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1. Introduction 
The new insight in the area of spacecraft control has 

become much more attractive during the last decade.  In 
making an efficient effort, the present research attempts 
to address a potential comprehensive cascade control 
approach through Monte-Carlo based representation with 
respect to state-of-the-art. In a word, the traditional 
techniques may not deal with such a system under control 
in real situations. The core of finding in the proposed 
research is to handle the spacecraft, uniquely, as long as 
the investigated outcomes are efficient in a series of 
experiments. In order to consider the contribution of the 
topic, the background of potential control technique in the 
area of spacecraft is briefly focused. At first, Du et al. 
research is to deal with the attitude synchronization 
control to deal with the problem of synchronization [1]. 
Lu et al. research is to deal with an adaptive attitude 
tracking control with finite-time convergence [2]. Yang et 
al. review is to design the attitude determination and 
control through quaternion based classical method [3]. 
Zou et al. work is to explore adaptive fuzzy fault-tolerant 
attitude control and Cai et al. work is to deal with the 
leader-following attitude control [4]-[5]. Hereinafter, 
Zhang et al. research is to cope with the attitude of rigid 
system under control with disturbance that is provided by 
time varying exo-systems [6]. Erdong et al. propose 
robust decentralized attitude coordination control, while 
Lu et al. suggest a design of control strategy for attitude 
tracking with actuator saturation [7]-[8]. Moreover, 
Pukdeboon et al. consider the optimal sliding mode 

control approach for attitude tracking via Lyapunov 
function [9].  

Adaptive sliding mode control with its application to 
relative motion under input constraint is given by Wu et 
al. [10]. Zhang et al. focus on the attitude stabilization 
with disturbance generated by time varying uncertain 
exosystems, whilst Sun et al. suggest robust adaptive 
relative position tracking and attitude synchronization for 
rendezvous [11]-[12]. There are Park work that considers 
inverse optimal and robust nonlinear attitude control [13].   
Hu et al. analyze attitude tracking control under actuator 
magnitude deviation and misalignment, where Shahi  et 
al. explore Monte-Carlo based cascade control approach 
for real overactuated space systems [14]-[15]. 

Mazinan et al. investigate full quaternion based 
finite-time cascade attitude control approach via pulse 
modulation synthesis, autonomous space systems control 
incorporating automated maneuvers strategies in the 
presence of parameters uncertainties and finally three-
axis detumbling mode control approach [16]-[18]. In 
making other efforts, Mazinan proposes maneuvers 
control subject to propellant engine modes, high-
performance robust three-axis finite-time attitude control 
approach incorporating quaternion based estimation 
scheme, stability analysis of autonomous space systems 
in the presence of large disturbances based upon a 
Lyapunov-based constrained control strategy, high-
precision full quaternion based finite-time cascade 
attitude control strategy, high-precision three-axis 
detumbling and pointing attitude control strategy, 
Lyapunov-based three-axis attitude intelligent control 
approach and finally hybrid robust three-axis attitude 
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control approach in connection with a quaternion based 
model [19]-[25]. Hereinafter, Sun et al. look at composite 
control method to stabilize attitude in terms of Rodrigues 
parameters [26], Abdelrahman et al. consider attitude 
control via a combined state-dependent Riccati equation 
and adaptive neuro-fuzzy approach [27], Su et al. 
investigate velocity-free saturated proportional derivative 
control approach for asymptotic stabilization [28], Canuto 
et al. indicate satellite-to-satellite attitude control of a 
long-distance formation for the next generation gravity 
mission [29] and finally Liang et al. investigate robust 
decentralized attitude control of formations under time-
varying topologies [30].  

The rest of the manuscript is organized as follows: 
The comprehensive cascade control is first presented in 
Section 2. And then the results and discussion as well as 
the research’ summery are given in Sections 3 and 4, 
respectively. 

 
2. The Comprehensive Cascade Control  
2.1  The Preliminary materials 

The space model can be represented through the 
attitude dynamics and kinematics equations, where the 
first one is organized based on the following formula 

 

𝝉𝝉 =
𝑑𝑑𝑯𝑯𝒄𝒄

𝑑𝑑𝑑𝑑
+ 𝝎𝝎 × 𝑯𝑯𝒄𝒄 (1) 

 

Here, 𝝉𝝉  denotes three-axis control torques, 𝑯𝑯𝒄𝒄 
denotes three-axis angular momentum vector in the body 
coordinate that contains 𝐻𝐻𝜇𝜇  and finally 𝝎𝝎 denotes three-
axis angular velocity vector in the body coordinate that 
contains 𝜔𝜔𝜇𝜇 , 𝜇𝜇 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧. Now, by addressing the three-
axis angular velocities, the three-axis control torques of 
the spacecraft are realized as 
 

  �
𝜏𝜏𝑥𝑥 = �̇�𝐻𝑥𝑥 +𝜔𝜔𝑦𝑦𝐻𝐻𝑧𝑧 − 𝜔𝜔𝑧𝑧𝐻𝐻𝑦𝑦
𝜏𝜏𝑦𝑦 = �̇�𝐻𝑦𝑦 +𝜔𝜔𝑧𝑧𝐻𝐻𝑥𝑥 − 𝜔𝜔𝑥𝑥𝐻𝐻𝑧𝑧
𝜏𝜏𝑧𝑧 = �̇�𝐻𝑧𝑧 +𝜔𝜔𝑥𝑥𝐻𝐻𝑦𝑦 − 𝜔𝜔𝑦𝑦𝐻𝐻𝑥𝑥

 
 

(2) 

 

The attitude dynamics equation can easily be presented 
in Eq. (3)  
 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜔𝜔�̇�𝑥 =

𝜏𝜏𝑥𝑥
𝐼𝐼𝑥𝑥
−
�𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑦𝑦�

𝐼𝐼𝑥𝑥
𝜔𝜔𝑦𝑦𝜔𝜔𝑧𝑧

𝜔𝜔�̇�𝑦 =
𝜏𝜏𝑦𝑦
𝐼𝐼𝑦𝑦
−

(𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑧𝑧)
𝐼𝐼𝑦𝑦

𝜔𝜔𝑥𝑥𝜔𝜔𝑧𝑧

𝜔𝜔�̇�𝑧 =
𝜏𝜏𝑧𝑧
𝐼𝐼𝑧𝑧
−
�𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥�

𝐼𝐼𝑧𝑧
𝜔𝜔𝑥𝑥𝜔𝜔𝑦𝑦

 

 

 

(3)
 

Now, 𝒒𝒒𝒔𝒔 can be presented in four dimensional space as 
follows  

 

𝒒𝒒𝒔𝒔 = 𝑞𝑞𝑠𝑠0 + 𝒊𝒊𝑞𝑞𝑠𝑠1 + 𝒋𝒋𝑞𝑞𝑠𝑠2 + 𝒌𝒌𝑞𝑞𝑠𝑠3 (4) 
 

It is to note that 𝑞𝑞𝑠𝑠𝑠𝑠; 𝑖𝑖 = 0, 1, 2, 3  has one real and 
three imaginary elements and also the conditions ‖𝒒𝒒𝒔𝒔‖ =
1 should be satisfied. The relations between 𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧 
and the 𝑞𝑞𝑠𝑠𝑠𝑠  can be presented by 

 �

�̇�𝑞𝑠𝑠1
�̇�𝑞𝑠𝑠2
�̇�𝑞𝑠𝑠3
�̇�𝑞𝑠𝑠4

� = 1
2
�

0 −𝜔𝜔𝑥𝑥 −𝜔𝜔𝑦𝑦 −𝜔𝜔𝑧𝑧
𝜔𝜔𝑥𝑥 0 𝜔𝜔𝑧𝑧 −𝜔𝜔𝑦𝑦
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧

−𝜔𝜔𝑧𝑧
𝜔𝜔𝑦𝑦

0
−𝜔𝜔𝑥𝑥

𝜔𝜔𝑥𝑥
0

� �

𝑞𝑞𝑠𝑠1
𝑞𝑞𝑠𝑠2
𝑞𝑞𝑠𝑠3
𝑞𝑞𝑠𝑠4

� 

 

(5) 

 

And the relations between 𝜙𝜙,𝜃𝜃,𝜓𝜓 and 𝑞𝑞𝑠𝑠𝑠𝑠  are now also 
given by  
 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝑞𝑞𝑠𝑠0 = cos �

𝜓𝜓
2�cos �

𝜃𝜃
2� cos �

𝜑𝜑
2�+ sin �

𝜓𝜓
2� sin �

𝜃𝜃
2� sin �

𝜑𝜑
2�

𝑞𝑞𝑠𝑠1 = cos �
𝜓𝜓
2�cos �

𝜃𝜃
2� sin�

𝜑𝜑
2� − sin �

𝜓𝜓
2� sin �

𝜃𝜃
2� cos �

𝜑𝜑
2�

𝑞𝑞𝑠𝑠2 = cos �
𝜓𝜓
2�sin �

𝜃𝜃
2� cos�

𝜑𝜑
2� + sin �

𝜓𝜓
2� cos �

𝜃𝜃
2� sin �

𝜑𝜑
2�

𝑞𝑞𝑠𝑠3 = sin �
𝜓𝜓
2�cos �

𝜃𝜃
2� cos�

𝜑𝜑
2� − cos �

𝜓𝜓
2� sin �

𝜃𝜃
2� sin �

𝜑𝜑
2�

 

  

                                                                                     (6)    
Finally, the Euler angles can easily be calculated as 
 

⎩
⎪
⎨

⎪
⎧tan (𝜑𝜑) =

2(𝑞𝑞𝑠𝑠1𝑞𝑞𝑠𝑠2 + 𝑞𝑞𝑠𝑠0𝑞𝑞𝑠𝑠3)
𝑞𝑞𝑠𝑠02 + 𝑞𝑞𝑠𝑠12 − 𝑞𝑞𝑠𝑠22 − 𝑞𝑞𝑠𝑠32

sin  (𝜃𝜃) = −2(𝑞𝑞𝑠𝑠1𝑞𝑞𝑠𝑠3 − 𝑞𝑞𝑠𝑠0𝑞𝑞𝑠𝑠2)

tan  (𝜓𝜓) =
2(𝑞𝑞𝑠𝑠2𝑞𝑞𝑠𝑠3 + 𝑞𝑞𝑠𝑠0𝑞𝑞𝑠𝑠1)
𝑞𝑞𝑠𝑠02 − 𝑞𝑞𝑠𝑠12 − 𝑞𝑞𝑠𝑠22 + 𝑞𝑞𝑠𝑠32

 

 

 

(7) 

 

 
2.2 The Approach Realization 

The approach realization is based upon double closed 
loop to deal with the rotational angles and its rates in a 
number of propellant engine modes including on and off, 
respectively, as illustrated in Fig. 1.  The results, acquired 
to handle engine on mode, is related to the Euler angles, 
where the same ones to handle engine off mode is related 
to quaternion, as well.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The proposed comprehensive cascade control 
approach. 

 
 

𝐷𝐷𝑖𝑖𝐷𝐷 − 𝑈𝑈𝑈𝑈𝑈𝑈. 

𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑈𝑈𝑐𝑐𝑐𝑐 

𝝎𝝎,𝒒𝒒𝒔𝒔 

𝝎𝝎,𝜑𝜑, 𝜃𝜃,𝜓𝜓 

𝝉𝝉 

𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑅𝑅𝑈𝑈𝑆𝑆𝑆𝑆𝑅𝑅𝑑𝑑 𝐷𝐷 −𝑀𝑀 

𝒒𝒒𝒓𝒓 

𝜑𝜑𝑟𝑟 ,𝜃𝜃𝑟𝑟 ,𝜓𝜓𝑟𝑟  

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐶𝐶𝑐𝑐𝑈𝑈𝑑𝑑 

𝑄𝑄𝐸𝐸𝑆𝑆𝑑𝑑 − 𝐶𝐶𝑐𝑐𝑈𝑈𝑑𝑑 
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In fact, it is to note that the off mode is handled through 
quaternion based control approach; 𝑄𝑄𝐸𝐸𝑆𝑆𝑑𝑑 − 𝐶𝐶𝑐𝑐𝑈𝑈𝑑𝑑, whilst 
the on mode is handled through Euler based control 
approach; 𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐶𝐶𝑐𝑐𝑈𝑈𝑑𝑑 , where the decision making 
system; 𝐷𝐷 −𝑀𝑀, is designed  to manage these modes to be 
separately worked, at each instant of time. The referenced 
commands in the form of the Euler and the corresponding 
quaternion are provided through 𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑈𝑈𝑐𝑐𝑐𝑐 and also the 
disturbances and the uncertainties are provided through 
𝐷𝐷𝑖𝑖𝐷𝐷 − 𝑈𝑈𝑈𝑈𝑈𝑈, where these ones to be considered through 
Monte-Carlo based representation. 

In engine off mode to design  𝑄𝑄𝐸𝐸𝑆𝑆𝑑𝑑 − 𝐶𝐶𝑐𝑐𝑈𝑈𝑑𝑑,  the 
referenced commands should be presented in the form of 
quaternion vector information to be able to calculate the 
quaternion vector errors for the purpose of handling the 
outer loop proportional derivative control approach under 
the coefficients of 𝑘𝑘𝑝𝑝,𝑑𝑑𝑥𝑥 ,𝑘𝑘𝑝𝑝,𝑑𝑑𝑦𝑦  and 𝑘𝑘𝑝𝑝,𝑑𝑑𝑧𝑧  in line with 𝑇𝑇 
thruster’s level and by the following  

 

 

�
𝜏𝜏𝑥𝑥
𝜏𝜏𝑦𝑦
𝜏𝜏𝑧𝑧
� = �

−𝑇𝑇(𝑘𝑘𝑝𝑝𝑥𝑥  𝑞𝑞1𝑒𝑒 + 𝑘𝑘𝑑𝑑𝑥𝑥  𝜔𝜔𝑥𝑥)
−𝑇𝑇(𝑘𝑘𝑝𝑝𝑦𝑦 𝑞𝑞2𝑒𝑒 + 𝑘𝑘𝑑𝑑𝑦𝑦  𝜔𝜔𝑦𝑦)
−𝑇𝑇(𝑘𝑘𝑝𝑝𝑧𝑧 𝑞𝑞3𝑒𝑒 + 𝑘𝑘𝑑𝑑𝑧𝑧  𝜔𝜔𝑧𝑧)

� 
 

(8)
 

   
 

And the quaternion errors are taken as  
 
 

�

𝑞𝑞1𝑒𝑒
𝑞𝑞2𝑒𝑒
𝑞𝑞3𝑒𝑒
𝑞𝑞4𝑒𝑒

� = �

𝑞𝑞4𝑟𝑟𝑒𝑒𝑟𝑟 𝑞𝑞3𝑟𝑟𝑒𝑒𝑟𝑟 −𝑞𝑞2𝑟𝑟𝑒𝑒𝑟𝑟   −𝑞𝑞1𝑟𝑟𝑒𝑒𝑟𝑟
−𝑞𝑞3𝑟𝑟𝑒𝑒𝑟𝑟 𝑞𝑞4𝑟𝑟𝑒𝑒𝑟𝑟 𝑞𝑞1𝑟𝑟𝑒𝑒𝑟𝑟    −𝑞𝑞2𝑟𝑟𝑒𝑒𝑟𝑟
𝑞𝑞2𝑟𝑟𝑒𝑒𝑟𝑟 −𝑞𝑞1𝑟𝑟𝑒𝑒𝑟𝑟 𝑞𝑞4𝑟𝑟𝑒𝑒𝑟𝑟    −𝑞𝑞3𝑟𝑟𝑒𝑒𝑟𝑟
𝑞𝑞1𝑟𝑟𝑒𝑒𝑟𝑟   𝑞𝑞2𝑟𝑟𝑒𝑒𝑟𝑟    𝑞𝑞3𝑟𝑟𝑒𝑒𝑟𝑟        𝑞𝑞4𝑟𝑟𝑒𝑒𝑟𝑟  

� �

𝑞𝑞1𝑠𝑠
𝑞𝑞2𝑠𝑠
𝑞𝑞3𝑠𝑠
𝑞𝑞4𝑠𝑠

� 
 

(9)
 

 
 

where 𝑞𝑞𝑠𝑠𝑟𝑟𝑒𝑒𝑟𝑟 and 𝑞𝑞𝑠𝑠𝑠𝑠; 𝑖𝑖 = 1,2,3,4 denote 𝑖𝑖𝑡𝑡ℎ referenced and 
system quaternion. In engine on mode to design 𝐸𝐸𝐸𝐸𝐸𝐸 −
𝐶𝐶𝑐𝑐𝑈𝑈𝑑𝑑 , the outer loops are dealt with via proportional 
integral derivative control approach,. The three-axis 
disturbances are inspired of the following   
 

𝝉𝝉𝒅𝒅𝒊𝒊𝒔𝒔 = 𝑳𝑳 × 𝑭𝑭 𝐷𝐷𝐶𝐶𝑀𝑀(𝑅𝑅𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠) (10) 
 

It is to note that 𝐷𝐷𝐶𝐶𝑀𝑀 indicate the direction cosine matrix 
and 𝑳𝑳 = 𝒓𝒓 + ∆𝒄𝒄𝒈𝒈 is assumed, at each instant of time, 
where 𝒓𝒓  and ∆𝒄𝒄𝒈𝒈  are related to engine arm and of the 
center of mass variation, respectively. Hereinafter, 𝑭𝑭 and 
𝑅𝑅𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠 denote thrust vector and engine misalignments, as 
well.  

         
3. Results and Discussion 

There are two experiments with high and low 
thrusters regarding the engine off and on modes control to 
be discussed. It should be noted that the low thrusters are 
also considered by 25 N and 150 N, where the high 
thrusters are considered by 300 N and 600 N, 
respectively. It is to note that the profiles of the system 
parameters uncertainties are instantly updated along with 
Monte-Carlo based method between 0.9 and 1.2. Now, 
the moments of inertia is initially taken as  

 
 

�
𝐼𝐼𝑥𝑥 = 22.63
𝐼𝐼𝑦𝑦 = 93.71
𝐼𝐼𝑧𝑧 = 96.15

 
 
(11) 

 

And the three-axis engine arm is initially taken as 𝒓𝒓 =
[−0.1,0,0]𝑇𝑇. In one such case, the initial parameters, in 
engine off and on modes, are tabulated in Table 1.  
 
Table 1. The initial parameters of the proposed control 
approach in engine off and on modes. 

The  
values 

The 
parameters 

 

 

�
𝑘𝑘𝑝𝑝𝑥𝑥𝑦𝑦𝑧𝑧 = 72
𝑘𝑘𝑑𝑑𝑥𝑥𝑦𝑦𝑧𝑧 = 200
𝑘𝑘𝑠𝑠𝑥𝑥𝑦𝑦𝑧𝑧 = 0

 

 

 
Low thrust 
three-axis 

control 
coefficients in 
the outer loop 

 
 
1 

 
 
 

𝑘𝑘𝑝𝑝𝑥𝑥𝑦𝑦𝑧𝑧 = 15.0 

 
Low thrust 
three-axis 

control 
coefficients 
in the inner 

loop 
 

 
 
2 

 

�
𝑘𝑘𝑠𝑠𝑥𝑥 = 0

𝑘𝑘𝑠𝑠𝑦𝑦 = 15262.5
𝑘𝑘𝑠𝑠𝑧𝑧 = 8547

;�
𝑘𝑘𝑑𝑑𝑥𝑥 = 0
𝑘𝑘𝑑𝑑𝑦𝑦 = 0
𝑘𝑘𝑑𝑑𝑧𝑧 = 0

;�
𝑘𝑘𝑝𝑝𝑥𝑥 = 0

𝑘𝑘𝑝𝑝𝑦𝑦 = 18315
𝑘𝑘𝑝𝑝𝑧𝑧 = 29792.4

 

 

 
High thrust 

y,z-axis 
control 

coefficients in 
the outer loop 

 
 
3 

 

�
𝑘𝑘𝑠𝑠𝑥𝑥 = 1000
𝑘𝑘𝑠𝑠𝑦𝑦 = 0
𝑘𝑘𝑠𝑠𝑧𝑧 = 0

; �
𝑘𝑘𝑑𝑑𝑥𝑥 = 2621
𝑘𝑘𝑑𝑑𝑦𝑦 = 0
𝑘𝑘𝑑𝑑𝑧𝑧 = 0

;�
𝑘𝑘𝑝𝑝𝑥𝑥 = 443
𝑘𝑘𝑝𝑝𝑦𝑦 = 0
𝑘𝑘𝑝𝑝𝑧𝑧 = 0

 

 

 
Low thrust x-
axis control 

coefficients in 
the outer loop 

 
 
4 

 
 

𝑘𝑘𝑝𝑝𝑥𝑥 = 15.0 
 
 

 
Low thrust x-
axis control 

coefficients in 
the inner loop 

 
 
5 

 
 

�
𝑘𝑘𝑝𝑝𝑥𝑥 = 0

𝑘𝑘𝑝𝑝𝑦𝑦 = 6010.47
𝑘𝑘𝑝𝑝𝑧𝑧 = 5000

 

 

 
High thrust 

y,z-axis 
control 

coefficients 
in the inner 

loop 

 
 
6 

 
 

It is to note that the investigated results in the low 
and high thruster’s dynamics to guarantee the system 
performance in the presence of the lower and upper band 
of uncertainties are tabulated in Table 2. Additionally, the 
three-axis steady state errors that are acquired through the 
proposed control approach, in engine on mode, is 
illustrated in Fig. 2. It is shown that the rise time of 
dynamics of the high thrusters is taken as about 70 ms 
and also the levels of the low thruster and the 
corresponding high thrusters are taken as 100 N-150 N 
and 400 N-600 N, respectively. In this regard, the 
investigated outcomes are acquired in a number of 
separated parameters uncertainties, where one of the case 
is only illustrated in the aforementioned outcome. Finally, 
the three-axis referenced commands tracking errors in 
engine off mode is illustrated in Fig. 3. All in all, the 
investigated results discussed indicate that the proposed 
comprehensive cascade is well behaved and the new 
insights are made to be presented.   
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Table 2. The low and high thruster’s dynamics to 
guarantee the system performance in the presence of the 
lower and upper band of uncertainties. 
 

The 
syst
em 
rise 
time 
(ms) 

The 
lower 
and 

upper 
band of  
uncertai

nties 
(in 

percentage) 

The 
high 

thrust
er’s 
level 
(N) 

The 
low 

thrust
er’s 
level 
(N) 

The steady 
state errors 

(deg.) 

 

x-
ax
is 

y-
axi
s 

z-
ax
is 

69 
69 

90 400 100 8 0.5 5 1 
120 600 150 12 1.5 12 2 

 
 

 
Fig. 2. The three-axis steady state errors in engine on 
mode. 

 

 
Fig. 3. The three-axis steady state errors in engine off 
mode. 

4. Summary 
The research proposed here is organized based upon 

the realization of double closed loop to deal with the 
rotational angles and its rates, while a number of 
propellant engine modes including on and off are taken 
into consideration. It is shown that the off mode is 
handled through quaternion based control approach, as 
long as the corresponding on mode is handled through 
Euler based control approach, while the disturbances and 
the uncertainties are provided in the process of analyzing 
the investigated outcomes. The present system parameters 
uncertainties are analyzed through Monte-Carlo based 
representation to verify the approach performance. A 
series of experiments are correspondingly carried out to 
present the investigated outcomes. 
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