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Synchronous MDADT-Based Fuzzy Adaptive
Tracking Control for Switched Multiagent Systems

via Modified Self-Triggered Mechanism
Hongjing Liang, Member, IEEE, Wenzhe Wang, Yingnan Pan, Member, IEEE, Hak-Keung Lam, Fellow, IEEE,

and Jiayue Sun, Member, IEEE

Abstract—In this paper, a self-triggered fuzzy adaptive
switched control strategy is proposed to address the synchronous
tracking issue in switched stochastic multiagent systems (MASs)
based on mode-dependent average dwell-time (MDADT) method.
Firstly, a synchronous slow switching mechanism is considered
in switched stochastic MASs and realized through a class of
designed switching signals under MDADT property. By utilizing
the information of both specific agents under switching dynamics
and observers with switching features, the synchronous switching
signals are designed, which reduces the design complexity. Then,
a switched state observer via a switching-related output mask
is proposed. The information of agents and their preserved
neighbors is utilized to construct the observer and the observation
performance of states is improved. Moreover, a modified self-
triggered mechanism is designed to improve control performance
via proposing auxiliary function. Finally, by analysing the re-
lationship between the synchronous switching problem and the
different switching features of the followers, the synchronous slow
switching mechanism based on MDADT is obtained. Meanwhile,
the designed self-triggered controller can guarantee that all
signals of the closed-loop system are ultimately bounded under
the switching signals. The effectiveness of the designed control
method can be verified by some simulation results.

Index Terms—Adaptive control, fuzzy logic systems, self-
triggered mechanism, switched stochastic multiagent systems,
synchronous mode-dependent average dwell-time method

I. INTRODUCTION

THE great progress of cooperative control for multiagent
systems (MASs), made during the past decades, has been

applied in broad fields [1]–[8]. Many meaningful methods are
considered to improve the control performance of the system
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[9]–[21]. Because the switching phenomenon widely exists in
practice, there are plenty of results which focus on the MASs
with switching characteristics. Most of them concern the co-
operative control for MASs under switching topologies [22]–
[24]. A few researches about switching stochastic dynamics
have been reported. Zou et al. [25] investigated the sampled-
data consensus problem for heterogeneous MASs in switching
dynamics. In [26], authors proposed an adaptive prescribed-
time consensus protocol for the stochastic nonstrict-feedback
MASs with switched nonlinearities. Actually, the dynamics of
agents are switched at times inevitably, such as, the multiple
handling robots, the multiple amphibious robots, and so on.
Hence, it has the practical significance to investigate the
cooperative control problem for switched stochastic MASs.
What is noteworthy is that the states of the system are difficult
to measure in practice, which brings severe challenges to
design controller.

For estimating unmeasured states, plenty of useful methods
have been designed to address the problem, such as state
observers [27]–[29], and so forth [30]. Considering the syn-
chronization error in tracking control of MASs, many scholars
have utilized this information to improve the observation
performance. There are some non-switched state observers
proposed in nonlinear MASs. For example, the distributed
fuzzy state observer was investigated in [29], which included
the information of other agents’ outputs. In [31], the neighbor-
hood state observer was investigated based on the neighbors’
information. Due to the information is transmitted by network,
the above designed observers do not consider the privacy of
information. When the initial states of agents are disclosed
between information exchanges, the preservation performance
is not guaranteed [32]. Besides, most switched observers in
switched stochastic MASs only use the output information
about respective agents, which are not efficient. In order to
address these issues, more preserved information should be
utilized to improve observation performance.

At present, there are some slow switching strategies used
for analyzing the stability of switched systems under the
controlled switching signals, such as the common Lyapunov
function, average dwell time, and mode-dependent average
dwell time (MDADT). The notion of MDADT was first
proposed in [33] and utilized in the following works [34], [35].
It is worth emphasizing that the MDADT method only applies
in the situation that Lyapunov function V satisfies V̇ ≤ −cV .
But there is the constant item in the derivative of the Lyapunov
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function under the adaptive control scheme. Niu et al. [36]
proposed the adaptive output-feedback control strategy for
switched stochastic nonlinear system based on the modified
MDADT method. The MDADT method is achieved in the
adaptive control rule. In the tracking control of stochastic
MASs with switching dynamics, the different performances
are obtained according to whether followers are directly linked
to the leader. When switching dynamics are intense, the
stabilities of these followers are difficult to guarantee. It is
a thorny problem which needs to be addressed. Furthermore,
ET mechanisms and self-triggered mechanisms are frequently
used in the analysis of switched system, which correspond to
save communication resources [37]–[46]. The self-triggered
mechanism in [47] may be invalid when the change rate
of control signal interval has the issue, especially when the
derivative of input signal does not exist. How to achieve the
synchronous slow switching in switched stochastic MASs via
a modified self-triggered mechanism is worthy considering.

Motivated by the above discussion, a modified self-triggered
adaptive tracking control scheme is put forward for the
switched stochastic MASs based on the MDADT method.
Meanwhile, a class of distributed state observers is designed
to address the output-feedback control problem. The privacy
preservation technology is used to avoid disclosing the initial
states of followers. The main contributions of this paper are
shown as below.

1) The synchronous slow switching strategy is firstly de-
signed for adaptive control scheme in switched stochastic
MASs. By utilizing the information of specific agents which
directly link to the leader, the complexity of the design process
is reduced and the synchronous effectiveness of controlled
switching signals is guaranteed as well.

2) A switched state observer is designed, which uses the
information about followers and their preserved neighbors with
switching-related output preservation mechanism. Compared
with the observer in [29], it improves the observation perfor-
mance of states and avoids the disclosure of output signal.

3) The modified self-triggered mechanism is proposed to
solve the singularity issue caused by the change rates of
control signal interval. The auxiliary function and approxi-
mate function are designed to maintain the effectiveness of
mechanism. By using these functions, it not only reduces the
trigger number but also improves the tracking performance.

The rest of this paper is arranged as below. A few prelimi-
naries are given in Section II. Section III introduces the design
processes of self-triggered adaptive controller and MDADT-
based stability analysis. Some simulation results are outlined
in Section IV. Finally, the conclusions are given in Section V.

II. PRELIMINARIES

A. Graph Theory
The exchanged information between agents is represented

by a directed graph. It is defined as G = (Y,Γ) that
Y = (Y1, ...,YN ) denotes a nonempty set of agents. The
form (Yi,Yj) ∈ Γ denotes the edge of node i to node j. The
neighbors of agent i are expressed asNi = {Yj |(Yj ,Yi) ∈ Γ}.
Simultaneously, the topology for the weighted graph is repre-
sented by the adjacency matrix A = [ai,j ] ∈ RN×N . Then, if

the information of node i can be received by node j, ai,j > 0,
and otherwise ai,j = 0. The absolute in-degree matrix is

D = diag {d1, ..., dN} with di =
N∑
j=1

ai,j . The Laplacian

matrix is defined as L = D −A.
In this paper, it has one leader labeled 0 and a set of N

followers denoted as 1 to N . Let B = diag {b1, ..., bN} ∈
RN×N be the adjacency matrix of leader, and bi is the weight
of the edge from Y0 to Yi.

Assumption 1: [2] If there exists at least one node having
a directed path to all other nodes, the directed graph G is said
to have a spanning tree with a leader serving as the root.

B. Problem Formulation

Consider a class of switched stochastic MASs. The dynamic
of the ith (i = 1, . . . , N) agent is defined as follows:

dxi,p = (xi,p+1 + f̌i,p(x̄i,p))dt+ q̌i,p(x̄i,p)dw

dxi,n = (ui + f̌i,n(x̄i,n))dt+ q̌i,n(x̄i,n)dw

yi = xi,1

(1)

where x̄i,p = [xi,1, ..., xi,p]
T represents the state vector with

p = 1, 2, ..., n − 1. Further, xi,2, ..., xi,n are unmeasurable.
ui is the control input signal, and the output signal of the ith
agent is represented as yi. y0 is the output signal of the leader.
f̌i,p(.) = f

σ(t)
i,p (.) and q̌i,n(.) = q

σ(t)
i,n (.) are unknown smooth

nonlinear functions and satisfy local Lipschitz condition. σ(t) :

[0,+∞) → Γ
def
= {1, ...,M} is a switching signal which is

identical for each agents. w denotes an r-dimension standard
Brownian motion defined on the complete probability space.

Assumption 2: [48] The desired output y0 and its first-order
derivative are known and bounded.

Assumption 3: [49] Considering the functions f̌i,m(.) and
q̌i,m(.), there exist positive constants gi,m and hi,m, such that∣∣f̌i,m(x)− f̌i,m(x̂)

∣∣ ≤ gi,m||x− x̂||∣∣ǧi,m(x)− ǧi,m(x̂)
∣∣ ≤ hi,m||x− x̂|| (2)

where i = 1, 2, ..., n.
Definition 1: [33] Consider σ(t) as a switching signal in

this paper. For any T ≥ t ≥ 0, the switching numbers of the
pth activated subsystem during the interval [t, T ] is denoted
as Nσp(T, t). The whole running time of the pth subsystem
during the interval [t, T ] are represented as Tp(T, t), p ∈ Γ.
If there are positive numbers N0p which can be called as the
mode-dependent chatter bounds and τap such that

Nσp(T, t) ≤ N0p +
Tp(T, t)

τap
, ∀T ≥ t ≥ 0 (3)

The conclusion that σ(t) has an MDADT τap can be drawn.

C. Privacy Preservation

Due to the distributed cooperative control for MASs, pri-
vacy preservation is utilized to mask the initial states of the
agents. Since the output yi is a little available information for
designing controller in this paper, the output mask is taken
into account.
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Consider the following masked system

ẋ = h(y)

y = ϕ̄(t, x, Λ̄)
(4)

where y = [y1, ..., yn]T denotes the output vector which has
the same dimension as x. ϕ̄ is a continuously time-varying
function, and Λ̄ ∈ R is a vector of parameters.

A switching-related additive mask is designed as

ϕ̄i(t, xi, Λ̄i) = xi + ϕi (5)

where

ϕi =

 γi(cos
π(t+ t0)

2t0
+ 1), t ≤ t0

0, t > t0

(6)

where Λ̄i = {γi, t0}. t0 is the time instant of first switch, and
γi > 0 is the constant which can be designed by users.

Different from the result in [32], the function ϕ̄(.) is a
piecewise function, and original states are gotten when t→ t0
rather than t→∞. After achieving the preservation task, the
negative influence is avoided as well. It is worth noting that the
output masks are arbitrarily decided by each agent i. Further,
the levels of privacy are arbitrarily set by choosing different
parameters Λi for agents.

The synchronization error is given as

si,1 =

N∑
j=1

ai,j(yi − yj) + bi(yi − y0) (7)

After applying the privacy preservation technology to the
outputs of followers, the masked synchronization error is
defined as

s
¯i,1

=

N∑
j=1

ai,j(yi − yj) + bi(yi − y0) (8)

where y
i

= ϕ̄i and y
j

= ϕ̄j .
Assumption 4: [32] The system (4) is such that

{Ni ∪ {i}} * {Nj ∪ {j}} for ∀i, j = 1, ..., n, i 6= j.
Remark 1 : The topology of the directed graph has the

limitation that all nodes cannot get the complete information
about what is going on at the other nodes. When Assumption
4 is satisfied, the masked system (4) is considered as a
dynamically private version of the original system, and its level
of privacy can be guaranteed arbitrarily.

D. Modified Self-Triggered Mechanism

For saving communication resources and improving the
tracking performance, the modified self-triggered mechanism
is designed as

ui(t) = ωi(tk),∀x ∈ [ti,k, ti,k+1) (9)

ti,k+1 = ti,k +
ηi|ui(tk)|+mi

max{~i(t), |ζi(t)|}
(10)

where ti,k, ti,k+1 ∈ N+ and 0 < ηi < 1. mi is a positive
constant. ωi(t) and ~i(t) are designed continuous functions.
ui(t) is the self-triggered control signal, and ηi|ui(t)| + mi

represents the control signal interval between two adjacent

triggered instants. max{~i(t), |ζi(t)|} shows the change rates
of input signal interval. Moreover, the designed functions ζi(t)
and ~i(t) are given as

ζi(t) =
ui(ti,k)− ωi(t)

ti,k − t

~i(t) = rie
s2i,1
2ιi

(11)

where ri and ιi are positive constants. In the process of self-
triggered controller design, ωi(t) is the actual continuous con-
trol signal which needs users to construct. ui(tk) is assigned as
ωi(tk) when the trigger instant ti,k is obtained, and the value
remains constant during the period of time t ∈ [ti,k, ti,k+1).

Obviously, the function ui(t) is continuous, but may not be
derivable. It is improper to directly use u̇i(t) to construct the
change rate of signal interval. Considering the characters of
self-triggered mechanism, the new function ζi(t) and ~i(t) are
selected to address the problem. ζi(t) is designed to describe
the change degree of control interval. ~i(t) is designed to
improve the control performance. According to its expression,
it has the positive correlation with the synchronization error,
which can effectively adjust the trigger interval.

Algorithm 1 Modified self-triggered algorithm for
ti,k → ti,k+1 of agent i

1: Initialization ti > 0, ui(t), ωi(t); predefined parameters
ηi,mi, ri, ιi;

2: §i = 0; §i is used to represent whether the trigger instant
has arrived;

3: while δi > 0 do

4: ζi(t)← ωi(t)−ui(tk)
t−ti,k ; ~i(t)← rie

s2i,1
2ιi ;

5: if §i = 1 then
6: ui(t)← ωi(tk); ∇i ← ηi|ui(tk)|+mi;
7: get ζi(tk) and ω̇i(tk);
8: if ζi(t) > ~i(t) then
9: compute δi ← ∇i

ζi
;

10: else
11: compute δi ← ∇i

~i ;
12: end if
13: ti,k+1 ← ti,k + δi;
14: else
15: ui(t) and ∇i remain as previous constants;
16: end if
17: end while
18: Return ti,k+1

Remark 2 : Different from the existing self-triggered mech-
anisms in [47] and [50], the new function about change rate of
control signal interval is constructed. By using correlation be-
tween ωi(t) and ui(t), ζi(t) is designed to describe the change
degree of control interval. The function ~i(t) establishes the
contact with the synchronization error By adding the functions
~i(t) and ζi(t), the mechanism is modified.

E. Switched State Observer

Considering that the system states xi,2, ..., xi,n are unmea-
surable, a state observer is designed to address this problem.
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To get more precise observation performance, the output infor-
mation about neighbors is used in the process of constructing
observer which is different from the previous result in [36].
The form of switched observer is given as

˙̂xi,1 = x̂i,2 − ľi,1ẽi
˙̂xi,2 = x̂i,3 − ľi,2ỹi

...
˙̂xi,n = ui − ľi,nỹi

(12)

where x̂i,k represents the estimation of xi,k, 2 ≤ k ≤ n. ľi,k
is the switched gain. ỹi and ẽi =

∑N
j=1 ai,j(yi− yj) + biyi−

(
∑N
j=1 ai,j(ŷi−yj)+biŷi) are the estimation errors of yi and

ei, respectively. Let x̃i,k = xi,k − x̂i,k, and one has

dx̃i = (Ξix̃i + Fi)dt+Qidw (13)

where Fi = [f̌i,1(x̄i,1)−f̂i,1(x̂i,1), ..., f̌i,n(x̄i,n)−f̂i,n(x̂i,n)]T ,
Qi = [q̌i,1(x̄i,1)− q̂i,1(x̂i,1), ..., q̌i,n(x̄i,n)− q̂i,n(x̂i,n)] and

Ξi =


−(bi + di)ľi,1
−ľi,2

... In−1

−ľi,n 0 · · · 0

 (14)

The matrix Ξi should be strictly Hurwitz by choosing rational
constants ľi,1, ..., ľi,n. In view of any definite symmetric matri-
ces Γi, there are some positive-definite matrices Ξi to satisfy
the following equation.

ΞTi Pi + PiΞi = −zi (15)

Finally, the following equation can be obtained.
dyi = (x̂i,1 + x̃i,1 + f̌i,1)dt+ q̌i,1dw

dx̂i,1 = (x̂i,2 − ľi,1ẽi)dt
dx̂i,k = (x̂i,k+1 − ľi,kỹi)dt
dx̂i,n = (ui − ľi,nỹi)dt

(16)

It is noted that the distributed state observers were investigated
in [29] which are constructed by the output information of
each followers. Since more relative information is utilized to
design observers, the construction process will be tedious and
complex. Compared with the existing observers, the output
information of the agents and their neighbors is only used in
estimating x̂i,1. Not only this process can be simplified, but
the observation performance is guaranteed.

Remark 3 : When the system is considered as the switched
system, the desired observation performance can not be guar-
anteed by a handful of information. For addressing the prob-
lem, the extra output information about preserved neighbors
is utilized at the same time, which is different from the result
in [36] and [29].

Lemma 1: [2] Considering B = diag {bi} ∈ RN×N , L+B
is nonsingular if exists at least bi > 0.
=i represents the set of all functions with continuous ith

partial derivatives. =2,1 denotes the family of all nonnegative
function V (x, t) which are =2 in x and =1 in t.

Lemma 2: [36] V (x, t) ∈ =2,1 is a continuously differen-
tiable function, and define its differential operator L as follows:

LV =
∂V

∂t
+
∂V

∂x
f +

1

2
Tr
{
qT
∂2V

∂x2
q

}
(17)

If there exist positive constants µi, ςi, and κ∞-functions β1,
β2, such that {

β1(|x|) ≤ V (x, t) ≤ β2(|x|)
LVi,n ≤ −µiVi,n + ςi

(18)

where ∀x ∈ Rn and ∀t > 0. Then, a unique solution of system
(1) can be got which satisfies

E[V (t)] ≤ e−µtV (0) +
ς

µ
(19)

Lemma 3: [51] The continuous function g(X) is defined
on a compact set Ω ∈ Rq , and it can be estimated by Fuzzy-
Logic Systems (FLSs). For any constant δ > 0, the estimation
form is given by such FLSs %Tφ(X)

sup
X∈Ω
|g(X)− %Tφ(X)| ≤ δ (20)

where %∗
T

= [%1, %2, ..., %k] is the ideal weight vector,
and k > 1 is the number of fuzzy rules. φ(X) =
[φ1(X), φ2(X), ..., φk(X)]T /

∑N
m=1 φi(X) is fuzzy basic

function vector.
Lemma 4: [52] For k ≥ 2, the second-order sliding mode

integral filter is designed as follows:


Ḣi,k10 = −Hi,k10 − I(t)

oi,k10
− vi,k10(Hi,k10 − I(t))

||Hi,k10 − I(t)||+ ri,k10

Ḣi,k20 = −Hi,k20 − Ḣi,k10
oi,k20

− vi,k20(Hi,k20 − Ḣi,k10)

||Hi,k20 − Ḣi,k10||+ ri,k20

where I(t) is the input signal of filter. Hi,k10 and Hi,k20 are
the states of filter. Others parameters like oi,k10, oi,k20, vi,k10,
vi,k20, ri,k10 and ri,k20 are designed constants.

III. MAIN RESULTS

A. Adaptive Self-Triggered Controller Design

Based on the backstepping technique and self-triggered
mechanism, the adaptive controller will be designed in this
section. Concentrating on agent i in MASs, Fig. 1 shows the
details of the designed control scheme.

Firstly, define the unknown constant ξi as

ξi = max
{
||%i,m||2

}
, m = 0, 1, ..., n (21)

The estimation of ξi is defined as ξ̂i, and there exists the
estimation error ξ̃i such that ξ̃i = ξi − ξ̂i.

Define the following transformation

si,k = x̂i,k − αi,k−1 (22)

where x̂i,k denotes the estimation of xi,k, and αi,k−1 is the
virtual control signal.
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Privacy preservation

ˆ ˆ( , , , )i i i i i ix f x u e y=ˆ ˆ
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Switched neighborhood observer

Stability analysis
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MDADT method
* ip

ap ap
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lny
t t

m
³ =

ˆ
ix

, , , , , 20, , , )ˆ(i k i k i k i k i ki
p s Ha x f=

Virtual/Self-triggered controller

, , , , 20, , ,ˆ( ) ( )i i i n i n i n i nt q s Hw x f=

( , , )i i iy t xj l=

ˆ
ix

Preliminaries

Adaptive Control Strategy

iy

Switched Multiagent systems

Unknown states

Agent j

Agent i

ErrorTransform

ij

Fig. 1. The block diagram about control scheme.

Step 1: The derivative of the masked synchronization error
is given as

dsi,1 = [(bi + di)(x̃i,2 + si,2 + αi,1 + f̌i,1(xi,1) + ϕ̇i

− biẏ0)−
N∑
j=1

ai,j(x̃j,2 + x̂j,2 + fj,1(xj,1) + ϕ̇j)]dt

+ [(bi + di)q̌i,1(xi,1)−
N∑
j=1

ai,j q̌j,1(xj,1)]dw (23)

Select the Lyapunov function as

Vi,1p =
ı̄

2
(x̃Ti Pipx̃i)

2 +
1

4
s4
i,1 +

1

2
ξ̃2
i,1 (24)

Where ı̄ is a positive constant. According to (17), one gets

LVi,1p = −ı̄x̃Ti Pipx̃ix̃Ti Qipx̃i + 2ı̄x̃Ti Pipx̃ix̃
T
i PipFip

+ 2ı̄Tr
{
QTip(2Pipx̃ix̃

T
i Pip + x̃Ti Pipx̃iPip)Qip

}
+ s3

i,1[(bi + di)(x̃i,2 + si,2 + αi,1 + f̌i,1(xi,1)

+ ϕ̇i)−
N∑
j=1

ai,j(x̃j,2 + x̂j,2 + f̌j,1(xj,1) + ϕ̇j)

− biẏ0] +
3

2
s2
i,1ϕ̌

T
i,1ϕ̌i,1 − ξ̃i,1

˙̂
ξi,1 (25)

where

ϕ̌i,1 = (bi + di)q̌i,1 −
N∑
j=1

ai,j q̌j,1

Considering (13), one has Fip = F̃ip+F̂ip, and δ0p is a positive
constant. According to Young’s inequality and Assumption 3,
one has

2ı̄x̃Ti Pipx̃ix̃
T
i PipF̂ip ≤

3ı̄

2
τ

4
3
i,0||Pip||

8
3 ||x̃i||4 +

ı̄

2τ4
i,0

||F̂ip||4

≤ 3ı̄

2
τ

8
3
i,0||Pip||

8
3 ||x̃i||4

+
ı̄

2τ4
i,0

(ξ2
i,0p + δ4

i,0p) (26)

2ı̄x̃Ti Pipx̃ix̃
T
i PipF̃ip ≤

3ı̄

2
τ

4
3
i,0||Pip||

8
3 ||x̃i||4 +

ı̄

2τ4
i,0

||F̃ip||4

≤ 3ı̄

2
τ

4
3
i,0||Pip||

8
3 ||x̃i||4

+
ı̄

2τ4
i,0

(

n∑
m=1

g2
i,m)2||x̃i||4 (27)

2ı̄Tr
{
QTip(2Pipx̃ix̃

T
i Pip + x̃Ti Pipx̃iPip)Qip

}
≤ 6ı̄n

3
2 ||Pip||2||x̃i||2||Qip||2

≤ 3ı̄εi,0n
3
2 ||Pip||4||x̃i||4 +

3ı̄

εi,0
n

3
2 ||Qip||4

≤ 3ı̄εi,0n
3
2 ||Pip||4||x̃i||4

+
3ı̄

εi,0
n

3
2 (

n∑
m=1

h2
i,m)2||x̃i||4 (28)

where τi,0 and εi,0 are positive constants. n denotes the
dimension of states. According to (6), there is |ϕ̇i| ≤ ϑi,1.
ϑi,1 is a non-negative constant. Then, one has

s3
i,1x̃i,2 ≤

3

4
τi,1s

4
i,1 +

1

4τ3
i,1

||x̃i||4

3

2
s2
i,1ϕ̌

T
i,1ϕ̌i,1 ≤

3

4
2i,1 +

3

4
s4
i,1||ϕ̌i,1||4−2

i,1

(bi + di)s
3
i,1ϕ̇i ≤

3

4
(bi + di)εi,1s

4
i,1 +

1

4ε3i,1
(bi + di)ϑ

4
i,1

(bi + di)s
3
i,1si,2 ≤

3

4
(bi + di)s

4
i,1 +

1

4
(bi + di)s

4
i,2

(29)
where εi,1, τi,1 and i,1 are positive. Then, one obtains

LVi,1p ≤ −ı̄||x̃i||4
(
λmin(Pip)λmin(Qip)− 3τ

4
3
i,0||Pip||

8
3

− 1

2τ4
i,0

(

n∑
m=1

g2
i,m)2 − 3

εi,0
n

3
2 (

n∑
m=1

h2
i,m)2

− 1

4τ4
i,1

− 3εi,0n
3
2 ||Pip||4

)
+

ı̄

2τ4
i,0

(ξ2
i,0l + δ4

i,0l)

+ s3
i,1[(bi + di)(αi,1 +

3

4
si,1) + f̄i,1 −

N∑
j=1

ai,j x̂j,2

− biẏ0] +
1

4
(bi + di)s

4
i,2 − ξ̃i,1

˙̂
ξi,1 +

3

4
2i,1

+
1

4ε3i,1
(bi + di)ϑ

4
i,1 (30)

where f̄i,1(Xi,1) = (bi + di)f̌i,1(xi,1) 3
4 (bi + di)εi,1s

4
i,1 +

3
4τ

4
3
i,1si,1−

∑N
j=1 ai,j(x̃j,2+f̌j,1(xj,1)+ϕ̇j)− 3

4si,1||ϕ̌i,1||
4−2
i,1 .

By utilizing FLSs, for ∀δi,1 > 0, one has

f̄i,1(Xi,1) = %Ti,1φi,1(Xi,1) + εi,1(Xi,1), |εi,1(Xi,1)| ≤ δi,1
(31)

Then, one gets

s3
i,1f̄i,1(Xi,1) = s3

i,1(%Ti,1φi,1(Xi,1) + εi,1(Xi,1))
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≤ ξi,1
2υ2
i,1

s6
i,1φ

T
i,1φi,1 +

1

2
υ2
i,1 +

3

4
s4
i,1 +

1

4
δ4
i,1

(32)

where υi,1 is the designed constant. The virtual controller and
the adaptive law are designed as

αi,1 =
1

bi + di
[−ci,1si,1 −

N∑
j=1

ai,j x̂j,2 + biẏ0

− ξ̂i,1
2υ2
i,1

s3
i,1φ

T
i,1φi,1]− 3

4
si,1 (33)

˙̂
ξi,1 =

1

2υ2
i,1

s6
i,1 − ℵi,1ξ̂i,1 (34)

where ci,1 and ℵi,1 are positive parameters. Then, (30) can be
rewritten as

LVi,1p ≤ −ı̄||x̃i||4
(
λmin(Pip)λmin(Qip)− 3τ

4
3
i,0||Pip||

8
3

− 1

2τ4
i,0

(
n∑

m=1

g2
i,m)2 − 3

εi,0
n

3
2 (

n∑
m=1

h2
i,m)2

− 3εi,0n
3
2 ||Pip||4 −

1

4τ4
i,1

)
− ci,1s4

i,1

+
1

4
(bi + di)s

4
i,2 + ∆i,1 −

ℵi,1
2
ξ̃2
i,1

where

∆i,1 =
ı̄

2τ4
i,0

(ξ2
i,0p + δ4

i,0p) +
3

4
2i,1 +

1

4ε3i,1
(bi + di)ϑ

4
i,1

+
1

2
υ2
i,1 +

1

4
δ4
i,1 +

ℵi,1
2
ξ2
i,1

Step k: By using (22), one has

dsi,k = dx̂i,k − dαi,k−1

= (x̂i,k+1 − ľi,kyi − Lαi,k−1)dt

− (

k−1∑
m=1

∂αi,k−1

∂x̂i,m
q̌i,m)dw (35)

where Lαi,k−1 has following definition

Lαi,k−1 =
∂αi,k−1

∂yi
(x̂i,1 + x̃i,1 + f̌i,1) +

k−1∑
m=1

∂αi,k−1

∂ξ̂i,m

˙̂
ξi,m

+

k−2∑
m=1

∂αi,k−1

∂Hi,m20

˙̂
Hi,m20 +

k−1∑
m=2

∂αi,k−1

∂x̂i,m
˙̂xi,m

+
1

2

k−1∑
p,t=1

∂2αi,k−1

∂x̂i,p∂x̂i,t
q̌i,pq̌i,t, k = 3, ..., n− 1

Especially, one has

Lαi,1 =
∂αi,1
∂yi

(x̂i,1 + x̃i,1 + f̌i,1) +
1

2

∂2αi,1
∂x2

i,1

q̌2
i,1

+
∂αi,1

∂ξ̂i,1

˙̂
ξi,1 +

∂αi,1
∂y0

ẏ0

From Lemma 4, the derivative of virtual signal can be esti-
mated by the introduced filter

Hi,k20 − Lαi,k−1 = H̃i,k−1 (36)

where H̃i,k−1 represents the error of estimation which satisfies
|H̃i,k−1| ≤ Hi,km with Hi,km > 0.

Select the Lyapunov function as

Vi,k = Vi,k−1 +
1

4
s4
i,k +

1

2
ξ̃2
i,k (37)

Then, one gets

LVi,k = LVi,k−1 + s3
i,k(si,k+1 + αi,k − ľi,kyi −Hi,k20

+Hi,k−1) +
3

2
s2
i,kϕ̌

T
i,kϕ̌i,k − ξ̃i,k

˙̂
ξi,k (38)

where ϕ̌i,k = −
∑k−1
m=1

∂αi,k−1

∂x̂i,m
q̌i,m. By Young’s inequalities,

one has

s3
i,ksi,k+1 ≤

3

4
s4
i,k +

1

4
s4
i,k+1

s3
i,kH̃i,k−1 ≤

3

4
s4
i,k +

1

4
H4
i,km

3

2
s2
i,kϕ̌

T
i,kϕ̌i,k ≤

3

4
2k +

3

4
s4
i,k||ϕ̌i,k||4−2

k

(39)

The unknown nonlinear function is selected as f̄i,k =
3
4s

4
i,k||ϕ̌i,k||4

−2
k − ľi,kyi According to FLSs, one has

s3
i,kf̄i,k ≤

ξi,k
2υ2
i,k

s6
i,kφ

T
i,kφi,k +

1

2
υ2
i,k +

3

4
s4
i,k +

1

4
δ4
i,k (40)

Where δi,k and υi,k are positive constants. The virtual control
signal and the adaptive law are designed as

αi,k = −ci,ksi,k −
9

4
si,k −

1

4
$i,ksi,k +Hi,k20

− ξ̂i,k
2υ2
i,k

s3
i,kφ

T
i,kφi,k (41)

˙̂
ξi,k =

1

2υ2
i,k

s6
i,k − ℵi,k ξ̂i,k (42)

where ci,k, ℵi,k are positive constants, and define $i,k as

$i,k =

{
bi + di, k = 2

1, otherwise

Then, one has

LVi,k ≤ −ı̄||x̃i||4
(
λmin(Pip)λmin(Qip)− 3τ

4
3
i,0||Pip||

8
3

− 1

2τ4
i,0

(

n∑
m=1

g2
i,m)2 − 3

εi,0
n

3
2 (

n∑
m=1

h2
i,m)2

− 3εi,0n
3
2 ||Pip||4 −

1

4τ4
i,1

)
+ ∆i,k

−
k∑

m=1

(ci,ms
4
i,m +

ℵi,m
2

ξ̃2
i,m) +

1

4
s4
i,k+1 (43)

where

∆i,k = ∆i,k−1 +
3

4
2i,k +

1

2
υ2
i,k +

1

4
δ4
i,k +

ℵi,k
2
ξ2
i,k +

1

4
H4
i,km

Step n: The self-triggered adaptive controller is designed in
this step. Then, one has

dsi,n = dx̂i,n − dαi,n−1

= (ui − ľi,nỹi − Lαi,n−1)dt
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− (

n−1∑
m=1

∂αi,n−1

∂x̂i,m
q̌i,m)dw (44)

where

Lαi,n−1 =
∂αi,n−1

∂yi
(x̂i,1 + x̃i,1 + f̌i,1) +

n−1∑
m=1

∂αi,n−1

∂ξ̂i,m

˙̂
ξi,m

+

n−2∑
m=1

∂αi,n−1

∂Hi,m20

˙̂
Hi,m20 +

n−1∑
m=0

∂αi,n−1

∂x̂i,m
˙̂xi,m

+
1

2

n−1∑
p,t=1

∂2αi,n−1

∂xi,p∂xi,t
q̌i,pq̌i,t

Let the introduced filter estimate the derivative of virtual
signal, and one has

Hi,n20 − Lαi,n−1 = H̃i,n−1 (45)

where H̃i,n−1 represents the estimate error of the filter which
satisfies |H̃i,n−1| ≤ Hi,nm.

Select the Lyapunov function as

Vi,n =
1

4
s4
i,n +

1

2
ξ̃2
i,n + Vi,n−1 (46)

Then, one gets

LVi,n = s3
i,n(ui − ľi,nỹi −Hi,n20 +Hi,n−1)

+
3

2
s2
i,nϕ̌

T
i,nϕ̌i,n − ξ̃i,n

˙̂
ξi,n + LVi,ni−1 (47)

where ϕ̌i,n = −
∑n−1
j=1

∂αi,n−1

∂xi,j
qi,j . By utilizing Young’s

inequality, one gets

3

2
s2
i,nϕ̌

T
i,nϕ̌i,n ≤

3

4
2n +

3

4
s4
i,n||ϕ̌i,n||4−2

n (48)

The unknown nonlinear function is selected as f̄i,n =
3
4s

4
i,n||ϕ̌i,n||4−2

n − ľi,nyi. For ∀δi,n, υi,n > 0, one obtains

s3
i,nH̃i,n−1 ≤

3

4
s4
i,n +

1

4
H4
i,nm

s3
i,nf̄i,n ≤

ξi,n
2υ2
i,n

s6
i,nφ

T
i,nφi,n +

1

2
υ2
i,n

+
3

4
s4
i,n +

1

4
δ4
i,n

(49)

One has

LVi,n ≤ s3
i,n(ui −Hi,n20 +

ξi,n
2υ2
i,n

s3
i,nφ

T
i,nφi,n)− ξ̃i,n ˙̂

ξi,n

+
3

4
2n +

1

2
υ2
i,n +

1

4
δ4
i,n +

1

4
H2
i,nm + LVi,n−1 (50)

From (9) and (10), there exists an inequality when t ∈
[ti,k, ti,k+1)

|ωi(t)− ui(t)| ≤ ηi|ui(t)|+mi (51)

Then, one has

ui(t) =
ωi(t)− ρ2(t)mi

1 + ρ1(t)ηi
(52)

where ρ1(t) and ρ2(t) are time-varying functions which also
have some properties: (a) ρ1(tk) = ρ2(tk) = 0. (b) ρ1(tk+1) =

ρ2(tk+1) = 1. (c) |ρ1(t)| ≤ 1, |ρ2(t)| ≤ 1 and t ∈ [tk, tk+1).
Obviously, one has 1 + ρ1η ≥ 1− η so that

− ρ2mi

1 + ρ1ηi
≤ | mi

1− ηi
|

By applying Young’s inequalities

s3
i,n|

mi

1− ηi
| ≤ 3

4
s4
i,n +

1

4
(
mi

1− ηi
)4 (53)

Then, one gets

LVi,n ≤ s3
i,n(

ξi,n
2υ2
i,n

s3
i,nφ

T
i,nφi,n −Hi,n20 +

1

(1 + Ji)
ωi(t))

− ξ̃i,n ˙̂
ξi,n + LVi,n−1 +

1

4
(
mi

1− ηi
)4

+
3

4
2n +

1

2
υ2
i,n +

1

4
δ4
i,n +

1

4
H2
i,nm (54)

where Ji = ρ1ηi. The continuous function and the adaptive
law are selected as follows:

ωi(t) = −(1 + Ji)(ci,nsi,n +
ξ̂i,n

2υ2
i,n

s3
i,nφ

T
i,nφi,n −Hi,n20)

(55)
˙̂
ξi,n =

1

2υ2
i,n

s6
i,n − ℵi,nξ̂i,n (56)

where ci,n and ℵi,n are positive constants. Eventually, one
obtains

LVi,n ≤ −ı̄||x̃i||4
(
λmin(Pip)λmin(Qip)− 3τ

4
3
i,0||Pip||

8
3

− 1

2τ4
i,0

(

n∑
m=1

g2
i,m)2 − 3

εi,0
n

3
2 (

n∑
m=1

h2
i,m)2

− 3εi,0n
3
2 ||Pip||4 −

1

4τ4
i,1

)
+

1

4
(
mi

1− ηi
)4

−
n∑

m=1

(ci,ms
4
i,m +

ℵi,m
2

ξ̃2
i,m) +

ℵi,n
2
ξ2
i,n

+
3

4
2n +

1

2
υ2
i,n +

1

4
δ4
i,n +

1

4
H2
i,nm + ∆i,n−1 (57)

B. MDADT Method and Stability Analysis

Define an unknown positive constant vector
ξi = M∗(ξi,1, ξi,2, ..., ξi,M ) ∈ Rnξi , and M∗(·) =
(M∗1 (·),M∗2 (·), ...,M∗n(·))T is positive-definite function.
Let ξ̃i = ξi − ξ̂i denote the estimation error. Then, the
following theorem can be got.

Theorem 1 : Based on the switched stochastic nonlinear
MASs (1), consider µip, ςi, and ψip ≥ 1 as positive bounded
constants where p satisfies p ∈ Γ. Assume that there exist pos-
itive definite, radially unbounded function Vip(xi, ξ̂i) ∈ C1,
smooth functions Φi(xi, ξ̂i), adaptive laws and controllers

˙̂
ξi = Φi(xi, ξ̂i) (58)

uip = uip(xi, ξ̂i) (59)

so that ∀p ∈ Γ

LVip(xi, ξ̂i) ≤ −µpVip(xi, ξ̂i) + ςi (60)
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where µp = min {µip}. For ∀(σ(ti) = p, σ(t−i ) = l) ∈ Γ ×
Γ, p 6= l

Vip(xi, ξ̂i) ≤ ψipVil(xi, ξ̂i) ≤ ψpVil(xi, ξ̂i) (61)

where ψp = max {ψip}. For any switching signals based
synchronous MDADT, all signals in the closed-loop system
(1) are bounded

τap ≥ τ∗ap =
lnψp
µp

(62)

Proof : Considering T > 0 and t0 = 0, let
t1, t2, ...ti, ti+1, ...tNσ(T,0) denote the switching times during
the period [0, T ] where it has Nσ(T, 0) =

∑M
p=1Nσp(T, 0).

Construct Θi(t) = eaσ(t)tViσ(t)(X(t)) which is piecewise
differentiable along the solution of the system. When t ∈
[tj , tj+1), one obtains

Θ̇i(t) = aσ(t)e
aσ(t)tViσ(t)(X(t)) + eaσ(t)tV̇iσ(t)(X(t))

≤ ςieaσ(t)t (63)

By utilizing E {dw(t)} = 0, one has

E

{
dΘi(t)

dt

}
= E

{
aσ(t)e

aσ(t)tViσ(t)(X(t))
}

+ E
{
eaσ(t)tV̇iσ(t)(X(t))

}
≤ E

{
ςie

aσ(t)t
}

(64)

Then, one obtains

E

{∫ tj+1

tj

Θ̇i(t)dt

}
= E

{
Θi(t

−
j+1)

}
− E {Θi(tj)}

≤ E
{∫ tj+1

tj

ςie
aσ(t)tdt

}
(65)

Considering Vip(t) ≤ ψpVil(t), it naturally holds that

E {Θi(tj+1)} ≤ E
{ j∏
l=0

ψσ(tl+1)Θi(t0)

× e
∑j
l=0[aσ(tl+1)−aσ(tl)

]tl+1

}
+ E

{ j∑
s=0

{ j∏
l=s

∫ ts+1

ts

ςie
aσ(ts)tdt

}
× e

∑j
l=0[aσ(tl+1)−aσ(tl)

]tl+1

}
(66)

Then, one has

E
{

Θi(T
−)
}
≤ E

{Nσ(T,0)−1∏
l=0

ψσ(tl+1)Θi(t0)

× e
∑Nσ(T,0)−1

l=0
[aσ(tl+1)−aσ(tl)

]tl+1

}

+ E

{Nσ(T,0)−1∑
s=0

{Nσ(T,0)−1∏
l=s

∫ ts+1

ts

ςie
aσ(ts)tdt

}

× e
∑Nσ(T,0)−1

l=0
[aσ(tl+1)−aσ(tl)

]tl+1

}

+ E

{∫ T

tNσ(T,0)

ςie
aσ(Nσ(T,0))tdt

}
(67)

The following inequality can be obtained.

E
{
Viσ(T−)(X(T ))

}
≤ E

{
e
∑M
p=1 N0plnψpe

∑M
p=1 N0p(

Tp
τap

lnψp−µpTp)

× Vσ(0)(X(0))

}
+ E

{Nσ(T,0)−1∑
s=0

{
M∏
p=l

ψ
Nσp(T,ts+1)

p e−
∑M
p=l µipTp(T,ts+1)

}

× e−νmints+1

∫ ts+1

ts

ςie
νmintdt

}

+ E

{
e−νminT

∫ T

tNσ(T,0)

ςie
−νmintdt

}
(68)

Where νmin = min {νp, p ∈ Γ} and νp ∈ (0, (µp− lnψp/τap)).
For ∀νp, one has τap ≥ lnψp/(µp − νp). According to
Definition 1, one gets

Nσp(T, t) ≤ N0p +
(µp − νp)Tp(T, t)

lnψp
(69)

Further, the following inequality holds

ψNσp(T,ts+1)
p ≤ ψN0p

p e(µp−νp)TP (T,ts+1) (70)

Substituting (70) into (68) yields

E

{
Viσ(T−)(X(T ))

}
≤ e

∑M
p=1 N0plnψpe

max
p∈Ω

(
lnψp
τap
−µp)T

× E
{
Viσ(0)(X(0))

}
+

M∏
p=1

ψN0p
p

ςi
νmin

(71)

Based on the above analysis, if there exists the MDADT which
satisfies τap ≥ lnψp

µp
, Viσ(T−)(X(T )) can converge to the small

neighborhood close to zero when T →∞. Further, the signals
in the system (1) can be bounded.

Theorem 2 : Consider the switched stochastic MASs (1)
based on the privacy preservation. If the Assumptions 1-3 hold
and the MDADT satisfies the condition τap ≥ lnψp

µp
, all the

signals are bounded by utilizing the switched neighborhood
observer (12), adaptive laws (34), (42), (56), and the self-
triggered controller (55).

Proof : Construct the Lyapunov functions as follows:

Vip =
ı̄

2
(x̃Ti Ppx̃i)

2 +
1

4

n∑
m=1

s4
i,m +

1

2

n∑
m=1

ξ̃2
i,m (72)

In view of λmin(Pip)λmin(Qip) − 3τ
4
3
i,0||Pip||

8
3 −

1
4τ4
i,1
− 1

2τ4
i,0

(
∑n
m=1 g

2
i,m)2 − 3

εi,0
n

3
2 (
∑n
m=1 h

2
i,m)2 −

3εi,0n
3
2 ||Pip||4 ≥ ci,0 > 0, one has

LVip ≤ −ci,0||x̃i||4 −
n∑

m=1

(ci,ms
4
i,m +

ℵi,m
2

ξ̃2
i,m)
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+ ∆i,n−1 +
1

4
(

ηi
1− ηi

)4 +
1

4
(
mi

1− ηi
)4 +

ℵi,n
2
ξ2
i,n

+
3

4
2n +

1

2
υ2
i,n +

1

4
δ4
i,n +

1

4
H2
i,nm

≤ −µipVip + ςi (73)

where

µip = min
{

(2ci,0/[̄ıλ
2
max(Pip)]), 4ci,m,ℵi,m

}
ςi =

ı̄

2τ4
i,0

(ξ2
i,0p + δ4

i,0p) +

n∑
m=1

ℵi,n
2
ξ2
i,m +

3

4

n∑
m=1

2i,m

+
1

4ε3i,1
(bi + di)ϑ

4
i,1 +

1

2

n∑
m=1

υ2
i,m +

1

4

n∑
m=1

δ4
i,m

+
1

4
(

ηi
1− ηi

)4 +
1

4
(
mi

1− ηi
)4 +

1

4

n∑
m=2

H2
i,mm

Then, let ψip = emax{[λ[max(Pip)]/[λ[min(Pil)]} where ∀p, l ∈ Γ and
[ is a positive constant. Obviously there is ψp > 1. Then, one
obtains

Vip(t) ≤ ψpVil(t) (74)

According to Theorem 1, since the MDADT τap ≥ lnψp
µp

and
(74) are satisfied respectively, the signals in the system (1) are
bounded.

IV. SIMULATION RESULTS

0

1 2

3 4

Fig. 2. The topology of the communication.

In this section, a numerical example verifies the effective-
ness of the control scheme. We consider a class of stochastic
MASs with four followers and one leader. The communication
topology of stochastic MASs is shown and illustrated in Fig.
2. The adjacency matrix A can be written as

A =


0 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0

 (75)

The dynamics of the ith (i = 1, 2, 3, 4) agent is defined in the
strict-feedback form

dxi,1 = (x̂i,2 + f̌i,1(x̄i,1))dt+ q̌i,1(x̄i,1)dw

dxi,2 = (ui + f̌i,2(x̄i,2))dt+ q̌i,2(x̄i,2)dw

yi = xi,1

(76)

where x̂i,2 denotes the estimation of xi,2. f̌i,1, f̌i,2, q̌i,1 and
q̌i,2 are nonlinear functions for agent i under switching signal.
Specifically, one has

f
(1)
i,1 (x̄i,1) = 0.2x2

i,1sin(xi,1), f
(2)
i,1 (x̄i,1) = 0.3xi,1cos(xi,1)

f
(1)
i,2 (x̄i,2) = 0.1xi,1xi,2sin(xi,2), f

(2)
i,2 (x̄i,2) = 0.1x2

i,1cos(xi,2)

qi,1(x̄i,1) = 0.5cos(xi,2), qi,2(x̄i,2) = 0.5x2
i,1x

2
i,2cos(xi,2)

The dynamics of the leader node is modeled by as y0 = sin(t).
Based on the topology in Fig. 2 and the switching signal

in Fig. 3, the switched observer parameters are designed as
l
(1)
1,1 = l

(1)
3,1 = l

(1)
4,1 = 8, l(1)

2,1 = 16, l(1)
1,2 = l

(1)
3,2 = 2 and l

(1)
2,2 =

l
(1)
4,2 = 3. l(2)

1,1 = l
(2)
3,1 = l

(2)
4,1 = 4, l(2)

2,1 = 8, l(2)
1,2 = l

(2)
3,2 = 2 and

l
(2)
2,2 = l

(2)
4,2 = 3. Ξ

(.)
i are Hurwitz matrix. When z(1)

i = 10I

and z(2)
i = 8I , one has

P
(1)
1 = P

(1)
3 =

[
0.94 −5
−5 40.47

]
, P

(1)
2 = P

(1)
4 =

[
1.25 −5
−5 27.08

]

P
(2)
1 = P

(2)
3 =

[
1.5 −4
−4 16.75

]
, P

(2)
2 = P

(2)
4 =

[
2 −4
−4 11.33

]

Then, one obtains λ1(P
(1)
1 ) = 0.3149, λ2(P

(1)
1 ) = 41.0914,

λ1(P
(2)
1 ) = 0.5145, λ2(P

(2)
1 ) = 17.7355, λ1(P

(1)
2 ) = 0.3160,

λ2(P
(1)
2 ) = 28.0173, λ1(P

(2)
2 ) = 0.5203 and λ2(P

(2)
2 ) =

12.8130. According to the following designed parameters, one
has µ1p = µ3p = 0.8 and µ2p = µ4p = 0.8. Further, MDADT
can be obtained as τa1 = 4.31 and τa2 = 3.85.

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

Fig. 3. The switching signal.

The parameters of the controllers are shown as follows.
c1,1 = c3,1 = 13, c2,1 = c4,1 = 16, c1,2 = c3,2 = 6,
c2,2 = c4,2 = 8, ℵ1,1 = ℵ2,1 = ℵ3,1 = ℵ4,1 = 0.8 and ℵ1,2 =
ℵ2,2 = ℵ3,2 = ℵ4,2 = 0.8. Simultaneously, for i = 1, 2, 3, 4,
the parameter of filter is Ji = 0.8, oi,210 = oi,220 = 2,
vi,210 = vi,220 = 1 and ri,210 = ri,220 = 1. Further, the
initial condition is designed as xi,1(0) = 0.1, xi,2(0) = 0.1,
ξi,1(0) = ξi,2(0) = 0.1 and Hi,210(0) = Hi,220(0) = 0.1.
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0 5 10 15 20 25 30 35 40
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 4. The tracking performance.

The Fig. 4 and Fig. 5 respectively show the tracking perfor-
mance and tracking errors of each agent under switching signal
during 40 seconds. Both the tracking performance and tracking
errors are divided into two different situations, which match up
with the designed switching signal in Fig. 3. According to the
analysis about MDADT in stochastic MASs under switching
dynamics, agent 1 and agent 3 are designed under the bigger
gains because they directly link to the leader.

0 5 10 15 20 25 30 35 40
-0.5
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-0.3
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-0.1

0

0.1

0.2

0.3

0.4

0.5

6 8 10 12

-0.05

0

0.05

30 32 34 36

-0.05

0

0.05

0.1

Fig. 5. The tracking errors.
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-0.1 0 0.1 0.2 0.3
0.08
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0.12

(b)

Fig. 6. Privacy preserving results of output. (a) the masked states; (b) the
original states.
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(d)

Fig. 7. Curves of states xi,1 and x̂i,1.

As is shown in Fig. 6, the influence of privacy preservation
is acquired. By choosing parameters arbitrarily, the different
masked initial states in Fig. 6 (a) are obtained so that the
level of privacy can be guaranteed arbitrarily. Meanwhile, the
original initial states are displayed in Fig. 6 (b).
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(b)
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0
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1

1.5
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(d)

Fig. 8. Curves of states xi,2 and x̂i,2.

Fig. 7 and Fig. 8 display the curves of switched state
observers. The differences between the two observers are
revealed in Fig. 9. Since the information of neighborhood is
considered to construct the observer, the better observation
performance is obtained.
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Fig. 9. The comparison of observer curves. (a) switched neighborhood
observer; (b) switched observer in [36].

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

6

8

10

12

10 10.2 10.4 10.6

1.1

1.2

1.3

(a)
5 10 15 20 25 30 35 40

-4

-2

0

2

4

6

8

10

12

17.2 17.4 17.6 17.8

0.9

1

1.1

(b)

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

6

8

10

12

20 20.2 20.4 20.6 20.8

-1.1

-1

-0.9

-0.8

(c)

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

6

8

10

12

29.8 30 30.2 30.4 30.6 30.8

0.8

0.9

1

1.1

(d)

Fig. 10. The self-triggered control signal ui.
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Fig. 11. The triggered times. (a) Agent 1; (b) Agent 2; (c) Agent 3; (d)
Agent 4.

Fig. 10 shows the information of self-triggered input signal

and the original input signal. Fig. 11 represents the trigger
intervals and trigger numbers. Because the switching dynamics
are considered in this paper, the control signals and trigger in-
tervals are spontaneously divided into two different situations.

TABLE I
THE TRIGGERED EVENTS OF TWO SELF-TRIGGERED MECHANISMS.

Agent 1 Agent 2 Agent 3 Agent 4

Modified mechanism 765 788 765 793
Normal mechanism in [47] 859 870 859 872

5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4
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0.044
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0.048

0.05
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0.054

Fig. 12. The tracking errors of agent 4.

Under the modified self-triggered mechanism, the trigger
times about each agents are given in Table 1, which are
decreased compared with normal self-triggered mechanism in
[47]. Further, the tracking errors about agent 4 under these
two different self-triggered mechanisms are shown in Fig. 12.
Since the auxiliary functions are designed to contact with
the synchronization error, the tracking errors well decrease
while the trigger times reduce. It can verify the advantages of
modified self-triggered mechanism proposed in this paper.

V. CONCLUSIONS

A self-triggered fuzzy adaptive control problem has been
considered for switched stochastic MASs under the switch-
ing signals with MDADT method. Firstly, synchronous M-
DADT method has been considered for stochastic MASs with
switched dynamics based on some switching characteristics.
Then, the switched state observer has been designed to im-
prove the observed performance of switching states. The initial
states of each agent have been masked by using the switching-
related additive mask. Next, the singularity problem caused by
the derivative of input has been avoided by using the modified
self-triggered mechanism. Finally, it has been proven that all
signals of the closed-loop system are verified to be ultimately
bounded under a class of switching signals with MDADT
property by the designed self-triggered control signals. The
effectiveness of the designed control method has been verified
by some simulation results. In the future, the analysis of
stability for stochastic MASs will be further developed.
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