4,563 research outputs found

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    Nonlinear Dynamic Surface Control of Chaos in Permanent Magnet Synchronous Motor Based on the Minimum Weights of RBF Neural Network

    Get PDF
    This paper is concerned with the problem of the nonlinear dynamic surface control (DSC) of chaos based on the minimum weights of RBF neural network for the permanent magnet synchronous motor system (PMSM) wherein the unknown parameters, disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning

    Get PDF
    In this paper, we investigate fuzzy neural network (FNN) control using impedance learning for coordinated multiple constrained robots carrying a common object in the presence of the unknown robotic dynamics and the unknown environment with which the robot comes into contact. First, an FNN learning algorithm is developed to identify the unknown plant model. Second, impedance learning is introduced to regulate the control input in order to improve the environment-robot interaction, and the robot can track the desired trajectory generated by impedance learning. Third, in light of the condition requiring the robot to move in a finite space or to move at a limited velocity in a finite space, the algorithm based on the position constraint and the velocity constraint are proposed, respectively. To guarantee the position constraint and the velocity constraint, an integral barrier Lyapunov function is introduced to avoid the violation of the constraint. According to Lyapunov's stability theory, it can be proved that the tracking errors are uniformly bounded ultimately. At last, some simulation examples are carried out to verify the effectiveness of the designed control

    Synchronous MDADT-Based Fuzzy Adaptive Tracking Control for Switched Multiagent Systems via Modified Self-Triggered Mechanism

    Get PDF
    In this paper, a self-triggered fuzzy adaptive switched control strategy is proposed to address the synchronous tracking issue in switched stochastic multiagent systems (MASs) based on mode-dependent average dwell-time (MDADT) method. Firstly, a synchronous slow switching mechanism is considered in switched stochastic MASs and realized through a class of designed switching signals under MDADT property. By utilizing the information of both specific agents under switching dynamics and observers with switching features, the synchronous switching signals are designed, which reduces the design complexity. Then, a switched state observer via a switching-related output mask is proposed. The information of agents and their preserved neighbors is utilized to construct the observer and the observation performance of states is improved. Moreover, a modified self- triggered mechanism is designed to improve control performance via proposing auxiliary function. Finally, by analysing the re- lationship between the synchronous switching problem and the different switching features of the followers, the synchronous slow switching mechanism based on MDADT is obtained. Meanwhile, the designed self-triggered controller can guarantee that all signals of the closed-loop system are ultimately bounded under the switching signals. The effectiveness of the designed control method can be verified by some simulation results

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    A classification of techniques for the compensation of time delayed processes. Part 2: Structurally optimised controllers

    Get PDF
    Following on from Part 1, Part 2 of the paper considers the use of structurally optimised controllers to compensate time delayed processes

    Descriptive And Review Study Adaptive Control Of Nonlinear Systems In Discrete Time

    Get PDF
    Nowadays, analyzing different control systems is a must for virtually all types of modern industries and factories. Analyzing these control systems allows optimizing and streamlining processes, which in many cases are carried out manually, leading to large errors, delays and costly processes. Continuous-time adaptive control of nonlinear systems has been an area of increasing research activity [1] and globally, regulation and tracking results have been obtained for several types of nonlinear systems [2]. However, the adaptive technique is gradually becoming more dynamic after 25 years of research and experimentation. Important theoretical results on stability and structure have been established. There is still much theoretical work to be done [3]. On the other hand, adaptive control in discrete-time nonlinear systems has received much less attention, in part because of the difficulties associated with the sampled data of nonlinear systems [2]. Thus, it is in some theories where adaptive control laws are implemented admitting the intervening nonlinearities in the real system [4] where investigations about the regulation of the system are created. The purpose of this is to implement a very simple adaptive control law and to check the convergence of the closed loop.  However, Zhongsheng Hou, author of several well-regarded papers proposes a model-free adaptive control approach for a class of discrete-time nonlinear SISO systems with a systematic framework [5]-[6]
    corecore