50 research outputs found

    Mechanical design of an affordable adaptive gravity balanced orthosis for upper limb stroke rehabilitation

    Get PDF
    In this paper, a novel design of a non-powered orthosis for upper limb stroke rehabilitation is reported. Its design exploits the gravity balancing theory. Designed for home-based use, it is the first affordable, passive design to incorporate an assistive level that can be adaptively varied within a closed-loop control scheme. This allows the device to be integrated with a dual robotic and electrical stimulation control scheme, to thereby enable full exploitation of the motor relearning principles which underpin both robotic therapy and Functional Electrical Stimulation (FES) based stroke rehabilitation. This embeds the potential for more effective treatment. The article focuses on the mechanical design of the non-powered orthosis, providing detailed design, dynamic analysis and evaluation. Publisher statement: “This is an Accepted Manuscript of an article published by Taylor & Francis in Mechanics Based Design of Structures and Machines on 14 June 2015, available online: http://www.tandfonline.com/10.1080/15397734.2015.1054513

    Human factors in space telepresence

    Get PDF
    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing

    Type synthesis and static balancing of a class of deployable mechanisms

    Get PDF
    This thesis addresses the type synthesis and static balancing of a class of deployable mechanisms, which can be applied in applications in many areas including aerospace and daily life. Novel construction methods are proposed to obtain the deployable mechanisms. First, the type synthesis of the foldable 8-revolute joint (R) linkages with multiple modes is presented. Two types of linkages are constructed by connecting planar 4R linkages and spherical 4R linkages. The obtained linkages can be folded into two layers or four layers, and have multiple motion modes. A spatial triad is also adopted to build single-loop linkages, then the single-loop linkages are connected using spherical (S) joints or RRR chains to obtain deployable polyhedral mechanisms (DPMs). The DPMs have only 1- degree-of-freedom (DOF) when deployed, and several mechanisms with 8R linkages and 10R linkages have multiple motion modes and can switch modes through transition positions. In addition, when connecting single-loop linkages using half the number of the RRR chains, the prism mechanisms obtain an additional 1-DOF rotation mode. Furthermore, the DPMs are developed into statically balanced mechanisms. The geometric static balancing approaches for the planar 4R parallelogram linkages, planar manipulators, spherical manipulators and spatial manipulators are developed so that the mechanisms can counter gravity while maintaining the positions of the mechanisms. Only springs are used to design the statically balanced system readily, with almost no calculation. A novel numerical optimization approach is also introduced which adopts the sum of squared differences of the potential energies as the objective function. Using the proposed static balancing approaches, the 8R linkages and the DPMs presented in this thesis can be statically balanced

    serial and parallel robotics: energy saving systems and rehabilitation devices

    Get PDF
    This thesis focuses on the design and discussion of robotic devices and their applications. Robotics is the branch of technology that deals with the design, construction, operation, and application of robots as well as computer systems for their control, sensory feedback, and information processing [1]. Nowadays, robotics has been an unprecedented increase in applications of industry, military, health, domestic service, exploration, commerce, etc. Different applications require robots with different structures and different functions. Robotics normally includes serial and parallel structures. To have contribution to two kinds of structures, this thesis consisting of two sections is devoted to the design and development of serial and parallel robotic structures, focused on applications in the two different fields: industry and health

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Scissor lift with real-time self-adjustment ability based on variable gravity compensation mechanism

    Get PDF
    Most robots involved in vertical movement against gravitation require actuators large enough to support their own weight. To improve the inherent safety of such robots against the large actuators and reduce their energy consumption, numerous gravity compensation mechanisms (GCMs) have been proposed. Our previous study proposed a variable GCM (VGCM) that uses two types of springs and can adjust the compensation force. In this paper, a VGCM-based scissor lift (pantograph lift) that uses three springs and a smaller actuator is proposed. A prototype is designed and fabricated, and the performance of the prototype is evaluated experimentally. The results demonstrate that the developed scissor lift meets the design specifications. In addition, a load estimator is established based on the dynamic model of the scissor lift. A real-time self-adjustment method that automatically changes the compensation force is proposed, and its effectiveness is verified

    Doctor of Philosophy

    Get PDF
    dissertationMost humans have difficulty performing precision tasks, such as writing and painting, without additional physical support(s) to help steady or offload their arm's weight. To alleviate this problem, various passive and active devices have been developed. However, such devices often have a small workspace and lack scalable gravity compensation throughout the workspace and/or diversity in their applications. This dissertation describes the development of a Spatial Active Handrest (SAHR), a large-workspace manipulation aid, to offload the weight of the user's arm and increase user's accuracy over a large three-dimensional workspace. This device has four degrees-of-freedom and allows the user to perform dexterous tasks within a large workspace that matches the workspace of a human arm when performing daily tasks. Users can move this device to a desired position and orientation using force or position inputs, or a combination of both. The SAHR converts the given input(s) to desired velocit

    KINE[SIS]TEM'17 From Nature to Architectural Matter

    Get PDF
    Kine[SiS]tem – From Kinesis + System. Kinesis is a non-linear movement or activity of an organism in response to a stimulus. A system is a set of interacting and interdependent agents forming a complex whole, delineated by its spatial and temporal boundaries, influenced by its environment. How can architectural systems moderate the external environment to enhance comfort conditions in a simple, sustainable and smart way? This is the starting question for the Kine[SiS]tem’17 – From Nature to Architectural Matter International Conference. For decades, architectural design was developed despite (and not with) the climate, based on mechanical heating and cooling. Today, the argument for net zero energy buildings needs very effective strategies to reduce energy requirements. The challenge ahead requires design processes that are built upon consolidated knowledge, make use of advanced technologies and are inspired by nature. These design processes should lead to responsive smart systems that deliver the best performance in each specific design scenario. To control solar radiation is one key factor in low-energy thermal comfort. Computational-controlled sensor-based kinetic surfaces are one of the possible answers to control solar energy in an effective way, within the scope of contradictory objectives throughout the year.FC
    corecore