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Abstract—In this paper, we investigate fuzzy neural network
(FNN) control using impedance learning for coordinated multiple
constrained robots carrying a common object in the presence of
the unknown robotic dynamics and the unknown environment
with which the robot comes into contact. Firstly, a FNN learning
algorithm is developed to identify the unknown plant model.
Secondly, impedance learning is introduced to regulate the con-
trol input in order to improve the environment-robot interaction,
and the robot can track the desired trajectory generated by
impedance learning. Thirdly, in light of the condition requiring
the robot to move in a finite space or to move at a limited
velocity in a finite space, the algorithm based on the position
constraint and the velocity constraint are proposed, respectively.
To guarantee the position constraint and the velocity constraint,
Integral Barrier Lyapunov function (IBLF) is introduced to
avoid the violation of the constraint. According to Lyapunov’s
stability theory, it can be proved that the tracking errors are
uniformly bounded ultimately. At last, Some simulation examples
are carried out to verify the effectiveness of the designed control.

Index Terms—Fuzzy Systems, Neural Networks, Multiple
Robots, Adaptive Control, Time-varying Constraint, Impedance
Learning

I. INTRODUCTION

IN recent years, robots have been widely used in medicine
[1]–[3], aerospace [4], [5] and marine vessel [6], [7], etc.

As the complexity of the task and the demand of control
accuracy increase, single robot hardly meet the mission re-
quirement. Multiple robots can complete some tasks which
are impossible for a robot. When an object is carried, multiple
robots would present a large advantage over a robot in carry
velocity and object weight. For example, in tool using tasks
such as screwing, distribution of motions and forces required
by the tasks between the multiple robot arms greatly reduces
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the complexity and energy cost of manipulation. Therefore,
research on coordinated control of multiple robots would be
significant [8]. In robot applications, robot control must be
subject to uncertain constraints. The violation of these con-
straints leads to undesired performances such as performance
degradation, hazards or system damages. And the structure
of each robot is often different and there exist unmodeled
dynamics and unknown parameters, accurate control of such
a complicated system is difficult to obtain. However, when
working in a limited environment, the robot often comes in
contact with the unknown environment which is often difficult
to describe in a nonlinear model, and an interaction force
develops between the robot and its environment. Therefore,
the main difficulty of controlling those systems lies in the
fact that, when the robot encounters unknown environments,
the interaction force and the position of the robot, must be
controlled collaboratively. In this paper, we would analyse
coordinated control problems of multiple robots with time-
varying constraints in the present of the unknown environment
and unmodeled dynamics and design adaptive fuzzy neural
network control for coordinated control of multiple robots in
a finite task space.

It is well known that adaptive neural networks have a
learning capability, and can be considered as a powerful
tool to approximate any nonlinear functions to any accuracy
in control and applications for nonlinear systems [9]–[16].
The learning capability of neural networks are employed to
recognize the unknown plant [17]–[23]. In [24], an intelligent
observer which is based on the learning capability of neural
networks is designed to observe the unmeasurable states. The
approximation property of neural networks is guaranteed only
over a compact, and if some parameters are beyond this
compact, the learning capability would be reduced [25]. In
[26], to tackle this challenge, a robust term is introduced to
compensate for the approximation error of neural networks so
that it can extend the semiglobal stability by neural networks
to global stability. This method has been shown to be effective
in tackling the global stability, but it cause the lack of self-
learning capability. After that, some research results have
incorporated fuzzy techniques to neural network structure in
order to obtain global learning capabilities [27]. Furthermore,
fuzzy neural networks are hybrid intelligent systems that com-
bine advantages of both fuzzy systems and neural networks.
As a result, the combination of the two techniques can not
only avoid the lack of interpretability for neural networks
but also enhance learning capabilities of fuzzy systems. And
this technology can reduce online computation load by using
fewer adjustable parameters and be also employed to identify
the unknown nonlinear function [28]–[35]. In [36], fuzzy
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neural networks are used to identity the unknown plant of
an environment-robot system, and the fuzzy algorithm can
improve the interaction between the robot and its environment.
In [37], fuzzy neural networks are used to approximate the
unknown nonlinear plant of nonlinear systems. In [38], an
adaptive fuzzy neural network control scheme is proposed for
a marine, and the fuzzy policy can ensure that the tracking
error converges to an arbitrarily small region near zero in a
finite time.

Recently, the tracking control for nonlinear systems is
investigated, motivated by the fact that practical systems
are subjected to constraint [39] in the form of mechani-
cal structure, safety specifications and physics performance.
These constraints include input constraint [40]–[45], output
constraint [46]–[48] and full-state constraint [49]–[51]. An
appropriate controller sometimes makes the index of a sys-
tem remain the corresponding constraint region in order to
obtain an approximation optimal performance. In [52], it has
been proved that log-type Barrier Lyapunov functions can
guarantee the constraint. In [53], log-type Barrier Lyapunov
function is introduced to guarantee the full-states remain in
the predefined constraint region. However, the above log-type
Barrier Lyapunov function constraint technique may make the
corresponding variables go beyond the constraint region when
the size of the vibration is too large or initial values are too
large, which may lead to system impairments or even system
failures. In [54], Integral Barrier Lyapunov function (IBLF)
can compensate the effect of constraint and avoid the violation
of states without the requirement of initial values, except that
when initial values are demanded to satisfy the constraint.
However, log-type Barrier Lyapunov function introduced in
[52], [53], [55] just constrains error signals, therefore, an ad-
ditional mapping to the state space is needed. Integral Barrier
Lyapunov functions introduced in [56] directly constrain state
signals without an additional mapping, and initial states are
relaxed to whole constrained space. In [55], log-type Barrier
Lyapunov functions are used to avoid the violation of the
time-varying constraint for a constrained robot. The time-
varying constraint is more general than the constant constraint
introduced in [52].

Position control methods give adequate performances for
an uncertain robot, and only require the robotic end-effector
to track a desired trajectory in free space. But, when the
robot comes in contact with the environment, it is inevitable
that an interaction force would develop between the robot
and its environment. Research studies then focus on how
to regulate the robot-environment interaction. Hogan first
presents impedance control theory to regulate the interaction
between the robotic end-effector and the force exerted on the
environment. [57] thinks the learning capability can regular
the interaction between the robot and its environment. In
[58], two impedance control algorithms that generate a desired
dynamics of the robot with environment are developed for
robotic manipulators. However, the results mentioned in [57]–
[59] assume that robot dynamics is known. In [60], adaptive
impedance learning control is proposed for a human-robot
system in the presence of unknown robotic dynamics.

This paper would handle coordinated control problems of
multiple robots with time-varying constraints, in the present

of the unknown environment with which the robot comes
into contact. Impedance learning is employed to improve
the environment-robot interaction, fuzzy neural networks are
constructed to approximate the unknown robotic dynamics,
and time-varying constraints guarantee a satisfactory tracking
performance by ensuring that the system states remain in
a small neighborhood of the reference signal, such that the
fuzzy neural network control algorithm is formed. This type
of the control algorithm is suitable for the environment-robot
interaction control and objection manipulation. This paper is
an extended work from the previous works [26], [36]. In [36],
only single robot with the constant constraint is considered
for the environment-robot interaction without involving co-
ordinated control of multiple robots. But in most situations,
multiple robots with the time-varying constraint would present
a large advantage over a robot with the constant constraint
in the movement velocity and the carried weight. Further,
in [26], coordinated control of two robots is investigated
without considering the time-varying constraint. Consequently,
our work can be considered as the improvement of [26],
[36]. Fuzzy neural networks combine advantages of both
fuzzy systems and neural networks, and have fewer adjustable
parameters and can reduce online computation load. Thus
fuzzy neural network control can satisfy the requirement of
real-time control better with fewer time consuming.

The main contributions of this paper are summarized as
follows: 1) Compared with the conventional Lyapunov func-
tions including log-type [55] and tan-type [36], integral barrier
Lyapunov functions are developed to constrain state signals
directly, rather than error signals, with avoiding carrying out
an additional mapping to the state space. Therefore, the initial
states can be relaxed to whole constrained space. 2) An
learning algorithm based on FNN structure is proposed, which
needs no previous information of the system. The unknown
system plant is approximated by structuring an appropriate
FNN structure. 3) The time-varying output constraint and the
time-varying full-state constraint are considered, respectively.
The time-varying constraint is more general and complicated
than constant constraint. Based on the time-varying constraint,
the designed algorithm has a wider application range. 4)
Impedance learning is introduced to improve the interaction
between the robot and the unknown environment.

Notations 1: Let λmin(•) and λmax(•) denote the min-
imum and maximum eigenvalues of matrix •, respective-
ly. Let ∥ · ∥ be the Euclidean norm of a vector. Let
blockdiag[A1, A2, . . . , An] denote a diagonal block matrix,
where Ai, i = 1, . . . , n, is a matrix. Let sgn(·) be a sign
function, where

sgn(·) =

{
1, · ≥ 0

−1, · < 0
(1)

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Description

We would investigate an environment-robot interaction sys-
tem, which includes m robots, the unknown environment, an
object and the force sensor located at the object and measuring
force exerted by the unknown environment to the robot as
Fig. 1 shows. Suppose that there is no information about the
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Fig. 1. Coordinated control of two robotic manipulators

environment dynamics and that there exist unmodeled plants
and unknown parameters in the robot model. But m robots are
demanded to carry an object in a coordinated way in a finite
space. Therefore, the main problems are to tackle the unknown
dynamics and unknown parameters of the robotic model, the
interaction between the robot and its unknown environment,
and the time-varying constraint. The kinetic equation of ith
manipulator [26] in joint space is expressed as

Di(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi − JT
i (qi)τei

i = 1, . . . ,m (2)

where qi ∈ Rn is the vector of joint variable, Di(qi) ∈
Rn×n denotes the positive definite joint quality inertia matrix,
Ci(qi, q̇i) ∈ Rn×n denotes the joint Coriolis and centrifugal
matrix, Gi(qi) denotes the joint gravitational forces, τi ∈ Rn

denotes the control input vector, Ji(qi) ∈ Rn×n denotes the
Jacobian matrix, τei ∈ Rn denotes the force from the object.

Based on (2), the kinetic equation of m robots is given by

Dx(q)q̈ + Cx(q, q̇)q̇ +Gx(q) = τ − JT (q)τe (3)

where q = [qT1 , . . . , q
T
m]T ∈ Rmn; τ =

[τT1 , . . . , τTm]T ∈ Rmn; τe = [τTe1, . . . , τ
T
em]T ∈ Rmn;

Dx(q) = blockdiag[D1(q1), . . . , Dm(qn)] ∈ Rmn×mn;
Cx(q, q̇) = blockdiag[C1(q1, q̇1), . . . , Cm(qm, q̇m)] ∈
Rmn×mn; Gx(q) = [GT

1 (q1), . . . , G
T
m(qm)]T ∈ Rmn;

J(q) = blockdiag[J1(q1), . . . , Jm(qm)] ∈ Rmn×mn.
Let xo ∈ Rn denote the position/orientation vector of the

object. The motion of the object is driven by the force vector
τo ∈ Rn and τd ∈ Rn acting on the center of mass the object,
where τo denotes the resultant force vector from m robots and
τd denotes the force vector from the unknown environment.
The kinetic equation [26] of the object is given by

Mo(xo)ẍo + Co(xo, ẋo)ẋo +Go(xo) = τo − τd (4)

and Mo(xo) ∈ Rn×n is a symmetric positive definite inertial
matrix, Co(xo, ẋo) ∈ Rn×n is a corioli and centrifugal
matrix, Go(xo) ∈ Rn is the gravitational force vector. Let
xi, i = 1, . . . ,m, denote the position/oritations of ith robot’s
end-effector in the Cartesian space. According to [61], the
relationship between xi and qi is given by

ẋi = Ji(qi)q̇i (5)

The relationship [8] between ẋi and ẋo is given by

ẋi = Jio(xo)ẋo (6)

where Jio(xo) denotes the Jacobian matrix from the object
frame to the ith robot’s end-effector. By combining (5) and
(6), the relationship between the joint velocity of the ith

manipulator and the velocity of the object is obtained by

Ji(qi)q̇i = Jio(xo)ẋo (7)

Assume that robots work in a nonsingular region, thus the
inverse of the Jacobian matrix Ji(qi) exists. Considering all
the manipulators acting on the object at the same time, yields

q̇ = J−1(q)Jo(xo)ẋo (8)

q̈ =
d

dt
(J−1(q)Jo(xo))ẋo + J−1(q)Jo(xo)ẍo (9)

where Jo(xo) = [JT
1o(xo), . . . , J

T
mo(mo)]

T . After substituting
(8) and (9) into (3) and then adding (4), the kinetic equation
of m coordinated multiple robots with object motion (4) in
Cartesian space is given by

M(q)ẍo + C(q, q̇)ẋo +G(q) = Fo − Fe (10)

where

M(q) = JT
o (xo)J

−T (q)Dx(q)J
−1(q)Jo(xo) +Mo(xo)

C(q, q̇) = JT
o (xo)J

−T (q)Dx(q)
d

dt
(J−1(q)Jo(xo))

+ JT
o (xo)J

−T (q)Cx(q, q̇)J
−1(q)Jo(xo) + Co(xo, ẋo)

G(q) = JT
o (xo)J

−T (q)Gx(q) +G(xo)

Fo = JT
o (xo)J

−T (q)τ, Fe = τd

For the convenience, in the subsequent design, M,C,G denote
M(q), C(q, q̇), G(q), respectively.

The system state xo = [xo1, . . . , xon]
T is commanded to

satisfy the following constraint

|xoi| < kci, |ẋoi| < kdi, i = 1, . . . , n (11)

where kci, kdi are positive time-varying functions, given the
initial states satisfy |xoi(0)| < kci(0), |ẋoi(0)| < kdi(0). The
full-state constraint is denoted as the set {xo ∈ Rn||xoi| <
kci, |ẋoi| < kdi, i = 1, . . . , n}. The output constraint is
denoted as the set {xo ∈ Rn||xoi| < kci, i = 1, . . . , n}.

In real robotic systems, the object usually suffers from force
from environment when moving in task space. The impedance
dynamics between Fe and e is given by

Mdë+ Cdė+Gde = Fe (12)

where Md, Cd, Gd are defined by the user. Impedance error e
originates from force Fe. Let us define e = xd−xc, where xc

is the desired trajectory, xd is the commanded trajectory the
users define, which is bounded and twice differentiable. It can
be known from (12) that impedance error e is equal to zero if
Fe is equal to zero. Substituting e = xd − xc into (12), yields

Mdẍc + Cdẋc +Gdxc = Mdẍd + Cdẋd +Gdxd − Fe (13)

According to (13), the impedance control objective can be
achieved. It should be noted that (13) may be interpreted as a
simply filter and xc is obtained online if xd,Md, Cd, Gd and
the force Fe are given.

B. Fuzzy Neural Networks

A fuzzy system consists of four parts: the knowledge
base, the fuzzifier, the fuzzy inference engine working on
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fuzzy rules, and the defuzzifier [62]. Consider l fuzzy IF-
THEN rules R(k): If x1 is Ak

1 and · · · and xn is Ak
n, then

y is W k, k = 1, · · · , l, where R(k) denotes the k-th rule,
1 ≤ k ≤ l, (x1, x2, · · · , xn)

T ∈ U ⊂ Rn, and y ∈ R are
the linguistic variables that are associated with the inputs and
output of the fuzzy logic system, respectively, and Ak

i and
W k denote the fuzzy sets in U and R. The fuzzy logic system
performs a nonlinear mapping from U to R. In this paper, the
fuzzy logic system is

y(x) =

∑l
k=1 yk(Π

n
i=1µAk

i
(xi))∑l

k=1(Π
n
i=1µAk

i
(xi))

(14)

where x = [x1, x2, · · · , xn]
T and µAk

i
(xi) is the mem-

bership function of linguistic variable xi with µAk
i
(xi) =

exp[− (xi−c2ik)

σ2
ik

]. For clarify, the weight vector and fuzzy
basis function vector are defined, respectively, as θ =
[y1, y2, · · · , yl]T and ϕ(x, c, σ) = [s1, s2, · · · , sl]T , where

sk =

∏n
i=1 µ

Ak
i
(xi)

[
∑l

k=1

∏n
i=1 µ

Ak
i
(xi)]

, c = [cT1 , c
T
2 , · · · , cTn ]T and σ =

[σT
1 , σ

T
2 , · · · , σT

n ]
T . Therefore, (14) can be represented as

y = θTϕ(x, c, σ) (15)

It has been proven that the fuzzy logic system (15) has the
capacity to approximate any given real continuous functions
over a compact set to any degree of accuracy. Therefore, we
have the following approximation for the unknown nonlinear
function fi(xi), i = 1, 2, · · · , n.

fi(xi) = θ∗Ti ϕ(xi) + ϵi (16)

where θ∗Ti is an unknown constant parameter vector, ϕ(xi)
is the fuzzy basis function and ϵi is the approximation error,
which satisfies maxZ∈ΩZ

||ϵi|| < ϵ∗i , where ϵ∗i > 0 is unknown
bound [63].

C. Preliminaries
To guarantee the time-varying constraint, we introduce the

integral barrier Lyapunov function [64] as

V =
n∑

i=1

∫ zi

0

σk2ci
k2ci − (σ + αi)2

dσ (17)

where i = 1, . . . , n, zi = xi − αi, and αi is a continuously
differentiable function satisfying |αi| < kci, i = 1, . . . , n. It is
known that V is a continuously positive differentiable function
over the set {|xi| < kci}.

Lemma 1: (17) is a continuously positive differentiable
function over the set {|xi| < kci}. As for |xi| < kci, i =
1, . . . , n, there is

z2i
2

≤ V ≤ k2ciz
2
i

k2ci − x2
i

(18)

Proof: See the Appendix.
Remark 1: In (17), kci is a time-varying function and

denotes the constrained upper bound of xi, namely sup |xi| <
kci, for ∀t > 0, given that initial value |xi(0)| < kci(0).

III. CONTROL DESIGN

For the robotic dynamics (10), it is tough to design a control
policy to cope with the effect of time-varying constraints in the

Impedance model Fo  -
2z Carried objectConstrained robots

FNNs

1z
2z

Updating law

1z 2z

-
1zd

x
c
x

1x 2x

eF

Unknown environment

Fig. 2. System structure

presence of unknown environment. The problem is especially
complex to solve full-state time-varying constraints. In this
paper, the control schemes are proposed for the full-state
time-varying constraint and the output time-varying constraint,
respectively. Fig. 2 shows the system structure. To facilitate
the control design, we define x1 = xo, x2 = ẋo. The kinetic
equation (10) can be rewritten as

ẋ1 = x2

ẋ2 = M−1(Fo − Fe −G− Cx2) (19)

where x1 = [x11, . . . , x1n]
T , x2 = [x21, . . . , x2n]

T . The error
variables are defined as follows

z1 = x1 − xc

z2 = x2 − α (20)

where z1 = [z11, . . . , z1n]
T , z2 = [z21, . . . , z2n]

T , xc =
[xc1, . . . , xcn]

T , α = [α1, . . . , αn]
T is a virtual control aiming

to make tracking error z1 converge to a small region near zero.

A. Control Design with Output Constraint

In this section, system output x1 should be demanded to
be constrained by time-varying function kci ∈ R+, namely
|x1i| < kci, i = 1, . . . , n. To ensure this constraint, an integral
barrier Lyapunov function is constructed as

V1 =

n∑
i=1

∫ z1i

0

σk2ci
k2ci − (σ + xci)2

dσ (21)

The derivative of (21), with regard to time, is

V̇1 =
n∑

i=1

∂V1

∂z1i

dz1i
dt

+
n∑

i=1

∂V1

∂xci

dxci

dt
+

n∑
i=1

∂V1

∂kci

dkci
dt

=
n∑

i=1

k2ciz1i
k2ci − x2

1i

(z2i + αi − ẋci)

+
n∑

i=1

z1i(
k2ci

k2ci − x2
1i

− ρi)ẋci +
n∑

i=1

∂V1

∂kci

dkci
dt

(22)

where

rhoi =
kci
2z1i

ln
(kci + z1i + xci)(kci − xci)

(kci − z1i − xci)(kci + xci)
(23)

Then, virtual control αi, i = 1, . . . , n, is designed as

αi = −kiz1i +
(k2ci − x2

1i)ẋciρi
k2ci

− k2ci − x2
1i

k2ciz1i

∂V1

∂kci

dkci
dt

(24)

where ki, i = 1, . . . , n, is a positive constant.
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Take virtual control α into (22), we further have

V̇1 = −
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

+
n∑

i=1

k2ciz1iz2i
k2ci − x2

1i

(25)

An integral barrier Lyapunov function is constructed as

V2 = V1 +
1

2
zT2 Mz2 (26)

Design the control input F ∗
o as

F ∗
o = −


k2
c1z11

k2
c1−x2

11

...
k2
cnz1n

k2
cn−x2

1n

−K2z2 + Fe +G+ Cα+Mα̇

(27)

Substituting (24) and (27) into the time derivative of (26), we
have

V̇2 = −
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2

≤ −
n∑

i=1

∫ z1i

0

σkik
2
ci

k2ci − (σ + xci)2
dσ − zT2 K2z2

≤ −κ2V2 (28)

where κ2 = min{ min
1≤i≤n

(ki),
2λmin(K2)
λmax(M) }. To ensure κ2 > 0,

parameters should satisfy min
1≤i≤n

(ki) > 0, λmin(K2)
λmax(M) > 0.

V2 will converge into a small range near zero with the
convergence rate e−κ2 . But there are uncertainties in G,C,M ,
therefore F ∗

o cannot be obtained in a real system. Fuzzy neural
networks are used to approximate the uncertainties in G,C,M .
An adaptive fuzzy neural network controller is designed as

Fo =−


k2
c1z11

k2
c1−x2

11

...
k2
cnz1n

k2
cn−x2

1n

−K2z2 + Fe + θ̂TGϕG(ZG)

+ θ̂TCϕC(ZC)α+ θ̂TMϕM (ZM )α̇+Krsgn(z2) (29)

where Kr = diag[kr1, . . . , krn] > 0; θ̂G, θ̂C , θ̂M are ac-
tual weight vectors, θ∗G, θ

∗
C , θ

∗
M are optimal weight vectors,

θ̃G = θ̂G − θ∗G, θ̃C = θ̂C − θ∗C , θ̃M = θ̂M − θ∗M are error
weight vectors, ZG = [xT

1 , x
T
2 ]

T , ZC = [xT
1 , x

T
2 , α

T ]T , ZM =
[xT

1 , x
T
2 , α

T , α̇T ]T are fuzzy neural network inputs, respective-
ly.

To improve the system control performance, we design the
updating laws as

˙̂
θGi = −ΓGi(ϕGi(ZG)z2i + σGθ̂Gi) (30)
˙̂
θCi = −ΓCi(ϕCi(ZC)z2iαi + σC θ̂Ci) (31)
˙̂
θMi = −ΓMi(ϕMi(ZM )z2iα̇i + σM θ̂Mi) (32)

where ΓGi,ΓCi,ΓMi are positive definite symmetric matrixes,
σG, σC , σM are positive constants, θ̂TGϕG, θ̂

T
CϕC , θ̂

T
MϕM are

estimated values of θ∗TG ϕG, θ
∗T
C ϕC , θ

∗T
M ϕM , respectively.

θ∗TG ϕG = G+ ϵG (33)

θ∗TC ϕC = C + ϵC (34)

θ∗TM ϕM = M + ϵM (35)

where ϵG, ϵC , ϵM are approximation errors satisfying ||ϵG|| ≤
ϵ̄G, ||ϵC || ≤ ϵ̄C , ||ϵM || ≤ ϵ̄M , with ϵ̄G, ϵ̄C , ϵ̄M being positive
constants.

Choose a positive Lyapunov function as

V3 =
n∑

i=1

∫ z1i

0

σk2ci
k2ci − (σ + xdi)2

dσ +
1

2
zT2 Mz2

+
1

2

n∑
i=1

θ̃TGiΓ
−1
Gi θ̃Gi +

1

2

n∑
i=1

θ̃TCiΓ
−1
Ci θ̃Ci

+
1

2

n∑
i=1

θ̃TMiΓ
−1
Miθ̃Mi (36)

Substituting (24) and (29) into the time derivative of (36), we
have

V̇3 =−
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2 + zT2 (θ̃
T
GϕG(ZG)

+ θ̃TCϕC(ZC) + θ̃TMϕM (ZM )− ϵG − ϵCα− ϵM α̇

+Krsgn(z2)) +

n∑
i=1

θ̃TGiΓ
−1
Gi

˙̂
θGi +

n∑
i=1

θ̃TCiΓ
−1
Ci

˙̂
θCi

+

n∑
i=1

θ̃TMiΓ
−1
Mi

˙̂
θMi (37)

Let us define (ϵG + ϵCα+ ϵM α̇)i as Ei, i = 1, . . . , n, for the
interval t ∈ [0,+∞), where (·)i is i-th element of a vector.
Therefore, we obtain E = [E1, . . . , En]

T .

Substituting the weight updating laws into (37), we have

V̇3 =−
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2 + zT2 (Krsgn(z2)− E)

+ zT2 (θ̃
T
GϕG(ZG) + θ̃TCϕC(ZC)α+ θ̃TMϕM (ZM )α̇)

−
n∑

i=1

θ̃TGi(ϕGi(ZG)z2i + σGθ̂Gi)

−
n∑

i=1

θ̃TCi(ϕCi(ZC)z2iαi + σC θ̂Ci)

−
n∑

i=1

θ̃TMi(ϕMi(ZM )z2iα̇i + σM θ̂Mi) (38)

Notice that

zT2 θ̃
T
GϕG(ZG) =

n∑
i=1

θ̃TGiϕGi(ZG)z2i (39)

zT2 θ̃
T
CϕC(ZC)α =

n∑
i=1

θ̃TCiϕCi(ZC)z2iαi (40)

zT2 θ̃
T
MϕM (ZM )α̇ =

n∑
i=1

θ̃TMiϕMi(ZM )z2iα̇i (41)

and the gain Kr is designed to satisfy |Ei| ≤ kri, i = 1, . . . , n,
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we have zT2 (Krsgn(z2)− E) ≤ 0, therefore

V̇3 ≤−
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2 −
n∑

i=1

θ̃TGiσGθ̂Gi

−
n∑

i=1

θ̃TCiσC θ̂Ci −
n∑

i=1

θ̃TMiσM θ̂Mi (42)

Since −
∑n

i=1 θ̃
T
GiσGiθ̂Gi ≤ −σGi

2

∑n
i=1 θ̃

T
Giθ̃Gi +

σGi

2

∑n
i=1 θ

∗T
Gi θ

∗
Gi, −

∑n
i=1 θ̃

T
CiσCiθ̂Ci ≤ −σCi

2

∑n
i=1 θ̃

T
Ciθ̃Ci

+ σCi

2

∑n
i=1 θ

∗T
Ci θ

∗
Ci and −

∑n
i=1 θ̃

T
MiσMiθ̂Mi ≤

−σMi

2

∑n
i=1 θ̃

T
Miθ̃Mi +

σMi

2

∑n
i=1 θ

∗T
Miθ

∗
Mi, we have

V̇3 ≤ −
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

− σGi

2

n∑
i=1

θ̃TGiθ̃Gi −
σCi

2

n∑
i=1

θ̃TCiθ̃Ci

− σMi

2

n∑
i=1

θ̃TMiθ̃Mi +
σGi

2

n∑
i=1

θ∗TGi θ
∗
Gi − zT2 K2z2

+
σCi

2

n∑
i=1

θ∗TCi θ
∗
Ci +

σMi

2

n∑
i=1

θ∗TMiθ
∗
Mi

≤ −κ3V3 + C3 (43)

where

κ3 = min{k1, . . . , kn,
2λmin(K2)

λmax(M)
,

σGi

λmax(Γ
−1
Gi )

,
σCi

λmax(Γ
−1
Ci )

,

σMi

λmax(Γ
−1
Mi)

}

C3 =
σGi

2

n∑
i=1

θ∗TGi θ
∗
Gi +

σCi

2

n∑
i=1

θ∗TCi θ
∗
Ci +

σMi

2

n∑
i=1

θ∗TMiθ
∗
Mi

To ensure κ3 > 0, C3 > 0, controller parameters should satisfy
ki > 0, λmax(K2) > 0, σGi > 0, σCi > 0 and σMi > 0, i =
1, . . . , n. Therefore, we know that V3 is bounded for ∀t > 0.

Theorem 1: For the robot system (10) with output time-
varying constraint, and FNN control (29) with updating law
(31)-(33) and impedance learning (13), given that initial con-
ditions are bounded. It can be concluded that target impedance
is achieved and the tracking errors are uniformly bounded
ultimately. The tracking errors converge to a small range near
zero and the range can be changed by choosing appropriate
parameters. The system output is constrained by the predefined
constraint region the user defines. The tracking error z1
converges to the compact set Ωz1 := {z1 ∈ Rn||z1i| ≤√
2B, i = 1, . . . , n}. The tracking error z2 converges to the

compact set Ωz2 := {z2 ∈ Rn||z2i| ≤
√
2B, i = 1, . . . , n},

where B := V3(0) +
C3

κ3
.

Proof: See the Appendix.

B. Control Design with Full-State Constraint

The FNN control with the full-state constraint will be
presented in this section. It should be emphasized that although
the control design is similar to the control (29), the system
states should be demanded to be constrained by the time-
varying constraint in the control design. In this sense, the
system state x2 should be constrained satisfying |x2i| ≤ kdi
for ∀t > 0 where kdi ∈ R+, i = 1, . . . , n, is a time-varying
function. The detailed design is presented as follows. To ensure
that system states remain in the predefined constraint region,

a positive integral barrier Lyapunov function is constructed as

V5 = V2 + V4 (44)

where

V4 =
n∑

i=1

∫ z2i

0

σk2di
k2di − (σ + αi)2

dσ (45)

The derivative of V5, with respect to time, is

V̇5 = V̇2 +

n∑
i=1

∂V4

∂z2i

dz2i
dt

+

n∑
i=1

∂V4

∂αi

dαi

dt
+

n∑
i=1

∂V4

∂kdi

dkdi
dt

= V̇2 +
n∑

i=1

k2diz2iż2i
k2di − x2

2i

+
n∑

i=1

z2i(
k2di

k2di − x2
2i

− ρ2i)α̇i

+
n∑

i=1

∂V4

∂kdi

dkdi
dt

(46)

where

ρ2i =
kdi
2z2i

ln
(kdi + z2i + αi)(kdi − αi)

(kdi − z2i − αi)(kdi + αi)
(47)

The model-based controller is designed as

F ∗
o =−


k2
c1z11

k2
c1−x2

11

...
k2
cnz

2
1n

kcn−x2
1n

−


k2
d1k11z21
k2
d1−x2

21

...
k2
dnk1nz2n
k2
dn−x2

2n



−


(

k2
d1

k2
d1−x2

21
− ρ21)α̇1

...
(

k2
dn

k2
dn−x2

2n
− ρ2n)α̇n

−
n∑

i=1

1

z2i

∂V4

∂kdi

dkdi
dt

−K2z2 + Fe +G+ Cα+Mα̇ (48)

where k1i, i = 1, . . . , n, is a positive constant.

Substituting (24) and (48) into (46), we have

V̇5 =−
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

−
n∑

i=1

k1ik
2
diz

2
2i

k2di − x2
2i

+

n∑
i=1

k2diz2iż2i
k2di − x2

2i

− zT2 K2z2 ≤ −κ5V5 +
n∑

i=1

k2diz2iż2i
k2di − x2

2i

(49)

where

κ5 = min{ min
1≤i≤n

ki, min
1≤i≤n

k1i,
2λmin(K2)

λmax(M)
} (50)

Multiplying (49) by eκ5t yields

eκ5tV̇5 ≤ −κ5e
κ5tV5 + eκ5tg(t)N(z2)ż2 (51)

where g(t) = diag[
k2
d1

(k2
d1−x2

21) cos(
π
2 z21)

, · · · , k2
dn

(k2
dn−x2

2n) cos(
π
2 z2n)

]

, N(z2) = [z21 cos(
π
2 z21), · · · , z2n cos(

π
2 z2n)]

T . Integrating
(51), yields

V5(t) ≤ e−κ5tV5(0) + e−κ5t

∫ t

0

g(τ)N(z2)ż2e
τtdτ (52)

where t ∈ [0, tf ). According to [36], we known that
∥
∫ t

0
g(τ)N(z2)ż2e

τtdτ∥ is bounded. Therefore, define N

as an upper bound of ∥
∫ t

0
g(τ)N(z2)ż2e

τtdτ∥, namely
∥
∫ t

0
g(τ)N(z2)ż2e

τtdτ∥ ≤ N . Therefore, it can be conclud-
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ed that V5(t), z1, z2 are bounded on [0, tf ) if κ5 > 0. However,
the uncertainties exist in M,C,G, F ∗

o is not available in a
real system. FNNs have the ability to approximate nonlinear
functions in ideal accuracy, thus in this section FNNs are
used to approximate M,C,G, respectively. An adaptive FNN
controller is designed as

Fo =−


k2
c1z11

k2
c1−x2

11

...
k2
cnz1n

k2
cn−x2

1n

−


k2
d1k11z21
k2
d1−x2

21

...
k2
dnk1nz2n
k2
dn−x2

2n



−


(

k2
d1

k2
d1−x2

21
− ρ21)α̇1

...
(

k2
dn

k2
dn−x2

2n
− ρ2n)α̇n

−
n∑

i=1

1

z2i

∂V4

∂kdi

dkdi
dt

−K2z2 + Fe + θ̂TGϕG(ZG) + θ̂TCϕC(ZC)α

+ θ̂TMϕM (ZM )α̇+Krsgn(z2) (53)

A Lyapunov function is constructed as

V6 =V5 +
1

2

n∑
i=1

θ̃TGiΓ
−1
Gi θ̃Gi +

1

2

n∑
i=1

θ̃TCiΓ
−1
Ci θ̃Ci

+
1

2

n∑
i=1

θ̃TMiΓ
−1
Miθ̃Mi (54)

Substituting (24) and (53) into the time derivative of V6, we
have

V̇6 =−
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

−
n∑

i=1

k1ik
2
diz

2
2i

k2di − x2
2i

+

n∑
i=1

k2diz2iż2i
k2di − x2

2i

− zT2 K2z2 + zT2 (θ̃
T
GϕG(ZG) + θ̃TCϕC(ZC)

+ θ̃TMϕM (ZM )− ϵG − ϵCα− ϵM α̇+Krsgn(z2))

+
n∑

i=1

θ̃TGiΓ
−1
Gi

˙̂
θGi +

n∑
i=1

θ̃TCiΓ
−1
Ci

˙̂
θCi

+

n∑
i=1

θ̃TMiΓ
−1
Mi

˙̂
θMi (55)

Let us define (ϵG + ϵCα+ ϵM α̇)i as Ei, i = 1, . . . , n, for the
interval t ∈ [0,+∞), where (·)i is ith element of a vector.
Therefore, we obtain E = [E1, . . . , En]

T . Substituting (31)-
(33) and (40)-(42) into (55), we have

V̇6 ≤−
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

−
n∑

i=1

k1ik
2
diz

2
2i

k2di − x2
2i

+

n∑
i=1

k2diz2iż2i
k2di − x2

2i

− zT2 K2z2 + zT2 (Krsgn(z2)− E)−
n∑

i=1

θ̃TGiσGθ̂Gi

−
n∑

i=1

θ̃TCiσC θ̂Ci −
n∑

i=1

θ̃TMiσM θ̂Mi (56)

The gain Kr is designed to satisfy |Ei| ≤ kri, i = 1, . . . , n,

we have zT2 (Krsgn(z2)− E) ≤ 0. And since

−
n∑

i=1

θ̃TGiσGiθ̂Gi ≤ −σGi

2

n∑
i=1

θ̃TGiθ̃Gi +
σGi

2

n∑
i=1

θ∗TGi θ
∗
Gi

−
n∑

i=1

θ̃TCiσCiθ̂Ci ≤ −σCi

2

n∑
i=1

θ̃TCiθ̃Ci +
σCi

2

n∑
i=1

θ∗TCi θ
∗
Ci

−
n∑

i=1

θ̃TMiσMiθ̂Mi ≤ −σMi

2

n∑
i=1

θ̃TMiθ̃Mi +
σMi

2

n∑
i=1

θ∗TMiθ
∗
Mi

we have

V̇6 ≤ −
n∑

i=1

kik
2
ciz

2
1i

k2ci − x2
1i

−
n∑

i=1

k1ik
2
diz

2
2i

k2di − x2
2i

+
n∑

i=1

k2diz2iż2i
k2di − x2

2i

− zT2 K2z2 −
σGi

2

n∑
i=1

θ̃TGiθ̃Gi −
σCi

2

n∑
i=1

θ̃TCiθ̃Ci

− σMi

2

n∑
i=1

θ̃TMiθ̃Mi +
σGi

2

n∑
i=1

θ∗TGi θ
∗
Gi

+
σCi

2

n∑
i=1

θ∗TCi θ
∗
Ci +

σMi

2

n∑
i=1

θ∗TMiθ
∗
Mi

≤ −κ6V6 + C6 +
n∑

i=1

k2diz2iż2i
k2di − x2

2i

(57)

where

κ6 = min{ min
1≤i≤n

(ki), min
1≤i≤n

(k1i),
2λmin(K2)

λmax(M)
,

σGi

λmax(ΓGi)
,

σCi

λmax(ΓCi)
,

σMi

λmax(ΓMi)
}

C6 =
σGi

2

n∑
i=1

θ∗TGi θ
∗
Gi +

σCi

2

n∑
i=1

θ∗TCi θ
∗
Ci +

σMi

2

n∑
i=1

θ∗TMiθ
∗
Mi

Multiplying (57) by eκ6t yields

eκ6tV̇6 ≤ −κ6e
κ6tV6 + eκ6t

C6

κ6
+ eκ6tg(t)N(z2)ż2 (58)

where g(t) = diag[
k2
d1

(k2
d1−x2

21) cos(
π
2 z21)

, · · · , k2
dn

(k2
dn−x2

2n) cos(
π
2 z2n)

]

, N(z2) = [z21 cos(
π
2 z21), · · · , z2n cos(

π
2 z2n)]

T . Integrating
(58), yields

V6(t) ≤e−κ6tV6(0) +
C6

κ6

+ e−κ6t

∫ t

0

g(τ)N(z2)ż2e
τtdτ (59)

where t ∈ [0, tf ). According to [36], we known
that ∥

∫ t

0
g(τ)N(z2)ż2e

τtdτ∥ is bounded. Therefore, de-
fine N as an upper bound of ∥

∫ t

0
g(τ)N(z2)ż2e

τtdτ∥,
namely ∥

∫ t

0
g(τ)N(z2)ż2e

τtdτ∥ ≤ N . To ensure that
κ6 > 0, C6 > 0, controller parameters should satisfy
min

1≤i≤n
(ki) > 0, min

1≤i≤n
(k1i) > 0, 2λmin(K2)

λmax(M) > 0, σGi

λmax(ΓGi)
>

0, σCi

λmax(ΓCi)
> 0, σMi

λmax(ΓMi)
> 0. Therefore, V6 is bounded.

Theorem 2: For the robotic system (10) with full-state time-
varying constraints, and FNN control (53) with updating
law (31)-(33) and impedance learning (13), given that ini-
tial conditions are bounded. It can be concluded that target
impedance is achieved and the tracking errors are uniformly
bounded ultimately. The tracking errors converge to a small
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range near zero and the range can be changed by choosing
appropriate parameters. The system states are constrained by
the predefined constraint region the user defines. The tracking
error z1 converges to the compact set Ωz1 := {z1 ∈ Rn||z1i| ≤√
2B1, i = 1, . . . , n}. The tracking error z2 converges to the

compact set Ωz2 := {z2 ∈ Rn||z2i| ≤
√
2B1, i = 1, . . . , n},

where B1 := V6(0) +
C6

κ6
+ N .

Proof: See the Appendix.

IV. SIMULATION

X

O Y

Z

11l

12l

13l

21l

22l

23l

1X

1Y

1Z

2X

2Y

2Z

Object

Manipulator 1 Manipulator 2

Fig. 3. Simulation scenario.

In this section, an environment-robot interaction system is
considered to verify the effectiveness of the proposed control
(29) and (53), respectively. The environment-robot interaction
system includes two robots sharing the same system parame-
ters and 3 degrees of freedom including three rotary degrees,
an object and a force sensor located on the surface of the object
as shown in Fig. 3. In Fig. 3, let mi1, mi2 and mi3 denote the
mass of link 1, link 2 and link 3 of manipulator i, i = 1, 2,
respectively, let li1, li2 and li3 denote the length of link 1,
link 2 and link 3 of manipulator i, i = 1, 2, respectively, and
let Iji denote the moment of inertia of link j, j = 1, 2, 3,
of manipulator i, i = 1, 2, with regard to an axis coming
out of the page passing through the center of mass of link i.
Simulation time is tf = 20s. The sampling period is 0.0025s.

The trajectory commanded by the user is given by

xd =

 xd1

xd2

xd3

 =

 0.8
0.8 + 0.2 sin(t)
0.8− 0.2 cos(t)

m (60)

which is a circle with center of a circle at [0.8, 0.8, 0.8]T m and
radius being 0.2m. The robot is initially at rest with x1(0) =
[0.201, 0.801, 0.601]T m, ẋ1(0) = [0, 0, 0]T m/s.

The system parameters (see [8]) of the object is given by

Mo =

 mo 0 0
0 mo 0
0 0 1

 , Go =

 0
0

−mog

 (61)

where mo denotes object weight, g denotes gravitational
acceleration. Adjacency matrix Jo (see [8]) is given by

Jo =


1 0 0
0 1 0

l13 sin(x12) −l13 cos(x12) 1
1 0 0
0 1 0

−l23 sin(x13) l23 cos(x13) 1

 (62)

The system parameters of i-th(i = 1, 2) robotic manipulator
are given by

Di =

[
Di11 Di12 Di13

Di21 Di22 Di23

Di31 Di32 Di33

]
(63)

Ci =

 Ci11 Ci12 Ci13

Ci21 Ci22 Ci23

Ci31 Ci32 Ci33

 , Gi =

 Gi1

Gi2

Gi3

 (64)

where Di11 = mi3q
2
i3 sin

2(qi2) + pi1;Di12 = pi2qi3 cos(qi2);
Di13 = pi2 sin(qi2);Di21 = pi2qi3 cos(qi2);Di22 =
mi3q

2
i3 + Ii2;Di23 = 0;Di31 = pi2 sin(qi2);Di32 =

0;Di33 = mi3; Ci11 = pi4q̇i2 + pi5q̇i3;Ci12 = pi4q̇i1 −
pi3qi3pi8;Ci13 = pi5q̇i1 − pi3pi6qi3;Ci21 = −pi4q̇i1;Ci22 =
mi3qi3q̇i3;Ci23 = pi3pi9 − mi3qi3q̇i2;Ci31 = −pi5q̇i1 +
pi3pi10;Ci32 = mi3qi3q̇i2 + pi3pi11;Ci33 = 0; Gi1 =
0;Gi2 = −mi3gqi3 cos(qi2);Gi3 = −mi3g sin(qi2). where
pi1 = mi3l

2
i2 + mi2l

2
i1 + Ii1; pi2 = mi3li2; pi3 = mi3li1;

pi4 = mi3q
2
i3 sin(qi2) cos(qi2); pi5 = mi3q

2
i3 sin

2(qi2);
pi6 = sin(qi2)q̇i2;pi7 = sin(qi2)q̇i3; pi8 = pi6 + pi7;
pi9 = cos(qi2)q̇i1; pi10 = cos(qi2)q̇i2 and pi11 = cos(qi2)q̇i3.
Parameters of the robotic system are defined in the table below.

Table 1: Parameters of the robot
Parameter Description Value
mi1 Mass of link 1 2.00 kg
mi2 Mass of link 2 1.00 kg
mi3 Mass of link 3 0.30 kg
li1 Length of link 1 1.00 m
li2 Length of link 2 0.20 m
li3 Length of link 3 1.00 m
Ii1 Inertia of link 1 0.5× 10−3 kgm2

Ii2 Inertia of link 2 0.1× 10−3 kgm2

To further verify the performance of the proposed con-
trol in different environments, four cases are implemented,
respectively. Case one and Case three denote that the object
carried two robots move in a free space without force from the
environment. Case two and Case four denote that the object
carried two robots move with force from the environment.
The detailed simulation procedure is specified later. In the
subsequent expression, without force from the environment
denotes Fe = 0, and with force from the environment denotes
Fe ̸= 0. If Fe = 0, it is known that xc = xd according to
impedance model (13).

A. Control Design with Output Constraint

Case one: In the first case, the simulation procedure is
that carried by two robots, the object moves along a circular
trajectory xc in a free space without force from the environ-
ment. That is to say that there is no interaction between the
robot and its environment. Consequently, the simulation aim
is to verify the effectiveness of the proposed control (29)
without interaction between the robot and its environment.
The parameters of the object are mo = 1kg, g = 9.8m/s2.
The controller parameters are k1 = k2 = k3 = 50,
K2 = diag[70, 70, 70] and Kr = diag[1, 1, 1]. The updating
law parameters are ΓG = ΓC = ΓM = diag[20, 20, 20],
σG = σC = σM = 0.01. The frontier of the output constraint
is kc1 = 1.1 + 0.2 sin(t), kc2 = 1.01 + 0.2 sin(t) and
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kc3 = 1.01 − 0.2 cos(t). The parameters of the impedance
model are Md = diag[0.1, 0.1, 0.1], Cd = diag[5, 5, 5] and
Gd = [10, 10, 10].

The simulation results of case one are presented in Figs. 4-
7. It can be known from Fig. 4 that two robots can carry
the object along the desired trajectory xc in a free space
in desired accuracy. And Fig. 4 also shows that under the
action of the proposed control (29), x1i is constrained by
time-varying constraint kci, given that initial conditions are
constrained, i = 1, 2, 3. In Fig. 5, it is obvious that tracking
error z1 converges to a small value near zero. From the
standpoint of tracking error z1, the tracking performance is
also satisfactory. Fig. 6 shows control input Fo which is
smooth and bounded. In Fig. 7, the motion of the object is
plotted in Cartesian space, which illustrates that the tracking
performance is satisfactory and the proposed control (29) has
the ability to guarantee the output constraint. By analysing the
above simulation results, it is known that the proposed control
(29) can make the system output remain in the corresponding
predefined constraint region.

Case two: In the second case, the wall is 0.8m away from
the coordinate origin O along Z axis, therefore the coordinate
of the wall is expressed as (X = 0, Y = 0, Z = 0.8).
For convenience, hereafter the location of the wall will be
abbreviated as Z = 0.8m. The simulation procedure is that
the object carried by two robots moves along the desired
trajectory xc from initial position to the wall (Z = 0.8m)
in a free space and then after touching the wall, the object
slides along the wall, finally leaves the wall and continues
moving along the desired trajectory xc in a free space. It
should be emphasized that when the object toughs the wall and
then slides along it, the interaction between the robot and the
wall develops. Consequently, the simulation aim is to verify
the effectiveness of the proposed control (29) with interaction
between the robot and the wall. The frontier of the output
constraint is kc1 = 1+ 0.1 sin(t), kc2 = 1.11 + 0.1 sin(t) and
kc3 = 1.31 − 0.1 cos(t). The rest of the parameters are the
same as those of case one.

The simulation results of case two are presented in Figs.
8-11. It is known from Fig. 8 that the object moves along
the the desired trajectory xc, and slides along the wall when
maintaining in contact with the wall. When the object slides
along the wall, the target impedance is achieved, and the
interaction force between the robot and the wall regulars
the control input in order to improve this interaction. Fig.
8 also shows that corresponding time-varying constraint isn’t
violated. In Fig. 9, it is obvious that tracking error z1 converges
to a small value near zero. Fig. 10 shows the control input.
It is noted that there are a few oscillations while the object
comes in contact with the wall. This is due to the change in the
unknown environment, but the control force tends immediately
to be smooth by using the proposed control (29). In Fig. 11,
it is seen that the object moves along the desired trajectory
xc from initial position to the wall, and after encountering the
wall, the object slides along the wall, then continues moving
to initial position along the desired trajectory xc. Therefore,
by analysing the simulation results, we know that the proposed
control (29) with impedance learning and time-varying con-
straint can improve the environment-robot interaction better,

and make the system output remain in the corresponding time-
varying constraint region.

B. Control Design with Full-State Constraint

Case three: In the three case, the simulation procedure
is the same as that of case one. The simulation aim is to
verify the effectiveness of the proposed control (53) without
interaction between the robot and its environment. Controller
parameters are k11 = k12 = k13 = 20. The frontier of the
state constraint is kd1 = kd2 = kd3 = 1.3 + 0.2 cos(t). The
rest of the parameters are the same as those of case one.

The simulation results of case three are presented in Figs.
12-16. It can be known from Fig. 12 that two robots can
carry the object along the desired trajectory xc in desired
accuracy. And x1i is constrained by time-varying constraint
bound kci, i = 1, 2, 3. Fig. 13 shows tracking errors which
converge to a small value near zero. Fig. 14 shows velocity
variable x2i which is constrained by time-varying constraint
kdi, i = 1, 2, 3. Fig. 15 shows control input Fo which is
smooth. Fig. 16 shows that actual movement trajectory x1

converges to the desired trajectory xc generated by impedance
learning in a short period. Therefore, by analysing the simula-
tion results, we know that the proposed control (53) with the
full-state time-varying constraint can make the system states
remain the corresponding predefined constraint region.

Case four: In the four case, the simulation procedure is
the same as that of case two. The simulation aim is to verify
the effectiveness of the proposed control (53) with interaction
between the robot and its environment. Controller parameters
are k11 = k12 = k13 = 20. The frontier of the state
constraint is kd1 = kd2 = kd3 = 1.3 + 0.2 cos(t) and kc1 =
1+0.1 sin(t), kc2 = 1.31+0.1 sin(t), kc3 = 1.31−0.1 cos(t).
The rest of the parameters are the same as those of case one.

The simulation results of case four are presented in Figs.
17-21. In Fig. 17, the object tracks the desired trajectory xc,
slides along the wall when maintaining contact in with the
wall, and continues tracking the desired trajectory xc after
leaving the wall. In Fig. 18, it is obvious that tracking error
z1 converges to a small value near zero. Figs. 17 and 19 show
that full-state constraint cannot be violated, which states that
the proposed control (53) has the ability to guarantee the full-
state constraint. Fig. 20 shows the control input. It is noted
that there are a few oscillations while the object comes in
contact with the wall. This is due to the change in the unknown
environment, but the control force tends immediately to be
smooth by using the proposed control (53). Fig. 21 gives
the motion of the object in Cartesian space. Therefore, we
know that the proposed control (53) with impedance learning
and the full-state time-varying constraint can improve the
environment-robot interaction better, and make the system
states remain in the corresponding time-varying constraint
region.

V. CONCLUSION

In this paper, an adaptive FNN control scheme is pro-
posed for coordinated multiple robots with unknown dynam-
ics and time-varying constraints using impedance learning.
Two control design schemes are considered, respectively, for
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coordinated multiple robots: 1) Control design with output
constraint. 2) Control design with full state constraint. FNNs
are used to approximate the unknown dynamics. Integral
Barrier Lyapunov function is introduced to avoid the violation
of constraints. Impedance learning is employed to improve
the environment-robot interaction. Four different simulations
are carried out to verify the effectiveness of the proposed
control. It is noted that there are a few oscillations happening
in the control input while the robot comes in contact with
the unknown environment. These oscillations maybe cause
damage to the motor. The future research is to design a control
scheme for restraining these oscillations.
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APPENDIX

A. Proof of Remark 1

Step one: Let g(zi) =
∫ zi
0

σk2
ci

k2
ci−(σ+αi)2

dσ − z2
i

2 =∫ zi
0

σ(σ+αi)
2

k2
ci−(σ+αi)2

dσ. The derivative of g(zi) is ġ(zi) =
zix

2
i

k2
ci−x2

i

over the compact set ω := {xi||xi| < kci}, we have
k2ci − x2

i > 0.
Case one: zi < 0, we have ġ(zi) < 0.

Case two: zi > 0, we have ġ(zi) > 0.
Since zi = 0, gzi = 0. Further, there is g(zi) > 0

over the compact set ω := {xi||xi| < kci}. We have∫ zi
0

σk2
ci

k2
ci−(σ+αi)2

dσ >
z2
i

2 .

Step two: Define pi(σ, αi) =
σk2

ci

k2
ci−(σ+αi)2

. It can be seen

that ∂pi

∂σ =
k2
ci−σ2−α2

i

k2
ci−(σ+αi)2

, which is positive over the compact set
|σ+αi| < kci. Since pi(0, αi) = 0 for |αi| < kci, and pi(σ, αi)
is increasing with σ over the compact set |σ + αi| < kci, we
further have

∫ zi
0

pi(σ, αi)dσ ≤ zipi(σ, αi) for |σ + αi| < kci.
We further obtain

∫ zi
0

σk2
ci

k2
ci−(σ+αi)2

dσ ≤ k2
ciz

2
i

k2
ci−x2

i
.

Combining Step one and Step two, the proof of Remark 1
is completed.

B. Proof of Theorem 1

Multiplying eκ3t in both sides of V̇3 ≤ −κ3V3 + C3,
there is (V̇3 + κ3V3)e

κ3t ≤ C3e
κ3t. After integration, there

is V3(t) ≤ (V3(0) − C3

κ3
)e−κ3t + C3

κ3
≤ V3(0) +

C3

κ3
. Con-

sidering Remark 1, we easily know that z2
1i

2 ≤
∑n

i=1
z2
1i

2 ≤∑n
i=1

∫ z1i
0

σk2
ci

k2
ci−(σ+αi)2

dσ ≤ V3(0) +
C3

κ3
. Further there are

|z1i| ≤
√
2B, i = 1, . . . , n, ||z2|| ≤

√
2B

λmax(M) , where

B := V3(0) +
C3

κ3
.

C. Proof of Theorem 2

Since ∥
∫ t

0
g(τ)N(z2)ż2e

τtdτ∥ ≤ N , we have V6(t) ≤
V6(0) +

C6

κ6
+ N . Considering Lemma 1, we easily know

that z2
2i

2 ≤
∑n

i=1
z2
2i

2 ≤
∑n

i=1

∫ z2i
0

σk2
ci

k2
ci−(σ+xdi)2

dσ ≤ V6(0) +

C6

κ6
+ N and z2

1i

2 ≤
∑n

i=1
z2
1i

2 ≤
∑n

i=1

∫ z1i
0

σk2
ci

k2
ci−(σ+αi)2

dσ ≤
V6(0) + C6

κ6
+ N . Further there are |z1i| ≤

√
2B1 and

|z2i| ≤
√
2B1, i = 1, . . . , n, where B1 := V6(0) +

C6

κ6
+ N .
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