑒𝑎, �̂�𝑟: ‖𝑒𝑎‖ ≤ 𝜓1} ∩ {𝑒𝑎, �̂�𝑟: ‖�̂�𝑟‖ ≤ 휀}. 

Since 𝐿 cannot grow outside 𝐷𝑠, it is lower and upper bounded as 

𝜆𝑚𝑖𝑛(𝑃)‖ 𝑒𝑟‖
2 ≤ ‖𝐿‖ ≤ 𝜆𝑚𝑎𝑥(𝑃)‖ 𝑒𝑟‖

2. (24) 

As we know,  ‖𝑒𝑟‖ = ‖𝑒𝑎‖ + ‖�̂�𝑟‖ ≤ 𝜓1 + 휀, so 

𝜆𝑚𝑖𝑛(𝑃)‖ 𝑒𝑟‖
2 ≤ ‖𝐿‖ ≤ 𝜆𝑚𝑎𝑥(𝑃)𝜓1 + 𝜆𝑚𝑎𝑥(𝑃)휀 

𝜆𝑚𝑖𝑛(𝑃)‖ 𝑒𝑟‖
2 ≤ 𝜗1 

‖𝑒𝑟‖ ≤ √𝜗1/𝜆𝑚𝑖𝑛(𝑃) (25) 

where 𝜗1 is 𝜗1 ≜ 𝜆𝑚𝑎𝑥(𝑃)𝜓1 + 𝜆𝑚𝑎𝑥(𝑃)휀.  

3.1.2. ETNAC-2: Statically Triggered Two-Way ETNAC.  In the static event-

triggering, user-defined constant threshold are used as triggers. Static even-triggering 

conditions for ETNAC-2 are: 

𝑇𝑟𝑔2𝑎
𝑠 :           ‖𝑒𝑎‖ ≤  𝛽2𝑒𝑎 (26) 

𝑇𝑟𝑔2𝑎
𝑢 :         ‖𝑢𝑒𝑣𝑡‖ ≤  𝛽2𝑢 (27) 

𝑇𝑟𝑔2𝑏
𝑢 :          ‖𝑒𝑟‖ ≤  𝛽2�̂�𝑟 (28) 

where 𝛽2𝑒𝑎, 𝛽2𝑢, and 𝛽2�̂�𝑟 are the user-defined constant-valued thresholds for the 

estimation error, the control sampling error, and the estimator tracking error respectively. 

Note that these thresholds are quite different from the static-triggering condition-based 

ETCs already exist in literature [21]-[25] which depend on state sampling error,  control 

sampling error or state thresholds. The values of the thresholds for event-triggering 

conditions can be chosen depending upon performance requirements. The rest of the 

scheme is the same as ETNAC-1 and shown in Figure 1. 

Theorem 2: Consider the system in (1) with the observer models in (7a/7b) and the 

desired system described by (2). Let assumptions 1 and 2 hold. Consider the NN 
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approximation with the control generated by (11-13) and the weight update law in (18). 

Let the sampled state signal be transmitted from the plant to the controller at each event 

sampling instant when (26) is violated (the static triggering condition for state update 

𝑇𝑟𝑔2𝑎
𝑠 ) and let the control signal be transmitted to the plant when (27-28) are violated (the 

static triggering condition for control update  𝑇𝑟𝑔2𝑎/𝑏
𝑢 ). Then the state estimation error 

and tracking error are UUB. 

Proof: Proof of theorem 2 can be derived by following the same approach as used 

in proving theorem 1. 

3.2. ONE-WAY ETNAC WITH THE MSO IN THE CONTROLLER MODULE 

3.2.1. ETNAC-3: Dynamically Triggered One-Way ETNAC with the MSO in 

the Controller.  This proposed design is called one-way ETNAC because only one event-

triggering condition is used to transmit both data exchanges: the states and the PCFCs 

transmission to the control system and the updated control to the physical system. The 

sampling instant for the state transmission and the control update is represented as ti. The 

MSO equation for this scheme is 

�̇̂�(𝑡) = 𝐴 �̅�(𝑡) + 𝐵( 𝑢(𝑡𝑖) + �̂�
𝑇𝜙(�̅�(𝑡)) ) − 𝐾2(�̅�(𝑡) − �̂�(𝑡)) (29) 

where �̂�𝑇𝜙(�̅�(𝑡)) is the estimate of 𝑓(𝑥(𝑡)), 𝜙 is the basis function vector, and �̅� is the 

interpolated state between two sampling instants. Assumptions 1 and 2 are still valid. The 

controller expression is given by 

𝑢(𝑡) = −𝐾1𝑥(𝑡𝑖) + 𝐾3𝑟 − �̂�
𝑇𝜙(�̅�(𝑡)). (30) 
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Although the control expression is similar as in (11-13), note that the triggering mechanism 

and the way to update control are different now. The tracking error dynamics for this design 

is given by 

�̇�𝑟(𝑡) = 𝐴𝑚𝑒𝑟(𝑡) + 𝐵�̃�
𝑇𝜙(𝑥(𝑡𝑖)) + 𝐵𝜖̌ + 𝐵𝐾1𝑒𝑒𝑣𝑡   (31) 

and the estimation error dynamics is described by 

�̇�𝑎(𝑡) = 𝐾2𝑒𝑎(𝑡) + 𝐵�̃�
𝑇𝜙(�̅�(𝑡)) + 𝐵𝜖̌ + (𝐴 − 𝐾2)𝑒𝑖𝑛𝑡. (32) 

NNWs update rule and the Lyapunov equation expression remain the same as in (18) and 

(20), respectively. Dynamic event-triggering condition becomes active when (33) is 

violated: 

𝑇𝑟𝑔3𝑟
𝑠                      ‖𝑒𝑒𝑣𝑡‖

2 ≤ ∝𝑟 𝛽𝑟‖𝑒𝑟‖
2 (33) 

 

 

Figure. 2. Block diagram for One-Way ETNAC with MSO in the controller module. 
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where 𝛽𝑟 = 𝜎/(1 + (𝐿‖𝑃𝐵‖)
2). As can be seen from (33), the sampling condition in this  

case is directly related to the tracking error and the state sampling error. A pictorial 

representation of the ETNAC-3 is shown in Figure 2: 

Theorem 3: Consider the system in (1) with the observer in (29) and the reference 

system described by (2). Let assumptions 1 and 2 hold. Consider the NN approximation 

with control generated by (30) and the weight update law in (18). Let the control be 

updated at the event sampling instants when (33) is violated (the dynamic triggering 

condition). Then the tracking error and the state estimation error are UUB. 

Proof: Proof of theorem 3 is given in Appendix A. ISS properties and the upper bound on 

tracking error for ETNAC-3 can also be found by following the same approach used for 

ETNAC-1. 

3.2.2. ETNAC-4: Statically Triggered One-Way ETNAC with the MSO in the 

Controller Module.  In this scheme, a constant threshold on tracking error is set as 

trigger for the sampling and transmission.  

𝑇𝑟𝑔4𝑟
𝑠                                ‖𝑒𝑟‖ ≤  𝛽4. (34) 

This scheme follows the same discussion as in subsection 3.2.1. Corollary 3.1 can 

now be given as: 

Corollary 3.1: Consider the system in (1) with the observer in (29) and the 

reference system described by (2). Let assumptions 1 and 2 hold. Consider the NN 

approximation with control generated by (30) and the weight update law in (18). Let the 

control values be updated at the event sampling instants when (34) is violated (the static 

triggering condition). Then the tracking error and the state estimation error are UUB. 

Proof: Its proof can be derived by following same approach as used for the theorem 3. 
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3.3. ONE-WAY ETNAC WITH MSO IN THE SENSOR SUBSYSTEM 

3.3.1. ETNAC-5: Dynamically Triggered One-Way ETNAC with MSO in the 

Sensor Subsystem.  The next scheme presented is the one-way ETNAC, in which the MSO 

stays at the top level where calculations related to the physical system are carried out, as 

shown in Figure 3. In this scheme, the MSO has access to the actual states. At each event, 

the current state values and updated NNWs are transmitted to the controller. At the same 

time, updated control is transmitted to the physical system. The MSO equation for this 

scheme is given as  

�̇̂�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵( 𝑢(𝑡𝑖) + �̂�
𝑇𝜙(𝑥(𝑡)) ) − 𝐾2(𝑥(𝑡) − �̂�(𝑡)) (35) 

where �̂�𝑇𝜙(𝑥(𝑡)) represents the estimation of the uncertainty 𝑓(𝑥(𝑡)).  Since the MSO 

is in the sensor subsystem, it has access to the measurements as they are received. The 

control is computed as 

𝑢(𝑡𝑖) = −𝐾1𝑥(𝑡𝑖) + 𝐾3𝑟 − �̂�
𝑇𝜙(𝑥(𝑡𝑖)). (36) 

Here, the updated NNWs are already available and are transmitted along with state data at 

each sampling instant. Consequently, no regression is needed. The tracking error dynamics 

can be written as 

�̇�𝑟(𝑡) = 𝐴𝑚𝑒𝑟(𝑡) + 𝐵�̃�
𝑇𝜙(𝑥(𝑡𝑖)) + 𝐵𝜖̌ + 𝐵𝐾1𝑒𝑒𝑣𝑡 (37) 

and the estimation error dynamics as 

�̇�𝑎(𝑡) = 𝐾2𝑒𝑎(𝑡) + 𝐵�̃�
𝑇𝜙(𝑥(𝑡)) + 𝐵 𝜖(𝑡, 𝑥). (38) 

The NNW update law is given now as 

�̇̂� = 𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(𝑥(𝑡)) e𝑎
𝑇𝑃𝐵) (39) 
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The Lyapunov equation expression remains the same as in (20). Again, the dynamic 

triggering condition is related to the tracking error and the state sampling error as given in 

(40).  

𝑇𝑟𝑔5𝑟
𝑠                       ‖𝑒𝑒𝑣𝑡‖

2 ≤ ∝5𝑟 𝛽5𝑟‖𝑒𝑟‖
2 (40) 

where 𝛽5𝑟 = 𝜎/(1 + (𝐿‖𝑃𝐵‖)
2).  

 

 

Figure 3. Block diagram for One-Way ETNAC with MSO in the sensor subsystem. 

 

Theorem 4: Consider the system in (1) with the observer in (35) and the reference 

system described by (2). Let assumptions 1 and 2 hold. Consider the NN approximation 

with control generated by (36) and the weight update law in (39). Let the control be 

updated at the event sampling instant when (40) is violated (the dynamic triggering 
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condition). Then the state estimation error is asymptotically stable (AS), and the tracking 

error is uniformly ultimately bounded (UUB). 

Proof:  Proof is given in Appendix A. ISS properties, the upper bound on tracking 

error, and the lower bound for inter-event time for ETNAC-5 can be found by following 

the same approach as used for ETNAC-1.  

3.3.2. ETNAC-6: Statically Triggered One-Way ETNAC with MSO in the 

Sensor Subsystem.  The tracking error-based static event-triggering condition used for 

ETNAC-6 is given in (41). It is true when (41) is violated.  

𝑇𝑟𝑔6𝑟
𝑠                                ‖𝑒𝑟‖ ≤  𝛽6. (41) 

This scheme will save more on communication frequency since the observer with 

access to all measurements is likely to be more accurate and yield better uncertainty 

estimates. The following corollary can be stated as: 

Corollary 4.1: Consider the system in (1) with the observer in (35) and the 

reference system described by (2). Let assumptions 1 and 2 hold. Consider the NN 

approximation with control generated by (36) and the weight update law in (39). Let the 

control be updated at each event sampling instant when (41) is violated (the static 

triggering condition). Then the state estimation error is asymptotically stable (AS), and the 

tracking error is uniformly ultimately bounded (UUB). 

Proof: Proof for Corollary can be derived by following the same lines as used for proving 

theorem 4.  

 

 



 

 

27 

4. NUMERICAL IMPLEMENTATION: RESULTS, DISCUSSION AND 

ANALYSIS 

 

To show the efficacy of the proposed schemes, we have considered two benchmark 

examples in this study. Simulation results, analysis, and comparison are given for each 

example.  

4.1. EXAMPLE 1: F-16 SHORT PERIOD DYNAMICS 

The short period dynamics of F-16 in a high angle of attack flight, neglecting the 

influence of thrust and gravity, can be given as 

�̇� = −
𝐿𝛼
𝑉
𝛼 + 𝑞 −

𝐿𝛿𝑒(𝛼0)

𝑉
𝛿𝑒 (42) 

�̇� = 𝑀0(𝛼) + 𝑀𝑞(𝛼)𝑞 + 𝑀𝛿𝑒(𝛼, 𝛿𝑒)𝛿𝑒 (43) 

where 𝛼 is the angle of attack (AoA), 𝑞 is the pitch rate, 𝛿𝑒 denotes the elevator deflection, 

𝑉 is the trimmed air speed, 𝑀0, 𝑀𝑞 , 𝑀𝛿𝑒represent pitch, damping and moment components 

respectively, 𝐿𝛼 represent lift curve slope, and 𝐿𝛿𝑒 represents the lift effectiveness. These 

equations of motion can be rewritten as 

�̇� = −
𝐿𝛼
𝑉
𝛼 + 𝑞 (44) 

�̇� = 𝑀𝛼(𝛼0)𝛼 + 𝑀𝑞(𝛼0)𝑞 + 𝑀𝛿𝑒(𝛼0)𝛿𝑒

+
𝑀𝛿𝑒((∆𝑀0(𝛼) + ∆𝑀𝛿𝑒(𝛼, 𝛿𝑒))⏟                  

𝑓(𝛼, 𝛿𝑒)
 

(45) 

where 𝑓(𝛼, 𝛿𝑒) represents matched nonlinear uncertainties. This unknown nonlinear 

function is estimated in [47] and is given as 
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𝑓(𝛼, 𝛿𝑒) = ((1 − 𝐶0)𝑒
(𝛼 − 𝛼0)

2

2𝜎𝑐2
+ 𝐶0)(tanh(𝛿𝑒 + ℎ) + (tanh(𝛿𝑒 − ℎ)

+ 0.01𝛿𝑒) 

(46) 

where 𝐶0, ℎ, and 𝜎𝑐 are the constant. So, system’s state space model augmented with 

integral of AoA (𝛼𝑖), can be written as  

[
�̇�𝑖
�̇�
�̇�
] = [

0
0
0

1

−
𝐿𝛼
𝑉

𝑀𝛼

0
1
𝑀𝑞

] [

𝛼𝑖
𝛼
𝑞
] + [

0
0
𝑀𝛿𝑒

] (𝛿𝑒 + 𝑓(𝛼, 𝛿𝑒)) + [
−1
0
0
] 𝑟. (47) 

For simulation, F-16 data from [27] and [43] at the trim condition of 𝑉 = 502 𝑓𝑡/𝑠 

and trim AoA is 𝛼0 = 2.11 deg are used. The reference model is developed with the help 

of a linear quadratic regulator (LQR) using nominal model with a control weight 𝑅 =

3,the state weight 𝑄 = 𝑑𝑖𝑎𝑔(25, 5, 0), the system matrices 𝐴 = [
0
0
0

1
−1.019
0.822

0
1

−1.077
],  

𝐵 = [
0
0

−0.176
], and the nominal gains used are[−2.89 − 4.62 − 3.37]. The reference 

command is generated as 

𝑟(𝑡) = 0.25 (
1

1 + 𝑒𝑡−8
−

0.5

1 + 𝑒𝑡−8
+

1

1 + 𝑒𝑡−20
− 𝑒−0.2𝑡 − 0.5). (48) 

This input 𝑟(𝑡) has a fast-varying part with a steep slope, a slow varying part and 

also a constant value part, which provides a good test to analyse the controller performance. 

Values of parameters used in this study are 𝐶0 = 0.1, ℎ = 0.14, 𝜎𝑐 = 0.25, 𝐿 = 1, 𝛾 = 40, 

𝜎 = 3, 𝑄 = 50𝐼, and 𝐾2 = −7𝐼. Values for 𝐾1 and 𝐾3 are calculated using (12), 𝐴𝑚, and 

𝐵𝑚. The sampling time is set at ∆𝑡 = 0.01. All simulations are run using Matlab 2014a on 

a computer with Intel(R) Core(TM) i7-3770 CPU@3.40GHz with 8 GB RAM. Proposed 

mailto:CPU@3.40GHz
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schemes are compared with three methods: (i) continuously updated adaptive controller, 

(ii) ETC from paper [2], called ETC-2, and (iii) ETC from [19], called ETC-1.  

Basic control gains and MSO parameters for the simulations are kept same for all 

methods to do a meaningful comparison. 

4.1.1. Example 1 Results with Each ETNAC Scheme.  Now results are given 

for each scheme for the example 1.   

4.1.2. Results with Two-Way ETNAC.    

4.1.2.1. ETNAC-1.  For ETNAC-1, the values used are ∝𝑎= 0.18 and 𝛽𝑎 is 

calculated as per (23). The control values are computed using (11), (12), and (13). Figure 

4a shows the time histories of the desired AoA 𝛼𝑟 (blue) and output AoA 𝛼 from 

continuous control calculations (yellow), ETNAC-1(red), ETC-1 (green), and from ETC-

2 (magenta). Figure 4b shows the errors (difference between the corresponding output AoA 

to the desired reference AoA). Similarly, Figures 5a and 5b contain the time evolution for 

the pitch rate (𝑞) and the corresponding errors. As can be seen from these figures, the 

tracking performance is good with all the schemes. The error plots in Figure 4b/5b show a 

better comparison. As expected, the system that gets continuous updates (yellow) provides 

the best results. Errors with ETC-2 from [2] are comparatively higher as its event-triggering 

is based on the state sampling error only, and there is no mechanism for adaptation or 

learning. Results from the proposed technique ETNAC-1 and ETC-1 are somewhat 

comparable, but note that when systems converge, error magnitudes are relatively smaller 

with ETNAC-1. Similar trends are observed in the pitch rate plots, as shown in Figures 5a 

and 5b. Note that the proposed ETNAC-1 scheme is achieves this performance with the 

least sampling instants when compared to both ETC-1 and ETC-2.  
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As shown in Figure 6a and 6b, ETNAC-1 outperforms all given techniques in terms 

of sampling instants. Only 587 (88.26% less) state updates and 269 (94.620% less) control 

updates are observed as compared to the continuous case where updates are 5000 for each, 

the state and the control. On the other hand, 1381 updates for each (state and control) are 

needed by the ETC-1 and 2241 for each by the ETC-2. An additional distinct feature of the 

ETNAC is its uncertainty approximation including inter-event time, even when actual state 

information is not available. It can be seen from Figure 7a that the uncertainty is closely 

approximated even with 88.8% less sampling instants. Though the actual updates are done 

only at the sampling instants, the true state (measurement) is interpolated using polynomial 

regression between the sampling instants, and this interpolated state is used in the NNWs 

updates. In this way, the NN provides a good approximation of the uncertainty. In this 

study, we used and analysed linear to fourth-order regression models. The third-order 

polynomial regression was found to yield the best results. Figure 7b represents the control 

histories.  

   

 

(a)                                                                    (b) 

Figure 4. Case 1: (a) AoA 𝛼 histories and (b) Tracking error in 𝛼. 
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(a)                                                                                          (b) 

Figure 5. Case 1: (a) Pitch rate 𝑞 histories and (b) Tracking error in 𝑞. 

 

 

(a)                                                                              (b) 

Figure 6. Case 1: (a) History of sampling events for state and control and (b) Cumulative 

sampling events. 
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(a)                                                                                        (b) 

Figure 7. Case 1: (a) Uncertainty approximation with ETNAC 1 and (b) Control 

𝛿𝑒 histories 

  

observer in the loop. Furthermore, it can be observed from Figure 8b that once the error in 

AoA is close to zero, the MSO-based ETNAC-1 shows much smoother behaviour 

compared to ETC-1, which shows oscillations in its error history. Figures 9a and 9b show 

the control trends and uncertainty estimation history, respectively, for case 2. 

 

 

(a)                                                                                  (b) 

Figure 8. Case 2 (Two Way Dynamically Triggered ETNAC 1): (a) Histories of sampling 

events for state and control and (b) Error in 𝛼. 
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Overall, excellent performance in terms of tracking, state estimation, and 

uncertainty estimation is achieved with ETNAC-1, while data communication and 

computational costs are reduced significantly. 

 

 

(a)                                                                                  (b) 

Figure 9. Case 2 (Two Way Dynamically Triggered ETNAC 1): (a) Control 𝛿𝑒 and (b) 

Uncertainty approximation with ETNAC-1. 
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ETNAC-2 also shows hardly any event-triggering once the MSO converges. In the 

statically triggered case (ETNAC-2), if the user-defined thresholds are very high, then less 

sampling events occur, but this can also cause high jumps in the system response. One of 

the examples is given in Figure 11a, where the threshold is set to 0.1 and only 120 sampling 

events are observed, but it caused high jumps.  However, these jumps can be avoided. For 

example, in this case, control triggering thresholds can be lowered or 𝐾2 and 𝛾 can further 

be tuned. When 𝐾2 was changed to −9𝐼 and 𝛾 to 35𝐼, it resulted in a much smoother 

response, as can be seen in Figure 11b.  

4.1.3. Results with One-Way ETNAC with MSO in the Controller Module.    

4.1.3.1. ETNAC-4. Now, results with ETNAC-4 are given where the observer is 

located in the control system module. Note that now the state and the control are both 

transmitted and updated with one tracking error-based event-triggering condition.  

 

 

(a)                                                                             (b) 

Figure 10. Case 3 (Statically Triggered Two Way ETNAC): (a) Cumulative sampling 

events and (b) Uncertainty approximation. 
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(a)                                                                                                           (b) 

Figure 11. Case 4: (a) ETNAC-2 response with high threshold and (b) ETNAC-2 

response after smoothing.  

 

 
(a)                                                                                           (b) 

Figure 12. Case 5 (Statically Triggered One-Way ETNAC-4): (a) AoA 𝛼 and (b) 

Tracking error in 𝛼. 
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communication and computations over a period of 50 seconds. On the other hand, 1608 

updates for each (state and control) are seen with ETC-1 and 1839 for each with ETC-2. 

The steady state response is found to be like that of ETNAC-1 and ETNAC-2. 

 

 
(a)                                                                                           (b) 

Figure 13. Case 5 (Statically Triggered One-Way ETNAC-4): (a) Pitch Rate 𝑞 and (b) 

Cumulative sampling events. 

 

 
(a)                                                                                           (b) 

Figure 14. Case 5 (Statically Triggered One-Way ETNAC): (a) Uncertainty 

approximation with ETNAC-4 and (b) Control 𝛿𝑒 History. 
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approximation are achieved with ETNAC-3, while sampling instants are reduced to only 

789 (as compared to ETC-1, where it is 1381 and ETC-2, where it is 1217). This implies 

that the same performance is almost achieved, with 84.22% less communication and less 

computations.  Overall, the trends in results are similar to the static case except for the 

slight increase in the number of sampling instants. In the steady state, after 25 seconds 

small oscillations are observed at an almost  periodic interval of 5 seconds as shown in 

Figure 15b.  

 

 
(a)                                                                                      (b) 

Figure 15. Case 6 (Dynamically Triggered One-Way ETNAC-3): (a) Cumulative 

Sampling events and (b) Control 𝛿𝑒 History. 

 

These oscillations diminished over the time for ETNAC-3, which is in contrast to 

the ETC methods like ETC-1. This is because the trigger condition is directly related to the 

tracking error and when the states become constant (after 30 seconds as can be seen in 

Figure 15b, a magnifier is added for ETNAC-3 plot only), and after the each update it goes 

off track to touch one side of threshold and then back to the other end of the threshold. It 

diminishes over time because it learns and adapts accordingly. But in other ETC methods, 

it continued to happen. 

Continuous ETC-1 ETC-2 ETNAC-3
0

1000

2000

3000

4000

5000

S
a
m

p
li
n

g
 I
n

s
ta

n
ts

Cummulative Contol Sampling Instants

 

 

Continuous

Updates with ETC-1

Updates with ETC-2

ETNAC-3

0 5 10 15 20 25 30 35 40 45 50

-10

-5

0

5

10

t [s]

C
o

n
tr

o
l 


e
 [

d
e
g

]

Control Input 
e

 

 


e

continuous


e

ETNAC-3


e

ETC-1


e

ETC-2

30 35 40 45

2

4

6

 

 



 

 

38 

4.1.4. Results with One-Way ETNAC with MSO in the Sensor Subsystem.    

4.1.4.1. ETNAC-5. In this subsection, results are given for ETNAC-5, where the 

observer is placed on top in the sensor subsystem and the triggering condition is dynamic, 

based on (40). In this case, the MSO converges, and the estimation error goes to zero even 

faster, as state values are available to the MSO all the time. Excellent tracking is observed 

 

 
 

(a)                                                                                               (b) 

Figure 16. Case 8 (One-Way Dynamically Triggered ETNAC-5): (a) AoA 𝛼 and (b) 

Pitch Rate 𝑞. 

 

 
(a)                                                                                      (b) 

Figure 17. Case 8 (One-Way Dynamically Triggered ETNAC-5): (a) Cumulative events 

history and (b) Uncertainty approximation. 
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with little oscillations. It saves more on communication, as the number of sampling instants 

reduces to only 136. Plots for this case are given in Figures 16 and 17.  

Similar results are obtained by using ETNAC-6 (static event-triggering). Since the 

trends are similar, no plots are given. 

4.2. UNCERTAIN LINEAR SYSTEM: RESULTS, DISCUSSION, AND  A    NA 

LY  ANALYSIS 

This example is used in this paper since it has been used in many ETC papers such 

as in [2], [3], [25],[40], and [41]. In this study, we have furthermore added an uncertainty 

term to its dynamics in order to test the robustness of the proposed method. 

[
�̇�1
�̇�2
] = [

0 1
−2 3

] [
𝑥1
𝑥2
]   + [

0

1
] (𝑢 + 𝑓(𝑥)) (49) 

where the unknown uncertainty is expressed as 𝑓(𝑥) = 0.2𝑥1 + 0.2𝑥2. A second order 

reference system is chosen with a natural frequency of 0.5 and a damping ratio of 0.707. A 

time-varying square wave is used as the reference input. We evaluated only ETNAC-1 in 

this study as proof of concept. Parameter values used are 𝐿 = 1, 𝛾 = 20, 𝜎 = 3, 𝑄 = 1𝐼, 

and 𝐾2 = −3𝐼, and 𝛽a is calculated as per (23). Values for 𝐾1 and 𝐾3 are calculated as per 

(12) and (13). The sampling time is set at ∆𝑡 = 0.01 sec for the continuous simulation and 

it is run for 100 seconds. In Figures 18a and 18b, the time histories for states are shown: 

the reference states, actual states, and the estimated states. Overall, the estimation and 

tracking performance are found to be good, the states stay bounded. Note that now only 

663 state and 541 control sampling instants are observed as compared to 10,000 sampling 

instants in the continuous case. The control evolution given in Figure 19a is stable. The 

uncertainty estimation plot in Figure 19b is quite good except for minor oscillations. 
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Though initially it has small jumps at peaks, they diminish over time as NNWs adapt and 

converge. These jumps appear at the peaks since the reference state has constant values for 

that duration and the states hover around that value under the given thresholds. That is the 

reason the sampling rate is even lower at peaks, as can be observed in Figure 20a. State 

sampling is reduced by 93.37% and control sampling by 94.59%, which are significant 

reductions.    

   

 
(a)                                                                                  (b) 

Figure 18. Two Way Dynamically Triggered ETNAC-1: (a) State-1 

𝑥1, 𝑥1𝑟& �̂�1 histories and (b) State-2 𝑥2, 𝑥2𝑟& �̂�2 histories. 

    

  
(a)                                                                                (b) 

Figure 19. Two Way Dynamically Triggered ETNAC: (a) Control (𝑢) history  and (b) 

Uncertainty approximation. 
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(a)                                                                                               (b) 

Figure 20. Two Way Dynamically Triggered ETNAC: (a) History of sampling events for 

state and control and (b) Cumulative event. 
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IV-For a constant output system, the one-way ETNAC with the observer in the 

controller module yielded the best results. There was hardly any data exchange once the 

observer tracked the plant accurately and the uncertainty estimation converged.  

V-Another thing to note is that although all ETNAC techniques are useful in both 

data communication reduction and computational savings, it is recommended to place the 

observer in the sensor subsystem if the communication cost is more important, and to place 

the observer in the controller module if the computational resources are restricted.  

VI-In general, a 3rd order polynomial regression is good enough for the state 

interpolation during the inter-event time, although any order can be used. Note that at a 

very small cost of transmitting a few coefficients could result in much savings in 

communication and computational cost.  

VII-Relating triggering conditions to estimation and tracking errors allows them to 

be performance-centric, or in other words more realistic.  

VIII-It should be noted that the ETNAC designs are more complex since they have 

an observer as a part of the controller-sensor systems and possess dynamic triggering 

conditions. They need more storage than simpler ETC designs and have to communicate 

more quantities relatively through their subsystems. In addition, their advantages which 

can be seen from the performance comparisons provided in this section, far outweigh the 

disadvantages. 
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5. CONCLUSIONS 

 

Six MSO-based ETNAC schemes were derived; the performance of all versions 

were evaluated and compared with existing ETC schemes for their transient and steady 

state performance and efficiency. A summary has been provided on the features of the 

proposed schemes. Each of the proposed schemes can estimate, compute the model 

uncertainties, save communication and computational cost by utilizing its event-triggered 

mechanism, and guarantee stability and good close loop performance. From the 

representative simulated examples, which showed 95% less sampling instants and 

maintained good tracking, it appears that the proposed schemes have much practical 

potential to be used in embedded networked systems. 
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ABSTRACT 

This study considers the feasibility of an event-triggered neuro-adaptive controller 

providing formation control while reducing jitter for microsatellites used in deep space 

missions. A single microsatellite at the Sun-Earth/Moon L1 libration point is considered as 

a follower spacecraft in formation with a single leader spacecraft.  A halo orbit is generated 

as a reference trajectory for the leader spacecraft and modeled as a virtual node defined 

along the reference trajectory about which the follower spacecraft maintains its relative 

position. For such microsatellites, limited capabilities of the platform, including restricted 

controls and actuation, and sensitive responses to uncertainties and jitter make the 

controller design challenging. To address such challenges, an event-triggered neuro-

adaptive controller (ETNAC) is proposed in this paper. ETNAC is based on the use of an 

observer, known as the Modified State Observer (MSO) that is used for online 

approximation of the uncertainties in the dynamics. In addition to uncertainty 

approximation, the MSO also offers filtering effects; its formulation has two tunable gains 
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that allow for fast estimation without inducing high frequency oscillations in the system. 

At the same time, for the event-triggering mechanism (ETM), the system state is sensed 

continuously but fed back only when required in an aperiodic fashion, and control is 

recomputed only with updated information. In this way, inter-event time increases 

compared to that of continuous updates, resulting in reduced jittering. Two new ETNAC 

schemes are considered in this study. The system’s theoretical derivations and the 

numerical implementation of each scheme are presented. Lyapunov analysis is used to 

prove stability and derive the event-triggering conditions. Simulation and performance 

results show that ETNAC can be an excellent solution for such highly nonlinear, sensitive, 

and resource-constrained problems. 

 

1. INTRODUCTION 

 

Advances in hardware capabilities of the microsatellite platform have begun to 

enable deep space missions with microsatellites [1]. They can play an increasing role in 

advanced mission concepts with savings in cost, size, weight, and power as compared to 

traditional large monolithic spacecraft. To achieve the objectives of these missions, often 

a number of microsatellites is needed that maintain a tight flight formation, requiring 

precision control. With the maturity of the microsatellite platform and the recent 

development of micropropulsion systems designed for such architectures, the required tight 

formation tolerances can now be achieved. This study addresses the design of robust and 

precise control solutions to enable the use of these technologies in precision formation 

flight (PFF).  
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A number of advanced mission concepts has been studied that require precision 

formation flight in a deep space environment. Planet finding missions such as the 

Terrestrial Planet Finder [2] and Darwin [3] seek to “create” infrared interferometers using 

multiple spacecraft in PFF to emulate powerful telescopes to search for distant planets. The 

Micro-Arcsecond X-Ray Interferometry Mission (MAXIM) [4] mission seeks to observe 

and study black hole phenomena, while the Laser Interferometer Space Antenna [5] 

mission seeks to study gravitational waves. Other missions such as the NASA Stellar 

Imager [6] seek to use small spacecraft in PFF to create a virtual telescope for observation 

of stellar surfaces. Each of these unique missions seek to utilize swarms of spacecraft in 

PFF to enable advanced missions that would otherwise be unfeasible for large monolithic 

spacecraft due to size, weight, and power requirements.  

Three-body dynamics, often described by the circular restricted three-body problem 

(CR3BP) equations, give rise to libration points, which are locations relative to two primary 

bodies where dynamic forces/accelerations acting on a spacecraft are in equilibrium. These 

points offer unique advantages to deep space missions as they allow for spacecraft to enter 

and remain in orbits at these locations with only modest station keeping effort, facilitating 

long duration scientific missions such as MAXIM and Stellar Imager. However, missions 

like MAXIM require millimeter/submillimeter [7] position control, while the Stellar 

Imager requires position control in the micrometer range [8]. To achieve these tolerances, 

micropropulsion systems must be capable of producing thrust values in the nano- to 

micronewton range. Marchand and Howell studied a variety of control strategies including 

linear quadratic regulator (LQR) and feedback linearization methods to quantify propulsion 

requirements for advanced missions such as MAXIM and the Terrestrial Planet Finder [9]. 
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Using the CR3BP model as well as an ephemeris model, it was found that thrust levels 

ranged from nano- to millinewtons for large monolithic spacecraft, as well as requiring 

nearly continuous control when trying to achieve submillimeter position control. While 

studies by Howell and Marchand have found the potential existence of natural formations 

at libration points [10], further study is needed before continuous or impulsive control 

strategies are implemented. 

Previous studies have explored continuous and impulsive controllers for PFF 

through linear, nonlinear, and adaptive control techniques. An optimal nonlinear controller 

technique, -D, was used by Xin et al. to bring relative position error into the submillimeter 

range [11] [12] , while Li used a combination of LQR control with neural network learning 

to accommodate the nonlinearities in the basic dynamics and achieve range error levels in 

the order of tens of millimeters [13]. By using nonlinear control and robust adaptive 

methods, Xu was able to keep formation errors in the sub-kilometer range while estimating 

the spacecraft mass and bounds of the disturbances experienced [14]. Similar adaptive 

techniques used by Queiroz were able to estimate the mass and disturbances while reducing 

relative errors to the submeter range [15]. Work by Gurfil with nonlinear control techniques 

along with neural networks reduced relative errors to the submillimeter range [16]. 

While utilizing continuous controllers provides acceptable relative position 

performance, jitter and propellant budgets onboard the spacecraft are increased compared 

to impulsive methods. Work by Qi used an impulsive control strategy, which was able to 

maintain the spacecraft in a bounded relative position error corridor as small as 100 

centimeters [17]. However, this case was limited to CR3BP dynamics without 

consideration of other disturbances outside of thruster errors.  
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Another important concern is that continuously updated control and actuation can 

cause jitter in the spacecrafts position and pointing, which can lead to diminished scientific 

return. Some papers, which study jitter independently, include [18]-[25], showing that jitter 

induced vibration can lead to diminished controller performance, or even instability in 

navigation and control algorithms. High frequency jitter can also be critical to the integrity 

of microsatellite hardware, which typically does not undergo the extended vibration testing 

conducted on larger monolithic spacecraft. Some effort has been made to measure jitter in 

microsatellites, such as [27], [21], [22] and [23], and employ techniques to reduce jitter. 

Two such techniques reduce jitter through controller development and actuation leading to 

vibration isolation such as managing angular momentum using a magnetic torquer [27] or 

by adaptive moment distribution control logic [20]. Along with the other contributions of 

this paper, we have proposed a unique and direct way to reduced jitter through the 

controller algorithm itself. Jitter is induced each time the control is updated and the 

actuators are activated, inducing a sudden step input into the dynamics of the system. This 

is where event-triggering mechanism (ETM) is useful, as an update in control is only 

applied when needed, leading to longer periods of smooth motion as compared to 

traditional periodic and continuous controllers. This period of smooth motion, during 

which there are no additional internal/external inputs into the system, is termed as periods 

of silence. The reduced occurrence of actuator updates increases the period of silence and 

thereby directly reduces the amount of jitter induced, without compromising the 

performance of the controller metrics. To enable the application of microsatellites to PFF 

at libration points, methods to improve relative position error precision under disturbances 
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must be considered while keeping control updates, jitter, and propellant budgets reasonable 

to facilitate onboard implementation. These important factors are considered in this study. 

This effort proposes an event-triggered neuro-adaptive controller (ETNAC) 

providing PFF control for deep space mission applications using microsatellites. This 

method is able to reduce jitter by increasing the periods of silence, estimate and address 

uncertainties and perturbations, while maintaining a tight relative position error tolerance. 

Gupta described a number of techniques to sample state information efficiently in [33] 

leading to the development of the event-triggered strategy. Heemels [35] proposed the 

event-triggered condition design process for linear systems in which a control Lyapunov 

function was adopted to guarantee input-to-state stability. Tabuada ensured asymptotic 

stability with an event-triggered controller [34] and gave a proof for the existence of the 

lower bound of inter-event times. As uncertainty and perturbations are inevitable parts of 

the system dynamics, adaptive control methods can be used to learn these uncertainties and 

adjust the control accordingly [36]. Some other notable contributions in adaptive event-

triggered control are given in [28]-[43].  

In this study, ETNAC is developed and applied to a notional deep space mission. 

The case study defined here considers formation flight at the Sun-Earth/Moon L1 libration 

point, with a halo orbit as the reference trajectory. A reference virtual node, defined as the 

leader of a formation of an arbitrary number of spacecraft, is placed along the reference 

trajectory about which the follower spacecraft will maintain some defined relative position. 

(Note that this leader node need not necessarily have an actual spacecraft stationed there.) 

This formation can be easily expanded to any number of spacecraft, each with their own 

relative position from the reference node, such that a virtual structure is formed. The virtual 



 

 

55 

structure has a central node, defined as the reference node (i.e. the leader), and a number 

of nodes defined by fixed locations from the reference node. The shape of the virtual 

structure can be defined as desired; for example, the Stellar Imager mission proposes a 

parabolic virtual structure to emulate a parabolic mirror [7]. This structure remains fixed 

over time and its reference node follows the natural motion of the desired halo trajectory. 

Each spacecraft can then be assigned to a relative node about which they maintain their 

position.  By maintaining their position, formation flight is enabled. Using a single follower 

spacecraft to demonstrate this relative position control to the reference node is sufficient to 

show the concept feasibility and is a key objective of this study enabled by the ETNAC 

control approach. The virtual structure concept is shown in Figure 1, where 𝑛𝑟𝑒𝑓 is the 

reference node and where 𝑛1, 𝑛2, … are relative nodes at fixed locations, given by 𝑟1, 𝑟2, …, 

respectively, from the reference node. In this study, a relative node was arbitrarily placed 

  

 
Figure 1. The fixed virtual structure (View I) is defined with the reference node on the 

halo trajectory, with relative nodes (View II) placed at fixed locations from the reference 

node. By placing and maintaining spacecraft at these relative nodes, formation flight is 

enabled. 
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at a fixed 100 m separation (with equal components along the three rotating axes) from the 

reference node and the spacecraft was required to maintain this relative position to the 

reference node throughout the simulation. 

In event-triggered control, the state of the system is sensed continuously but sent to 

the controller only when required. Typically, this communication cycle is aperiodic. A 

condition, called the “event-triggered condition,” is derived to determine when to transmit 

such information. The control is then applied to maintain the PFF of the spacecraft, while 

perturbations are applied to the system to assess the robustness of the control method. 

Numerical studies are further used to determine/conclude if ETNAC is capable of 

maintaining the reference trajectory, while robust to system perturbations and noise. 

Two new techniques proposed in this paper are based on where the observer is 

placed within the control system architecture. The first one is referred to as ETNAC-1 in 

which the observer operates in parallel with the controller and is only updated at the event 

condition. In this method, only state and four curve fitting parameters are transmitted at the 

event condition. The controller and observer are updated at the sampling instant and 

transmitted to the plant. Though the plant receives only data for the sampling instant, the 

observer is continuously simulated between the current and last sampling instant times. In 

this inter-event simulation, neural network (NN) learning and different curve fitting 

algorithms can be used to manage computation bandwidth. As such, the observer and 

controller are only updated aperiodically at the event condition, extending the inter-event 

time. The second proposed method is referred to as ETNAC-2 in which the observer 

executes outside of the event driven conditions. The observer is thus continuously updated 

in a periodic fashion while having access to state measurements at all times. When an event 
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trigger condition is met, the system state, observer state, and NN weights are transmitted 

to the controller, which is thus updated in an aperiodic fashion. This flexibility enables an 

appropriate methodology to be chosen depending upon the spacecraft platform capabilities 

and performance requirements. 

The remainder of the paper is organized as follows: Section II presents the systems 

dynamics/state model and Section III contains the problem formulation. Section IV 

provides the proposed solution (ETNAC) summary. Section V contains discussions of the 

numerical implementation, results, and analysis. Section VI summarizes the conclusions 

from this study followed by proofs and references. 

 

2. SYSTEM DYNAMICS 

2.1. CIRCULAR RESTRICTED THREE-BODY PROBLEM (CR3BP) 

The well-known nondimensional CR3BP equations of motion [18] used in this 

study are given as 

�̈� = 2�̇� + 𝑥 − (1 − 𝜇)
𝑥 + 𝜇

𝑅1
3 − 𝜇

𝑥 − (1 − 𝜇)

𝑅2
3  

                    �̈� = −2�̇� + 𝑦 − (1 − 𝜇)
𝑦

𝑅1
3 − 𝜇

𝑦

𝑅2
3 (1) 

                     �̈� = −(1 − 𝜇)
𝑧

𝑅1
3 − 𝜇

𝑧

𝑅2
3 

where 𝜇 is the mass ratio parameter of the two primary bodies (
𝑚2

𝑚1+𝑚2
) and 𝑅1 and 𝑅2 

represent the distances of the third body (the spacecraft with components x, y, and z in 

terms of the rotating frame defined by the primaries’ motion) from the respective primary 

bodies. These equations of motion describe the natural (unperturbed and uncontrolled) 
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motion of this third body of negligible mass, whose motion is determined by the 

gravitational forces of the two primary bodies.  

2.2. SOLAR RADIATION PRESSURE 

Deep space trajectories can be significantly perturbed by solar radiation pressure 

(SRP), which is modeled in this study with magnitude   

𝑃𝑠𝑢𝑛 =
𝜓𝑠𝑢𝑛
𝑐 𝑟𝑠

 (2) 

where 𝜓𝑠𝑢𝑛  is the solar constant at one astronomical unit (AU), ranging between 1,361 

W/m2 and 1,363 W/m2 based on the solar cycle, 𝑐 is the speed of light, and 𝑟𝑠 is the distance 

between the spacecraft and the Sun in astronomical units. The spacecraft is modeled as 

having uniform sides and the force generated by SRP is expressed in vector form [18] as  

𝐹𝑠𝑟𝑝 = −𝑃𝑠𝑢𝑛𝑐𝑟𝐴⊙
𝑟𝑠𝑎𝑡⊙

|𝑟𝑠𝑎𝑡⊙|
 (3) 

where 𝐴⊙ is the exposed area of the spacecraft to the Sun, 𝑐𝑟 is the coefficient of 

reflectivity, and 𝑟𝑠𝑎𝑡⊙ is the spacecraft-to-Sun position vector. 

2.3. SPACECRAFT AND THRUSTER MODEL 

Marchand and Howell have shown that for tight precision control, thrusters need to 

be capable of producing thrust in the nano- to millinewtons range [9]. While there are 

thruster systems in development, such as Plasmonic Force Propulsion (PFP) [29]- [32], that 

can produce thrust in the nano- to micronewton range, this study considers the millinewton 

range as such technology is readily available. The spacecraft in this study is modeled as a 

1U (10 x 10 x 10 cm3) CubeSat with a single thruster capable of producing between 1 to 
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50 millinewtons of thrust, where the control effort becomes saturated if it exceeds the 

thruster capability. It is assumed that attitude control is available (such as momentum 

wheels) to point the thruster, thus providing three axis translational control.  

2.4. FULL STATE MODEL 

If the third body in the CR3BP is defined as a spacecraft, with its state vector 

defined by 𝑍 ≜ [𝑥 𝑦 𝑧 �̇� �̇� �̇�]𝑇, the addition of a control vector 𝑢  and the perturbation 𝑑(𝑍) 

due to solar radiation pressure, the CR3BP system (1) then can be described by 

�̇�(𝑡) =  𝑓(𝑍) + 𝐵 ( 𝑢 + 𝑑(𝑍)) 

where 𝑓(𝑍) =

[
 
 
 
 
 �̇�

�̇�
�̇�

2�̇�+𝑥−(1−𝜇)
𝑥+𝜇

𝑟1
3−𝜇

𝑥−(1−𝜇)

𝑟2
3

−2�̇�+𝑦−(1−𝜇)
𝑦

𝑟1
3−𝜇

𝑦

𝑟2
3

−(1−𝜇)
𝑧

𝑟1
3−𝜇

𝑧

𝑟2
3 ]

 
 
 
 
 

, 𝐵 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

,  𝑢 =

[𝑢(1)   𝑢(2)   𝑢(3)]𝑇 and 𝑑(𝑍) = [𝐹𝑠𝑟𝑝,𝑥  𝐹𝑠𝑟𝑝,𝑦  𝐹𝑠𝑟𝑝,𝑧]
𝑇
. 

 

(4) 

3. PROBLEM FORMULATION 

 

In this section, the spacecraft dynamics are written in a more general form and then 

the ETNAC design for this general problem is developed in the next section. The dynamics 

of an uncertain nonlinear system as in (1), with perturbations and control can be expressed 

as 

�̇�(𝑡) = 𝑓(𝑋(𝑡)) + 𝐵 ( 𝑢(𝑡𝑖) + 𝑑(𝑋(𝑡)))      𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1,    ∀ 𝑖 =

1,2, … 

(5) 
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where 𝑋 ∈ ℝ𝑛 is the state of the actual system, 𝑑(𝑋(𝑡)): ℝ̅+ × ℝ
𝑛 → ℝ𝑚 is the unknown 

perturbation in the system, 𝑓(𝑋(𝑡)) ∈ ℝ𝑛is a known function and 𝐵 ∈ ℝ𝑛×𝑚 is a known 

matrix, and 𝑢(𝑡𝑖) ∈ ℝ
𝑚  is the control input. The dynamics of the desired nonlinear system 

defining the reference trajectory for (1), is represented using   

𝑋�̇�(𝑡) =  𝑓
∗(𝑋𝑑(𝑡))  (6) 

where 𝑋𝑑 ∈ ℝ
𝑛 is the desired state of the system and  𝑓∗ ∈ ℝ𝑛 is a known function.  

The control objective is to design an event-sampled state-based adaptive controller 

𝑢(𝑡𝑖) for the system (1) that follows the desired response 𝑋𝑑(𝑡) while keeping sampling 

events minimum. Note that the desired trajectory for this study is defined by a vector with 

magnitude 100 m (with equal components along all three axes) relative to the leader on the 

halo orbit located at the Sun-Earth/Moon L1 point. 

 

4. ETNAC DESIGN 

 

In order to accomplish the objective stated in the last section, two ETNAC schemes 

are developed for the controller/observer design. The first scheme is shown in Figure 2, 

where the observer runs in parallel with the controller module shown at the bottom. In the 

second scheme, shown in Figure 3, the observer stays with the top module where plant-

related calculations are made. For both schemes, the stability and performance analyses are 

provided.  

 



 

 

61 

4.1. EVENT- SAMPLED STATE BACKGROUND 

In the ETNAC framework, the system state is measured continuously but 

transmitted to the control system only at the specific instants when an event occurs. This 

event is determined by a condition called as “event-triggering condition.” These time 

instants are denoted as {𝑡𝑖} 𝑖=1
∞  where 𝑡𝑖+1 > 𝑡𝑖, ∀ 𝑖 = 1,2, … and 𝑡0 = 0 is the initial 

sampling instant. Note that these times are typically aperiodic. For later use, the event-

sampling error is defined as 

𝑒𝑒𝑣𝑡 ≜ 𝑋(𝑡) − 𝑋(𝑡𝑖) ,    𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1,    ∀ 𝑖 = 1,2, …   (7) 

where 𝑋(𝑡𝑖) is the sampled state at 𝑡𝑖. At each state sampling instant 𝑡 = 𝑡𝑖, current sampled 

state 𝑋(𝑡𝑖) is sent to the controller, overwriting the previous sampled state 𝑋 (𝑡𝑖−1 ) and  

 

 
Figure 2. ETNAC-1 Block Diagram 
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Figure 3. ETNAC-2 Block Diagram 

 

held by using a Zero-Order-Hold (ZOH) until the next state is received. In this way event-

sampling error is reset to zero as 𝑒𝑒𝑣𝑡 = 0,when 𝑡 = 𝑡𝑖. Due to this event-triggered update, 

control signal become piecewise continuous.  

Some standard assumptions were made during this work, with similar assumptions 

seen in the control literature ( [51], [42], [52], and [53] etc.). 

Assumption 1: The uncertainty can be linearly parametrized. From the universal 

function approximation property of NN, a real valued function 𝑑(𝑋(𝑡)) in a compact set 

𝐴 ⊆ ℝ𝑛 can be approximated with some residual error 𝜖 such that (s.t.),  

𝑑(𝑋(𝑡)) = 𝑊𝑇𝜙(𝑋(𝑡)) + 𝜖(𝑋, 𝑡) (8) 

where 𝑊 ∈ ℝ𝑠×𝑚 is the unknown but ideal weight matrix (𝑠 ∈ ℕ+ ) that belongs to a 

compact set  Ω, and 𝑋 ∈ 𝐷𝑥 for a sufficiently large compact set 𝐷𝑥. Note that user chosen 

basis functions 𝜙(𝑋):ℝ𝑛 → ℝ𝑠  are bounded as ‖𝜙(𝑋)‖ ≤ 𝜙∗ and 𝜖(𝑡, 𝑋) is the residual 
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error satisfying |𝜖(𝑡, 𝑋)| ≤ 𝜖∗. Also, it is assumed that all states are available for 

measurement. 

Assumption 2: The basis functions 𝜙(. ) and system function 𝑓(. ) are locally 

Lipschitz continuous s.t., 

‖𝜙(𝑋) − 𝜙(𝑌)‖ ≤ 𝐿𝜙 ‖𝑋 − 𝑌‖ 

‖𝑓(𝑋) − 𝑓(𝑌)‖ ≤ 𝐿𝑓 ‖𝑋 − 𝑌‖ 

(9) 

where 𝑋, 𝑌 ∈ 𝐷𝑥 and 𝐿𝜙, 𝐿𝑓 ∈ ℝ+. Note that the norm notation used in this paper is valid 

for the 2-norm or Frobenius norm.  

Now both ETNAC schemes are given in detail.  

4.2. ETNAC-1: STATICALLY TRIGGERED ETNAC WITH MSO PERFORMED  

A    AT CONTROL SYSTEM 

In ETNAC an intermediate step is to design an appropriate Modified State Observer 

(MSO) [26]. Even though all states are assumed measurable, the MSO notion is used here 

because it approximates uncertainty online using NNs, and moreover, it also offers a 

filtering effect for high frequency oscillations. It has been shown to avoid large oscillations 

in its transient performance that is usually observed with a typical model reference adaptive 

controller [26]-[50]. Note that the development and design of the MSO here is quite 

different from [26], in order to accommodate the asymmetric data transfer to the controller. 

The equations defining the MSO are given by  

 �̇̂�(𝑡) = 𝑓(�̅�(𝑡)) + 𝐵 ( 𝑢(𝑡𝑖) + �̂�(�̅�(𝑡))) − 𝐾2(�̅�(𝑡) − �̂�(𝑡)) 

        =  𝑓(�̅�(𝑡)) + 𝐵 𝑢(𝑡𝑖) + 𝐵�̂�
𝑇𝜙(�̅�(𝑡)) − 𝐾2(�̅�(𝑡) − �̂�(𝑡)) (10) 
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where �̂�(�̅�(𝑡)) ≜ �̂�𝑇𝜙(�̅�(𝑡)) represents the estimate of 𝑑(𝑋(𝑡)), 𝐾2 is a user defined 

Hurwitz gain matrix and  

�̅�(𝑡) ≜ {
         𝑋(𝑡𝑖)                                                       𝑡 = 𝑡𝑖    

𝐶1𝑡
𝑛 + 𝐶2𝑡

𝑛−1…+ 𝐶𝑛𝑡 + 𝐶𝑛+1      𝑡𝑖 < 𝑡 < 𝑡𝑖+1 
      ∀𝑖 = 1,2… 

where 𝐶𝑖   𝑖 = 1,2, … 𝑛 are polynomial regression-based curve-fitting coefficients (CFCs). 

These coefficients are determined in the system, using state data points. Different numbers 

of data points can be used depending on the used order of regression. After the coefficients 

are determined, they are transmitted along with the state information whenever the state 

sampling condition becomes true. 

Note that in this design, though the observer is updated only at sampling instants, 

it is essentially simulated continuously. Using some selected time instants where the state 

is measured, it is curve fit at discrete aperiodic sampling times, with the CFCs transmitted 

on the feedback network.  The true state (measurement) is interpolated using the CFCs 

between the past and the current trigger time instants for the weight estimate. The controller 

is updated at the sampling time 𝑡𝑖+1 with the values of �̂�(𝑡𝑖+1) and �̂�(𝑡𝑖+1).  

By adding and subtracting 𝑊𝑇𝜙(�̅�(𝑡)) in (8) 

𝑑(𝑋(𝑡)) = 𝑊𝑇𝜙(𝑋(𝑡)) +𝑊𝑇𝜙(�̅�(𝑡)) −𝑊𝑇𝜙(�̅�(𝑡)) + 𝜖(𝑋, 𝑡)           

 = 𝑊𝑇𝜙(�̅�(𝑡)) + 𝜖̌        𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1,    ∀ 𝑖 = 1,2, … (11) 

where 𝜖̌ ≜ 𝑊𝑇𝜙(𝑋(𝑡)) −𝑊𝑇𝜙(�̅�(𝑡)) + 𝜖 = 𝑊𝑇[𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡))] + 𝜖 is the 

residual error. Substituting (11) into (5) gives 

            �̇�(𝑡) = 𝑓(𝑋(𝑡)) + 𝐵𝑢(𝑡𝑖) + 𝐵𝑊
𝑇𝜙(𝑋(𝑡)) + 𝜖 

                   = 𝑓(𝑋(𝑡)) + 𝐵𝑢(𝑡𝑖) + 𝐵𝑊
𝑇𝜙(�̅�(𝑡)) + 𝜖̌. (12) 
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To design a control which guarantee desire objectives of 𝑋(𝑡) → 𝑋𝑑, the tracking error is 

designed to follow the stable dynamics 

(�̇�(𝑡) − 𝑋�̇�(𝑡)) − 𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)) = 0 (13) 

where the user-defined Hurwitz diagonal matrix 𝐾 is given by 

𝐾 = 𝑑𝑖𝑎𝑔 (
1

𝜏1
, … . . ,

1

𝜏𝑛
). (14) 

where 𝜏1…𝜏𝑛 can be interpreted as desired time constants. Using the desired and actual 

systems dynamics equations in (13)  

𝐵𝑢(𝑡𝑖) =  𝐹
∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡)) − 𝐵𝑑(𝑋(𝑡)) + 𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)). (15) 

In [26], a slack variable technique is used to make 𝐵 invertible. Two slack variables 

introduced as 𝑢𝑠 ∈ ℝ
(𝑛−𝑚)×1 and 𝐵𝑠 ∈ ℝ

𝑛×(𝑛−𝑚).  𝐵𝑠 is chosen such that augmented �̅� ≜

[𝐵 𝐵𝑠] becomes square and invertible. Augmented control will be then �̅� ≜ [𝑢(𝑡𝑖), 𝑢𝑠]
𝑇 . 

Adding 𝐵𝑠𝑢𝑠 on both sides of equation (15) gives 

𝐵𝑢(𝑡𝑖) + 𝐵𝑠𝑢𝑠 = 𝐹
∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡)) − 𝐵𝑑(𝑋(𝑡)) + 𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)) + 𝐵𝑠𝑢𝑠 

�̅��̅� = [𝐵  𝐵𝑠][𝑢(𝑡𝑖)  𝑢𝑠]
𝑇

= 𝐹∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡)) − 𝐵𝑑(𝑋(𝑡)) + 𝐵𝑠𝑢𝑠

+ 𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)) 

(16) 

So, if the approximation �̂�(�̅�(𝑡) ≅ 𝑑(𝑋(𝑡)) is available, then the augmented control at a 

sampling instant can be written as 

�̅� ≜ [
𝑢(𝑡𝑖)

𝑢𝑠
] = �̅�−1{𝐹∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡𝑖))

− 𝐵�̂�(�̅�(𝑡) + 𝐵𝑠𝑢𝑠 + 𝐾(�̅�(𝑡) − 𝑋𝑑(𝑡))  }. 

(17) 
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From (17) we can easily extract 𝑢(𝑡𝑖) or slack variables can be added/subtracted in (5) and 

the augmented control �̅� can be applied directly. Note that slack variables have no active 

role but essentially act as a catalyst to simplify computations. 

Defining the tracking error as  

𝑒𝑟(𝑡) ≜ 𝑋(𝑡) − 𝑋𝑑(𝑡) (18) 

the dynamics after some algebra is  

�̇�𝑟(𝑡) = 𝐾𝑒𝑟(𝑡) − 𝐾𝑒𝑒𝑣𝑡 +  𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)) + 𝐵(�̃�
𝑇𝜙(𝑋(𝑡𝑖)) + 𝜖̌) (19) 

where �̃� ≜  𝑊 − �̂�. The estimation error is defined as  

𝑒𝑎(𝑡) ≜ 𝑋(𝑡) − �̂�(𝑡) (20) 

and the dynamics can then be reduced to  

�̇�𝑎(𝑡) = 𝐾2𝑒𝑎(𝑡) − 𝐾2𝑒𝑒𝑥𝑡 + 𝐵�̃�
𝑇𝜙(�̅�(𝑡)) + 𝐵𝜖̌ + 𝑓(𝑋(𝑡))

− 𝑓(�̅�(𝑡))        𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1,    ∀ 𝑖 = 1,2, 

(21) 

where 𝑒𝑖𝑛𝑡 ≜ 𝑋(𝑡) − �̅�(𝑡) is the interpolation error. The event sampling error and 

interpolation error need to be bounded for the actual tracking error to be bounded.  

The weight update rule for �̂� is assumed as 

�̇̂� = 𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵) (22) 

where 

�̅�𝑎 = {
𝑋(𝑡𝑖) − �̂�(𝑡𝑖)                                                      𝑡 = 𝑡𝑖     

�̅�(𝑡) − �̂�(𝑡)                                               𝑡𝑖 < 𝑡 < 𝑡𝑖+1
  

and 𝛾 ∈ 𝔻+
𝑠×𝑠 is the adaptation rate used in the weight update rule, and 𝑃𝑟𝑜𝑗𝑚 (. , . ) denotes 

the smooth projection operator [44]. Note that the projection operator guarantees that �̂� ∈

Ω, and that there exists a 𝑊∗ ∈ Ω s.t.  ‖�̂�‖ ≤ 𝑊∗ and 𝑃 is the solution of the linear 

Lyapunov equation 
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0 = 𝐾2
𝑇𝑃 + 𝑃𝐾2 + 𝑄 

0 = 𝐾𝑇𝑃𝑟 + 𝑃𝑟𝐾 + 𝑄𝑟 
(23) 

where 𝑄, 𝑃, 𝑄𝑟 , 𝑃𝑟 > 0. The event-triggering condition is true when (24) is violated 

‖𝑒𝑟‖ ≤ ∝ (24) 

where ∝ is a user defined threshold error for event-triggering. 

4.2.1.  Stability Analysis. 

Theorem 1: Consider the system in (1) with the observer in (10) and the desired 

system described by (6). Let Assumptions (1-2) hold. Consider the NN approximation, with 

the control generated by (17), and the weight update law in (22). Let the control be updated 

only at the event sampling instants when (24)is violated. Then the state estimation error 

and the tracking error are locally uniformly ultimately bounded (UUB). 

Proof: Proof is given in the appendix. 

I.Corollary 1: Ultimate Upper Bound on Tracking Error: 

Consider the system in (1) with the observer in (10) and the desired system 

described by (6). Let Assumptions (1-2) hold. Consider the NN approximation, with control 

generated by (17), and the weight update law in (22). Let the control be updated only at 

the event sampling instant when (24) is violated, then the ultimate bound on 𝑒𝑟 can be given 

by 𝑒𝑟0 s.t. 

‖𝑒𝑟(𝑡)‖ = ‖𝑋(𝑡) − 𝑋𝑑(𝑡)‖ ≤ 𝑒𝑟0 (25) 

where 𝑒𝑟0is defined as 𝑒𝑟0 ≜ √𝜗1/𝜆𝑚𝑖𝑛(𝑃𝑟) and 𝜗1 ≜ 𝜆𝑚𝑎𝑥(𝑃𝑟)𝜓1 + 𝜆𝑚𝑎𝑥(𝑃𝑟)휀.  

Proof: Proof is given in the appendix. 
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4.3. ETNAC-2: STATICALLY TRIGGERED ETNAC WITH MSO PERFORMED  

A   AT SYSTEM 

The block diagram of this scheme is given in Figure 3, in which the observer is in 

parallel with the actual system. The standard MSO expressions for observer are used as                        

                 �̇̂�(𝑡) =  𝑓(𝑋(𝑡)) + 𝐵 𝑢(𝑡𝑖) + 𝐵�̂�(𝑋(𝑡)) − 𝐾2(𝑋(𝑡) − �̂�(𝑡)) 

                        =  𝑓(𝑋(𝑡)) + 𝐵 𝑢(𝑡𝑖) + 𝐵�̂�
𝑇𝜙(𝑋(𝑡)) − 𝐾2(𝑋(𝑡) − �̂�(𝑡)) (26) 

with the approximation  �̂�(𝑋(𝑡)) ≜ �̂�𝑇𝜙(𝑋(𝑡)). Note that now the state is available to 

the observer continuously. Only sampled control, which include 𝑋  and �̂�, at each 

sampling instant is transmitted to the control system. A control that guarantees 𝑋(𝑡) →

𝑋𝑑, can be achieved using 

(�̇�(𝑡) − 𝑋�̇�(𝑡)) − 𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)) = 0 (27) 

where the user-defined Hurwitz diagonal matrix 𝐾 is similar to (13).  Control is synthesized 

following similar steps as with the ETNAC-1 algorithm, beginning with 

�̅� = [
𝑢(𝑡𝑖)

𝑢𝑠
] = �̅�−1{ 𝐹∗(𝑋𝑑 , 𝑢𝑛(𝑡𝑖)) − 𝑓(𝑋(𝑡𝑖)) + 𝐵𝑠𝑢𝑠 − 𝐵�̂�(𝑋(𝑡))

+ 𝐾(𝑋(𝑡𝑖) − 𝑋𝑑(𝑡))} 

(28) 

Now dynamics for the tracking error 𝑒𝑟(𝑡) can be simplified as 

�̇�𝑟(𝑡) = 𝐾𝑒𝑟(𝑡) − 𝐾𝑒𝑒𝑣𝑡 + + 𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)) + 𝐵�̃�
𝑇𝜙(𝑋(𝑡𝑖)) + 𝜖̌ (29) 

and the dynamics of state estimation error 𝑒𝑎 are reduced to 

�̇�𝑎(𝑡) = 𝐾2𝑒𝑎(𝑡) + 𝐵�̃�
𝑇𝜙(𝑋(𝑡)) (30) 

The weight update rule for �̂� is given as 

�̇̂� = 𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(𝑋(𝑡)) 𝑒𝑎(𝑡)
𝑇𝑃𝐵) (31) 
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where 𝛾 ∈ ℝ+ is the adaptation rate for update rule of �̂�, 𝑃𝑟𝑜𝑗𝑚 (. , . ) denotes the smooth 

projection operator [44] (note that the projection operator ensures that  �̂� ∈ Ω, and that 

there exists 𝑊∗ ∈ Ω s.t.  ‖�̂�‖ ≤ 𝑊∗), and 𝑃 is the solution to linear Lyapunov equation 

0 = 𝐾2
𝑇𝑃 + 𝑃𝐾2 + 𝑄 

0 = 𝐾𝑇𝑃𝑟 + 𝑃𝑟𝐾 + 𝑄𝑟 
(32) 

where 𝑄, 𝑃, 𝑄𝑟 , 𝑃𝑟 > 0. Event triggering condition is true when (33) is violated  

‖𝑒𝑟‖ ≤ ∝ (33) 

where ∝ is a user-defined threshold error for event triggering. 

4.3.1.  Stability Analysis.  

Theorem 2: Consider the system in (1) with the observer in (26) and the desired 

system described by (6). Let Assumptions (1-2) hold. Consider the NN approximation, with 

control generated by (28), and the weight update law in (31). Let the control be updated at 

the event sampling instants when (33) is violated, then the state estimation error is locally 

asymptotically stable and the tracking error is locally uniformly ultimately bounded 

(UUB). 

Proof: Proof is given in the appendix. 

 

5. RESULTS 

 

System (1) with its state model as in (4) is simulated in this study using MATLAB. 

Simulation is carried out in non-dimensional units. The results, however, are presented in 

SI units. Different gains and parameter values used are  𝐾2 =

𝑑𝑖𝑎𝑔(105, 105, 105, 104, 103, 104), 𝛾 = 𝑑𝑖𝑎𝑔(106, 106, 106), and  𝐵𝑠 = [
𝐼3×3
−𝐼3×3

], 𝑢𝑠 =
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[1 1 1 1 1 1]𝑇 . To generate a baseline, results are first given with continuous updates and 

then the ETNAC schemes are applied for different values of ∝ to determine the 

performance of ETNAC.  

5.1. RESULTS WITH CONTINUOUS INPUT 

The reference (virtual leader) and spacecraft (follower) trajectories for the 

duration of one complete halo orbit, approximately 180 days, are shown in Figure 4, 

respectively, indicating that the follower spacecraft, subjected to SRP perturbations, 

should maintain its desired location of 100 meters to the reference leader node on the halo 

orbit. Plots throughout the remainder of the paper are given for a duration of five days, by 

which time the follower spacecraft reaches steady state behavior; this allows the system 

behavior to be observed and analyzed more closely. Figure 5a shows the time histories of 

the followers relative tracking (to its node located 100 meters from the virtual leader 

reference node), while Figure 5b represent control components histories. There is no 

constraint on control and the update interval is approximately 5 seconds in this case. It can 

be seen that the performance is excellent with the steady state error in the sub micrometer 

range. Initial tracking errors are in the 1-5 millimeter range while the neural network takes 

some time to learn and converge, after which the error quickly approaches the steady state 

value. No major oscillations are observed, even during the transient phase. Control along 

the �̂�-axis is significantly higher because the SRP perturbation acts primarily along the �̂�-

axis. It shows that if the actuator hardware technology is available (no constraint on control 

is assumed), then with the proposed control architecture excellent performance can be 

achieved in the sub micrometer range, which is not seen in literature so far. On the other 



 

 

71 

hand, Figures 6a and 6b show the follower relative tracking error and control histories in 

the case where a 1 millinewton (mN) minimum control constraint is applied to meet the 

practical design requirements, along with a maximum update interval of approximately 25 

seconds (higher update intervals lead to instability in the response). This shows that even 

with current existing hardware, a submillimeter accuracy is obtained with continuous 

control. In this case the response has significant jitter, but this is due to constraints coming 

in from physical hardware limitations, not from the proposed design. It is clearly evident 

from Figure 5, where response without constraints is smooth. Figure 7a shows the state 

estimation errors, which converge to the micrometer range soon after the NN converges. 

Figures 7b, 8a, and 8b show the histories of the original and the approximated uncertainties  

 

 
(a)                                                  (b) 

Figure 4. Desired (a) and actual spacecraft (b) trajectories for one complete orbit with 

continuous updates. 

 

along the �̂�, �̂� and �̂� axis directions, respectively, where the estimated values converge 

quickly to the true perturbations, which are in the range of 10−9 nondimensional units 

(approximately 0.015 nN). Note that the original perturbation is from the truth model given  

1.48

1.49

x 10
8

-5

0

5

x 10
5

-2

-1

0

1

2

3

x 10
5

 

X Position (km)

S/V Orbit at L1

Y Position (km)

 

Z
 P

o
s
it
io

n
 (

k
m

)

Halo Orbit

Secondary Body

Libration Point

1.48

1.49

x 10
8

-5

0

5

x 10
5

-2

-1

0

1

2

3

x 10
5

 

X Position (km)

S/V Orbit at L1

Y Position (km)

 

Z
 P

o
s
it
io

n
 (

k
m

)

Halo Orbit

Secondary Body

Libration Point



 

 

72 

 
(a)                                                                (b) 

Figure 5. Continuous Update Case: Tracking error (a), and control components(b), 

without any control constraints and at higher update rate. 

 

 
(a)                                                   (b) 

Figure 6. Continuous Update Case: Tracking error (a), and control components(b), with 

control constraints and at lower update rate. 

 

 
(a)                                                                                    (b) 

Figure 7. Continuous Update Case: State Estimation error (a) Uncertainty approximation 

along �̂�  (b). 
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(a)                                                 (b) 

Figure 8. Continuous Update Case: Uncertainty approximation along �̂�  (a) and along �̂�  

direction (b). 

 

  
(a)                                                                                         (b) 

Figure 9. Continuous update with 26 seconds timing interval, Tracking Error (a) and 

Control (b). 

 

in equation (2)-(3) and the estimated values are from the NN based MSO. Note also that 

the maximum time interval for continuous updates was found to be approximately 25 

seconds (Figure 6), as higher values resulted in system divergence. The plots in the Figures 

9a and 9b shows that whenever control is updated at a continuous/periodic rate of 0.0385Hz 

(~26 seconds period), it could not stabilize, and the system diverged. After setting up this 

baseline, now results are given with event-triggering. 
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5.2. RESULTS WITH ETNAC-1 

In this method, the controller and the observer have access to sampled state 

information only at the event condition. Table 1 provides a summary of the number of 

updates needed for different cases, where the values of  ∝ are varied, in order to 

demonstrate the overall performance of the ETNAC-1 scheme. Detailed results for Case 3 

with a threshold error ∝= 1 mm are presented. Note this proposed method is unique for 

reducing jitter in microsatellites. During the inter-event time (called the period of silence), 

there are no step inputs in the microsatellite operations, leading to steady dynamics and 

reducing jitter. 

i. ETNAC-1, Case 3: Error Threshold 1 mm, duration 5 days 

The number of sampling updates using ETNAC-1 was 9235, as compared to 17,202 

sampling instants using continuous control, resulting in a reduction of sampling instants 

by 46.3144%. 

Figures 10 shows the tracking and estimation error histories. Once the threshold 

error of 1 mm is reached, the event-triggered system is activated, and it updates the 

observer system and the controller acts to bring the tracking error into the desired range. 

This control is held constant by a ZOH until the error threshold is reached again. This inter-

event period of silence helps to reduce jitter and to smooth operations in the microsatellite. 

The overall performance is found to be satisfactory as the tracking error remains within the 

desired threshold throughout. The estimation error is in the sub-millimeter range in this 

case even when observer only has access to the last sampled state and is updated only a 

few times with a polynomial regression model of the states.     
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(a)                                                      (b) 

Figure 10. Case 3: Tracking error (a) and state estimation error (b) with ETNAC-1. 

 

Figure 11a shows control components histories while Figure 11b shows overall 

magnitude (norm) over the given time. Control is not updated continuously and is always 

lower and upper bounded by 1 mN and 50 mN, respectively. It can be seen that excellent 

performance is achieved even with these restrictions. Control value remained between 1 

mN to 3mN.  Figure 12a shows the cumulative control update counts. Control updates are 

reduced by 46.3144 % over a period of five days while maintaining a 1 mm error bound. 

This indicates that the period of silence is almost doubled that of the maximum possible 

with continuous control (approximately 25 seconds). The difference between cumulative 

control updates for both continuous control and ETNAC is clear. This longer period of 

silence leads to smoother operations and reduces jitter in microsatellite control. No events 

are observed until the error threshold is reached and after that it keeps updating information 

in a nonlinear fashion depending upon the tracking error threshold. Although initially the 

event rate is high, over time it becomes more aperiodic as steady state behavior is achieved. 

This is because it takes time for the NN weights to converge, which can also be seen from 

the uncertainty approximation plots.  Histogram in Figure 12b shows the duration of inter-

event time and the number of times it occurred. The horizontal axis shows the duration of 
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inter-event time in terms of 25 seconds (maximum possible with continuous updates) and 

the vertical axis represent that how many times that inter-event time was obtained. 

Minimum inter-event time was equal to the 1 continuous time step which is skipped in 

diagram. Maximum was approximately 150 seconds (6x increase) which happened two 

time only and 50 seconds (2x increase) happened most frequently around 1400 times.    

 

     
(a)                                                                   (b) 

Figure 11. Case 3: Control components histories (a) and its magnitude histories (b) with 

ETNAC-1. 

 

  
(a)                                                                  (b) 

Figure 12. Case 3: cumulative event counts (a), and histogram of control update events 

(b), with ETNAC-1. 
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Note that this period of silence is even higher in the case of higher thresholds (∝). 

Plots are omitted for those cases but Table 1 summarizes the results for them. 

Disturbance estimation plots along �̂�, �̂� and �̂� directions are given in Figures 13a, 

13b and 13c, respectively. Note that the initial NN weights are set at zero and no update 

happens until the tracking error crosses the threshold level. Once the event-triggered 

condition occurs, the NN begins receiving updated information and the perturbations are 

learned. The true state (measurement) is interpolated using CFCs between the past and the 

current trigger time instants for use in the weight estimates. The order of the regression can 

be chosen after analyzing the output behavior. In this study, different regression orders 

were tested from first order to fifth order. It was found that the third order polynomial 

regression yielded the best results since the system trajectory between two points along the 

system trajectory at two different event sampling instants is of a parabolic shape. Four state 

measurements points were used, the current and last sampling instance and two in between 

measurements at uniform separation in order to find the CFCs needed to curve fit the data. 

Once acquired, these CFCs were later transmitted to the feedback network at the sampling 

instant. Note that regression is done at the plant level and that only the CFCs are sent to 

the feedback network at the event condition. If higher order regression is desired, this can 

be easily implemented by utilizing additional measurements in the data selected to fit. The 

only consideration for higher order cases is sending a few extra coefficients, which are still 

worth extending period of silence as compared to continuous updates. It can be seen from 

the figures that the estimates are close to the true values, though some oscillations exist.  
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(a)                                                               (b) 

 
(c) 

Figure 13. Case 3: Perturbation estimation along �̂� (a), along �̂� (b), and along �̂� (c) with 

ETNAC-1. 

 

It is of interest to examine estimation behavior during inter-event times for different 

order polynomial fitting. Four cases are presented in Figure 14, ranging from1st order 

regression to 4th order regression, respectively. Figure 14(a) is for a 1st order polynomial 

regression fit, which is essentially just linear interpolation between two sampling instants. 

As the actual trajectory is curved, the estimation error is in the 100s of kilometers range. 

As expected, the error in interpolation changes depending upon inter-event time, where the 

error increases as the inter-event time increases. In Figure 14(b), interpolation error during 

inter-event time is based on a 2nd order polynomial regression, in which case the error is 
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reduced to around 500 millimeters (but is still too high). Using a 3rd order polynomial 

regression, as shown in Figure 14(c), produced the best results by reducing error to just  

 

   
(a) (b) 

 

  
(c)                                                                                      (d) 

Figure 14. Interpolation error during inter-event time for different order of polynomial 

regression with ETNAC-1: 1st order (a), 2nd order (b), 3rd order (c) and 4th order (d). 

 

around 0.2 millimeters. The final case shown in Figure 14(d) is for a 4th order 

approximation, in which error again started growing due to over fitting. Thus, depending 

upon the system and its output behavior, any order of polynomial regression can be used 

without increasing data communication cost, making this method robust and flexible. 

A summary of the overall performance of the ETNAC-1 controller is given in Table 

1 for different values of threshold error (∝) for a period of 365 days. A baseline ∆𝑉 is 
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established from the known SRP perturbation, where if perfect knowledge of the 

perturbation is known, then the minimal ∆𝑉 required to maintain a spacecraft at the 

reference node subjected to the SRP is given as ∆𝑑(𝑋). Because the follower spacecraft is 

maintained at a node located at a fixed position from the reference node, it’s ∆𝑉 will never 

achieve this minimum (because it is not tracking the true nominal halo orbit). However, 

this is a useful metric with which to compare the additional ∆𝑉 required to maintain the 

spacecraft at the relative node, as this gives a common reference for each additional 

spacecraft that can be placed in the virtual structure. More specifically, the fifth column of 

the table shows the “extra” ΔV required to “force” the follower to track a slightly “non-

natural” halo orbit. 

 

Table 1. ETNAC-1 Comparison and ∆𝑉 analysis for different values of  ∝ for a duration 

of 365 days, continuous control updates are 12,55,781. 

Case 

No 

Error 

Threshold 

Level 

(mm) 

∆𝑽 

m/s per year 

∆𝒅(𝑿) 

m/s 

per 

year 

∆𝑽 − ∆𝒅(𝑿) 

m/s per year 

Sampling 

Instants 

with 

ETNAC-1 

% 

Reduction 

1 1 7.8789  2.7714 5.1075 660,818 47.3379 

2 5 10.3085 2.7714 7.5371 450,355 64.1374 

3 10 14.3707 2.7714 11.5993 166,416 86.7480 

4 100 16.8641 2.7714 14.0927 28,287 97.7457 

5 1000 17.8887 2.7714 15.1173 20,093 98.5874 

 

 

For these cases only inter-event time histograms are represented in Figure 15 a-e. 

These figures show the durations of the periods of silence observed and number of times 

they occurred for each case. 
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(a)                                                                                    (b) 

     
(c)                                                                                   (d) 

 
(e) 

Figure 15. Histogram of inter-event times for different values of  ∝ for a duration of 365 

days with ETNAC-1: 1st case where ∝= 1mm  (a), 2nd case where ∝= 5mm   (b), 3rd 

case where ∝= 10mm   (c), 4th case where ∝= 100mm   (d) and 5th case where ∝=
1000mm (e). 
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The advantage of using the ETNAC-1 based controller is clear from the reductions 

in control updates achieved while maintaining reasonable additional ∆𝑉 values. Actually, 

these additional ∆𝑉 values are in the range of 0.00001-0.001 m/s per year. They are little 

higher in these cases due to practical design restrictions on controller. As can be seen 

ETNC-1 is able to reduce control updates up to 98.4% as compared to continuous updates. 

This proves the ETNAC-1 capabilities for the obtaining longer periods of silence resulting 

in reduced jitter, which is critical for microsatellite operations and scientific observations. 

Another interesting point observed from the results in Table 1 is that for the simulation 

where the event-triggering threshold is at 1 mm, the ability to maintain an error threshold 

in the sub-millimeter range using ETNAC is achieved. Most existing literature shows error 

reduction only to the millimeter range using continuous control, while using the aperiodic 

ETNAC design has allowed error to be reduced to below the millimeter range while still 

reducing control updates significantly. Another point to note is the ∆𝑉 values.  As the 

threshold level decreases, the difference in ∆𝑉 as compared to the perturbation remains 

small, which shows the efficiency, efficacy and robustness of the controller performance. 

As the threshold level increases, the amount of ∆𝑉 required begins to increase as expected, 

while the number of events decreases. This becomes a design parameter, where a tradeoff 

between  ∆𝑉 and control updates reduction can be selected based on the platform and the 

mission requirement. 
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5.3. RESULTS WITH ETNAC-2 

The results using ETNAC-2 are presented next. Case 3, with threshold error ∝=

1 mm, is again given in detail while Table 2 gives a summary for different values of 

threshold error (∝) to illustrate the overall performance. 

ii. ETNAC-2, Case 3: Error Threshold 1 mm, duration 5 days 

The number of sampling instants using ETNAC-2 was 9,290, as compared to 17,202 

sampling instants using continuous control, resulting in a reduction of sampling instants 

by 46.43%. 

The response of the system with ETNAC-2 is given for a 1 mm threshold, as shown 

in Figure 16, for tracking and estimation error histories. Once the tracking error reaches 

the user defined threshold level, the event-triggering mechanism (ETM) is activated and 

the control is updated, lowering the error below the threshold. This control remains at hold 

by ZOH until the error reaches the threshold again. In this way, tracking error remains 

under an allowable range at all time, as can be seen from Figure 16a, while at the same 

time providing much longer period of silence in turn to smooth operations. Estimation error 

also converges quickly and remains at a small steady state error level, as expected because 

the state information is available to the MSO at all times.  As can be seen from the results, 

the overall performance is very satisfactory in terms of tracking, estimation, and longer 

smoother durations for science operations. 

The original and the estimated perturbation in �̂�, �̂� and �̂� directions are presented 

in Figure 17a, 17b, and 17c, respectively. The NN weights were initialized with a zero 

vector but over time converge and all three perturbation estimations converge smoothly to 
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accurate values. Though the perturbation is mostly dominate along the �̂� direction, the NN 

still captures the perturbations along the �̂� and �̂�, despite the fact that the perturbation along  

    
(a)                                                                                            (b) 

Figure 16. Case 3: Tracking error (a) and state estimation error (b) with ETNAC-2. 

 

these axes is small. In this case, ETM does not affect the estimation process as the MSO is 

outside the event condition and has continuous access to state information. 

In Figures 18a and 18b, respectively the time history of the control components and 

its magnitude are presented. The control magnitude remains constant using ZOH between 

events and is bounded between 1 mN and 50 mN due to system design restrictions. It can 

be seen that each control component depends upon the magnitude of the tracking error, as 

expected. Despite the restrictions on magnitude and only being aperiodically updated when 

event-triggered, the controller is still able to achieve desired goals. Magnifier on plot 

provides a closer look that how much period of silence is extended with ETM as compare 

to continuous control.  

The cumulative event counts are presented in Figure 19a. Initially there are no 

updates until the error first reaches the threshold level, after which the events are triggering 

in a comparatively smoother way. It also shows that the number of control updates is now 

reduced to only 9290 instead of 17,202 over the period of five days, which is a 46.43% 
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reduction. Figure 19b shows the histogram for inter-event duration in terms of multiples of 

25 seconds.  The overall performance is summarized in Table 2 for different values of 

threshold error ∝.  

 

       
(a)                                                                         (b) 

        
(c) 

Figure 17. Case 3: Perturbation estimation along �̂� (a), along �̂� (b), and along �̂� (c), with 

ETNAC-2.  
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(a)                                                                               (b) 

Figure 18. Case 3: Control components histories (a) and its magnitude histories (b) with 

ETNAC-2.          

 

    
(a)                                                                                              (b) 

Figure 19. Case 3: cumulative event counts (a), and histogram of control update events 

(b), with ETNAC-2. 

   

As Table 2 shows, ETNAC-2 proved to be very effective in achieving the error-

level objectives while providing a reduction in control updates and much longer periods of 

silence, which is very useful in microsatellite operations in deep space missions. Similar 

trends as shown in Table 1 are also observed. For smaller thresholds, ∆𝑉 is comparatively 

lower but sampling instants are slightly higher, and vice versa for higher thresholds.   
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Table 2 ETNAC-2 comparison and ∆𝑉 analysis for different values of  ∝ for a duration 

of 365 days, continuous sampling instants 12,55,781. 

Case 

No 

Error 

Threshold 

Level 

(mm) 

∆𝑽 

m/s per 

year 

∆𝒅(𝑿) 

m/s per 

year 

∆𝑽
− ∆𝒅(𝑿) 

m/s per 

year 

Sampling 

Instants 

with 

ETNAC-2 

% 

Reduction 

1 1 7.6254 2.7714 4.8540 669,568 46.6820 

2 5 10.1178 2.7714 7.3465 558,691 55.5170 

3 10 14.3708 2.7714 7.2814 225,849 82.0152 

4 100 16.7935 2.7714 14.0221 85,016 93.2300 

5 1000 17.5861 2.7714 14.8147 63,323 94.9575 

 

 

Note that it is not just about the reduction in number of updates. There is also the 

possibility of additional environmental, dynamic, or even structural changes (the spacecraft 

mass will decrease as ∆𝑉 is used). As such, the system can face a range of different 

uncertainties over time.  In such cases, ETNAC will be able to respond quickly. The entire 

purpose of ETNAC is that it can respond quickly, learn, and adapt when needed. If the 

sampling rate is set too slow (for reducing number of updates with continuous), it will take 

longer to adapt and there is an increased risk of divergence. As such, even though it is 

possible to have an initial high continuous sampling rate and later reduce to a slower 

continuous sampling rate, there is no guarantee that the high sampling rate won’t be needed 

again. ETNAC allows for the sampling rate to effectively change over time, allowing the 

sampling rate to be, in effect, autonomously chosen. 
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(a)                                                                                 (b) 

  

(c)                                                                                 (d) 

 

(e) 

Figure 20. Histogram of inter-event times for different values of  ∝ for a duration of 365 

days with ETNAC-2: 1st case where ∝= 1mm  (a), 2nd case where ∝= 5mm   (b), 3rd 

case where ∝= 10mm   (c), 4th case where ∝= 100mm   (d) and 5th case where ∝=
1000mm (e). 
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  These comparisons again show the potential of the proposed ETNAC methods for 

the given application to achieve the desired goal of tracking and robustness, by efficiently 

countering the uncertainty of perturbations, while at the same time improving periods of 

silence which in turn reduces jitters. 

 

6. CONCLUSIONS 

 

A modified state observer-based neuro-adaptive event-triggered control (ETNAC) 

was derived and implemented with the circular restricted three-body problem for a pair of 

spacecrafts flying in formation along a halo orbit at the Sun-Earth/Moon L1 point. The goal 

was to maintain the tracking error in the millimeter/submillimeter range in the presence of 

uncertainties while reducing jitter by increasing periods of silence for spacecraft through 

the notion of event-triggering. Simulation results showed that this goal was achieved 

successfully using the proposed ETNAC schemes. From the numerical results it is shown 

that control updates can be reduced as much as 98% without inducing any oscillations 

while maintaining the tracking error under the desired range. For smooth operation and 

better functioning of the microsatellite science, these reduced control updates and longer 

periods of silence can be considered significant. These results indicate the potential of the 

proposed technique for application to the microsatellite platform and deep space missions 

while reducing control updates and increasing period of silence time in the the 

microsatellites.  
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UNCERTAIN NONLINEAR SYSTEMS 
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Department of Mechanical and Aerospace Engineering, Missouri University of Science 

and Technology, Rolla, MO 65409 

ABSTRACT 

In this paper, a neuro-adaptive controller design is proposed that guarantees strict 

performance for the constrained uncertain nonlinear system. This performance can be 

independently prescribed for each individual/segregated state and/or error signal of the 

given system. Most practical applications are nonlinear in nature, involve different physical 

limitations that put different symmetric/asymmetric constraints on the state signals, and 

have uncertainties and disturbances from inaccurate models, environmental changes, 

structural changes, and some performance requirements need to be insured throughout. To 

address these problems simultaneously, a control architecture is proposed for uncertain 

constrained nonlinear systems. Main features of the proposed design are (i) guaranteed 

priori user-defined tracking performance for all times (transient and steady state) that can 

satisfy constraints on the state signals, (ii) flexibility to have different constraints on 

separate state and error signal, and not just on the norm of errors or states, (iii) flexibility 

to have symmetric/asymmetric constraints/bounds, (iv) change in control can be regulated 

in proportion to proximity of threshold which helps to avoid excessive input force, which 

is generally observed in barrier-Lyapunov-function (BLF)-based controls, (v) it can 
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estimate and address uncertainties and can identify unmodeled dynamics by using 

artificial-neural-network (ANN)-based modified state observer (MSO). Benchmark 

numerical examples are used to show the effectiveness of the proposed technique. 

 

1. INTRODUCTION 

 

Many real-world applications involve hardware limitations that put constraints on 

system states. Most of the practical systems are inherently nonlinear and cannot be 

controlled or stabilized in an efficient manner by using linearized models. At the same 

time, the presence of disturbances and uncertainties cannot be avoided. All these problems 

need to be addressed simultaneously. In addition, some performance is needed to be 

ensured all the time to avoid undesired operations. To address these problems, a BLF-based 

control architecture called the segregated prescribed performance guaranteeing neuro-

adaptive control (SPPGNAC) is proposed in this paper.     

A robotic end effector cannot exceed some velocity if it is handling a soft object on 

a packaging plant, or it cannot employ force beyond some specified limit if it is handling a 

fragile object like eggs. These types of limitations can be observed in many fields, from 

chemical industry to space technology, and all of them have different limitations on their 

systems. These limitations show up as symmetric/asymmetric constraints in problem 

formulations. Note that these constraints will not be the same for each state signal. 

Therefore, separate constraints and performance metrics on each separate state signal is 

more practical than having one universal constraint on the norm of all states or errors. 

Furthermore, with all these limitations, some specific performance of the system may need 
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to be guaranteed all the time. For instance, it is required that a robotic end effector should 

not transgress a given workspace, or a satellite cannot violate a bound around its trajectory, 

otherwise it will diverge from its orbit. The presence of uncertainties or external 

disturbances are unavoidable in any system dynamics. These can originate from structural 

changes, environmental changes, or inaccurate/approximate modeling. Therefore, it is 

important for the controller to be adaptive and robust to take care of such abnormalities.  

Some efforts have been made to address these issues. Regarding adaptive controls 

to address uncertainties and disturbances, after McCulloch  [1], a pioneer in the field of 

calculus of  ANN, more and more researchers have been attracted by the power of neural 

networks (NN) as effective function approximators. Narendra [2] considered the 

application of the ANN in the control of nonlinear systems. Amongst other developments, 

Sanner et al. in [3] and Lewis in [4] used different radial basis and multilayer ANN in 

control schemes to approximate uncertainties and disturbances. Other relevant 

contributions for function approximation are [5] and [6] from Farrell et al. and Lewis et al. 

respectively. Padhi et al. presented the MSO in [7] to estimate uncertain dynamics to use 

in the control. Different control schemes are presented in [8], [9], and [10] where MSO is 

used.  

For constrained systems, the notion of set invariance was applied in [11] and [12] 

by Liu and by Lin et al., respectively. Model predictive control (MPC) was utilized by 

Allgöwer et al. in [13] and by Mayne et al. in [14] to insure constraints, while in [15] and 

[16], reference governors are utilized by Bemporad and Gilbert et al. to satisfy constraints. 

Additionally, Ngo, Mahony, and Jiang employed BLF in [17] to handle constraints for 

systems in the Brunovsky form. This motivated Tee, Ge, and Tay, who presented an 
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asymmetric BLF for the control of the electrostatic parallel plate in press [18]. Later, they 

extended it to the nonlinear system in [19] and were able to guarantee strict performance 

on partial states. Krstic et al. in  [20] and Marino and Tomei in [21] extended backstepping 

in adaptive control for parametric-uncertain systems with non-matching conditions. 

Despite the availability of such literature, only a few efforts such as the research from 

Krstic and Bement [22] have been made in adaptive-backstepping-based constrained 

control to achieve a non-overshooting tracking response for strict feedback systems. Li and 

Krstic in [23], proposed a modified backstepping design based on positively invariant 

feasibility regions for nonlinear systems with control singularities. Other papers with BLF-

based control for uncertain systems include Bechlioulis and Rovithakis [24], [25]-[26],  

Ren et al. [27], Muse [28], Kostarigka et al. [29], and  Ehsan and Yucelen et al. [30]-[31]. 

In [24], constrained system is converted to an equivalent unconstrained system that still 

satisfies given performance requirements, but it was assumed that all states are accessible 

to control. In  [25], this condition was relaxed with further assumptions on desired states. 

On the other hand, [26] extended this approach to general dynamical systems, but only to 

measurable outputs. In [28], a BLF-based model reference adaptive controller (MRAC) 

was developed. In [30], the authors proposed a BLF-based MRAC for linear systems 

assuming time invariant uncertainties. Later, the same authors extended the idea of BLF-

based MRAC to time varying parameters in [31].  

Still the constraint formulation used in these papers do not adequately address the 

practical requirements of real-life systems. Either only one universal constraint is 

considered on the norm of the state vector or the error vector or constraints can be insured 

only on the partial state vector. In some work, BLF-based MRAC is focused only on error 
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performance. The assumptions made are not very practical. There is a gap in actual physical 

system’s limitations and the way the constraints have been modeled in the literature.  

This is where the proposed SPPGNAC is expected to be useful, as it can handle the 

discussed problems simultaneously. It can be directly applied to a nonlinear model, ensures 

separate independent symmetric/asymmetric  constraints on state signals at the same time, 

guarantees prescribed performance, can estimate and address uncertainties and 

disturbances online independent of BLF, can model the unknown dynamics, and it also 

offers a way to regulate the excessive control effort near the boundary as it is observed in 

the BLF-based controls.    

The rest of this paper is organized as follows: Section II presents the mathematical 

background, and Section III contains the problem formulation. Section IV provides the 

formulations of the proposed SPPGNAC. Section V describes the stability analysis, while 

Section VI covers the discussions on the numerical implementation, results and analysis. 

Finally, Section VII summarize the conclusions from this study followed by 

acknowledgement and the references.  

 

2. MATHEMATICAL BACKGROUND 

 

For a variable 𝑠 ∈ ℝ, a BLF on its absolute value, 𝑓𝑏𝑙(|𝑠|), 𝑓𝑏𝑙: ℝ → ℝ is defined 

[31] as 

𝑓𝑏𝑙(|𝑠|) ≜ 𝛼𝑠
𝑠2

(𝜖𝑠 − |𝑠|)
 (1) 
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where 𝜖𝑠 ∈ ℝ+ is a user-defined bound/constraint on |𝑠|, 𝛼𝑠 > 0, and |𝑠| ∈ ∁𝜖𝑠 for ∁𝜖𝑠  ≜

{ 𝑠: |𝑠| ∈ [0, 𝜖𝑠) }. The derivative of 𝑓𝑏𝑙 with respect to 𝑠2 is given as 

𝐷𝑓𝑏𝑙|𝑠| =
𝑑 𝑓𝑏𝑙(|𝑠|)

𝑑 𝑠2
= 𝛼𝑠  

(𝜖𝑠 −
1
2
|𝑠|)

(𝜖𝑠 − |𝑠|)2
. (2) 

One modification made here in the definition of BLF in (1) as compare to [31] is 

the multiplication by a parameter 𝛼𝑠, which helps to regulate the excessive change in 𝑓𝑏𝑙and 

𝐷𝑓𝑏𝑙|𝑠|. Note that because BLF is applied on the absolute value of 𝑠 and a symmetric trend 

is seen on both the negative and positive sides of the plot of 𝑓𝑏𝑙, as can be seen from Figure 

1a and 1b, it is therefore called a symmetric BLF. It will enforce only symmetric 

constraints/bounds on the variable.  The effect of  𝛼𝑠  is shown in Figure 1b where now the 

value of 𝑓𝑏𝑙 goes high only when |𝑠| reaches close to 𝜖𝑠. From definitions in (1) and (2), 

followings hold [31], 

i) 𝑓𝑏𝑙(|𝑠|) is continuously differentiable on ∁𝜖𝑠 

ii) If |𝑠| = 0, then 𝑓𝑏𝑙(|𝑠|) = 0   

iii) If |𝑠| → 𝜖𝑠, then 𝑓𝑏𝑙(|𝑠|) → ∞   

iv) As long as |𝑠| ∈ ∁𝜖𝑠 then 0 ≤ 𝑓𝑏𝑙(|𝑠|) ≤ 𝛾𝑠. Since |𝑠| < 𝜖𝑠, from (1) it is clear 

that 𝑓𝑏𝑙(|𝑠|) is bounded by some 𝛾𝑠 ∈ ℝ+  

v) As long as |𝑠| ∈ ∁𝜖𝑠,then  0 < 𝐷𝑓𝑏𝑙|𝑠| ≤ 𝛽|𝑠|. Since |𝑠| < 𝜖𝑠, from (2) it is clear 

that 𝐷𝑓𝑏𝑙|𝑠| is bounded by some 𝛽|𝑠| ∈ ℝ+. 

Symmetric BLF can be extended to an asymmetric case, where we can have 

different upper and lower constraints on the given variable. One example is shown in 
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Figure 1c, where PCs on the positive and negative sides are different now.  For an 

asymmetrically constrained 𝑠, its BLF can be given as 

𝑓𝑏𝑙(|𝑠|) ≜  𝑓𝑎𝑠𝑦𝑚(𝑠) 𝑓�̅�𝑙(|𝑠|) + (1 − 𝑓𝑎𝑠𝑦𝑚(𝑠)) 𝑓𝑏𝑙(|𝑠|) (3) 

where 𝑓�̅�𝑙(|𝑠|) ≜
𝑠2

(�̅�𝑠−|𝑠|)
,  𝑓𝑏𝑙(|𝑠|) ≜

𝑠2

(𝜖𝑠−|𝑠|)
, 𝜖�̅� is upper priori PC on 𝑠, 𝜖𝑠  is lower priori 

 

   
(a) (b) 

 

 
(c) 

 

Figure 1. (a) Symmetric BLF with 𝛼𝑠 = 1, (b) Symmetric BLF with 𝛼𝑠 < 1, and (c) 

Asymmetric BLF  
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PC on 𝑠, and  𝑓𝑎𝑠𝑦𝑚(𝑠) is defined as 

𝑓𝑎𝑠𝑦𝑚(𝑠) = { 
1         𝑖𝑓   𝑠 ≥ 0
  0         𝑖𝑓    𝑠 < 0  

. (4) 

Note that in these plots, the lower and upper bounds/constraints are shown on the 

negative and positive sides of the plots. However, it can be applied to any type of plot, 

considering the reference point as zero and the lower and upper sides as negative and 

positive, respectively.  

Now BLF concept is extended to a vector. For a matrix 𝑃 ∈ ℝ𝑞×𝑞, the weighted 

Euclidian norm of a vector 𝑇 ∈ ℝ𝑞  is defined as ‖𝑇‖𝑃 = √𝑇𝑇𝑃𝑇. A BLF on it can be given 

as 

𝑓𝑏𝑙(‖𝑇‖𝑃) ≜ 𝛼𝑇
‖𝑇‖𝑃

2

(𝜖𝑇 − ‖𝑇‖𝑃)
 (5) 

where 𝜖𝑇 ∈ ℝ+ is a user-defined priori PC on ‖𝑇‖𝑃, 𝛼𝑇 > 0, and ‖𝑇‖𝑃 ∈ ∁𝜖𝑇 for ∁𝜖𝑇  ≜

{ ‖𝑇‖𝑃: ‖𝑇‖𝑃 ∈ [0, 𝜖𝑇) }. The derivative of 𝑓𝑏𝑙(‖𝑇‖𝑃) with respect to (w.r.t) ‖𝑇‖𝑃
2  is given 

as 

𝐷𝑓𝑏𝑙‖𝑇‖𝑃
=
𝑑 𝑓𝑏𝑙(‖𝑇‖𝑃)

𝑑 ‖𝑇‖𝑃
2 = 𝛼𝑇  

(𝜖𝑇 −
1
2
‖𝑇‖𝑃)

(𝜖𝑇 − ‖𝑇‖𝑃)2
 . (6) 

From (6) and (7), a bound can be set on the norm of a vector of the signals as well. 

 

3. PROBLEM FORMULATION 

 

The general dynamics of an uncertain nonlinear affine system can be expressed as 

�̇�(𝑡) = 𝑓(𝑋(𝑡)) + 𝑔 ( 𝑢(𝑡) + 𝑑(𝑋(𝑡)) ) (7) 
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where 𝑋 = [𝑥1 … 𝑥𝑖 … 𝑥𝑛]
𝑇 ∈ ℝ𝑛 is the full state vector of the system, 𝑓(𝑋(𝑡)) ∈

ℝ𝑛×1 and 𝑔 ∈ ℝ𝑛×𝑚 are known system matrices, 𝑑(𝑋(𝑡)): ℝ̅+ × ℝ
𝑛 → ℝ𝑚 is the 

unknown uncertainty in the system, and 𝑢(𝑡) ∈ ℝ𝑚  is the control input. 

The desired dynamics of the nonlinear system defining the reference trajectory is 

represented using   

𝑋�̇�(𝑡) =  𝑓
∗(𝑋𝑑(𝑡))  (8) 

where 𝑋𝑑 ∈ ℝ
𝑛 is the desired state of the system and  𝑓∗ ∈ ℝ𝑛 is a known function. System 

functions 𝑓(𝑋) and 𝑓∗(𝑋𝑑) are pointwise bounded for any bounded 𝑋 and 𝑋𝑑, respectively. 

The control objective is to design an adaptive controller 𝑢(𝑡) for the system in (7) 

that forces it to follow the desired response (𝑋𝑑(𝑡)), subject to constraints on the state 𝜖𝑥𝑖 <

𝑥𝑖 < 𝜖�̅�𝑖 and on error 𝜖𝑒𝑗 < 𝑒𝑗 < 𝜖�̅�𝑗  for 𝑖 = 1,2,3…𝑞,   𝑗 = 1,2,3… 𝑙 where 𝑞, 𝑙 ∈ ℕ+ and 

𝑞, 𝑙 ≤ 𝑛. Note that each state signal 𝑥𝑖 can have its own separate different upper and lower 

constraint 𝜖�̅�𝑖 , 𝜖𝑥𝑖 ∈ ℝ and also, for each error signal 𝑒𝑗 certain separate  upper and lower 

bounds 𝜖�̅�𝑗 , 𝜖𝑒𝑗 ∈ ℝ need to be guaranteed all the time. 

Assumption 1: The uncertainty can be linearly parametrized. Using the universal 

function approximation property of neural networks (NN), we know that a real valued 

smooth function  𝑑(𝑋(𝑡)): ℝ𝑛 → ℝ in a compact set 𝐴 ⊆ ℝ𝑛 can be approximated with 

some residual error 𝜖 such that   

𝑑(𝑋(𝑡)) = 𝑊𝑇𝜙(𝑋(𝑡)) + 𝜖(𝑋(𝑡)) (9) 

where 𝑊 ∈ ℝ𝑧×𝑚 is the unknown but ideal weight matrix (𝑧 ∈ ℕ+ ) that belongs to a 

compact set  Ω, and 𝑋 ∈ 𝐷𝑥 for a sufficiently large compact set 𝐷𝑥, and 𝜙:ℝ𝑛 → ℝ𝑧 is a 

vector of known basis functions. Note that 𝜙(𝑋)  is bounded such that ‖𝜙(𝑋)‖ ≤ 𝜙∗, 𝜖 is 
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the residual error satisfying |𝜖| ≤ 𝜖∗, and also it is considered that all states are available 

for measurements. 

Substituting (9) in (7) results in 

�̇�(𝑡) = 𝑓(𝑋(𝑡)) + 𝑔 ( 𝑢(𝑡) +𝑊𝑇𝜙(𝑋(𝑡)) + 𝜖(𝑋(𝑡))). (10) 

 

4. PROPOSED SEGREGATED PRESCRIBED PERFORMANCE 

GUARANTEEING NEURO-ADAPTIVE CONTROLLER (SPPGNAC) 

 

In this section, the SPPGNAC is developed for the system in (7) to guarantee priori 

prescribed performance while at the same time satisfying given symmetric/asymmetric 

constraints. An intermediate step in control development is to design an appropriate MSO. 

The proposed MSO equation can be written as 

�̇̂�(𝑡) =  𝑓(𝑋(𝑡)) + 𝑔 𝑢(𝑡) + 𝑔 �̂�(𝑋(𝑡)) − 𝐾2 (𝑋(𝑡) − �̂�(𝑡)) 

       =  𝑓(𝑋(𝑡)) + 𝑔 𝑢(𝑡) + 𝑔 �̂�𝑇𝜙(𝑋(𝑡)) − 𝐾2(𝑋(𝑡) − �̂�(𝑡)) 

(11) 

where �̂�(�̅�(𝑡)) ≜ �̂�𝑇𝜙(𝑋(𝑡)) represents the estimate of 𝑑(𝑋(𝑡)), 𝜙:ℝ𝑛 → ℝ𝑛 is a vector 

of known basis functions used in the uncertainty approximation, and 𝐾2 is a user defined 

Hurwitz gain matrix. Even though all states are assumed measurable here, the MSO notion 

is used because it helps with the estimation of the uncertainties/disturbances and to avoid 

large oscillations during the system’s transient state.  

Assumption 2: Functions 𝑓(. ), 𝑓∗(. ), and 𝜙(. ) are locally Lipschitz continuous 

(LLC)  

‖𝑓(𝑋) − 𝑓(𝑌)‖ = 𝐿𝑓‖𝑋 − 𝑌‖ 
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                                  ‖𝑓∗(𝑋) − 𝑓∗(𝑌)‖ = 𝐿𝑓∗‖𝑋 − 𝑌‖ (12) 

                                     ‖𝜙(𝑋) − 𝜙(𝑌)‖ = 𝐿𝜙‖𝑋 − 𝑌‖ 

where 𝑋, 𝑌 ∈ 𝐷𝑥  and  𝐿𝑓∗ , 𝐿𝜙, 𝐿𝑓 ∈ ℝ+. 

The feedback controller can be generated as 

𝑢(𝑡) = 𝑢𝑛(𝑡) + 𝑢𝑎(𝑡) + 𝑢𝑏𝑙𝑓(𝑡) (13) 

where 𝑢𝑛 ∈ ℝ
𝑚 is the nominal feedback control input that forces the nominal/known 

system to reach the desired state in the absence of uncertainties and constraints, 𝑢𝑎 is the 

adaptive controller which is used to cancel the uncertainties, and 𝑢𝑏𝑙𝑓  is the BLF-based 

control input that is used to bound the states and error to ensure that the constraints are met 

and guarantees the prescribed performance. Nominal control is found from the stable 

dynamics of the tracking error from the nominal system (known system without 

uncertainty, �̇�𝑛(𝑡) = 𝑓(𝑋(𝑡)) + 𝑔  𝑢𝑛(𝑡)) ) to the desired system as 

�̇�𝑛(𝑡) − �̇�𝑑(𝑡) =  𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)) (14) 

where 𝐾 is the user-defined Hurwitz gain matrix. Using the system dynamics, it can be 

written as 

𝑓(𝑋(𝑡)) + 𝑔  𝑢𝑛(𝑡)) − 𝑓
∗(𝑋𝑑 ) =  𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)). (15) 

From (15), 

𝑔𝑢𝑛(𝑡) =  𝑓
∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡)) + 𝐾(𝑋(𝑡) − 𝑋𝑑(𝑡)) 

𝑔𝑢𝑛(𝑡) =  𝑒𝑓 + 𝐾𝑒𝑟 (16) 

where 𝑒𝑟 ≜ 𝑋(𝑡) − 𝑋𝑑(𝑡) is the tracking error and 𝑒𝑓 is defined as  𝑒𝑓 ≜ 𝑓
∗(𝑋𝑑 ) −

𝑓(𝑋(𝑡)). If 𝑔 is invertible, then the nominal control can be given as 

𝑢𝑛(𝑡) = 𝑔
−1( 𝐾𝑒𝑟 + 𝑒𝑓) (17) 
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and 𝑢𝑎 ∈ ℝ
𝑚, the adaptive control input, is given as 

𝑢𝑎 = − 𝑓(𝑋(𝑡)) = −�̂�
𝑇𝜙(𝑋(𝑡)) (18) 

where �̂� is the estimate of 𝑊.  BLF-based control 𝑢𝑏𝑙𝑓 is expressed as 

𝑢𝑏𝑙𝑓 = − ∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

− ∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙 |𝑥𝑖|
𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑇𝐾𝑥𝑖𝑋} 

(19) 

where 𝑒𝑟𝑗 is the 𝑗𝑡ℎ tracking error signal, 𝜖𝑒𝑟𝑗 is the upper bound/constraint on the 

𝑒𝑟𝑗, 𝑓�̅�𝑙(𝑒𝑟𝑗) is the upper bound-based BLF for 𝑒𝑟𝑗 , and 𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 is the derivative of 𝑓�̅�𝑙  

w.r.t to 𝑒𝑟𝑗
2. Similarly, 𝑓𝑏𝑙(𝑒𝑟𝑗) is the lower bound (𝜖𝑒𝑟𝑗) based BLF for 𝑒𝑟𝑗 , and 𝐷𝑓𝑏𝑙

|𝑒𝑟𝑗|
 

is its derivative w.r.t to 𝑒𝑟𝑗
2, where 𝑙 ∈ ℕ+ for 1 ≤ 𝑙 ≤ 𝑛 (meaning that the separate upper 

and lower bounds can be imposed/disabled on any of the error signal from 1 to 𝑛 

independently). Matrix 𝐾𝑒𝑟𝑗 is used to select the 𝑗𝑡ℎ error signal (𝑒𝑟𝑗) from the error vector 

𝑒𝑟. The 𝐾𝑒𝑟𝑗  is(are) square matrix(matrices) with only 𝑗𝑡ℎdiagonal element as 1 and rest of 

the entities as zeros. Similar to 𝐾𝑒𝑟𝑗 , matrix 𝐾𝑥𝑖  also has only 𝑖𝑡ℎ diagonal elements as 1 

and is used to select the 𝑖𝑡ℎ state signal (𝑥𝑖) from the 𝑋. In similar fashion,  𝐷𝑓�̅�𝑙|𝑥𝑖|
 is 

derivative of 𝑓
𝑏𝑙
(|𝑥𝑖|)  w.r.t to 𝑥𝑖

2 when  𝜖𝑥𝑖 is upper constraint on state signal 𝑥𝑖 where 

𝑞 ∈ ℕ+ and 1 ≤ 𝑞 ≤ 𝑛 (meaning any of the state signals from 1 to 𝑛 can have their own 
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separate upper and lower constraints). Likewise, 𝜖𝑥𝑖 ,  𝑓𝑏𝑙(|𝑥𝑖|), and 𝐷𝑓𝑏𝑙
|𝑥𝑖|

 are 

respectively, the lower constraint on 𝑥𝑖, the lower-constraint-based BLF for 𝑥𝑖, and the 

derivative of 𝑓𝑏𝑙(|𝑥𝑖|) w.r.t. 𝑥𝑖
2. These constraints on 𝑥𝑖 and 𝑒𝑟𝑗 can be represented as  

𝜖𝑥𝑖  < 𝑥𝑖  <  𝜖𝑥𝑖 and 𝜖𝑒𝑟𝑗  < 𝑒𝑟𝑗  <  𝜖𝑒𝑟𝑗. Scalars 𝛼(.) > 0 are used to regulate the 𝑢𝑏𝑙𝑓 to 

avoid excessive control 𝑢𝑏𝑙𝑓 . If 𝑔 is invertible, then overall feedback control can be given 

as 

𝑢(𝑡) = 𝑢𝑛(𝑡) + 𝑢𝑎(𝑡) + 𝑢𝑏𝑙𝑓(𝑡) 

= 𝑔−1 [  𝐾𝑒𝑟 + 𝑒𝑓 − 𝑔�̂�
𝑇𝜙(𝑋(𝑡)) − 𝑔∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

 𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗))𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

− 𝑔 ∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙 |𝑥𝑖|
𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑇𝐾𝑥𝑖𝑋} ] 



 

 

109 

= 𝑔−1 [  𝐾𝑒𝑟 + 𝑒𝑓 − 𝑔�̂�
𝑇𝜙(𝑋(𝑡))

−∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙 |𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋} ]. 

(20) 

In the case where 𝑔 is not invertible, a slack variables-based technique can be used. 

Two slack variables are introduced as 𝑢𝑠 ∈ ℝ
(𝑛−𝑚)×1 and 𝑔𝑠 ∈ ℝ

𝑛×(𝑛−𝑚). The 𝑔𝑠 is 

chosen such that the augmented �̅� ≜ [𝑔, 𝑔𝑠] becomes a square and invertible matrix [7]. 

The augmented control then can be given as �̅� ≜ [𝑢(𝑡), 𝑢𝑠]
𝑇. Adding 𝑔𝑠𝑢𝑠 on both sides 

of equation (20),   

𝑔𝑢(𝑡) + 𝑔𝑠𝑢𝑠 = 𝐾𝑒𝑟 + 𝑒𝑓 − 𝑔�̂�
𝑇𝜙(𝑋(𝑡)) −∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗))𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋}  + 𝑔𝑠𝑢𝑠   
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�̅��̅� = [𝑔  𝑔𝑠][𝑢  𝑢𝑠]
𝑇

= 𝐾𝑒𝑟 + 𝑒𝑓 − 𝑔�̂�
𝑇𝜙(𝑋(𝑡)) −∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋}  + 𝑔𝑠𝑢𝑠   

�̅� = [
𝑢

𝑢𝑠
] = �̅�−1[𝐾𝑒𝑟 + 𝑒𝑓 − 𝑔�̂�

𝑇𝜙(𝑋(𝑡))

−∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋}  + 𝑔𝑠𝑢𝑠 ]. 

(21) 

where �̅� ≜ [𝑔  𝑔𝑠]. Note that the control 𝑢 can be easily extracted from (21) or �̅� can be 

used directly by adding and subtracting 𝑔𝑠𝑢𝑠 into (10).  This control will bring 𝑋(𝑡) → 𝑋𝑑 

while satisfying the constraints/ bounds on the state and error signals, provided we have a 

close approximation of the uncertainty, which is obtained through the MSO. The MSO 

brings �̂�(𝑡) → 𝑋(𝑡), where a NN is used to approximate the uncertainty.  
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Tracking error dynamics are given by  

�̇�𝑟(𝑡) ≜ �̇�(𝑡) − �̇�𝑑(𝑡) 

= 𝑓(𝑋(𝑡)) + 𝑔 ( 𝑢(𝑡) +𝑊𝑇𝜙(𝑋(𝑡)) + 𝜖(𝑋(𝑡))) − 𝑓∗(𝑋𝑑(𝑡)). (22) 

After some algebra, it can be shown as   

�̇�𝑟(𝑡) =  𝑒𝑓 + 𝐾𝑒𝑟(𝑡) +  𝑔(�̃�
𝑇𝜙(𝑋(𝑡)) + 𝜖)

−∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋} 

(23) 

where �̃� ≜  𝑊 − �̂�. The estimation error is defined as 

𝑒𝑎(𝑡) ≜ 𝑋(𝑡) − �̂�(𝑡) (24) 

and its dynamics are written as 

            �̇�𝑎(𝑡) ≜ �̇�(𝑡) − �̇̂�(𝑡) 

= 𝐾2𝑒𝑎(𝑡) + 𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 𝑔𝜖. (25) 

The weight update rule for �̂� is used as 

�̇̂� = 𝛾𝑤 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔) (26) 

where 𝛾𝑤 ∈ 𝔻+
𝑣×𝑣 is the adaptation rate used in the weight update rule, 𝑣 ∈ ℕ+, and 

𝑃𝑟𝑜𝑗𝑚 (. , . ) denotes the smooth projection operator [32] . Note that the projection operator 
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guarantees that �̂� ∈ Ω, and that there exists a 𝑊∗ ∈ Ω s.t.  ‖�̂�‖ ≤ 𝑊∗. Matrix 𝑃𝑎   is 

obtained from the linear Lyapunov equation  

0 = 𝐾2
𝑇𝑃𝑎 + 𝑃𝑎𝐾2 + 𝑄𝑎 (27) 

where 𝑄𝑎 > 0 𝑎𝑛𝑑 𝐾2 < 0. 

 

5. STABILTY ANALYSIS 

 

Theorem 1: Consider the system in (7) with the observer in (11) and the desired 

system described by (8). Let assumptions 1 and 2 hold. Consider the NN approximation 

with the control generated by (20/21) and the weight update law in (26). If initial tracking 

error signals and state signals are in their corresponding performance sets such that 

𝑒𝑟𝑗(0) ∈ ∁𝜖𝑒𝑟𝑗
 for any 𝑗𝑡ℎ tracking error signal and 𝑥𝑖(0) ∈ ∁𝜖𝑥𝑖

 for any 𝑖𝑡ℎ state signal 

where 𝜖𝑒𝑟𝑗  ≜ { 𝑒𝑟𝑗:  𝑒𝑟𝑗 ∈ (𝜖𝑒𝑟𝑗 , 𝜖𝑒𝑟𝑗) } and 𝜖𝑥𝑖  ≜ { 𝑥𝑖:  𝑥𝑖 ∈ (𝜖𝑥𝑖 , 𝜖𝑥𝑖)}, then the following 

holds: 

a. The time derivative of the barrier Lyapunov function candidate defined in 

(C.1) is negative definite. 

b. Any 𝑖𝑡ℎ state signal(𝑥𝑖) will always stay in its given constraints set 

∁𝜖𝑥𝑖
 (𝑥𝑖(𝑡) ∈ ∁𝜖𝑥𝑖

).  

c. Any 𝑗𝑡ℎ tracking error signal (𝑒𝑟𝑗) will always stay in its given constraint 

set ∁𝜖𝑒𝑟𝑗
, (𝑒𝑟𝑗(𝑡) ∈ ∁𝜖𝑒𝑟𝑗

).  

d. All the close loop signals are bounded. 

e. Control 𝑢(𝑡) is bounded by 𝑢𝑚𝑎𝑥 where  
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𝑢𝑚𝑎𝑥 ≜ ‖𝑔
−1‖ ( ‖𝑓∗(𝑋𝑑 )‖ + ‖𝑓(𝑋(𝑡))‖ + ‖𝐾‖𝜖𝑒𝑟 +

‖𝑔‖�̂�∗𝜙∗ + ∑ {|𝛼𝑒𝑟𝑗| 𝛽|𝑒𝑟𝑗|
‖𝑔‖2𝑙

𝑗=1 𝜖𝑒𝑟 + |𝛼𝑒𝑟𝑗| 𝛽|𝑒𝑟𝑗|
‖𝑔‖2𝜖𝑒𝑟} +

∑ {|𝛼𝑥𝑖|�̅�|𝑥𝑖|‖𝑔‖
2 𝜖𝑥𝑖

𝑞
𝑖=1 + |𝛼𝑥𝑖| 𝛽|𝑥𝑖|‖𝑔‖

2 𝜖𝑥𝑖} ). 

(28) 

Proof: Stability is proved by Lyapunov analysis and is given in Appendix C.              

5.1. SPPGNAC FOR CONSTRAINTS ON VECTORS 

To apply bounds on the norm of the state vector 𝑋 and/or on the norm of the error 

vector 𝑒𝑟, the controller formulation changes to (29): 

𝑢(𝑡) = 𝑢𝑛(𝑡) + 𝑢𝑎(𝑡) + 𝑢𝑏𝑙𝑓(𝑡) 

                       = 𝑔−1[  𝑓∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡)) + 𝐾𝑒𝑟 −

𝑔�̂�𝑇𝜙(𝑋(𝑡)) − 𝛼𝑒 𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃𝑟
𝑔𝑔𝑇𝑃𝑇𝑒𝑟 − −𝛼𝑋 𝐷𝑓𝑏𝑙‖𝑋‖𝑃𝑋

𝑔𝑔𝑇𝑃𝑇𝑋 ] 

(29) 

or to (30), in the case where 𝑔 is not invertible, 

�̅� = [
𝑢

𝑢𝑠
] = �̅�−1[ 𝑓∗(𝑋𝑑 ) − 𝑓(𝑋(𝑡)) + 𝐾𝑒𝑟 − 𝑔�̂�

𝑇𝜙(𝑋(𝑡))

− 𝛼𝑒𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃𝑟
𝑔𝑔𝑇𝑃𝑇𝑒𝑟 − 𝛼𝑋 𝐷𝑓𝑏𝑙‖𝑋‖𝑃𝑋

𝑔𝑔𝑇𝑃𝑇𝑋

+ 𝑔𝑠𝑢𝑠]] 

(30) 

where 𝑃 is obtained from  0 = 𝐾𝑇𝑃 + 𝑃𝐾 + 𝑄, for 𝑄 > 0   𝑎𝑛𝑑 𝐾 < 0.  

In some studies such as [30]-[31], BLF-based symmetric PCs are applied on the 

norm of the error vector, but the method is coupled with the NN-based adaptation. 

However, the proposed method is advantageous since it not only satisfies constraints by 

applying BLF-based control directly, but its MSO-based adaptation mechanism runs 
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independently. In this way, it offers adaptability and can estimate uncertainties without 

being impacted by BLF, which is not the case in [30]-[31].  

Tracking error dynamics for this case are found by using system dynamics from 

(10) and (8) with controller (29/30) as  

�̇�𝑟(𝑡) =  𝐾𝑒𝑟(𝑡) +  𝑔(�̃�
𝑇𝜙(𝑋(𝑡)) + 𝜖) − 𝛼𝑒𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃𝑟

𝑔𝑔𝑇𝑃𝑇𝑒𝑟

− 𝛼𝑋 𝐷𝑓𝑏𝑙‖𝑋‖𝑃𝑋
𝑔𝑔𝑇𝑃𝑇𝑋. 

(31) 

Dynamics of the estimation error and NN weights update rule remain the same as 

given in (24) and (26), respectively.  

Corollary 1: Consider the system in (7) with the observer in (11) and the desired 

system described by (8). Let assumptions 1 and 2 hold. Consider the NN approximation 

with the control generated by (29/30) and the weight update law in (26). If ‖𝑒𝑟(0)‖𝑃 ∈

∁𝜖𝑒𝑟  (initial error norm is under the bound  ‖𝑒𝑟(0)‖𝑃 < 𝜖𝑒𝑟) and/or if ‖𝑋(0)‖𝑃 ∈

∁𝜖𝑋  (initial state norm is under the constraint  ‖𝑋(0)‖𝑃𝑟 < 𝜖𝑋) where ∁𝜖𝑒𝑟  ≜ { 𝑒𝑟:  ‖𝑒𝑟‖𝑃 ∈

[0, 𝜖𝑒𝑟) } and ∁𝜖𝑋 ≜ { 𝑋:  ‖𝑋‖𝑃 ∈ [0, 𝜖𝑋)}, then the following holds: 

a. The time derivative of the barrier Lyapunov candidate function defined later in 

(C.1) is negative definite. 

b. The tracking error vector (𝑒𝑟) and state vector (𝑋) will always be bounded, and 

stay in their corresponding constrained sets 𝑒𝑟 ∈ ∁𝜖𝑒𝑟𝑎𝑛𝑑 𝑋 ∈ ∁𝜖𝑋 . 

c. All the close loop signals are bounded. 

Proof: Corollary 1 can be easily proved by choosing a BLF candidate as 
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𝐿2(𝑒𝑟 , 𝑒𝑎, �̃�, 𝑋)

= 𝑓𝑏𝑙(‖𝑒𝑟‖𝑃) + 𝑓𝑏𝑙(‖𝑋‖𝑃) + 𝑡𝑟(�̃�
𝑇𝛾𝑤

−1�̃�) + 𝑒𝑎
𝑇𝑃𝑎𝑒𝑎. 

(32) 

Its time derivative is  

𝐿2̇(𝑒𝑟 , 𝑒𝑎, �̃�, 𝑋)

= 2𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃
 𝑒𝑟
𝑇𝑃�̇�𝑟 + 2𝐷𝑓𝑏𝑙‖𝑋‖𝑃

 𝑋𝑇𝑃�̇�

+ 2 𝑡𝑟 (�̃�𝑇𝛾𝑤
−1�̇̃�) + 2𝑒𝑎

𝑇𝑃�̇�𝑎. 

(33) 

Following the same approach that is taken for the proof of the theorem 1, it is found that  

𝐿2̇(. ) ≤ −𝜉𝑎6 ‖𝑒𝑟‖𝑃
2
 − 𝜉𝑎7 ‖𝑋‖𝑃

2
 − 𝜉𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖

2. (34) 

This is true as long as ‖𝑒𝑟‖𝑃 ≥
𝑏6

𝑎6
, ‖𝑋‖𝑃 ≥

𝑏7

𝑎7
, and ‖𝑒𝑎‖ ≥

𝑏8

𝑎8
  where 𝑎6 ≜

(1 − 𝜉)𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃
𝜆𝑚𝑖𝑛 (𝑄) − (2𝛼𝑒𝑟𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃

‖𝑔𝑔𝑇‖‖𝑃‖)
2

,  𝑏6 ≜

2𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃
‖𝑃𝑟𝑔‖ {�̃�

∗𝜙∗ + 𝜖∗)‖𝑃𝑟𝐾‖‖𝑒𝑓‖}, 𝑎7 ≜ (1 − 𝜉)𝐷𝑓𝑏𝑙‖𝑋‖𝑃
𝜆𝑚𝑖𝑛 (𝑄) −

(2𝛼𝑋𝐷𝑓𝑏𝑙‖𝑒𝑟‖𝑃
‖𝑔𝑔𝑇‖‖𝑃‖)

2

 , 𝑏7 ≜ 2𝐷𝑓𝑏𝑙‖𝑋‖𝑃
{‖𝑓∗(𝑋𝑑 )‖ + ‖𝐾𝑋𝑑‖(�̃�

∗𝜙∗ +

𝜖∗)‖𝑔‖}, 𝑎8 ≜ (1 − 𝜉)𝜆𝑚𝑖𝑛 (𝑄𝑎),  and 𝑏8 ≜ 2𝜖
∗‖𝑃𝑎𝑔‖. These coefficients are clearly 

positive. Rest can be proven by following the same arguments made during the proof of 

theorem 1, given in Appendix C. 

 

6. NUMERICAL SIMULATION AND ANALYSIS 

 

In this section, SPPGNAC is used for different problems, and its performance is 

analyzed. Two benchmark examples from [31] and [4] are considered for this purpose. 
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First, some general guidelines are given on how to choose different controller gains and 

related parameters. 

6.1. PARAMETERS SELECTION 

In this subsection, some general directions are given on how to choose different 

parameters and gains for the controller. Note that this selection is arbitrary as long as the 

selected parameters/gains follow previously discussed conditions/assumptions.  

Selection of the slack variables 𝑔𝑠  and 𝑢𝑠 should be such that 𝐺 becomes invertible. 

For any matrix 𝑔 = [
0𝑛2×𝑚
𝑅𝑛/2×𝑚

] where 𝑅𝑛/2×𝑚 is any arbitrary matrix/vector, one way to 

choose the slack variables is to select 𝑔𝑠 = [−𝑅𝑛/2×𝑚, 𝑅𝑛/2×𝑚]
𝑇 and 𝑢𝑠 = [1𝑚×1]. In this 

way, it will result in 𝐺 = [
0𝑛/2×𝑚 −𝑅𝑛/2×𝑚
𝑅𝑛/2×𝑚 𝑅𝑛/2×𝑚

]. For example, if 𝑔 = [0,1]𝑇 , choosing 𝑔𝑠 =

[−1,1]𝑇 and 𝑢𝑠 = [
1
1
] will make 𝐺 = [

0 −1
1 1

] invertible where its inverse is 𝐺
−1
=

[
1 1
−1 1

]. When this is multiplied as �̅� = [ 𝑢
𝑢𝑠
] = 𝐺

−1
[𝑘1𝑒1+⋯
𝑘2𝑒2+⋯

] = [
1 1
−1 1

] [𝑘1𝑒1+⋯
𝑘2𝑒2+⋯

] =

[
(𝑘1𝑒1+⋯)+(𝑘2𝑒2+⋯)

(… )
], from here 𝑢 can be extracted as 𝑢 = (𝑘1𝑒1 +⋯) + (𝑘2𝑒2 +⋯) or �̅� 

can be directly applied by adding and subtracting 𝑔𝑠𝑢𝑠 in system dynamics. Note that in 

the latter case, the positive and negative of 𝑔𝑠𝑢𝑠 will cancel its effect in the final expression 

after inversion. Another method of slack variables selection is to use the lower nonzero 

part of 𝑔 as upper 𝑔𝑠 and choose 𝑢𝑠 with all elements as one. For example, if 𝑔 =

[0,1]𝑇 , choosing 𝑔𝑠 = [1,0]
𝑇 and 𝑢𝑠 = [

1
1
] will make 𝐺 = [

0 1
1 0

]. In this case, selection 

of 𝐾 should be 𝐾 = [
0 0
𝑘1 𝑘2

]. Now the inverse of 𝐺 will be as 𝐺
−1
= [
0 1
1 0

]. When this 
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is multiplied as �̅� = [ 𝑢
𝑢𝑠
] = 𝐺

−1
[ (.)
(𝑘1𝑒1+⋯)+(𝑘2𝑒2+⋯)

] = [
0 1
1 0

] [ (.)
(𝑘1𝑒1+⋯)+(𝑘2𝑒2+⋯)

] =

[
(𝑘1𝑒1+⋯)+(𝑘2𝑒2+⋯)

(.)
], from here 𝑢 can be extracted as 𝑢 = (𝑘1𝑒1 +⋯) + (𝑘2𝑒2 +⋯) or �̅� 

can be directly applied by adding and subtracting 𝑔𝑠𝑢𝑠. After inversion, the positive and 

negative of 𝑔𝑠𝑢𝑠 will cancel its effect in the final expression.  

Selection of the 𝐾 requires the same process as any general feedback controller. It 

is recommended to choose it as a diagonal matrix in the case where 𝑔 is invertible like 𝐾 =

[
𝑘1 0 …
0
⋮

𝑘2
⋮

…
⋮
]  or to include all entities of error like 𝐾 = [

𝑘1 𝑘2 …
0
⋮

0
⋮

…
⋮
] or 𝐾 =

[
⋮ ⋮ …
0
𝑘1

0
𝑘2

…
…
], depending upon the given 𝑔 and the selection of slack variables.  

Similarly, 𝐾2 should be Hurwitz, and it is recommended to choose it as a diagonal 

matrix.  

The matrix 𝐾(.)𝑖  is used to include only the 𝑖𝑡ℎ signal from a vector. Therefore, 𝐾(.)𝑖  

should be a square matrix with only 𝑖𝑡ℎ diagonal element as 1 and all the rest of the entities 

as zeros. For example, for the state signals, 𝐾𝑥1 = [
1 0 …
0
⋮
0
⋮

…
⋮
] for the first state signal (𝑥1) 

, 𝐾𝑥2 = [

0 0 0 0 …
0
0

1
0
⋮

0
0

0
0
⋮

…
⋮
] for 𝑥2, and so on.  

Selection of the scalars 𝛼(.) should be such that 0 < 𝛼(.) < 1 if the BLF-based 

control is needed to avoid excessive input and 𝛼(.) > 1 for the other way around. These 

selections are elaborated upon in the next subsection where simulation and results are 

discussed. 
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6.2. EXAMPLE 1: SCALAR EXAMPLE 

First a scalar example is considered. The dynamics of the scalar system are given 

as 

�̇� = 𝑥 + 𝑢 + 𝑑(𝑥) (34) 

where the uncertainty is 𝑑(𝑥) = 𝑥3.   The reference system and the MSO developed for 

this system are given in (35) and (36), respectively: 

�̇�𝑑 = −𝑥𝑑 +  𝑟(𝑡) (35) 

�̇̂� = 𝑥 + 𝑢 + �̂�(𝑥) + 𝐾2 𝑒𝑎 (36) 

where 𝑟(𝑡) is the reference input and 𝑥𝑑 is the desired state and output of the refence 

system. Other gains/parameters  used are 𝐾 = −2, 𝐾2 = −3, 𝐾𝑥1 = 1, 𝐾𝑒1 = 1, 𝐿𝜙 = 1, 

and 𝐿𝑓 = 1 . There is no need for slack variables for this problem as 𝑔 is 1 (invertible). At 

first a general case (case 1) is considered where symmetric constraints are imposed on the 

state and on the tracking error: 

−1.5 < 𝑥 < 1.5,       −0.08 < 𝑒𝑟 < 0.08. (37) 

State and error are initialized as 𝑥(0) = 0.01,  𝑒𝑟(0) = 0.01, 𝑥𝑑(0) = 0 and 

𝑒𝑎(0) = 0.01. Note that these values need to be under the bound.  For case 1, both the 𝛼𝑥 

and 𝛼𝑒 are taken as 1.    

Figures 2a and 2b show the time histories of the state and the tracking error, 

respectively. Excellent performance is achieved in term of tracking and estimation. Neither 

the state or tracking error violates the bounds at any time. The control history is shown in 

Figure 3a, where an overall control (red line plot) is shown along with its different 

components including nominal control, adaptive control, and BLF-based controls.  It can 

be seen that the BLF-based controls (Cayan and black plots) rise high whenever state or 
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error signals get closer to their respective bounds, such as during the periods when the 

reference square wave is at its peaks. For this reason, once constrained variables (in this 

case, state and error signals) are initialized under their bounds, then the control will never 

let them transgress their bounds/constraints. Figure 3b represents uncertainty in dynamics 

and its approximation. As can be seen, uncertainty is closely approximated. This is another 

advantage of SPPGNAC, as compared to [30]-[31] where the NN weight update and 

uncertainty approximation is coupled with BLF-based control and cannot be separately 

estimated. However, proposed SPPGNAC still provides a way to estimate uncertainties 

and to identify unknown/uncertain dynamics. On the other hand, an evolution of the NN 

weight is given in Figure 4a.  The approximated NN weight converged to the actual value, 

which is 1. This is because the basis function used was 𝑥3. Different basis function were 

tested, and all resulted in close approximation of uncertainty. Some small jumps are 

observed in estimated NN weight when the state signal switches from one peak to the other. 

This is expected as the NN weight update depends upon the estimation error and it changes 

when the state signal switches.  

 

   
(a)                                                                           (b) 

Figure 2. Case 1 (Symmetric case): (a) State histories (b) Tracking error. 
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(a)                                                                           (b) 

Figure 3. Case 1 (Symmetric case): (a) Control histories (b) Uncertainty and its 

approximation. 

 

 
Figure 4.  Case 1 (Symmetric case): Actual and estimated NN weights. 
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where the case 1 example is simulated again with the same controller gains and the 

symmetric constraint is set to 0.1.  As shown in Figure 5a, when 𝛼𝑒 is set to 0.01, still the 

error value increases up to 0.09, which is comparatively close to the set bound of 0.1. Note 

that it is still ensuring that the constraints will not be violated. Although, it caused some 

small oscillations at some of the peak regions, for example during the period between 25-

30 seconds. However, this can be avoided by choosing slightly higher 𝛼𝑒, as is shown in 

Figures 6b. On the other hand, Figure 5b shows that when 𝛼𝑒 is set to 2, the control 

becomes excessive decreasing the maximum error to even less than half of the set bound. 

This proves that the additional flexibility offered by SPPGNAC can be very useful for 

control applications. 

 

      
(a)                                                                           (b) 

Figure 5. Case 2: (a) Error response when 𝛼𝑒 = 0.01, (b) Error response when 𝛼𝑒 = 2. 
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The controller gains and basis functions for NN approximation are kept the same. 

Scalars 𝛼𝑒 and 𝛼𝑥 are set to 0.1 and 0.01, respectively. Figures 6a and 6b show the time 

histories of the state and tracking error. Though this time lower PC on state is -0.6 and the  

 

       
(a)                                                                           (b) 

Figure 6. Case 3 (Asymmetric case): (a) State histories (b) Tracking error. 

 

 
(a)                                                                           (b) 

Figure 7. Case 3 (Asymmetric case): (a) Controls histories (b) Uncertainty and its 

approximation. 
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also ensured, as can be seen in Figure 6b. Overall, an excellent tracking and estimation 

performance is achieved. The controls history is shown in Figure 7a, where all different 

control components, including nominal, adaptive, BLF-based controls, and overall control 

as the sum (red line) are shown. The control remained stable as state and error were 

initialized under their PCs. Figure 7b indicates that the uncertainty is accurately 

approximated. The NN weight converged to 1 in this case as well, but the plot is omitted 

to avoid repetition. 

6.3. EXAMPLE 2: UNCERTAIN NONLINEAR ROBOTIC MANIPULATOR D   

YN  DYNAMICS  

Another example of nonlinear dynamics of an uncertain two-link robotic 

manipulator is considered for numerical implementation. Dynamics of an 𝑛 link robotic 

manipulator can be given as 

𝑀(𝑞) �̈� + 𝑉𝑚(𝑞, �̇�) �̇� + 𝐺(𝑞) + 𝐹( �̇�) + 𝜏𝑑(𝑡) = 𝜏(𝑡) (39) 

where 𝑞 ∈ ℝ𝑛, 𝑀(𝑞) is the inertia matrix, 𝑉𝑚(𝑞, �̇�) is the Coriolis/centripetal matrix, 𝐺(𝑞) 

is the gravity vector, 𝐹( �̇�) is the friction matrix, 𝜏𝑑(𝑡) is an unknown disturbance, and  

𝜏(𝑡) is the control torque. For a robotic manipulator, certain properties are assumed such 

as the mass matrix 𝑀(𝑞) is always a positive definite matrix and satisfies 𝐵𝑚1𝐼 ≤ 𝑀(𝑞) ≤

𝐵𝑚2𝐼 where 𝐵𝑚1 and 𝐵𝑚2 are known positive constants. Coriolis/centripetal matrix 

𝑉𝑚(𝑞, �̇�) is bounded by 𝑉𝑏‖�̇�‖ such that 𝑉𝑏 is constant. Gravity and friction matrices are 

bounded in the way that 𝐺𝐵 > 0 and 𝐵𝐹‖�̇�‖ + 𝐵𝑓 such that 𝐵𝐹 and 𝐵𝑓 are positive 

constants. The matrix �̇� − 2𝑉𝑚 is skew symmetric. Disturbance 𝜏𝑑 is bounded such that 
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‖𝜏𝑑‖ ≤ 𝜏𝑑𝑀 with 𝜏𝑑𝑀 is positive constant. The nonlinear state space representation of (67) 

can be given as 

[
 �̇�
�̈�
] = [

 �̇�

−𝑀−1(𝑞)(𝑉𝑚(𝑞, �̇�) �̇� + 𝐺(𝑞))
] + 𝑑(𝑞,  �̇�) + [

0
𝑀−1(𝑞)

] 𝜏(𝑡). (40) 

 

The desired trajectory of the robotic manipulator 𝑞𝑑(𝑡) ∈ ℝ
𝑛 satisfies ‖𝑄𝑑‖ ≤ 𝑞𝐵, 

where 𝑄𝑑(𝑡) = [𝑞𝑑(𝑡)  �̇�𝑑(𝑡) �̈�𝑑(𝑡)]
𝑇 and 𝑑(𝑞,  �̇�) = [

0
−𝑀−1(𝑞)(𝜏𝑑(𝑡) + 𝐹( �̇�))

] is the 

unknown uncertainty/disturbance in the dynamics. The following parameters are used in 

the simulation: 𝑚1 = 1𝑘𝑔, 𝑚2 = 2.3𝑘𝑔, 𝑙1 = 1𝑚, 𝑙2 = 1𝑚, 𝑔 = 9.8, 𝐿 = 1, 𝐿𝜙 = 1, 𝐿𝑓 =

1, 𝑄 = 𝐼, 𝐵𝐹 = 0.3, 𝐵𝑓 = 0.2, 𝜏𝑑 = 0.01 𝑞, 𝛾𝑤 = 20𝐼, 𝑔ains are 𝐾 = −𝑑𝑖𝑎𝑔(3,3,2,2), 

𝐾2 = −𝑑𝑖𝑎𝑔(10,10,5,5), the slack variables used are 𝐵𝑠 = [𝐼2×2, 02×2]
𝑇and 𝑢𝑠 =

[1, 1]𝑇 , 𝐾𝑥1 = 𝑑𝑖𝑎𝑔(1,0,0,0), 𝐾𝑥2 = 𝑑𝑖𝑎𝑔(0,1,0,0), 𝐾𝑒1 = 𝑑𝑖𝑎𝑔(1,0,0,0), 𝐾𝑒2 =

𝑑𝑖𝑎𝑔(0,1,0,0) , 𝛼𝑒1 = 0.04, 𝛼𝑒2 = 0.04, 𝛼𝑥1 = 0.1,  and 𝛼𝑥2 = 0.1. the desired responses 

are sin (𝜔𝑡) for the first joint and 𝑐𝑜s (𝜔𝑡) for the second joint of the robotic manipulator. 

First, different bounds are imposed on each state signal and on each tracking error signal 

instead of putting one universal bound on the norm of them:  

−1 < 𝑞1 < 1.5                          −0.02 < 𝑒𝑟1 < 0.05 

−1.2 < 𝑞2 < 0.8                          −0.03 < 𝑒𝑟2 < 0.01 

(41) 

States and errors are initialized under the given bounds as 𝑞1(0) = 0.025,  𝑞2(0) =

0.52, 𝑒𝑟1(0) = 0.025, and 𝑒𝑟2(0) = 0.002.  Figure 8a presents the time history of the first 

state where 𝑞1, 𝑞1𝑑, and 𝑞1𝑎 represent the actual, desired, and approximated angle for the 

first link of the robotic manipulator. Similarly, Figure 8 b presents the time history of 
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second state where 𝑞2, 𝑞2𝑑, and 𝑞2𝑎 represent the actual, desired, and approximated angle 

for the second link. As can be observed, each separate state respected its corresponding 

constrains at all times during both transient and steady states. No oscillations were 

observed and the actual and estimated states converged to the desired state. Error plots and 

their bounds are given in Figures 9a and 9b. Errors were also kept under their respective 

bunds. This again proves that with the SPPGNAC, each variable can have a different 

constraint/bound and it can be activated or disabled as per need, which is not possible if 

bound is applied on the norm of the variables vector. Figure 10a shows that uncertain 

dynamics were closely estimated and addressed using the NN-based MSO. Figure 10b 

presents the history of overall control showing stable trends. Some small jumps are 

observed at around 3 sec and at around 6 second. This happened because of switching 

between upper and lower constraints. It can be observed that controls rise a little high 

whenever some variable (control or state) starts rising or getting close to its respective  

 

   
(a)                                                                           (b) 

Figure 8. Case 4 (Asymmetric case): (a) Time histories of state 𝑞1 and its bound (b) Time 

histories of state 𝑞2 and its bound. 
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(a)                                                                           (b) 

Figure 9. Case 4 (Asymmetric case): (a) Tacking error 𝑒1 and its bound (b) Tacking error 

𝑒2 and its bound. 

 

       
(a)                                                                           (b) 

Figure 10. Case 4 (Asymmetric case): (a) Uncertainties and their approximation (b) Time 

histories of control. 

 

bounds. That is the reason that once the variable is constrained (in this case the state and 

error are initialized under given bounds), the control will never let them transgress their 

constraint. 

A simulation for nonlinear robotic manipulator dynamics from the case 3 is carried 

out again for a different set of asymmetric constraints which are given in (42). The 

controller gains and other related parameters are kept the same other than that the scalars 
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𝛼𝑒1 ,  𝛼𝑒2 , 𝛼𝑥1 , and 𝛼𝑥2are changed to 1 × 10−3, 1 × 10−3, 1 × 10−2,  and 1 × 10−2, 

respectively: 

−2 < 𝑞1 < 3                          −0.1 < 𝑒𝑟1 < 0.2 

−2.5 < 𝑞2 < 1.0                      −0.1 < 𝑒𝑟2 < 0.05. 
(42) 

Results are given in Figures 11-13 for states histories, tracking errors, uncertainty 

approximation, and control trends. Again, excellent performance is attained in terms of 

tracking and estimation, and constraints are satisfied throughout. Uncertainty is 

approximated reasonably, and control trends are observed to be stable. Different set of 

constraints and the controller gains 𝐾 and 𝐾2 were tested, and it was found that the errors 

and states could never transgress their PCs if initialized under their respective bounds, but 

those plots are omitted due to limited space. These results proved that SPPGNAC can 

address the aforementioned problems simultaneously and have immense potential for 

control applications. 

 

     
(a)                                                                           (b) 

Figure 11. Case 4 (Asymmetric case): (a) Time histories of state 𝑞1 and its bounds (b) 

Time histories of state 𝑞2 and its bounds. 

 

0 2 4 6 8 10

-2

-1

0

1

2

3

Desired and Original Response Angles q1

Time Sec

A
n

g
le

s
 q

1
 [
d

e
g

]

 

 

q1
d

q1
a

q1

q1
Up

bound

q1
Low

bound

0 2 4 6 8 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time [Sec]

A
n

g
le

s
 q

2
 [
d

e
g

]

 

 

q2
d

q2
a

q2

q2
Up

bound

q2
Low

bound



 

 

128 

    
(a)                                                                           (b) 

Figure 12. Case 4 (Asymmetric case): (a) Tacking error 𝑒1 and its bounds, (b) Tacking 

error 𝑒2 and its bounds.  

 

   
(a)                                                                           (b) 

Figure 13. Case 4 (Asymmetric case): (a) Uncertainties and their approximation (b) Time 

histories of control.  
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systems from the control literature, one was an uncertain scalar example, and the other was 

an uncertain nonlinear 2-link robotic manipulator system. The results showed that the given 

goal was achieved successfully using the proposed scheme. It did not only satisfy different 

constraints on each separate state signal and on each separate error signal, but also provided 

a way to adjust the controller response in proportion to the bounds’ closeness. Uncertainty 

in dynamics was closely approximated, which helps to not only identify unmodeled 

dynamics, but also to address any other kind of external disturbances from structural or 

environmental changes. This discussion indicates the potential of the proposed control 

architecture for the constrained uncertain nonlinear systems. 
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SECTION 

2. OVERALL CONCLUSIONS 

 

In this dissertation different event-triggered and set-theoretic-based neuroadaptive 

control, schemes were developed and tested. 

In the first paper, six MSO-based ETNAC schemes were derived; performance of 

all versions was evaluated and compared with existing ETC schemes for their transient and 

steady-state performance and efficiency. From benchmark examples, it is showed that 

sampling instants can be reduced up to 95% without compromising on performance. Each 

scheme was able to address uncertainties, estimate unknown model even at significantly 

reduced in communication and computation, yet providing good tracking.   It appears that 

the proposed schemes have much practical potential to be used in embedded networked 

systems. 

   In the second paper, ETNAC was derived and implemented for the CR3PB where 

a pair of spacecrafts in formation at halo orbit at the sun-Earth/Moon L1 orbit is considered. 

Simulation results showed that ETNAC was able to maintain tracking errors in 

millimetre/submillimeter range while reducing control updates by 65% even with restricted 

control while estimating and cancelling solar perturbations. These reduced updates lead to 

longer periods of silence which are very useful for smooth operations in microsatellites. 

These results prove the potential of the proposed technique for application to the 

microsatellite platform and deep space missions.  
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In the third paper, a BLF-based neuro-adaptive controller is derived and tested for 

constrained uncertain nonlinear systems. Simulations were carried out for two standard 

systems from the control literature, one was an uncertain scalar example, and the other was 

an uncertain nonlinear 2-link robotic manipulator system. The results showed that excellent 

tracking was achieved while satisfying different symmetric/asymmetric constraints for 

each state and error signal. It also provided a way to regulate the control input, in proportion 

to the bounds’ closeness. Uncertainty in dynamics was closely approximated, which helps 

to not only identify unmodeled dynamics but also to address any other kind of external 

disturbances from structural or environmental changes. The results indicate the potential 

of the proposed control architecture for the constrained uncertain nonlinear systems.  

This discussion also concludes that the proposed advance control designs have 

enormous potential for control applications. 



 

 

 

APPENDIX A. 

PROOFS OF THE THEOREMS OF THE PAPER I 
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The proofs for the theorems of the Paper I are done using Lyapunov analysis and 

are given below. Note that all the references for Appendix A are from the Paper I. 

A.1. PROOF OF THEOREM 1  

The estimation and tracking errors are taken separately. 

A.1.1. Estimation Error. This proof is divided into three cases: case (i) relates to 

the state sampling instants (𝑡 = 𝑡𝑖
𝑠, 𝑖 = 1,2, …) when the 𝑇𝑟𝑔1𝑎

𝑠  is active and actual 

sampled state is available. Since during this time,  �̅�(𝑡) = 𝑥(𝑡𝑖
𝑠) = 𝑥(𝑡), so 𝑒𝑎 = �̅�𝑎 , 

𝑒𝑒𝑣𝑡 = 0, and 𝑒𝑖𝑛𝑡 = 0. Case (ii) relates to the time when the MSO model 2 is used for 

the inter-event time simulation. Note that during this time �̅�(𝑡) = 𝐶1𝑡
𝑛 + 𝐶2𝑡

𝑛−1…+

𝐶𝑛𝑡 + 𝐶𝑛+1 so 𝑒𝑒𝑣𝑡 ≠ 0 and 𝑒𝑖𝑛𝑡 ≠ 0, and case (iii) relates to the time period during the 

inter-event time when the MSO model 1 is used for the observer propagation. During this 

period 𝑒𝑒𝑣𝑡 ≠ 0, 𝑒𝑖𝑛𝑡 ≠ 0, and �̇̂� = 0. 

 Case (i): Lyapunov analysis is used to prove the theorem. Choosing a Lyapunov 

candidate function as 

𝐿(𝑒𝑎, �̃�) = 𝑒𝑎
𝑇𝑃𝑒𝑎 + 𝑡𝑟(�̃�

𝑇𝛾−1�̃�) (A.1) 

its time derivative is 

    �̇�(𝑒𝑎, �̃�) = 2𝑒𝑎
𝑇𝑃�̇�𝑎 + 2 𝑡𝑟(�̃�

𝑇𝛾−1�̇̃�) (A.2) 

                    = 2𝑒𝑎
𝑇𝑃(𝐾2𝑒𝑎(𝑡) + 𝐵𝑢𝑒𝑣𝑡 + 𝐵�̃�

𝑇𝜙(�̅�(𝑡𝑖
𝑠)) + 𝐵𝜖̌ + (𝐴 −

𝐾2)𝑒𝑖𝑛𝑡) + 2𝑡𝑟 (�̃�
𝑇𝛾−1�̇̃�). 
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Since at the sampling instant �̃� ≜ 𝑊 − �̂� , so �̇̃� = −�̇̂�, 𝑢𝑒𝑣𝑡 = 0 , 𝑒𝑖𝑛𝑡 = 0, 

𝑒𝑎 = �̅�𝑎,  𝜖̌ = 𝜖 since �̅�(𝑡) = 𝑥(𝑡) . Also, by using �̇̂� = 𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) 𝑒𝑎
𝑇𝑃𝐵) 

and 𝐾2
𝑇𝑃 + 𝑃𝐾2 = −𝑄 leads to 

�̇�(. ) = −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2�̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎
𝑇𝑃𝐵𝜖                                

− 2𝑡𝑟 (�̃�𝑇𝛾−1𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�,   𝜙(�̅�(𝑡)) 𝑒𝑎
𝑇𝑃𝐵)). 

(A.3) 

By adding and subtracting �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵 and using the trace property 

𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) 𝑖𝑓 𝐴 ∈ ℝ𝑛×𝑚 and 𝐵 ∈ ℝ𝑚×𝑛 for any 𝑛,𝑚 ∈ ℕ+ 

�̇�(. ) = −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2�̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎
𝑇𝑃𝐵𝜖 

+ 2𝑡𝑟{(−�̃�𝑇𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵)

−  𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵})  − 2𝑡𝑟{�̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}. 

(A.4) 

By lemma 11.3 of [44] (from Paper I), 

2𝑡𝑟[ (�̂� −𝑊)
𝑇
{𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵) −

 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵}] ≤ 0.  

(A.5) 

After some simplifications, (A.5) becomes 

             �̇�(. ) ≤ −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2�̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎
𝑇𝑃𝐵𝜖 −

2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) 

                               = −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝐵𝜖.  (A.6) 

Applying norm properties [45] (from Paper I) to the terms on the right-hand side of 

(A.6) leads to 

                �̇� ≤ −𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2 + 2‖𝑃𝐵‖‖𝑒𝑎‖‖𝜖‖ (A.7) 

                    = −{𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2 − 2‖𝑃𝐵‖𝜖∗‖𝑒𝑎‖} 
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                    = −(√𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖ −
‖𝑃𝐵‖𝜖∗

√𝜆𝑚𝑖𝑛 (𝑄)
)
2

+
(‖𝑃𝐵‖𝜖∗)2

𝜆𝑚𝑖𝑛 (𝑄)
 

since ‖𝜖‖ ≤ 𝜖∗. By defining 𝑏𝑏 ≜
‖𝑃𝐵‖𝜖∗

√𝜆𝑚𝑖𝑛 (𝑄)
 

             �̇�(. ) ≤ −(√𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖ − 𝑏𝑏)
2
+ 𝑏𝑏

2
 

= −(1 − 𝜉)(√𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖ − 𝑏𝑏)
2
− 𝜉(√𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖ −

𝑏𝑏)
2
+ 𝑏𝑏

2.    0 < 𝜉 < 1 

(A.8) 

This equation can be rewritten as  

�̇�(. ) ≤ −(1 − 𝜉) (√𝜆𝑚𝑖𝑛 (𝑄) ‖𝑒𝑎‖ − 𝑏𝑏)
2

 (A.9) 

when ‖𝑒𝑎‖ ≥  (√
𝑏𝑏
2

𝜉
+ 𝑏𝑏)/√𝜆𝑚𝑖𝑛 (𝑄) . It can thus be concluded the estimation error is 

UUB at the sampling instants 𝑡 = 𝑡𝑖
𝑠. 

Case (ii): By using the Lyapunov function as in (1) and following similar steps as 

in case (i) with simplifications  �̅�𝑎 = �̅� − �̂� = �̅� − 𝑥 + 𝑥 − �̂� = 𝑒𝑖𝑛𝑡 + 𝑒𝑎, ‖𝜙(𝑥(𝑡)) −

𝜙(𝑥(𝑡𝑖
𝑠))‖ ≤ 𝐿 ‖𝑥(𝑡) − 𝑥(𝑡𝑖

𝑠)‖ = 𝐿‖𝑒𝑒𝑣𝑡‖, ‖𝜖‖ ≤ 𝜖∗, ‖𝜙(𝑥(𝑡𝑖
𝑠))‖ ≤ 𝜙∗, ‖𝑒𝑒𝑥𝑡‖ ≤ 𝜍 ∈

ℝ+, 𝜕 ≜ ‖𝑃(𝐴 − 𝐾2)‖, 휀 ≜ 𝜕 ∗ 𝜍 ‖𝑊‖ ≤ 𝑊
∗  and ‖�̃�‖ ≤ �̃�∗ and using ‖𝑢𝑒𝑣𝑡‖

2 ≤

 𝛽𝑢 & ‖𝑒𝑒𝑣𝑡‖
2 ≤ ∝𝑎 𝛽𝑎 ‖𝑒𝑎‖

2 results in its time derivative as  

�̇�(𝑒𝑎, �̃�) ≤ −(1 − 𝜉) (√𝑎2 ‖𝑒𝑎‖ −
𝑏2

√𝑎2
)
2

      

if    ‖𝑒𝑎‖ ≥ (√
𝑏2

√𝑎2𝜉
+

𝑏2

√𝑎2
)/√𝑎2 

(A.10) 
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where 𝑎2 ≜ 𝜆𝑚𝑖𝑛 (𝑄) and  𝑏2 ≜ 2{‖𝑃𝐵‖(�̃�
∗𝜍𝜙∗ +𝑊∗𝐿 𝜍 + 𝜖∗) + 휀)}. From (10), �̇�(. ) 

is negative definite and upper bounded by a function of 𝑒𝑎 for ‖𝑒𝑎‖ ≥ (√
𝑏2

√𝑎2𝜉
+

𝑏2

√𝑎2
)/√𝑎2, 

which  proves that 𝑒𝑎 is also UUB during the inter-event simulation time.  

Case (iii): Again using the same Lyapunov function as in (1), and following similar 

steps as in case (i) with the estimation error dynamics from (17a (from Paper I)), the time 

derivative  of Lyapunov function is found as: 

�̇�(𝑒𝑎, �̃�) = 2𝑒𝑎
𝑇𝑃 (𝐴𝑚𝑒𝑎(𝑡) + 𝐵𝑚(𝑟(𝑡) − 𝑟(𝑡𝑖

𝑠))

+ 𝐵𝐾1(𝑥(𝑡) − �̂�(𝑡𝑖
𝑠)) + 𝐵𝑊𝑇𝜙(𝑥(𝑡))

− 𝐵�̂�𝑇𝜙(�̂�(𝑡𝑖
𝑠))) + 2𝑡𝑟 (�̃�𝑇𝛾−1�̇̃�). 

(A.11) 

After some algebra (A.11) can be rewritten 

�̇�(. ) = −𝑒𝑎
𝑇𝑄𝑚𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝐵𝑚∆𝑟(𝑡) + 2𝑒𝑎
𝑇𝑃𝐵𝐾1𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝐵𝐾1𝑒𝑒𝑣𝑡

+ 2𝑒𝑎
𝑇𝑃𝐵𝑊𝑇𝜙(𝑥(𝑡)) − 2𝑒𝑎

𝑇𝑃𝐵�̂�𝑇𝜙(�̂�(𝑡))

+ 2𝑒𝑎
𝑇𝑃𝐵�̂�𝑇[𝜙(�̂�(𝑡)) − 𝜙(�̂�(𝑡𝑖

𝑠))]. 

      

(A.12) 

By applying norm properties [45] (from Paper I) to the terms on the right-hand side 

of (A.12) results in 

�̇� ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑎‖
2 + 2‖𝑃𝐵𝑚‖‖∆𝑟‖‖𝑒𝑎‖ + 2‖𝑃𝐵𝐾1‖‖𝑒𝑎‖

2

+ 2‖𝑃𝐵𝐾1‖‖𝑒𝑎‖‖𝑒𝑒𝑣𝑡‖ + 2‖𝑃𝐵‖‖𝑊‖‖𝜙(𝑥(𝑡))‖‖𝑒𝑎‖

+ 2‖𝑃𝐵‖‖�̂�‖‖𝜙(�̂�(𝑡))‖‖𝑒𝑎‖

+ 2‖𝑃𝐵‖‖𝑒𝑎‖‖�̂�‖‖𝜙(𝑥(𝑡)) − 𝜙(𝑥(𝑡𝑖
𝑠))‖. 

(A.13) 

Equation (A.13) can be simplified by using the inequalities ‖𝜙(𝑥(𝑡)) − 𝜙(𝑥(𝑡𝑖
𝑠))‖ ≤

𝐿 ‖𝑥(𝑡) − 𝑥(𝑡𝑖
𝑠)‖ = 𝐿‖𝑒𝑒𝑣𝑡‖, ‖𝜙(. )‖ ≤ 𝜙∗, ‖𝑊‖ ≤ 𝑊∗, and ‖�̂�‖ ≤ �̂�∗. Furthermore, 



 

 

140 

during the inter-event period, �̇̂�(𝑡) = 𝐴 �̂�(𝑡) + 𝐵 ( 𝑢(𝑡) + 𝑓(𝑥(𝑡𝑖
𝑠))) = 𝐴𝑚�̂�(𝑡) +

𝐵𝑚𝑟(𝑡), so 𝐵‖𝑃𝐵𝑚‖‖∆𝑟‖ ≤ 𝑐1, 𝐵𝑚∆𝑟(𝑡) ≤ 𝑐2. Also applying Young’s inequality [45] 

(from Paper I) for ‖𝑒𝑒𝑣𝑡‖ and its multiplicative terms, yields  

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑎‖
2 + 𝑐1‖𝑒𝑎‖ + 2‖𝑃𝐵𝐾1‖‖𝑒𝑎‖

2 + (
1

𝜎
) ‖𝑃𝐵𝐾1‖

2‖𝑒𝑒𝑣𝑡‖
2

+ 𝜎‖𝑒𝑎‖
2 + 2‖𝑃𝐵‖𝑊∗𝜙∗ ‖𝑒𝑎‖ + 2‖𝑃𝐵‖‖�̂�‖𝜙

∗ ‖𝑒𝑎‖ + (
1

𝜎
) 𝐿2‖𝑒𝑒𝑣𝑡‖

2

+ 𝜎(‖𝑃𝐵‖�̂�∗)
2
‖𝑒𝑎‖

2 

≤ (−𝜆𝑚𝑖𝑛 (𝑄𝑚) + 2‖𝑃𝐵𝐾1‖ + 𝜎(1 + ‖𝑃𝐵‖�̂�
∗)
2
  ) ‖𝑒𝑎‖

2

+ ( 𝑐1 + 2‖𝑃𝐵‖𝜙
∗(𝑊∗ + �̂�∗)) ‖𝑒𝑎‖

+ (
1

𝜎
) (‖𝑃𝐵𝐾1‖

2 + 𝐿2)‖𝑒𝑒𝑣𝑡‖
2. 

(A.14) 

If ‖𝑒𝑒𝑣𝑡‖
2 ≤ 𝛽𝑎 ‖𝑒𝑎‖

2 and 𝛽𝑎 =
(‖𝑃𝐵𝐾1‖

2+𝐿2)

𝜎
 then 

�̇�(. ) ≤ (−𝜆𝑚𝑖𝑛 (𝑄𝑚) + 2‖𝑃𝐵𝐾1‖ + 𝜎(1 + ‖𝑃𝐵‖�̂�
∗)
2
+ 1 ) ‖𝑒𝑎‖

2

+ ( 𝑐1 + 2‖𝑃𝐵‖𝜙
∗(𝑊∗ + �̂�∗) )‖𝑒𝑎‖ 

= (−𝜆𝑚𝑖𝑛 (𝑄𝑚) + 2‖𝑃𝐵𝐾1‖ + 𝜎(1 + ‖𝑃𝐵‖�̂�
∗)
2
+ 1 ) ‖𝑒𝑎‖

2

+ ( 𝑐1 + 2‖𝑃𝐵‖𝜙
∗(𝑊∗ + �̂�∗) )‖𝑒𝑎‖. 

(A.15) 

By defining 𝑎3 = 𝜆𝑚𝑖𝑛 (𝑄𝑚) − 2‖𝑃𝐵𝐾1‖ − 𝜎(1 + ‖𝑃𝐵‖�̂�
∗)
2
− 1  and 𝑏3 ≜

{𝑐1 + 2‖𝑃𝐵‖𝜙
∗(𝑊∗ + �̂�∗)},  (64) is reduced to, 

�̇�(. ) ≤ −(1 − 𝜉) (√𝑎3 ‖𝑒𝑎‖ −
𝑏3

√𝑎3
)

2

   𝑖𝑓  ‖𝑒𝑎‖  ≥

√
𝑏3
√𝑎3𝜉

+
𝑏3
√𝑎3

√𝑎3
    

(A.16) 
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Since �̇�(. ) is negative definite if ‖𝑒𝑎‖  ≥
√

𝑏3

√𝑎3𝜉
+
𝑏3

√𝑎3

√𝑎3
, so 𝑒𝑎 is UUB during the inter-

event time period as well. 

 A.1.2. Tracking Error. Tracking error part is divided into two cases where case 

(i) relates to the sampling instant when 𝑇𝑟𝑔1 𝑎/𝑏
𝑢  is active. Note that at this time  𝑢𝑒𝑣𝑡 =

0 and 𝑒𝑒𝑣𝑡 ≠ 0. Case (ii) relates to the period during inter-event times; Note that during 

this period, 𝑢𝑒𝑣𝑡 ≠ 0, 𝑒𝑒𝑣𝑡 ≠ 0, and �̇̂� = 0. 

Case (i): Choosing a Lyapunov candidate function as 

𝐿(𝑒𝑟 , �̃�) = 𝑒𝑟
𝑇𝑃𝑒𝑟 + 𝑡𝑟(�̃�

𝑇𝛾−1�̃�)   (A.17) 

its time derivative can be obtained as 

�̇�(𝑒𝑟 , �̃�) = 2𝑒𝑟
𝑇𝑃�̇�𝑟 + 2 𝑡𝑟(�̃�

𝑇𝛾−1�̇̃�) (A.18) 

= 2𝑒𝑟
𝑇𝑃(𝐴𝑚𝑒𝑟 + 𝐵�̃�

𝑇𝜙(𝑥(𝑡𝑖
𝑠)) + 𝐵𝜖̌ + 𝐵𝐾1𝑒𝑒𝑣𝑡) + 2𝑡𝑟 (�̃�

𝑇𝛾−1�̇̃�). 

By noting that �̇̃� = −�̇̂�, �̅�(𝑡) = 𝑥(𝑡𝑖), 𝜖̌ = 𝜖, 𝐴𝑚
𝑇𝑃 + 𝑃𝐴𝑚 = −𝑄𝑚, and  𝑒𝑒𝑣𝑡 =

0, and after some algebra, it is found that 

�̇�(. ) = −𝑒𝑟
𝑇𝑄𝑚𝑒𝑟 + 2𝑒𝑟

𝑇𝑃𝐵�̃�𝑇𝜙(𝑥(𝑡𝑖)) + 2𝑒𝑟
𝑇𝑃𝐵𝜖

− 2𝑡𝑟 (�̃�𝑇𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(𝑥(𝑡𝑖
𝑠)) 𝑒𝑎

𝑇𝑃𝐵)). 

(A.19) 

Now applying norm properties [45] (from Paper I) to the terms on the right-hand 

side of (A.19) leads to 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖
2 + 2‖𝑃𝐵‖‖𝑒𝑟‖‖�̃�

𝑇‖‖𝜙(𝑥(𝑡𝑖
𝑠))‖

+ 2‖𝑃𝐵‖‖𝑒𝑟‖‖𝜖‖ + 2‖�̃�
𝑇‖‖𝜙(𝑥(𝑡𝑖

𝑠))‖‖𝑒𝑎‖‖𝑃𝐵‖. 

(A.20) 

Since ‖𝜖‖ ≤ 𝜖∗, ‖�̃�𝑇‖ ≤ �̃�∗, ‖𝑒𝑎‖ ≤ ∁ (from the boundedness of 𝑒𝑎 for some ∁ ∈

ℝ+) and ‖𝜙(𝑥(𝑡𝑖
𝑠))‖ ≤ 𝜙∗ so 
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�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖
2 + 2‖𝑃𝐵‖�̃�∗𝜙∗‖𝑒𝑟‖ + 2‖𝑃𝐵‖𝜖

∗‖𝑒𝑟‖ + 2�̃�
∗𝜙∗∁ ‖𝑃𝐵‖. 

Defining ‖𝑃𝐵‖(�̃�∗𝜙∗ + 𝜖∗) ≜ 𝛼𝑟 and 𝔠 ≜ 2�̃�∗𝜙∗∁‖𝑃𝐵‖, results in 

�̇�(. ) = −(√𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖ −
𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)

2

+
(𝛼𝑟)

2

𝜆𝑚𝑖𝑛 (𝑄𝑚)
+ 𝔠. 

When ‖𝑒𝑟‖ ≥ (√((
𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)2 + 𝔠)/𝜉 +

𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)/√𝜆𝑚𝑖𝑛 (𝑄𝑚), then 

�̇�(. ) ≤ −(1 − 𝜉) (√𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖ −
𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)

2

. (A.21) 

Equation (A.21) leads to an UUB for 𝑒𝑟 𝑎𝑠  ‖𝑒𝑟‖ ≥ (√((
𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)2 + 𝔠)/𝜉 +

𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)/√𝜆𝑚𝑖𝑛 (𝑄𝑚). 

Case (ii): Choosing the same Lyapunov function candidate as in (A.17), its time 

derivative is given by  

�̇�(𝑒𝑟 , �̃�) = 2𝑒𝑟
𝑇𝑃�̇�𝑟 + 2 𝑡𝑟 (�̃�

𝑇𝛾−1�̇̃�). (A.22) 

Using error dynamics �̇�𝑟 and after some algebra,  �̇�(𝑒𝑟 , �̃�) is found as 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖
2 + 2‖𝑃𝐵‖‖�̃�‖‖𝜙(𝑥(𝑡𝑖

𝑠))‖‖𝑒𝑟‖

+ 2‖𝑃𝐵‖‖𝑒𝑟‖‖𝑊‖‖𝜙(𝑥(𝑡)) − 𝜙(𝑥(𝑡𝑖
𝑠))‖

+ 2‖𝑃𝐵‖‖𝑒𝑟‖‖𝜖‖ + 2‖𝑃𝐵𝐾1‖‖𝑒𝑟‖‖𝑒𝑒𝑣𝑡‖. 

(A.23) 

Noting that ‖𝜙(𝑥(𝑡)) − 𝜙(𝑥(𝑡𝑖
𝑠))‖ ≤ 𝐿 ‖𝑥(𝑡) − 𝑥(𝑡𝑖

𝑠)‖ = 𝐿‖𝑒𝑒𝑣𝑡‖, ‖𝜖‖ ≤ 𝜖∗, 

‖𝜙(𝑥(𝑡𝑖
𝑠))‖ ≤ 𝜙∗, ‖𝑊‖ ≤ 𝑊∗, and ‖�̃�‖ ≤ �̃�∗ in (A.23) leads to 
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�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖
2 + 2‖𝑃𝐾‖‖𝑒𝑟‖‖𝑒𝑒𝑣𝑡‖

+ 2‖𝑃𝐵‖ 𝑊∗𝐿‖𝑒𝑒𝑣𝑡‖‖𝑒𝑟‖

+ 2{‖𝑃𝐵‖(�̃�∗𝜙∗ + 𝜖∗)‖𝑒𝑟‖. 

(A.24) 

Using Young’s inequality [45] (from Paper I)  for ‖𝑒𝑟‖ and its multiplicative terms, 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖
2 + (

1

𝜎
) ‖𝑃𝐾‖2‖𝑒𝑒𝑣𝑡‖

2 + 𝜎‖𝑒𝑟‖
2 + (

1

𝜎
) 𝐿2‖𝑒𝑒𝑣𝑡‖

2

+ 𝜎(‖𝑃𝐵‖ 𝑊∗)2‖𝑒𝑟‖
2 + 2{‖𝑃𝐵‖(�̃�∗𝜙∗ + 𝜖∗)‖𝑒𝑟‖ 

= (−𝜆𝑚𝑖𝑛 (𝑄𝑚) + 𝜎(1 + (‖𝑃𝐵‖ 𝑊
∗)2))‖𝑒𝑟‖

2 + (‖𝑃𝐾‖2

+ 𝐿2)/𝜎 ‖𝑒𝑒𝑣𝑡‖
2 + 2{‖𝑃𝐵‖(�̃�∗𝜙∗ + 𝜖∗)‖𝑒𝑟‖. 

(A.25) 

If ‖𝑒𝑒𝑣𝑡‖
2 ≤ 𝛽𝑎 ‖𝑒𝑎‖

2 ≤ 𝛽𝑒𝑣𝑡∁≤ ∁𝑒𝑣𝑡∈ ℝ+ where  𝛽𝑒𝑣𝑡 =
(‖𝑃𝐾‖2+𝐿2)

‖𝑃𝐵𝐾1‖2+𝐿2
, then  

�̇�(. ) ≤ (−𝜆𝑚𝑖𝑛 (𝑄𝑚) + 1 + 𝜎(1 + (‖𝑃𝐵‖ 𝑊
∗)2))‖𝑒𝑟‖

2

+ 2‖𝑃𝐵‖(�̃�∗𝜙∗ + 𝜖∗)‖𝑒𝑟‖ + ∁𝑒𝑣𝑡. 

(A.26) 

By defining 𝑎4 ≜ 𝜆𝑚𝑖𝑛 (𝑄𝑚) − 1 − 𝜎(1 + (‖𝑃𝐵‖ 𝑊
∗)2), 𝑏4 ≜ ‖𝑃𝐵‖(�̃�

∗𝜙∗ +

𝜖∗), and under the condition ‖𝑒𝑟‖ ≥ (√
𝑏4+∁𝑒𝑣𝑡√𝑎4

√𝑎4𝜉
+

𝑏4

√𝑎4
)/√𝑎4,  (A.26) yields  

�̇� ≤ −(1 − 𝜉) (√𝑎4 ‖𝑒𝑟‖ −
𝑏4

√𝑎4
)
2

. (A.27) 

Because the Lyapunov time-derivative is negative definite and bounded by a function of 

𝑒𝑟 as long as ‖𝑒𝑟‖ ≥ (√
𝑏4+∁𝑒𝑣𝑡√𝑎4

√𝑎4𝜉
+

𝑏4

√𝑎4
)/√𝑎4, so 𝑒𝑟 is UUB during the inter-event time 

as well.  

A.2. PROOF OF THEOREM 3  

The estimation and tracking errors are taken separately. 
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A.2.1. Estimation Error. This proof is divided into two cases. Case (i) relates the 

sampling time instants, when  𝑡 = 𝑡𝑖, 𝑖 = 1,2… and the actual sampled state is available. 

Note at these instants �̅�(𝑡) = 𝑥(𝑡𝑖), 𝑒𝑎 = �̅�𝑎 , 𝑒𝑒𝑣𝑡 = 0 and 𝑒𝑖𝑛𝑡 = 0 and case (ii) is 

associated with the inter-event time. During this period �̅� (𝑡) = 𝐶1𝑡
𝑛 + 𝐶2𝑡

𝑛−1…+ 𝐶𝑛𝑡 +

𝐶𝑛+1 so 𝑒𝑒𝑣𝑡 ≠ 0 and 𝑒𝑖𝑛𝑡 ≠ 0.  

Case (i): By choosing a Lyapunov candidate function as 

𝐿(𝑒𝑎, �̃�) = 𝑒𝑎
𝑇𝑃𝑒𝑎 + 𝑡𝑟(�̃�

𝑇𝛾−1�̃�) (A.28) 

its time derivative is found as   

�̇�(. ) ≤ −(1 − 𝜉)(√𝜆𝑚𝑖𝑛 (𝑄) ‖𝑒𝑎‖ − 𝑏𝑏)
2
   if   ‖𝑒𝑎‖ ≥

 (√
𝑏𝑏
2

𝜉
+ 𝑏𝑏)/√𝜆𝑚𝑖𝑛 (𝑄) 

(A.29) 

From equation (A.29), it can be concluded that as long as ‖𝑒𝑎‖ ≥  (√
𝑏𝑏
2

𝜉
+ 𝑏𝑏)/

√𝜆𝑚𝑖𝑛 (𝑄) , then �̇�(. ) is negative and in the process it can be concluded that 𝑒𝑎  is UUB 

at the sampling instants 𝑡 = 𝑡𝑖. 

Case (ii): During inter-event time using Lyapunov function as in (A.28), its time 

derivative is given as  

    �̇�(𝑒𝑎, �̃�) = 2𝑒𝑎
𝑇𝑃�̇�𝑎 + 2 𝑡𝑟(�̃�

𝑇𝛾−1�̇̃�) (A.30) 

                               = 2𝑒𝑎
𝑇𝑃(𝐾2𝑒𝑎 + 𝐵�̃�

𝑇𝜙(�̅�(𝑡)) + 𝐵𝜖̌ + (𝐴 − 𝐾2)𝑒𝑒𝑥𝑡) +

2𝑡𝑟(�̃�𝑇𝛾−1�̇̃�) 

                    = 𝑒𝑎
𝑇(𝐾2

𝑇𝑃 + 𝑃𝐾2)𝑒𝑎 + 2𝑒𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) +

2𝑒𝑎
𝑇𝑃𝐵𝜖̌ + 2𝑒𝑎

𝑇𝑃(𝐴 − 𝐾2)𝑒𝑒𝑥𝑡 − 2𝑡𝑟 (�̃�
𝑇𝛾−1�̇̂�). 

(A.31) 
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By using the projection operator [44] (from Paper I) for the weight updates �̇̂� =

𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵), the Lyapunov equation   𝐾2

𝑇𝑃 + 𝑃𝐾2 = −𝑄, also �̅�𝑎 =

�̅� − �̂� = �̅� − 𝑥 + 𝑥 − �̂� = 𝑒𝑖𝑛𝑡 + 𝑒𝑎, by adding and subtracting �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵 and 

following similar steps as in proof of theorem 1, (A.31) can be written as 

         �̇�(. ) = −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2(�̅�𝑎 − 𝑒𝑖𝑛𝑡)

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎
𝑇𝑃𝐵𝜖̌ + 2𝑒𝑎

𝑇𝑃(𝐴

− 𝐾2)𝑒𝑖𝑛𝑡 + 2𝑡𝑟(−�̃�
𝑇{𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵)

+ �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵 − �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}) 

= −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2�̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) − 2𝑒𝑖𝑛𝑡
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2𝑒𝑎
𝑇𝑃𝐵𝜖̌ + 2𝑒𝑎

𝑇𝑃(𝐴 − 𝐾2)𝑒𝑖𝑛𝑡

+                         2𝑡𝑟{(−�̃�𝑇𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵)

−  𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵}) − 2𝑡𝑟{�̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}. 

(A.32) 

By lemma 11.3 of [44] (projection operator properties as given in (A.5)), 

�̇�(. ) ≤ −𝑒𝑎
𝑇𝑄𝑒𝑎 + 2�̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) − 2𝑒𝑖𝑛𝑡
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2𝑒𝑎
𝑇𝑃𝐵𝜖̌ + 2𝑒𝑎

𝑇𝑃(𝐴 − 𝐾2)𝑒𝑖𝑛𝑡

− 2𝑡𝑟{�̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵}. 

(A.33) 

Since 𝑡𝑟{�̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵} = 𝑡𝑟{ �̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))} = �̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) as 

it is a salar, also 𝜖̌ = 𝑊𝑇[𝜙(𝑥(𝑡)) − 𝜙(�̅�(𝑡))] + 𝜖, so 

       = −𝑒𝑎
𝑇𝑄𝑒𝑎 − 2𝑒𝑖𝑛𝑡

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2𝑒𝑎
𝑇𝑃𝐵𝑊𝑇[𝜙(𝑥(𝑡)) − 𝜙(�̅�(𝑡))] + 2𝑒𝑎

𝑇𝑃𝐵𝜖

+ 2𝑒𝑎
𝑇𝑃(𝐴 − 𝐾2)𝑒𝑖𝑛𝑡.  

(A.34) 
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Now applying norm properties [45] (from Paper I) to the terms on the right-hand 

side of (A.34), 

�̇� ≤ −𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2 + 2‖𝑃𝐵‖‖�̃�‖‖𝑒𝑖𝑛𝑡‖‖𝜙(�̅�(𝑡))‖

+ 2‖𝑃𝐵‖‖𝑒𝑎‖‖𝑊‖‖𝜙(𝑥(𝑡)) − 𝜙(�̅�(𝑡))‖

+ 2‖𝑃𝐵‖‖𝑒𝑎‖‖𝜖‖ + 2‖𝑃(𝐴 − 𝐾2)‖‖𝑒𝑎‖‖𝑒𝑖𝑛𝑡‖. 

(A.35) 

By using the inequalities ‖𝜙(𝑥(𝑡)) − 𝜙(�̅�(𝑡))‖ ≤ 𝐿 ‖𝑥(𝑡) − �̅�(𝑡)‖ = 𝐿‖𝑒𝑖𝑛𝑡‖, 

‖𝜖‖ ≤ 𝜖∗, ‖𝜙(�̅�(𝑡))‖ ≤ 𝜙∗, ‖𝑊‖ ≤ 𝑊∗  , ‖�̃�‖ ≤ �̃�∗, ‖𝑒𝑖𝑛𝑡‖ ≤ 𝜍, 𝜕 ≜ ‖𝑃(𝐴 − 𝐾2)‖, 

and 휀 ≜ 𝜕 ∗ 𝜍 and after some simplification leads to 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2 + 2{‖𝑃𝐵‖(𝑊∗𝐿 𝜍 + 𝜖∗) + 휀)} ‖𝑒𝑎‖

+ 2‖𝑃𝐵‖�̃�∗𝜙∗𝜍. 
(A.36) 

By defining 𝑎5 ≜ 𝜆𝑚𝑖𝑛(𝑄) , 𝑏5 ≜ 2{‖𝑃𝐵‖(�̃�
∗𝜍𝜙∗ +𝑊∗𝐿 𝜍 + 𝜖∗) + 휀)} , and 

𝑐5 ≜ 2‖𝑃𝐵‖�̃�
∗𝜙∗𝜍, (A.36) yields  

�̇� ≤ −(1 − 𝜉) (√𝑎5 ‖𝑒𝑎‖ −
𝑏5

√𝑎5
)

2

   𝑖𝑓    ‖𝑒𝑎‖

≥ (√
𝑏5 + 𝑐5√𝑎5

√𝑎5𝜉
+
𝑏5

√𝑎5
)/√𝑎5 

(A.37) 

So, from (A.37) �̇� is negative definite if ‖𝑒𝑎‖ ≥ (√
𝑏5+𝑐5√𝑎5

√𝑎5𝜉
+

𝑏5

√𝑎5
)/√𝑎5 . It shows that  𝑒𝑎 

is UUB during the inter-event time as well.  

A.2.2. Tracking Error. Like the estimation error, the tracking error proof is also 

divided into two cases: case (i) relates the sampling instants and case (ii) is associated with 

the inter-event period. 
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Case (i): At sampling instant: Choosing the Lyapunov function candidate as 

𝐿(𝑒𝑟 , �̃�) = 𝑒𝑟
𝑇𝑃𝑒𝑟 + 𝑡𝑟(�̃�

𝑇𝛾−1�̃�) (A.38) 

by noting that −𝑄𝑚 = 𝐴𝑚
𝑇𝑃 + 𝑃𝐴𝑚 and ‖𝑒𝑎‖ ≤ ℇ  for ℇ ∈ ℝ+, its time derivative is 

found as 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖
2 + 2‖𝑃𝐵‖�̃�∗𝜙∗‖𝑒𝑟‖ + 2‖𝑃𝐵‖𝜖

∗‖𝑒𝑟‖

+ 2�̃�∗𝜙∗ℇ‖𝑃𝐵‖. 
(A.50) 

By defining a6 ≜ λmin(Qm), b6 ≜ ‖PB‖(W̃
*ϕ* + ϵ*), c6 ≜ 2W̃

*ϕ*ℇ‖PB‖ and 

under the condition ‖er‖ ≥ (√
b6+c6√a6

√a6ξ
+

b6

√a6
)/√a6, (A.39) is reduced to  

�̇� ≤ −(1 − 𝜉) (√𝜆𝑚𝑖𝑛 (𝑄𝑚)‖𝑒𝑟‖ −
𝛼𝑟

√𝜆𝑚𝑖𝑛 (𝑄𝑚)
)

2

. (A.40) 

From (A.40), it clear that L̇ is negative definite as long as ‖er‖ ≥ (√
b6+c6√a6

√a6ξ
+

b6

√a6
)/√a6 , which proves that er is UUB for the case (i).  

Case (ii): Choosing the same Lyapunov candidate function as in (A.38), its time 

derivative is obtained as 

�̇�(𝑒𝑟 , �̃�) = 2𝑒𝑟
𝑇𝑃𝑟�̇�𝑟 + 2 𝑡𝑟(�̃�

𝑇𝛾−1�̇̃�)  (A.41) 

                       = 2𝑒𝑟
𝑇𝑃𝑟(𝐴𝑚𝑒𝑟(𝑡) + 𝐵�̃�

𝑇𝜙(𝑥(𝑡𝑖)) + 𝐵𝜖̌ + 𝐵𝐾1𝑒𝑒𝑣𝑡) 

After some algebra and by choosing β = σ/(1 + (L‖PB‖)2) for ‖eevt‖
2 ≤

∝r βr‖er‖
2, it can be reduced to 

�̇� ≤ −(1 − 𝜉) (√𝑎7 ‖𝑒𝑟‖ −
𝑏7

√𝑎7
)
2

  if     ‖𝑒𝑟‖ ≥  (√
𝑏7
2

𝜉
+ 𝑏7)/√𝑎7 . (A.42) 



 

 

148 

where a7 ≜ λmin(Qm)-σ‖PBK1‖
2-σW*2-1 and  b7 ≜ ‖PB‖(W̃

*ϕ* + ϵ*). Since L̇ is 

negative definite from (A.42), so as long as ‖er‖ ≥ (√
b7
2

ξ
+ b7) /√a7 is true, which 

shows that er is UUB during the inter-event time as well. So, from case (i) and (ii), it can 

be concluded that er is UUB all the time. 

A.3. PROOF OF THEOREM 4 

A.3.1. Estimation Error. In this case the estimation error analysis follows the same 

approach as used for the proof of the theorem 1. 

A.3.2. Tracking Error. Proof for the UUB of the tracking error is similar to the 

one for scheme 1 since the tracking error expression is same in both cases. 
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The proofs for the theorems of the Paper II are done using Lyapunov analysis. 

Similar approaches are taken for the stability proof in adaptive event-triggered control 

literature such as those in [34], [38], [42], and [40] etc (from Paper II). Note that all 

references for Appendix B are from Paper II. 

B.1. PROOF OF THE THEOREM 1 

This proof is divided into two cases: case (i) At sampling instant, when  𝑡 = 𝑡𝑖, 𝑖 =

1,2, … when the actual sampled state is available �̅�(𝑡) = 𝑋(𝑡𝑖), 𝑒𝑎 = �̅�𝑎 and 𝑒𝑒𝑣𝑡 = 𝑒𝑒𝑥𝑡 =

0  and case (ii) during inter-event time when �̅�(𝑡) = 𝐶1𝑡
𝑛 + 𝐶2𝑡

𝑛−1…+ 𝐶𝑛𝑡 + 𝐶𝑛+1,

𝑒𝑎 = �̅�𝑎, 𝑒𝑒𝑣𝑡 ≠ 0 and 𝑒𝑒𝑥𝑡 ≠ 0.  

Case (i): Choosing a suitable Lyapunov function candidate as: 

𝐿(𝑒𝑟 , 𝑒𝑎, �̃�) = 𝑒𝑟
𝑇𝑃𝑒𝑟 + 𝑡𝑟(�̃�

𝑇𝛾−1�̃�) + 𝑒𝑎
𝑇𝑃𝑒𝑎 (B.1) 

its time derivative is given by 

�̇�(𝑒𝑟 , 𝑒𝑎, �̃�) = 2𝑒𝑟
𝑇𝑃𝑟�̇�𝑟 + 2𝑒𝑎

𝑇𝑃�̇�𝑎 + 2 𝑡𝑟 (�̃�
𝑇𝛾−1�̇̃�). 

Using error dynamics from (19) and (21) (from Paper II), (B.1) can be given as 

�̇�(𝑒𝑟 , 𝑒𝑎, �̃�) = 2𝑒𝑟
𝑇𝑃𝑟(𝐾𝑒𝑟(𝑡) − 𝐾𝑒𝑒𝑣𝑡 + 𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖))

+ 𝐵�̃�𝑇𝜙(𝑋(𝑡𝑖)) + 𝜖̌) + 2𝑒𝑎
𝑇𝑃(𝐾2𝑒𝑎(𝑡) − 𝐾2𝑒𝑒𝑥𝑡

+ 𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 𝐵𝜖̌ + 𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡)))

+ 2𝑡𝑟(�̃�𝑇𝛾−1�̇̃�) 

(B.2) 

Because at sampling instant �̃� = 𝑊 − �̂� so �̇̃� = −�̇̂�, 𝑒𝑒𝑥𝑡 = 0 , 𝜖̌ =

𝑊𝑇[𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))] + 𝜖 = 𝜖, 𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡)) = 0, 𝑒𝑒𝑣𝑡 = 𝑒𝑒𝑥𝑡 = 0and 𝑒𝑎 =

�̅�𝑎, so (B.2) can be rewritten as 
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�̇�(. ) = 𝑒𝑟
𝑇(𝐾𝑇𝑃𝑟 + 𝑃𝑟𝐾)𝑒𝑟 + 2𝑒𝑟

𝑇𝑃𝑟𝐵�̃�
𝑇𝜙(𝑋(𝑡𝑖)) + 2𝑒𝑟

𝑇𝑃𝑟𝐵𝜖

+ 𝑒𝑎
𝑇(𝐾2

𝑇𝑃 + 𝑃𝐾2)𝑒𝑎 + 2𝑒𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2𝑒𝑎
𝑇𝑃𝐵𝜖 − 2𝑡𝑟(�̃�𝑇𝛾−1�̇̂�) 

(B.3) 

By using the projection operator for weight updates, �̇̂� =

𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵), Lyapunov equations  𝐾2

𝑇𝑃 + 𝑃𝐾2 = −𝑄,𝐾
𝑇𝑃𝑟 + 𝑃𝑟𝐾 =

−𝑄𝑟, 𝑒𝑎 = �̅�𝑎 and by adding and subtracting �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵,  (B.3) can be rewritten 

as 

�̇�(. ) = −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 + 2𝑒𝑟

𝑇𝑃𝑟𝐵�̃�
𝑇𝜙(𝑋(𝑡𝑖)) + 2𝑒𝑟

𝑇𝑃𝑟𝐵𝜖 − 𝑒𝑎
𝑇𝑄𝑒𝑎

+ 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖

+ 2𝑡𝑟(−�̃�𝑇{𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵)

+ �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵 − �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}) 

(B.4) 

By using the trace properties 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵), 𝑡𝑟(𝐴) = 𝑡𝑟(𝐴𝑇)  and 

𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) 𝑖𝑓 𝐴 ∈ ℝ𝑛×𝑚 and 𝐵 ∈ ℝ𝑚×𝑛 for any 𝑛,𝑚 ∈ ℕ+, (B.4) can be rewritten 

as  

�̇�(. ) = −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 + 2𝑒𝑟

𝑇𝑃𝑟𝐵�̃�
𝑇𝜙(�̅�(𝑡𝑖)) + 2𝑒𝑟

𝑇𝑃𝑟𝐵𝜖 − 𝑒𝑎
𝑇𝑄𝑒𝑎

+ 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖

+ 2𝑡𝑟{(−�̃�𝑇𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵)

−  𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵}) − 2𝑡𝑟{�̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵} 

(B.5) 

By Lemma 11.3 of [56] (from Paper II), 𝑡𝑟[ (�̂� −𝑊)
𝑇
{𝑃𝑟𝑜𝑗𝑚(�̂�,

𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵) −  𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}] ≤ 0. After some simplifications, (B.5) becomes 
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�̇�(. ) ≤ −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 + 2𝑒𝑟

𝑇𝑃𝑟𝐵�̃�
𝑇𝜙(𝑋(𝑡𝑖)) + 2𝑒𝑟

𝑇𝑃𝑟𝐵𝜖 − 𝑒𝑎
𝑇𝑄𝑒𝑎

+ 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖 − 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) 

= −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 + 2𝑒𝑟

𝑇𝑃𝑟𝐵�̃�
𝑇𝜙(𝑋(𝑡𝑖)) + 2𝑒𝑟

𝑇𝑃𝑟𝐵𝜖 − 𝑒𝑎
𝑇𝑄𝑒𝑎

+ 2𝑒𝑎
𝑇𝑃𝐵𝜖  

(B.6) 

Applying norm properties on (B.6) leads to 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑟)‖𝑒𝑟‖
2 + 2‖𝑃𝑟𝐵‖‖�̃�‖‖𝜙(𝑋(𝑡𝑖))‖‖𝑒𝑟‖

+ 2‖𝜖‖‖𝑃𝑟𝐵‖‖𝑒𝑟‖−𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2

+ 2‖𝑃𝐵‖‖𝑒𝑎‖‖𝜖‖. 

 

(B.7) 

This equation can further be modified by noting that ‖𝜖‖ ≤ 𝜖∗, ‖𝜙(𝑋(𝑡𝑖))‖ ≤ 𝜙
∗, 

and ‖�̃�‖ ≤ �̃�∗.  

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑟)‖𝑒𝑟‖
2 + 2‖𝑃𝑟𝐵‖�̃�

∗𝜙∗‖𝑒𝑟‖ + 2𝜖
∗‖𝑃𝑟𝐵‖‖𝑒𝑟‖−𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖

2

+ 2𝜖∗‖𝑃𝐵‖‖𝑒𝑎‖. 

By defining 𝑎1 ≜ 𝜆𝑚𝑖𝑛 (𝑄𝑟),   𝑏1 ≜ (‖𝑃𝑟𝐵‖�̃�
∗𝜙∗ + 𝜖∗‖𝑃𝑟𝐵‖), 𝑎2 ≜ 𝜆𝑚𝑖𝑛 (𝑄), 

and 𝑏2 ≜ 𝜖
∗‖𝑃𝐵‖  

�̇�(. ) ≤ −𝑎1 ‖𝑒𝑟‖
2 + 2𝑏1‖𝑒𝑟‖ − 𝑎2 ‖𝑒𝑎‖

2 + 2𝑏2‖𝑒𝑎‖ 

= −(𝑎1 ‖𝑒𝑟‖
2 − 2𝑏1‖𝑒𝑟‖) − (𝑎2 ‖𝑒𝑎‖

2 − 2𝑏2‖𝑒𝑎‖) (B.8) 

So,  �̇�(. ) ≤ 0 is negative for  ‖𝑒𝑟‖ ≥
2𝑏1

𝑎1
 and ‖𝑒𝑎‖ ≥

2𝑏2

𝑎2
.    

Because the Lyapunov time-derivative has a UUB as seen in (B.8) and the �̃� is 

bounded because the projection operator is used in its derivation, the UUB of tracking error 

and estimation error are now proved at the sampling time. 

Case (ii): During inter-event time, using the same Lyapunov function candidate as 

in (B.1), its time derivative is given as 
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�̇�(𝑒𝑟 , 𝑒𝑎, �̃�) = 2𝑒𝑟
𝑇𝑃𝑟�̇�𝑟 + 2𝑒𝑎

𝑇𝑃�̇�𝑎 + 2 𝑡𝑟(�̃�
𝑇𝛾−1�̇̃�) (B.9) 

= 2𝑒𝑟
𝑇𝑃𝑟(𝐾𝑒𝑟(𝑡) − 𝐾𝑒𝑒𝑣𝑡 + 𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)) + 𝐵�̃�

𝑇𝜙(𝑋(𝑡𝑖)) + 𝜖̌)

+ 2𝑒𝑎
𝑇𝑃(𝐾2𝑒𝑎(𝑡) − 𝐾2𝑒𝑒𝑥𝑡 + 𝐵�̃�

𝑇𝜙(�̅�(𝑡)) + 𝐵𝜖̌ + 𝑓(𝑋(𝑡))

− 𝑓(�̅�(𝑡))) + 2𝑡𝑟(�̃�𝑇𝛾−1�̇̃�) 

Because �̃� = 𝑊 − �̂� so, �̇̃� = −�̇̂�, 

�̇�(. ) = 𝑒𝑟
𝑇(𝐾𝑇𝑃𝑟 + 𝑃𝑟𝐾)𝑒𝑟 − 2𝑒𝑟

𝑇𝑃𝑟𝐾𝑒𝑒𝑣𝑡 + 2𝑒𝑟
𝑇𝑃𝑟(𝑓(𝑋(𝑡))

− 𝑓(𝑋(𝑡𝑖))) + 2𝑒𝑟
𝑇𝑃𝑟𝐵�̃�

𝑇𝜙(𝑋(𝑡𝑖)) + 2𝑒𝑟
𝑇𝑃𝑟𝐵𝜖̌

+ 𝑒𝑎
𝑇(𝐾2

𝑇𝑃 + 𝑃𝐾2)𝑒𝑎 − 2𝑒𝑎
𝑇𝑃𝐾2𝑒𝑒𝑥𝑡

+ 2𝑒𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖̌ + 2𝑒𝑎
𝑇𝑃(𝑓(𝑋(𝑡))

− 𝑓(�̅�(𝑡))) − 2𝑡𝑟(�̃�𝑇𝛾−1�̇̂�) 

(B.10) 

By using the projection operator for weight updates, �̇̂� =

𝛾 𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵), Lyapunov equations  𝐾2

𝑇𝑃 + 𝑃𝐾2 = −𝑄,𝐾
𝑇𝑃𝑟 + 𝑃𝑟𝐾 =

−𝑄𝑟, 𝑒𝑎 = 𝑋(𝑡) − �̂�(𝑡) = 𝑋(𝑡) − �̅�(𝑡) + �̅�(𝑡) − �̂�(𝑡) = 𝑒𝑒𝑥𝑡 + �̅�𝑎 and by adding and 

subtracting �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵,  (B.10) can be rewritten as 
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�̇�(. ) = −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 − 2𝑒𝑟

𝑇𝑃𝑟𝐾𝑒𝑒𝑣𝑡 + 2𝑒𝑟
𝑇𝑃𝑟 (𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵�̃�

𝑇𝜙(𝑋(𝑡𝑖))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵𝑊

𝑇([𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))] + 𝐵𝜖)

− 𝑒𝑎
𝑇𝑄𝑒𝑎 − 2𝑒𝑎

𝑇𝑃𝐾2𝑒𝑒𝑥𝑡 + 2𝑒𝑒𝑥𝑡
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖

+ 2𝑒𝑎
𝑇𝑃𝐵𝑊𝑇(𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡)))

+ 2𝑒𝑎
𝑇𝑃 (𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡)))

+ 2𝑡𝑟(−�̃�𝑇{𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵)

+ �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵 − �̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}) 

(B.11) 

By using the trace properties 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵), 𝑡𝑟(𝐴) = 𝑡𝑟(𝐴𝑇)  and 

𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) 𝑖𝑓 𝐴 ∈ ℝ𝑛×𝑚 and 𝐵 ∈ ℝ𝑚×𝑛 for any 𝑛,𝑚 ∈ ℕ+, (B.11) can be 

rewritten as  



 

 

155 

�̇�(. ) = −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 − 2𝑒𝑟

𝑇𝑃𝑟𝐾𝑒𝑒𝑣𝑡 + 2𝑒𝑟
𝑇𝑃𝑟(𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵�̃�

𝑇𝜙(𝑋(𝑡𝑖))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵𝑊

𝑇[𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))] + 2𝑒𝑟
𝑇𝑃𝑟𝐵𝜖

− 𝑒𝑎
𝑇𝑄𝑒𝑎 − 2𝑒𝑎

𝑇𝑃𝐾2𝑒𝑒𝑥𝑡 + 2𝑒𝑒𝑥𝑡
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖

+ 2𝑒𝑎
𝑇𝑃𝐵𝑊𝑇(𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡)))

+ 2𝑒𝑎
𝑇𝑃 (𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡)))

+ 2𝑡𝑟{(−�̃�𝑇𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵)

−  𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵}) − 2𝑡𝑟{�̃�𝑇𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵} 

(B.12) 

By Lemma 11.3 of [56] (from Paper II) 𝑡𝑟[ (�̂� −𝑊)
𝑇
{𝑃𝑟𝑜𝑗𝑚(�̂�,

𝜙(�̅�(𝑡)) �̅�𝑎
𝑇𝑃𝐵) −  𝜙(�̅�(𝑡)) �̅�𝑎

𝑇𝑃𝐵}] ≤ 0. After some simplification (B.12) becomes 

�̇�(. ) ≤ −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 − 2𝑒𝑟

𝑇𝑃𝑟𝐾𝑒𝑒𝑣𝑡 + 2𝑒𝑟
𝑇𝑃𝑟(𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵�̃�

𝑇𝜙(𝑋(𝑡𝑖)) + 2𝑒𝑟
𝑇𝑃𝑟𝐵𝑊

𝑇[𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))]

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵𝜖 − 𝑒𝑎

𝑇𝑄𝑒𝑎 − 2𝑒𝑎
𝑇𝑃𝐾2𝑒𝑒𝑥𝑡 + 2𝑒𝑒𝑥𝑡

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2�̅�𝑎
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) + 2𝑒𝑎

𝑇𝑃𝐵𝜖 + 2𝑒𝑎
𝑇𝑃𝐵𝑊𝑇(𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡)))

+ 2𝑒𝑎
𝑇𝑃 (𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡))) − 2�̅�𝑎

𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡)) 
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= −𝑒𝑟
𝑇𝑄𝑟𝑒𝑟 − 2𝑒𝑟

𝑇𝑃𝑟𝐾𝑒𝑒𝑣𝑡 + 2𝑒𝑟
𝑇𝑃𝑟 (𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖)))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵�̃�

𝑇𝜙(𝑋(𝑡𝑖))

+ 2𝑒𝑟
𝑇𝑃𝑟𝐵𝑊

𝑇[𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))] + 2𝑒𝑟
𝑇𝑃𝑟𝐵𝜖

− 𝑒𝑎
𝑇𝑄𝑒𝑎 − 2𝑒𝑎

𝑇𝑃𝐾2𝑒𝑒𝑥𝑡 + 2𝑒𝑒𝑥𝑡
𝑇𝑃𝐵�̃�𝑇𝜙(�̅�(𝑡))

+ 2𝑒𝑎
𝑇𝑃𝐵𝜖 + 2𝑒𝑎

𝑇𝑃𝐵𝑊𝑇 (𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡)))

+ 2𝑒𝑎
𝑇𝑃 (𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡))).  

(B.13) 

Applying norm properties on th right-hand-side of (B.13) leads to 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑟)‖𝑒𝑟‖
2 + 2‖𝑃𝑟𝐾‖‖𝑒𝑟‖‖𝑒𝑒𝑣𝑡‖

+ 2‖𝑃𝑟‖‖𝑒𝑟‖‖𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖))‖

+ 2‖𝑃𝑟𝐵‖‖�̃�‖‖𝜙(𝑋(𝑡𝑖))‖‖𝑒𝑟‖

+ 2‖𝑃𝑟𝐵‖‖𝑒𝑟‖‖𝑊‖‖𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))‖

+ 2‖𝜖‖‖𝑃𝑟𝐵‖‖𝑒𝑟‖−𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2

+ 2‖𝑃𝐾2‖‖𝑒𝑒𝑥𝑡‖‖𝑒𝑎‖

+ 2‖𝑃𝐵‖‖�̃�‖‖𝜙(�̅�(𝑡))‖‖𝑒𝑎‖

+ 2‖𝑃𝐵‖‖𝑒𝑎‖‖𝑊‖‖𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡))‖

+ 2‖𝑃𝐵‖‖𝑒𝑎‖‖𝜖‖

+ 2‖𝑃‖‖𝑒𝑎‖‖𝑓(𝑋(𝑡)) − 𝑓(�̅�(𝑡))‖ 

 

(B.14) 

This equation can further be modified by noting that ‖𝜙(𝑋(𝑡)) − 𝜙(𝑋(𝑡𝑖))‖ ≤

𝐿𝜙 ‖𝑋(𝑡) − 𝑋(𝑡𝑖)‖ = 𝐿𝜙‖𝑒𝑒𝑣𝑡‖, ‖𝑓(𝑋(𝑡)) − 𝑓(𝑋(𝑡𝑖))‖ ≤ 𝐿𝑓  ‖𝑋(𝑡) − 𝑋(𝑡𝑖)‖ =

𝐿𝑓‖𝑒𝑒𝑣𝑡‖ , ‖𝜙(𝑋(𝑡)) − 𝜙(�̅�(𝑡))‖ ≤ 𝐿𝜙 ‖𝑋(𝑡) − �̅�(𝑡)‖ = 𝐿𝜙‖𝑒𝑒𝑥𝑡‖, ‖𝑓(𝑋(𝑡)) −
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𝑓(�̅�(𝑡))‖ ≤ 𝐿𝑓 ‖𝑋(𝑡) − �̅�(𝑡)‖ = 𝐿𝑓‖𝑒𝑒𝑥𝑡‖, ‖𝜖‖ ≤ 𝜖
∗, ‖𝜙(𝑋(𝑡𝑖))‖ ≤ 𝜙

∗, ‖𝑊‖ ≤ 𝑊∗  

and ‖�̃�‖ ≤ �̃�∗.  

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑟)‖𝑒𝑟‖
2 + 2‖𝑃𝑟𝐾‖‖𝑒𝑟‖‖𝑒𝑒𝑣𝑡‖ + 2‖𝑃𝑟‖𝐿𝑓‖𝑒𝑒𝑣𝑡‖‖𝑒𝑟‖

+ 2‖𝑃𝑟𝐵‖�̃�
∗𝜙∗‖𝑒𝑟‖ + 2𝐿𝜙‖𝑃𝑟𝐵‖𝑊

∗‖𝑒𝑟‖‖𝑒𝑒𝑣𝑡‖

+ 2𝜖∗‖𝑃𝑟𝐵‖‖𝑒𝑟‖−𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2 + 2‖𝑃𝐾2‖‖𝑒𝑒𝑥𝑡‖‖𝑒𝑎‖

+ 2‖𝑃𝐵‖�̃�∗𝜙∗‖𝑒𝑎‖ + 2𝐿𝜙‖𝑃𝐵‖𝑊
∗‖𝑒𝑎‖‖𝑒𝑒𝑥𝑡‖ + 2𝜖

∗‖𝑃𝐵‖‖𝑒𝑎‖

+ 2𝐿𝑓‖𝑃‖‖𝑒𝑒𝑥𝑡‖‖𝑒𝑎‖ 

Also note that   ‖𝑒𝑒𝑣𝑡‖ = ‖𝑋(𝑡) − 𝑋(𝑡𝑖)‖ = ‖𝑋(𝑡) − �̅�(𝑡) + �̅�(𝑡) − 𝑋(𝑡𝑖)‖ ≤

‖𝑋(𝑡) − �̅�(𝑡)‖ + ‖�̅�(𝑡) − 𝑋(𝑡𝑖)‖ = ‖𝑒𝑒𝑥𝑡‖ + ‖�̅�(𝑡) − 𝑋(𝑡𝑖)‖ = ‖𝑒𝑒𝑥𝑡‖ + ‖�̅�(𝑡) −

𝑋𝑑 + 𝑋𝑑 − 𝑋(𝑡𝑖)‖ ≤ ‖𝑒𝑒𝑥𝑡‖ + ‖𝑋𝑑 − 𝑋(𝑡𝑖)‖ + ‖�̅�(𝑡) − 𝑋𝑑‖ = 𝐶𝑒𝑣𝑡 . Because 𝑋𝑑 and 

𝑋(𝑡𝑖) are known and bounded, �̅�(𝑡) is also extrapolated state between two known points 

so it is also known and bounded between two sampled points, so �̅�(𝑡) =

‖𝐶1𝑡
𝑛 + 𝐶2𝑡

𝑛−1…+ 𝐶𝑛𝑡 + 𝐶𝑛+1‖ ≤ 𝜏 and ‖𝑒𝑒𝑥𝑡‖ ≤ ∁̅ ∈ ℝ+, ‖𝑋𝑑 − 𝑋(𝑡𝑖)‖ ≤ ∁�̅�𝑒𝑣𝑡∈ ℝ+ 

and ‖�̌�𝑟‖ ≤ ∁�̌�𝑟 results in ‖𝑒𝑒𝑣𝑡‖ = ‖𝑒𝑒𝑥𝑡‖ + ‖𝑋𝑑 − 𝑋(𝑡𝑖)‖ + ‖�̅�(𝑡) − 𝑋𝑑‖ ≤ 𝐶𝑒𝑣𝑡 where 

𝐶𝑒𝑣𝑡  ≜ ∁̅ + ∁�̅�𝑒𝑣𝑡 + ∁�̌�𝑟. This leads to, 

�̇�(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑟)‖𝑒𝑟‖
2 + 2‖𝑃𝑟𝐾‖𝐶𝑒𝑣𝑡‖𝑒𝑟‖ + 2‖𝑃𝑟‖𝐿𝑓𝐶𝑒𝑣𝑡‖𝑒𝑟‖ + 2‖𝑃𝑟𝐵‖�̃�

∗𝜙∗‖𝑒𝑟‖

+ 2𝐿𝜙‖𝑃𝑟𝐵‖𝑊
∗𝐶𝑒𝑣𝑡‖𝑒𝑟‖ + 2𝜖

∗‖𝑃𝑟𝐵‖‖𝑒𝑟‖)−𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2

+ 2‖𝑃𝐾2‖∁̅ ‖𝑒𝑎‖ + 2‖𝑃𝐵‖�̃�
∗𝜙∗‖𝑒𝑎‖ + 2𝐿𝜙‖𝑃𝐵‖𝑊

∗∁̅ ‖𝑒𝑎‖

+ 2𝜖∗‖𝑃𝐵‖‖𝑒𝑎‖ + 2𝐿𝑓‖𝑃‖∁̅ ‖𝑒𝑎‖ 
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= −𝜆𝑚𝑖𝑛 (𝑄𝑟)‖𝑒𝑟‖
2

+ 2(‖𝑃𝑟𝐾‖𝐶𝑒𝑣𝑡 + ‖𝑃𝑟‖𝐿𝑓𝐶𝑒𝑣𝑡 + ‖𝑃𝑟𝐵‖�̃�
∗𝜙∗ + 𝐿𝜙‖𝑃𝑟𝐵‖𝑊

∗𝐶𝑒𝑣𝑡‖𝑒𝑟‖

+ 𝜖∗‖𝑃𝑟𝐵‖)‖𝑒𝑟‖−𝜆𝑚𝑖𝑛 (𝑄)‖𝑒𝑎‖
2 + 2(‖𝑃𝐾2‖∁̅  + ‖𝑃𝐵‖�̃�

∗𝜙∗

+ 𝐿𝜙‖𝑃𝐵‖𝑊
∗∁̅  + 𝜖∗‖𝑃𝐵‖ + 𝐿𝑓‖𝑃‖∁̅ )‖𝑒𝑎‖ 

By defining 𝑎3 ≜ 𝜆𝑚𝑖𝑛 (𝑄𝑟), 𝑏3 ≜ (‖𝑃𝑟𝐾‖𝐶𝑒𝑣𝑡 + ‖𝑃𝑟‖𝐿𝑓𝐶𝑒𝑣𝑡 + ‖𝑃𝑟𝐵‖�̃�
∗𝜙∗ +

𝐿𝜙‖𝑃𝑟𝐵‖𝑊
∗𝐶𝑒𝑣𝑡 + 𝜖

∗‖𝑃𝑟𝐵‖), 𝑎4 ≜ 𝜆𝑚𝑖𝑛 (𝑄), 𝑏4 ≜ (‖𝑃𝐾2‖∁̅  + ‖𝑃𝐵‖�̃�
∗𝜙∗ +

𝐿𝜙‖𝑃𝐵‖𝑊
∗∁̅  + 𝜖∗‖𝑃𝐵‖ + 𝐿𝑓‖𝑃‖∁̅ )  

�̇�(. ) ≤ −𝑎3 ‖𝑒𝑟‖
2 + 2𝑏3 ‖𝑒𝑟‖ − 𝑎4‖𝑒𝑎‖

2 + 2𝑏4‖𝑒𝑎‖ 

= −(𝑎3‖𝑒𝑟‖
2 − 2𝑏3‖𝑒𝑟‖) − (𝑎4‖𝑒𝑎‖

2 − 2𝑏4‖𝑒𝑎‖) (B.15) 

So, for �̇�(. ) ≤ 0,  ‖𝑒𝑟‖ ≥
2𝑏3

𝑎3
 and ‖𝑒𝑎‖ ≥

2𝑏4

𝑎4
.    

Because the Lyapunov time derivative has a UUB as seen in (B.15) and the �̃� is 

bounded because the projection operator is used in its derivation, the UUB of tracking error 

and estimation error are now proved for all time. 

B.1.1. Comment (ISS Stability). An interesting point to note is that this 

formulation, with Theorem 1, exhibits input to state stable (ISS) characteristics. ISS is 

taken as an assumption in some literature, such as in [34] (from Paper II)  etc., but not in 

this formulation. Instead it naturally appears. From (B.1), 𝐿(𝑒𝑟) is continuously 

differentiable and because 𝜆𝑚𝑖𝑛 (𝑃𝑟)‖𝑒𝑟‖
2 + ‖𝛾−1‖‖�̃�‖ ≤ ‖𝐿(𝑒𝑟)‖ ≤

𝜆𝑚𝑎𝑥 (𝑃𝑟)‖𝑒𝑟‖
2 + ‖𝛾−1‖‖�̃�‖ , so ‖𝐿(𝑒𝑟)‖  is upper and lower bounded by 𝐾∞ functions. 

Also it shows that 𝑒𝑟 will stay bounded and �̇� is less than or equal to a negative definite 

function (B.8) and (B.15), then, by definition [46] (from Paper II), system 𝑒�̇� =

𝑓(𝑒𝑟(𝑡), 𝑒𝑒𝑣𝑡) is ISS. 
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B.2. COROLLARY 1.1: ULTIMATE UPPER BOUND ON TRACKING ERROR 

Proof: From (B.8) and (B.15) it follows that �̇� ≤ 0 outside the compact set 𝐷𝑠 

𝐷𝑠 ≜ {𝑒𝑎, �̂�𝑟: ‖𝑒𝑎‖ ≤ 𝜓1} ∩ {𝑒𝑎, �̂�𝑟: ‖�̂�𝑟‖ ≤ 휀}. 

Because 𝐿 cannot grow outside 𝐷𝑠, so it is lower and upper bounded as 

𝜆𝑚𝑖𝑛(𝑃𝑟)‖ 𝑒𝑟‖
2 ≤ ‖𝐿‖ ≤ 𝜆𝑚𝑎𝑥(𝑃𝑟)‖ 𝑒𝑟‖

2. (B.16) 

As is known  ‖𝑒𝑟‖ = ‖𝑒𝑎‖ + ‖�̂�𝑟‖ ≤ 𝜓1 + 휀 so 

𝜆𝑚𝑖𝑛(𝑃𝑟)‖ 𝑒𝑟‖
2 ≤ ‖𝐿‖ ≤ 𝜆𝑚𝑎𝑥(𝑃𝑟)𝜓1 + 𝜆𝑚𝑎𝑥(𝑃𝑟)휀 

𝜆𝑚𝑖𝑛(𝑃𝑟)‖ 𝑒𝑟‖
2 ≤ ‖𝐿‖ ≤ 𝜆𝑚𝑎𝑥(𝑃𝑟)𝜓1 + 𝜆𝑚𝑎𝑥(𝑃𝑟)휀 

𝜆𝑚𝑖𝑛(𝑃)‖ 𝑒𝑟‖
2 ≤ 𝜗1 

where 𝜗1 ≜ 𝜆𝑚𝑎𝑥(𝑃𝑟)𝜓1 + 𝜆𝑚𝑎𝑥(𝑃𝑟)휀. It leads to, 

‖𝑒𝑟‖ ≤ √𝜗1/𝜆𝑚𝑖𝑛(𝑃𝑟) (B.17) 

B.3. PROOF OF THEOREM 2 

Proof for the Theorem 2 of the Paper II is similar to the one for Scheme 1, because 

the tracking error expression is the same in both cases and expression for estimation error 

is just like case (i) of the scheme 1. It can be proved by choosing Lyapunov function 

candidate as in (1). ISS properties and upper bound on the tracking error for this ETNAC-

2 can also be found by following the similar approach as used for Scheme 1. 
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The proof of the theorem 1 from the Paper III is also done using Lyapunov analysis. 

Choosing a barrier Lyapunov function candidate as  

𝐿(𝑒𝑟 , 𝑒𝑎, �̃�, 𝑋)

=∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝑓�̅�𝑙 (‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼
) 

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝑓𝑏𝑙 (‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼
)}

+∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝑓�̅�𝑙 (‖𝐾𝑥𝑖𝑋‖𝐼
)

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝑓𝑏𝑙  (‖𝐾𝑥𝑖𝑋‖𝐼
)}    + 𝑡𝑟(�̃�𝑇𝛾𝑤

−1�̃�)

+ 𝑒𝑎
𝑇𝑃𝑎𝑒𝑎 

(C.1) 

                           = 𝐿1 + 𝐿1 + 𝐿2 + 𝐿2 + 𝐿3 

where 𝐿1 ≜ ∑ {𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝑓�̅�𝑙 (‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼
)}𝑙

𝑗=1  , 𝐿1 ≜ ∑ {(1 −𝑙
𝑗=1

𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝑓𝑏𝑙 (‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼
)} , 𝐿2 ≜ ∑ {𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝑓�̅�𝑙 (‖𝐾𝑥𝑖𝑋‖𝐼

)𝑞
𝑖=1 },  𝐿2 ≜ ∑ {(1 −𝑞

𝑖=1

𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝑓𝑏𝑙  (‖𝐾𝑥𝑖𝑋‖𝐼
)}, and 𝐿3 ≜ 𝑡𝑟(�̃�

𝑇𝛾𝑤
−1�̃�) + 𝑒𝑎

𝑇𝑃𝑎𝑒𝑎. 

Time derivative of 𝐿 can be given as 

�̇�(𝑒𝑟 , 𝑒𝑎, �̃�, 𝑋) = �̇�1 + �̇�1 + �̇�2 + �̇�2 + �̇�3. (C.2) 

(i) Now taking each component of 𝐿 separately. First consider 𝐿1 
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�̇�1 (𝑒𝑟𝑗) =∑
𝑑 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝑓�̅�𝑙 (‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼

)

𝑑 ‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼

2

 
.
𝑑 ‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼

2

𝑑𝑡

𝑙

𝑗=1

= 2∑𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗𝑒�̇� . 

(C.3) 

Using tracking error dynamics from (15), (31) (from the Paper III) becomes 

�̇�1 (𝑒𝑟𝑗) = 2∑𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑖

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗(𝐾𝑒𝑟 +  𝑔(�̃�
𝑇𝜙(𝑋(𝑡)) + 𝜖)

−∑{𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑙

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋}). 
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= 2∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

𝑙

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗𝐾𝑒𝑟

+ 2∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗{ 𝑔(�̃�
𝑇𝜙(𝑋(𝑡)) + 𝜖)

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙 |𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋})

− 2∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗∑{𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

− 2∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗∑{(1

𝑙

𝑗=1

− 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}. 

(C.

4) 

Equation (C.4) can be simplified by considering the following steps: 

A- Note that 𝐾𝑒𝑟𝑗
𝑇𝐾𝑒𝑟𝑗 has only one of diagonal entity as 1 corresponding to 𝑒𝑟𝑗 

and all rest of the elements are 0. So, for a 𝑌 ∈ ℝ𝑛 and for a  Hurwitz matrix 𝐾, it leads to 

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗𝐾𝑒𝑟 = 𝑒𝑟𝑗 ∑ 𝐾(𝑗, 𝑖)𝑒𝑟𝑗
𝑛
𝑖=1 = −𝐾(𝑗, 𝑗)𝑒𝑟𝑗

2. 

B- Note that �̅� ≜ 𝑔 𝑔𝑇 ∈ ℝ𝑛×𝑛 ≥ 0 (it is a positive semi-definite matrix). Using 

distributivity of the finite summation/multiplication for 

∑ 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
𝑙
𝑗 𝑒𝑟

𝑇𝐾𝑒𝑟𝑗
𝑇𝐾𝑒𝑟𝑗 ∑ {𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟
𝑙
𝑗=1 } =

𝑔𝑔𝑇 ∑ 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
𝑙
𝑗 𝑒𝑟𝑗 ∑ 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

 𝑒𝑟𝑗
𝑙
𝑗=1 =
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𝑔𝑔𝑇 ∑ 𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
2𝑙

𝑗 (𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗))
2𝛼𝑒𝑟𝑗  𝑒𝑟𝑗

2  where for any 𝑒𝑟𝑗𝑒𝑟𝑘 = {
𝑒𝑟𝑗

2  𝑗 = 𝑘

0    𝑗 ≠ 𝑘
 and 

(𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗))
2𝛼𝑒𝑟𝑗 is a non-negative scalar, so 

∑ 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
𝑙
𝑗 𝑒𝑟

𝑇𝐾𝑒𝑟𝑗
𝑇𝐾𝑒𝑟𝑗 ∑ {𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟
𝑙
𝑗=1 } ≥ 0  and 

negative of it will be non-positive. By the same principle, 

−2∑ 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
𝑙
𝑗 𝑒𝑟

𝑇𝐾𝑒𝑟𝑗
𝑇𝐾𝑒𝑟𝑗 ∑ {(1 −𝑙

𝑗=1

𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟} ≤ 0. So, these two terms can be eliminated from 

(C.4) by using the inequality for higher right-hand side.   

C- Consider now the multiplicative terms with 𝑒𝑟   

∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

=∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

𝑙

𝑗

𝐷𝑓�̅�𝑙|𝑥𝑖|
𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) 𝛼𝑥𝑗𝑔𝑔

𝑇(𝑗) 𝑒𝑟𝑗𝑥𝑗 

Since 𝑒𝑟𝑗𝑥𝑗 = 𝑒𝑟𝑗 (𝑥𝑗 − 𝑥𝑑𝑗 + 𝑥𝑑𝑗) = 𝑒𝑟𝑗 (𝑒𝑟𝑗 + 𝑥𝑑𝑗) = 𝑒𝑟𝑗
2 + 𝑒𝑟𝑗𝑥𝑑𝑗 , so 

∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

𝐷𝑓�̅�𝑙 |𝑥𝑖|
𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) 𝛼𝑥𝑗𝑔𝑔

𝑇(𝑗) 𝑒𝑟𝑗𝑥𝑗

=∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

𝑙

𝑗

𝐷𝑓�̅�𝑙|𝑥𝑗|
𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) 𝛼𝑥𝑗𝑔𝑔

𝑇(𝑗)(𝑒𝑟𝑗
2 + 𝑒𝑟𝑗𝑥𝑑𝑗) 
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Similarly,∑ 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
𝑙
𝑗 𝑒𝑟

𝑇𝐾𝑒𝑟𝑗
𝑇𝐾𝑒𝑟𝑗 ∑ {(1 −𝑞

𝑖=1

𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋} = ∑ 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) (1 −

𝑙
𝑗

𝑓𝑎𝑠𝑦𝑚(𝑥𝑗))𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
𝐷𝑓𝑏𝑙

|𝑥𝑗|
 𝛼𝑥𝑗𝑔𝑔

𝑇(𝑗)(𝑒𝑟𝑗
2 + 𝑒𝑟𝑗𝑥𝑑𝑗) .  

Considering the results in A-C, (C.4) can be rewritten as 

�̇�1(. ) ≤ −2∑{

𝑙

𝑗=1

𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
(𝐾(𝑗, 𝑗) + 𝐷𝑓�̅�𝑙 |𝑥𝑗|

|𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| (𝑔𝑔
𝑇)𝑗  

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗))𝐷𝑓𝑏𝑙
|𝑥𝑖|
 |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗} 𝑒𝑟𝑗
2

+ 2∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑞

𝑖

𝑒𝑟𝑗  ({(𝑔�̃�
𝑇𝜙(𝑋(𝑡)))

𝑖
+ (𝑔𝜖)𝑖

+ 𝐷𝑓�̅�𝑙|𝑥𝑗|
|𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| (𝑔𝑔

𝑇)(𝑖,𝑖)𝑒𝑟𝑗𝑥𝑑𝑗

+ 𝐷𝑓𝑏𝑙
|𝑥𝑗|
(1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)) |𝛼𝑥𝑗| (𝑔𝑔

𝑇)(𝑖,𝑖)𝑒𝑟𝑗𝑥𝑑𝑗} 



 

 

166 

= −2∑{

𝑞

𝑗

|𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| 𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
( 𝐾(𝑗, 𝑗)

+ |𝐷𝑓�̅�𝑙|𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗  

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)) |𝐷𝑓𝑏𝑙
|𝑥𝑖|
| |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗} 𝑒𝑟𝑗
2

+ 2∑𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑞

𝑖

𝑒𝑟𝑗  ({(𝑔�̃�
𝑇𝜙(𝑋(𝑡)))

𝑖

+ (𝑔𝜖)𝑖 + 𝐷𝑓�̅�𝑙|𝑥𝑗|
|𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| (𝑔𝑔

𝑇)(𝑖,𝑖)𝑒𝑟𝑗𝑥𝑑𝑗

+ 𝐷𝑓𝑏𝑙
|𝑥𝑗|
(1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)) |𝛼𝑥𝑗| (𝑔𝑔

𝑇)(𝑖,𝑖)𝑒𝑟𝑗𝑥𝑑𝑗}. 

(C.5) 

Applying norm properties [33] (from the Paper III)  to the terms on the right-hand side of 

(C.5), 
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�̇�1(. )

≤  −2∑{ (𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

|𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| (‖𝐾(𝑗, 𝑗)‖

+ |𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗  

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)) |𝐷𝑓𝑏𝑙
|𝑥𝑖|
| |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗) 𝑒𝑟𝑗
2}

+ 2∑{| 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| |𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
| {‖𝑔‖‖�̃�𝑇𝜙(𝑋(𝑡))‖

𝑖

𝑞

𝑖

+ ‖𝑔‖‖𝜖‖𝑖} |𝑒𝑟𝑗|

+ |𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖) |𝑒𝑟𝑗𝑥𝑑𝑗|

+ |𝐷𝑓𝑏𝑙
|𝑥𝑗|
| |1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖) |𝑒𝑟𝑗𝑥𝑑𝑗|}. 

 

(C.6) 

Equation (C.6) can be further modified by noting that ‖𝜖‖ ≤ 𝜖∗, ‖𝜙(𝑋)‖ ≤ 𝜙∗, 

‖�̃�‖ ≤ �̃�∗, and ‖𝑊‖ ≤ 𝑊∗. Also applying Young’s inequality [33] (from the Paper III)  

on 𝑒𝑟𝑗𝑥𝑑𝑗 = 𝛼𝑦𝑒𝑟𝑗
2 +

1

𝛼𝑦
𝑥𝑑𝑗

2 for a 𝛼𝑦 = 1, yields in 
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�̇�1(. ) ≤ −2∑{ (𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

|𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| (‖𝐾(𝑗, 𝑗)‖

+ |𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗  

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)) |𝐷𝑓𝑏𝑙
|𝑥𝑖|
| |𝛼𝑥𝑗| (𝑔𝑔

𝑇)𝑗) 𝑒𝑟𝑗
2}

+ 2∑{| 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| |𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|
| {‖𝑔‖�̃�∗𝜙∗ + ‖𝑔‖𝜖∗} |𝑒𝑟𝑗|  

𝑞

𝑖

+ |𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖) (𝛼𝑦𝑒𝑟𝑗
2 +

1

𝛼𝑦
𝑥𝑑𝑗

2)

+ |𝐷𝑓𝑏𝑙
|𝑥𝑗|
| |1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖)(𝛼𝑦𝑒𝑟𝑗
2 +

1

𝛼𝑦
𝑥𝑑𝑗

2)} 

≤ −2∑{ (𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

|𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| (‖𝐾(𝑗, 𝑗)‖) 𝑒𝑟𝑗
2}

+ 2∑{| 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| |𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|
| {‖𝑔‖�̃�∗𝜙∗

𝑙

𝑗

+ ‖𝑔‖𝜖∗} |𝑒𝑟𝑗|  

+ |𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖) 𝑥𝑑𝑗
2

+ |𝐷𝑓𝑏𝑙
|𝑥𝑗|
| |1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖)𝑥𝑑𝑗
2)} 

(C.7) 

Note that |𝑥𝑑𝑗| ≤ 𝑥𝑑𝑗  , so by defining  𝑐1𝑗 ≜

|𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖) 𝑥𝑑𝑗  
2 + |𝐷𝑓𝑏𝑙

|𝑥𝑗|
| |1 −

𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| ‖𝑔𝑔
𝑇‖(𝑖,𝑖)𝑥𝑑𝑗  

2 results in 
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�̇�1(. ) ≤ −∑{ (2𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|

𝑙

𝑗

|𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| (‖𝐾(𝑗, 𝑗)‖) 𝑒𝑟𝑗
2}

+ 2∑{| 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| |𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
| {‖𝑔‖�̃�∗𝜙∗

𝑙

𝑗=1

+ ‖𝑔‖𝜖∗} |𝑒𝑟𝑗| +∑𝑐1𝑗

𝑙

𝑗=1

 

(C.8) 

Define 𝑎1𝑗 ≜ 2𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|
|𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| (‖𝐾(𝑗, 𝑗)‖ and 𝑏1𝑗 ≜

{| 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| |𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
| {‖𝑔‖�̃�∗𝜙∗ + ‖𝑔‖𝜖∗}. Note that defined coefficients are 

positive. Now (C.8) can be rewritten as 

�̇�1(. ) ≤ −∑𝑎1𝑗

𝑙

𝑗

𝑒𝑟𝑗
2 +∑2𝑏1𝑗

𝑙

𝑗

|𝑒𝑟𝑗| +∑𝑐1𝑗

𝑙

𝑗

 (C.9) 

For 𝜉 ∈ ℝ+, such that 0 < 𝜉 < 1. 

�̇�1(. ) ≤ −𝜉∑𝑎1𝑗

𝑙

𝑗

𝑒𝑟𝑗
2 −∑{(1 − 𝜉)𝑎1𝑗  𝑒𝑟𝑗

2 − 2𝑏1𝑗 |𝑒𝑟𝑗| − 𝑐1𝑗}

𝑙

𝑖

 

=−𝜉 ∑ 𝑎1𝑗
𝑙
𝑗 𝑒𝑟𝑗

2 − ∑ { (√(1 − 𝜉)𝑎1𝑗  𝑒𝑟𝑗)

2

− 2√(1 − 𝜉)𝑎1𝑗 .
𝑏1𝑗

√(1−𝜉)𝑎1𝑗

|𝑒𝑟𝑗| +
𝑙
𝑖

(
𝑏1𝑗

√(1−𝜉)𝑎1𝑗

)

2

− (
𝑏1𝑗

√(1−𝜉)𝑎1𝑗

)

2

− 𝑐1𝑗} 

= −𝜉∑𝑎1𝑗  𝑒𝑟𝑗
2

𝑙

𝑗

−∑{[√(1 − 𝜉)𝑎1𝑗  |𝑒𝑟𝑗| −
𝑏1𝑗

√(1 − 𝜉)𝑎1𝑗

]2 −
𝑏1𝑗

2

(1 − 𝜉)𝑎1𝑗
− 𝑐1𝑗}

𝑙

𝑗
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≤ −𝜉∑ 𝑎1𝑗  𝑒𝑟𝑗
2𝑙

𝑗       ,             if   |𝑒𝑟𝑗| ≥  
(√𝑏1𝑗

2+(1−𝜉)𝑎1𝑗𝑐1𝑗
)+𝑏1𝑗

(1−𝜉)𝑎1𝑗
. (C.10) 

(ii) Now taking �̇�1 (𝑒𝑟𝑗) 

�̇�1 (𝑒𝑟𝑗) =∑
𝑑 (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗))𝑓𝑏𝑙 (‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼

)

𝑑 ‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼

2

 
.
𝑑 ‖𝐾𝑒𝑟𝑗𝑒𝑟‖𝐼

2

𝑑𝑡

𝑙

𝑗=1

= 2∑(1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗))  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|

𝑞

𝑗

𝑒𝑟
𝑇𝐾𝑒𝑟𝑗

𝑇𝐾𝑒𝑟𝑗𝑒�̇� . 

Following the same approach as is taken for (i), it can be proved that 

�̇�1 (𝑒𝑟𝑗) ≤ −𝜉 ∑ 𝑎2𝑗  𝑒𝑟𝑗
2𝑙

𝑗     ,  if   |𝑒𝑟𝑗| ≥  
(√𝑏2𝑗

2+(1−𝜉)𝑎2𝑗𝑐2𝑗
)+𝑏2𝑗

(1−𝜉)𝑎2𝑗
 (C.11) 

where 𝑎2𝑗 ≜ 2𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
(|1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)|)(‖𝐾(𝑗, 𝑗)‖, 𝑏2𝑗 ≜ 2{| 1 −

𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)| |𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
| {‖𝑔‖�̃�∗𝜙∗ + ‖𝑔‖𝜖∗}, and 𝑐2𝑗 ≜

|𝐷𝑓�̅�𝑙 |𝑥𝑗|
| |𝑓𝑎𝑠𝑦𝑚(𝑥𝑗) | |𝛼𝑥𝑗| ‖𝑔𝑔

𝑇‖(𝑖,𝑖) 𝑥𝑑𝑗  
2 + |𝐷𝑓𝑏𝑙

|𝑥𝑗|
| |1 −

𝑓𝑎𝑠𝑦𝑚(𝑥𝑗)| |𝛼𝑥𝑗| ‖𝑔𝑔
𝑇‖(𝑖,𝑖)𝑥𝑑𝑗  

2. The defined coefficients 𝑎2𝑗 , 𝑏2𝑗 , and 𝑐2𝑗  are positive 

scalars. 

(iii) Now consider the �̇�2 
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�̇�2(𝑥𝑖) =∑
𝑑 𝑓�̅�𝑙 (‖𝐾𝑥𝑖𝑋‖𝐼

)

𝑑 ‖𝐾𝑥𝑖𝑋‖𝐼
2
 
.
𝑑 ‖𝐾𝑥𝑖𝑋‖𝐼

2

𝑑𝑡

𝑞

𝑖

= 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖�̇�. 

(C.12) 

By using the system dynamics from (10 (from the Paper III)), 

�̇�2(𝑥𝑖) = 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖(𝑓

∗(𝑋𝑑 ) + 𝐾𝑋 − 𝐾𝑋𝑑 + 𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 𝑔𝜖

−∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑔𝑔𝑇𝐾𝑥𝑖𝑋}). 

= 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖(𝑓

∗(𝑋𝑑 ) + 𝐾𝑋 − 𝐾𝑋𝑑 + 𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 𝑔𝜖

−∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑔𝑔𝑇𝐾𝑥𝑖𝑋}) 
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= 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖𝐾𝑋

+ 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖 {𝑓

∗(𝑋𝑑 ) − 𝐾𝑋𝑑 + 𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 𝑔𝜖

−∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}}

− 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙 |𝑥𝑖|

𝑔𝑔𝑇𝐾𝑥𝑖𝑋}

𝑞

𝑖=1

− 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖∑(1

𝑞

𝑖=1

− 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑔𝑔𝑇𝐾𝑥𝑖𝑋. 

(C.13) 

Equation (C.13) can be simplified by considering the following steps: 

D- Note that 𝐾𝑥𝑖
𝑇𝐾𝑥𝑖 has only one of diagonal entity as 1 corresponding to 𝑥𝑖 and 

the all other elements are 0, resulting in  𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖𝐾𝑋 = 𝑥𝑖 ∑ 𝐾(𝑖, 𝑗)𝑥𝑗

𝑛
𝑗=1 = −𝐾(𝑖, 𝑖)𝑥𝑖

2 

for a 𝑌 ∈ ℝ𝑛 and a Hurwitz matrix 𝐾.  

E- Following the similar steps as taken in notes B-C during the proof of (i), it can 

be shown that 

−𝑔𝑔𝑇 ∑ ∑ 𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝑥𝑖
2𝑞

𝑖=1
𝑞
𝑖=1 ≤ 0  and 

−2∑ 𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞
𝑖 𝑋𝑇𝐾𝑥𝑖

𝑇𝐾𝑥𝑖 ∑ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞
𝑖=1 ≤ 0. So, 
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these two terms can be taken out from (C.13) considering inequality. Also, 

∑ 𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞
𝑖 𝑋𝑇𝐾𝑥𝑖

𝑇𝐾𝑥𝑖 ∑ {𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|
 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙
𝑗=1 =

∑ 𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞
𝑖 𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼

𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) 𝛼𝑒𝑟𝑖   𝑔𝑔
𝑇(𝑖)𝑥𝑖(𝑥𝑖 − 𝑥𝑑𝑖) 

Similarly, ∑ 𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞
𝑖 𝑋𝑇𝐾𝑥𝑖

𝑇𝐾𝑥𝑖 ∑ {(1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

𝑙
𝑗=1 =

∑ 𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞
𝑖 𝐷𝑓𝑏𝑙

‖𝐾𝑒𝑟𝑖𝑒𝑟‖
(1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) 𝛼𝑒𝑟𝑖   𝑔𝑔

𝑇(𝑖){𝑥𝑖
2 − 𝑥𝑖𝑥𝑑𝑖} 

Noting D-E, (C.13) can be simplified as  

�̇�2(. ) ≤ −2∑{

𝑞

𝑖

𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝐾(𝑖, 𝑖) +  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼

𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
} 𝑥𝑖

2

+ 2∑𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝑥𝑖  ({(𝑓
∗(𝑋𝑑 ))𝑖 −

(𝐾𝑋𝑑)𝑖 + (𝑔�̃�
𝑇𝜙(𝑋(𝑡)))

𝑖

+ (𝑔𝜖)𝑖 + 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)𝛼𝑒𝑟𝑖  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
 (𝑔𝑔𝑇)(𝑖,𝑖)𝑥𝑖𝑥𝑑𝑖

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖))𝛼𝑒𝑟𝑖  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
(𝑔𝑔𝑇)(𝑖,𝑖)𝑥𝑖𝑥𝑑𝑖} 
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= −2∑{(𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
2𝐾(𝑖, 𝑖) +  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼

𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|

𝑞

𝑖

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
)𝑥𝑖

2}

+ 2∑{𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝑥𝑖 ((𝑓

∗(𝑋𝑑 ))𝑖 −
(𝐾𝑋𝑑)𝑖

𝑞

𝑖

+ (𝑔�̃�𝑇𝜙(𝑋(𝑡)))
𝑖
+ (𝑔𝜖)𝑖

+ 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)𝛼𝑒𝑟𝑖  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
 (𝑔𝑔𝑇)(𝑖,𝑖)𝑥𝑖𝑥𝑑𝑖

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖))𝛼𝑒𝑟𝑖  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
(𝑔𝑔𝑇)(𝑖,𝑖)𝑥𝑖𝑥𝑑𝑖)} . 

(C.14) 

Applying norm properties [33] (from the Paper III)  to the terms on the right-hand side of 

(C.14) results in 
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�̇�2(. )

≤  −2∑{ (𝐷𝑓𝑏𝑙‖𝐾𝑥𝑖𝑋‖𝐼

𝑞

𝑖

𝐾(𝑖, 𝑖)

+ 𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
|𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)| |𝛼𝑒𝑟𝑖|

+ |1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)| |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
) 𝑥𝑖

2}

+ 2∑{ (𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
{‖𝑓∗(𝑋𝑑 )‖𝑖 + ‖𝐾𝑋𝑑‖𝑖

𝑞

𝑖

+ ‖𝑔‖‖�̃�𝑇𝜙(𝑋(𝑡))‖
𝑖
+ ‖𝑔‖‖𝜖‖𝑖} |𝑥𝑖|

+ 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖)|𝑥𝑖𝑥𝑑𝑖|

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖)|𝑥𝑖𝑥𝑑𝑖|}. 

 

(C.15) 

This equation can be further modified by noting that ‖𝜖‖ ≤ 𝜖∗, ‖𝜙(𝑋)‖ ≤ 𝜙∗, 

‖�̃�‖ ≤ �̃�∗, and ‖𝑊‖ ≤ 𝑊∗. Also applying Young’s inequality [33] (from the Paper III)  

on 𝑥𝑖𝑥𝑑𝑖 = 𝛼𝑦𝑥𝑖
2 +

1

𝛼𝑦
𝑥𝑑𝑖

2 for 𝛼𝑦 = 1. 
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�̇�2(. ) ≤ −2∑{(𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝐾(𝑖, 𝑖) + 𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼

|𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)| |𝛼𝑒𝑟𝑖|

𝑞

𝑖

+ |1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)| |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
)𝑥𝑖

2  }

+ 2∑{𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
{‖𝑓∗(𝑋𝑑 )‖𝑖 + ‖𝐾𝑋𝑑‖𝑖 + ‖𝑔‖�̃�

∗𝜙∗ + ‖𝑔‖𝜖∗}|𝑥𝑖|  

𝑞

𝑖

+ 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖) (𝛼𝑦𝑥𝑖

2 +
1

𝛼𝑦
𝑥𝑑𝑖

2)

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖)(𝛼𝑦𝑥𝑖

2 +
1

𝛼𝑦
𝑥𝑑𝑖

2)  } 

= −∑{(𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
2𝐾(𝑖, 𝑖))𝑥𝑖

2}

𝑞

𝑖

+ 2∑{𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
{‖𝑓∗(𝑋𝑑 )‖𝑖 + ‖𝐾𝑋𝑑‖𝑖 + ‖𝑔‖�̃�

∗𝜙∗ + ‖𝑔‖𝜖∗}|𝑥𝑖|  

𝑞

𝑖=1

+ 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖) 𝑥𝑑𝑖

2

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖)𝑥𝑑𝑖

2}  

Note that |𝑥𝑑𝑖| ≤ 𝑥𝑑𝑖  , so by defining  𝑐3𝑖 ≜

𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|  𝐷𝑓�̅�𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖) 𝑥𝑑𝑖

2
+ (1 −

𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙‖𝐾𝑒𝑟𝑖𝑒𝑟‖𝐼
‖𝑔𝑔𝑇‖(𝑖,𝑖)𝑥𝑑𝑖

2
 results in 
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�̇�2(. ) ≤ −∑{2(𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
𝐾(𝑖, 𝑖))  𝑥𝑖

2}

𝑞

𝑖

+∑{2𝐷𝑓�̅�𝑙‖𝐾𝑥𝑖𝑋‖𝐼
{‖𝑓∗(𝑋𝑑 )‖𝑖 + ‖𝐾𝑋𝑑‖𝑖

𝑞

𝑖=1

+ ‖𝑔‖�̃�∗𝜙∗ + ‖𝑔‖𝜖∗}|𝑥𝑖|} +∑𝑐3𝑖

𝑞

𝑖=1

 

(C.16) 

Define 𝑎3𝑖 ≜ 2𝐷𝑓�̅�𝑙|𝑥𝑖|
𝐾(𝑖, 𝑖)  and  𝑏3𝑖 ≜ 𝐷𝑓�̅�𝑙|𝑥𝑖|

{‖𝑓∗(𝑋𝑑 )‖𝑖 + ‖𝐾𝑋𝑑‖𝑖 + ‖𝑔‖�̃�
∗𝜙∗ +

‖𝑔‖𝜖∗}. Note that defined coefficients are positive. 

�̇�2(. ) ≤ −∑𝑎3𝑖 𝑥𝑖
2

𝑞

𝑖

+∑2𝑏3𝑖|𝑥𝑖|

𝑞

𝑖

+∑𝑐3𝑖

𝑞

𝑖

 (C.17) 

For 𝜉 ∈ ℝ+, such that 0 < 𝜉 < 1. 

�̇�2(. ) ≤ −𝜉∑𝑎3𝑖  𝑥𝑖
2

𝑞

𝑖

−∑{(1 − 𝜉)𝑎3𝑖 𝑥𝑖
2 − 2𝑏3𝑖|𝑥𝑖| − 𝑐3𝑖}

𝑞

𝑖

 

= −𝜉∑𝑎3𝑖 𝑥𝑖
2

𝑞

𝑖

−∑(

{
 

 

√(1 − 𝜉)𝑎3𝑖 |𝑥𝑖| −
𝑏3𝑖

√(1 − 𝜉)𝑎3𝑖}
 

 
2

−
𝑏3𝑖

2

(1 − 𝜉)𝑎3𝑖
− 𝑐3𝑖}

𝑞

𝑖

 

≤ −𝜉∑ 𝑎3𝑖 𝑥𝑖
2𝑞

𝑖                    if   |𝑥𝑖| ≥  
(√𝑏3𝑖

2+(1−𝜉)𝑎3𝑖𝑐3𝑖
)+ 𝑏3𝑖

(1−𝜉)𝑎3𝑖
 (C.18) 

 

(iv) Now consider the �̇�2(𝑥𝑖) 
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�̇�2(𝑥𝑖) =∑
𝑑 (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝑓𝑏𝑙 (‖𝐾𝑥𝑖𝑋‖𝐼

)

𝑑 ‖𝐾𝑥𝑖𝑋‖𝐼
2
 

.
𝑑 ‖𝐾𝑥𝑖𝑋‖𝐼

2

𝑑𝑡

𝑞

𝑖=1

= 2∑(1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖))  𝐷𝑓𝑏𝑙
|𝑥𝑖|

𝑞

𝑖

𝑋𝑇𝐾𝑥𝑖
𝑇𝐾𝑥𝑖�̇�. 

(C.19) 

Following the same approach as is taken for (iii), it can be shown that 

�̇�2(𝑥𝑖) ≤ −𝜉∑𝑎4𝑖  𝑥𝑖
2

𝑞

𝑖

 

if        |𝑥𝑖| ≥  
(√𝑏4𝑖

2+(1−𝜉)𝑎4𝑖𝑐4𝑖
)+𝑏4𝑖

(1−𝜉)𝑎4𝑖
 

(C.20) 

where 𝑎4𝑖 ≜ 2𝐷𝑓𝑏𝑙|𝑥𝑖|
|1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)|{𝐾(𝑖, 𝑖), 𝑏4𝑖 ≜ 𝐷𝑓�̅�𝑙|𝑥𝑖|𝐼

{‖𝑓∗(𝑋𝑑 )‖𝑖 + ‖𝐾𝑋𝑑‖𝑖 +

‖𝑔‖�̃�∗𝜙∗ + ‖𝑔‖𝜖∗}, and 𝑐4𝑖 ≜ 𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖) |𝛼𝑒𝑟𝑖|  𝐷𝑓�̅�𝑙|𝑒𝑟𝑖|
‖𝑔𝑔𝑇‖(𝑖,𝑖) 𝑥𝑑𝑖

2
+ (1 −

𝑓𝑎𝑠𝑦𝑚(𝑒𝑟𝑖)) |𝛼𝑒𝑟𝑖|  𝐷𝑓𝑏𝑙|𝑒𝑟𝑖|
‖𝑔𝑔𝑇‖(𝑖,𝑖)𝑥𝑑𝑖

2
.  

(v) Now taking 𝐿3, 

    𝐿3̇(𝑒𝑎, �̃�) = 2𝑒𝑎
𝑇𝑃𝑎�̇�𝑎 + 2 𝑡𝑟(�̃�

𝑇𝛾𝑤
−1�̇̃�) 

         = 2𝑒𝑎
𝑇𝑃𝑎𝐾2𝑒𝑎(𝑡) + 2𝑒𝑎

𝑇𝑃𝑎𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖 +

                              2𝑡𝑟 (�̃�𝑇𝛾𝑤
−1�̇̃�). 

(C.21) 

Since �̃� = 𝑊 − �̂� so �̇̃� = −�̇̂�. Also by using the projection operator for the weight 

updates (18 (from the Paper III)), Lyapunov equation (27 (from the Paper III)), and by 

adding and subtracting �̃�𝑇𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑔, (C.21) can be rewritten as 
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𝐿3̇(. ) = −𝑒𝑎
𝑇𝑄𝑎𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝑎𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖

+ 2𝑡𝑟(−�̃�𝑇{𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔)

+ �̃�𝑇𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔 − �̃�

𝑇𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔}. 

(C.22) 

For any matrices 𝐴 ∈ ℝ𝑛×𝑚, 𝐵 ∈ ℝ𝑚×𝑛, and 𝐶 ∈ ℝ𝑛×𝑛 , followings are true, 

𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴), 𝑡𝑟(𝐴𝐵 + 𝐶) = 𝑡𝑟(𝐴𝐵) + 𝑡𝑟(𝐶), and  𝑡𝑟(𝐶) = 𝑡𝑟(𝐶𝑇).  Using these 

trace properties, (C.22) can be rewritten as  

𝐿3̇(. ) = −𝑒𝑎
𝑇𝑄𝑎𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝑎𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖

+ 2𝑡𝑟{(−�̃�𝑇𝑃𝑟𝑜𝑗𝑚(�̂�, 𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔)

−  𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔}) − 2𝑡𝑟{�̃�

𝑇𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝑎𝑔}. 

(C.23) 

By Lemma 11.3 of [32] (from the Paper III), 𝑡𝑟 [ (�̂� −𝑊)
𝑇
{𝑃𝑟𝑜𝑗𝑚(�̂�,

𝜙(𝑋(𝑡)) 𝑒𝑎
𝑇𝑃𝐵) −  𝜙(𝑋(𝑡)) 𝑒𝑎

𝑇𝑃𝐵}] ≤ 0 and after some simplifications (C.23) 

becomes 

𝐿3̇(. ) ≤ −𝑒𝑎
𝑇𝑄𝑎𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝑎𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖 − 2𝑡𝑟{�̃�
𝑇𝜙(𝑋(𝑡)) 𝑒𝑎

𝑇𝑃𝑎𝑔} 

= −𝑒𝑎
𝑇𝑄𝑎𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝑎𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖 − 2𝑡𝑟{𝑒𝑎
𝑇𝑃𝑎𝑔�̃�

𝑇𝜙(𝑋(𝑡)) } 

= −𝑒𝑎
𝑇𝑄𝑎𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝑎𝑔�̃�
𝑇𝜙(𝑋(𝑡)) + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖 − 2𝑒𝑎
𝑇𝑃𝑎𝑔�̃�

𝑇𝜙(𝑋(𝑡))  

= −𝑒𝑎
𝑇𝑄𝑎𝑒𝑎 + 2𝑒𝑎

𝑇𝑃𝑎𝑔𝜖 (C.24) 

By applying norm properties [33] (from the Paper III)  to the terms on the right-hand side 

of (C.24), 

𝐿3̇(. ) ≤ −𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖
2 + 2‖𝑃𝑎𝑔‖‖𝜖‖‖𝑒𝑎‖. 

≤ −𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖
2 + 2‖𝑃𝑎𝑔‖𝜖

∗‖𝑒𝑎‖ 

= −𝜉𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖
2 − (1 − 𝜉)𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖

2 + 2‖𝑃𝑎𝑔‖𝜖
∗‖𝑒𝑎‖ 



 

 

180 

Define 𝑎5 ≜ (1 − 𝜉)𝜆𝑚𝑖𝑛 (𝑄𝑎) and  𝑏5 ≜ 𝜖
∗‖𝑃𝑎𝑔‖. 

𝐿3̇(. ) ≤ −𝜉𝑎5‖𝑒𝑎‖
2 − 𝑎5‖𝑒𝑎‖

2 + 2𝑏5‖𝑒𝑎‖ 

= −𝜉𝑎5‖𝑒𝑎‖
2 − (√𝑎5 ‖𝑒𝑎‖ −

𝑏5

√𝑎5
)

2

+
𝑏5
2

𝑎5
 

≤ −𝜉𝑎5‖𝑒𝑎‖
2      if ‖𝑒𝑎‖ ≥

2𝑏5

𝑎5
. (C.25) 

By adding (C.10), (C.11), (C.18), (C.20), and (C.25) leads to 

�̇�(𝑒𝑟 , 𝑒𝑎, �̃�, 𝑋) = �̇�1 + �̇�1 + �̇�2 + �̇�2 + �̇�3 

≤  −𝜉∑𝑎1𝑖 𝑒𝑟𝑗
2

𝑙

𝑗=1

− 𝜉∑𝑎2𝑖 𝑒𝑟𝑗
2

𝑙

𝑗=1

  − 𝜉∑𝑎3𝑖 𝑥𝑖
2

𝑞

𝑖=1

 − 𝜉∑𝑎4𝑖  𝑥𝑖
2

𝑞

𝑖=1

 

− 𝜉𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖
2. 

(C.26) 

Now following comments are justified: 

a. Since �̇�(. , 𝑡) is negative from (C.26), thus 𝐿(. , 𝑡) ≤ 𝐿(. , 𝑡 = 0) ≤ 𝐿(. ) 

where 𝐿(. ) is the upper bound on 𝐿  given later in (C.27). 

b. Since the time derivative of 𝐿 is negative definite and a BLF is applied on 𝑥𝑖, 

if initial 𝑥𝑖(0) ∈ ∁𝜖𝑥𝑖
then BLF-based control will never let 𝑥𝑖(𝑡) violate its bounds, and it 

will always stay in its constrained set.   

c. Since the  time derivative of 𝐿 is negative definite and a BLF is applied 

on 𝑒𝑟𝑗, if initial 𝑒𝑟𝑗(0) ∈ ∁𝜖𝑒𝑟𝑗
then BLF-based control will never let 𝑒𝑟𝑗(𝑡) violate its 

bounds and it will always stay in its constrained set.  

d.   

              (A) Following (a), (b), and by remarks/definition (iv) from subsection 2 of 

Paper III, 𝑓
𝑏𝑙
(𝑥𝑖) and 𝑓𝑏𝑙(𝑥𝑖)   will be  bounded by  𝛾

𝑥𝑖
and 𝛾𝑥𝑖, respectively. 
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             (B)  Following (a), (b), and by remarks/definition (iv) from subsection 2 of 

the Paper III, 𝑓
𝑏𝑙
(𝑒𝑟𝑗) and 𝑓𝑏𝑙 (𝑒𝑟𝑗) will be bounded  by  𝛾

𝑒𝑟𝑗
and 𝛾𝑒𝑟𝑗, respectively. 

             (C) Following (a) , (b), and by remarks/definition (v) from subsection 2 of 

the Paper III, 𝐷𝑓�̅�𝑙|𝑥𝑖|
 and 𝐷𝑓𝑏𝑙

|𝑥𝑖|
 will be bounded by 𝛽

𝑥𝑖
 and 𝛽𝑥𝑖 , respectively. 

            (D) Following (a),(b), and by  remarks/definition (v) from subsection 2 of 

the PaperI II, 𝐷𝑓�̅�𝑙|𝑒𝑟𝑗|
 and 𝐷𝑓𝑏𝑙

|𝑒𝑟𝑗|
  will be  bounded by 𝛽

𝑒𝑟𝑗
 and 𝛽𝑒𝑟𝑗, respectively. 

            (𝐸)�̃� is bounded because the projection operator is used in its derivation 

[46] (from the Paper III). 

            (F) From (C.25), since �̇�( 𝑒𝑎, . ) ≤ 𝜉𝜆𝑚𝑖𝑛 (𝑄𝑎)‖𝑒𝑎‖
2 + (. . ), so as long as 

‖𝑒𝑎‖ ≥
2𝑏5

𝑎5
 for given 𝑎5 𝑎𝑛𝑑 𝑏5, then  ‖𝑒𝑎(𝑡)‖ ≤ �̅�𝑎 for some �̅�𝑎 ∈ ℝ

+. 

            (𝐺) 𝑋𝑎 is bounded as ‖𝑒𝑎(𝑡)‖ ≤ �̅�𝑎 → ‖𝑋 − 𝑋𝑎‖ ≤ ‖𝑋‖ + ‖𝑋𝑎‖ ≤ �̅�𝑎 →

‖𝑋𝑎‖ ≤ �̅�𝑎 + ∑ 𝜖𝑥𝑖
𝑛
𝑖=1 . 

After finding A-G, now 𝐿(. ) can be given as 

𝐿(. ) ≜∑{𝛾
𝑒𝑟𝑗
 

𝑙

𝑗=1

+ 𝛾𝑒𝑟𝑗
} +∑{ 𝛾

𝑥𝑖
+ 𝛾𝑥𝑖}

𝑞

𝑖=1

+ |𝛾𝑤
−1|  �̃�∗2  

+ 𝜆𝑚𝑎𝑥 (𝑃𝑎)�̅�𝑎
2. 

(C.27) 

e. Control is bounded by 𝑢𝑚𝑎𝑥. Using norm on (20, from Paper III), 



 

 

182 

‖𝑢(𝑡)‖ = ‖𝑔−1 [  𝐾𝑒𝑟 + 𝑒𝑓 − 𝑔�̂�
𝑇𝜙(𝑋(𝑡)) −∑{𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗) 𝛼𝑒𝑟𝑗  𝐷𝑓�̅�𝑙 |𝑒𝑟𝑗|

 𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟

𝑙

𝑗=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚 (𝑒𝑟𝑗)) 𝛼𝑒𝑟𝑗  𝐷𝑓𝑏𝑙|𝑒𝑟𝑗|
𝑔𝑔𝑇𝐾𝑒𝑟𝑗𝑒𝑟}

−∑{𝑓𝑎𝑠𝑦𝑚(𝑥𝑖) 𝛼𝑥𝑖  𝐷𝑓�̅�𝑙 |𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋

𝑞

𝑖=1

+ (1 − 𝑓𝑎𝑠𝑦𝑚(𝑥𝑖)) 𝛼𝑥𝑖  𝐷𝑓𝑏𝑙|𝑥𝑖|
𝑔𝑔𝑇𝐾𝑥𝑖𝑋} ]‖ 

≤ ‖𝑔−1‖ (‖𝐾‖𝜖𝑒𝑟 + ‖𝑓
∗(𝑋𝑑 )‖ + ‖𝑓(𝑋(𝑡))‖ + ‖𝑔‖�̂�

∗𝜙∗

+∑{|𝛼𝑒𝑟𝑗| 𝛽|𝑒𝑟𝑗|
‖𝑔‖2𝜖𝑒𝑟 + |𝛼𝑒𝑟𝑗| 𝛽|𝑒𝑟𝑗|

‖𝑔‖2𝜖𝑒𝑟}

𝑙

𝑗=1

+∑{|𝛼𝑥𝑖|�̅�|𝑥𝑖|‖𝑔‖
2 𝜖𝑥𝑖 + |𝛼𝑥𝑖| 𝛽|𝑥𝑖|‖𝑔‖

2 𝜖𝑥𝑖}

𝑞

𝑖=1

)   

                = 𝑢𝑚𝑎𝑥 . 
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