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Abstract 

In this paper a novel design of a non-powered orthosis for upper limb stroke rehabilitation is 

reported. Its design exploits the gravity balancing theory. Designed for home based use, it is the 

first affordable, passive design to incorporate an assistive level that can be adaptively varied 

within a closed-loop control scheme. This allows the device to be integrated with a dual robotic 

and electrical stimulation control scheme, to thereby enable full exploitation of the motor 

relearning principles which underpin both robotic therapy and Functional Electrical Stimulation 

(FES) based stroke rehabilitation. This embeds the potential for more effective treatment. The 
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paper focuses on the mechanical design of the non-powered orthosis, providing detailed design, 

dynamic analysis and evaluation. 

Keywords: FES, gravity balancing theory, multibody dynamics, passive orthosis, stroke 

rehabilitation 

INTRODUCTION 

Worldwide 12.6 million people live with moderate to severe disability following stroke, 

and this number is increasing. Due to the neuroplasticity of the brain, the function of the 

damaged cells can be transferred to surrounding areas of the motor cortex (Egglestone et al. 

2009). Hence impaired subjects can potentially regain lost motor function with the help of a 

tailored rehabilitation programme involving training of motor tasks, with feedback (e.g. 

proprioceptive, haptic, visual) used to forge new motor connections. The therapeutic 

effectiveness of these therapies strongly depends on their frequency, intensity, and the amount of 

voluntary effort supplied by the patient. Unfortunately only 5% of patients receiving 

conventional therapy, involving manual assistance supplied by a physiotherapist, recover useful 

movement (Barreca et al. 2003). 

In the field of non-conventional rehabilitation, new upper-limb technologies have the 

potential to provide intensive and motivating therapy. Moreover, there is evidence that non-

conventional therapies offer more effective treatment than conventional ones (Egglestone et al. 

2009; Mehrholz et al. 2009; Loureiro et al. 2011). Rehabilitation robotics is a leading non-

conventional therapy and the employment of robots has been shown to be very effective for 

patient recovery, however their design, control and use are complex, often expensive, hence they 

are not suitable as home-based devices. On the other hand, non-powered orthoses can offer an 
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alternative as low cost support devices. They are usually made of a mechanism combined with 

spring systems or counterweights that balance a mass on their extremity, for instance the user's 

arm, thus the patient can power the orthosis without carrying the weight of their own arm. 

The main drawback of these mechanical systems is that they are not as flexible and 

effective as rehabilitation robots, and they can be used only by patients with sufficient residual 

muscle strength to power the orthosis and perform the rehabilitation therapy. To overcome this 

drawback, in the research reported in this paper, a non-powered orthosis will be combined with 

Functional Electrical Stimulation (FES) (Lynch and Popovic 2008; Brend, Freeman, and French 

2012). FES is another approach to therapy which facilitates movement by applying short 

electrical pulses to contract muscles in the same way as achieved by the unimpaired central 

nervous system. FES is often combined with a mechanical device to provide controlled 

stimulation, especially during reaching tasks. Hence, using a biomechanical representation of the 

human arm within the FES control scheme, it is possible to adaptively adjust the assistance 

provided to each patient, encouraging maximum voluntary effort and therefore maximising 

effectiveness of treatment (Freeman et al. 2009, 2012). 

This paper proposes a novel design of an orthosis that is suitable to combine with FES, 

thereby unlocking the potential of effective rehabilitation in an affordable package. The design of 

the orthosis is based on the gravity balancing theory of mechanisms, by combining a 

parallelogram linkage with zero-free length springs (Agrawal, Gardner, and Pledgie 1999; 

Herder and Tuijthof 2000) for lightweight design. The discussion in this paper focuses on the 

design process, from the static gravity balancing analysis of the linkage to the 3D CAD model 

and the preliminary dynamic analysis of the arm support. 

D
ow

nl
oa

de
d 

by
 [

W
in

ch
es

te
r 

Sc
ho

ol
 o

f 
A

rt
] 

at
 1

0:
43

 2
1 

O
ct

ob
er

 2
01

5 



 

4 

EXISTING PROTOTYPES AND GRAVITY BALANCING 

THEORY 

The most relevant non-powered orthoses to meet the aim of this research are the 

Wilmington Robotic Exoskeleton (WREX) (Rahman et al. 2006) and Armon Orthosis (Herder 

2005; Herder et al. 2006; Mastenbroek et al. 2007). These are both based on a mechanical design 

that makes use of spring systems to achieve gravity balancing. 

WREX is an exoskeleton design-based body-powered orthosis that provides gravity 

support to allow patients to move their arm with very little effort (Rahman et al. 2006). This 

result was achieved by employing elastic bands rather than using counterweights, as in many 

other devices, giving rise to a lighter and more compact mechanism. 

The Armon Orthosis is a non-powered mechanism that can be mounted on a wheelchair 

for the purpose of assisting activities of daily living (ADLs) (Herder 2005; Herder et al. 2006; 

Mastenbroek et al. 2007). The orthosis does not resemble an exoskeleton, as in the case of 

WREX. Indeed, the joints of the mechanism do not have the function of emulating the 

anatomical human arm joints, but they are arranged to support the weight of the user's arm, when 

combined with a spring-cable-pulley system located at the lower extreme of the orthosis. The 

simplicity and efficiency of the Armon Orthosis is due to its mechanical design that is strongly 

based on gravity balancing theory for more details refer to (Herder 2001). 

At this stage it is important to introduce the concept of statically balanced systems. They 

are systems that stay in a static equilibrium state throughout their range of motion in the absence 

of friction. Mechanical devices designed to exploit this property present many advantages in 

terms of improved mechanical performance, including the ability to support the arm over a large 
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workspace, while simultaneously presenting minimal inertial characteristics to the patient. This 

is critical in the design of a body worn orthosis, where it is important to reduce the effect of the 

weight of the supported limb, and the inertia of the mechanical system. A statically balanced 

system can be constructed by exploiting at least two conservative forces arranged in such a way 

as to provide stability. This result can be achieved by means of two potential energy storage 

devices, for instance springs and masses. Moreover these system components must be coupled in 

such a way that their energy characteristics, as a function of the d.o.f., add up to a constant value. 

For the purpose of this research it was decided to use the zero-free length springs model 

in the design of the balancing system, since they have the fundamental characteristic that the 

force is proportional to the actual length of the spring, rather than the sum of the initial length 

and the elongation as in normal springs (Herder 2001). This means that the employment of this 

type of springs simplifies the analysis and the design of spring mechanisms, leading to linear 

mechanical models. It also simplifies the subsequent hybrid control scheme. 

MECHANICAL DESIGN 

In this section the mechanical design of the orthosis will be discussed in detail. The static 

gravity balancing analysis of the mechanism is developed to derive the most suitable mechanical 

solution for the adjustment system. Then all the features and the mechanical subsystems of the 

preliminary 3D CAD model of the arm support are illustrated in detail. 

Kinematic Chain and Gravity Balancing 

The novelty of the proposed approach lies in combining FES and a mechanical support to 

produce an affordable system which delivers adaptable and personalisable assistance during 

functional task completion. The mechanism utilized to achieve this objective is shown in Figure 
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1. Its hybrid kinematic chain embeds the favourable mechanical features of both parallel and 

serial linkages (Carbone, Cannella, and Angeles 2011). Moreover, the orthosis differs from that 

of typical exoskeletons, since it provides gravity balancing to the patient's arm by acting only on 

a small area of the forearm, identified by the Combined Center of Mass (CCM), making use of a 

parallelogram linkage and zero-free length springs. This mechanical solution has been used in 

several existing devices, but for this particular application the objective is to make it adjustable 

and lightweight, whilst maintaining an affordable design. 

The model comprises a planar two d.o.f. kinematic chain made of a parallelogram linkage 

combined with two zero-free length springs, each balances a single d.o.f. of the mechanism. 

The length of the links is L and r. Moreover r and a are also the geometrical parameters 

of the springs. The moving end of each of the two springs of stiffness 𝑘1 and 𝑘2 is connected to 

point A and point B, respectively, whereas the fixed end is connected to the point O. The mass m 

of the user's arm is assumed to be attached to point F on the distal link, which corresponds to the 

CCM. Now it is possible to analyse the gravity balance behaviour of the mechanism, where the 

mass of the moving links is balanced by the springs (Herder 2001). The mass of each of the links 

is considered as lumped at their center of mass. Focusing on the i-th spring, it is possible to 

decompose its force 𝑘𝑖𝑙𝑖, where 𝑙𝑖 is the spring elongation (equivalent to length in the case of 

zero-free length springs), into a component along the link length r, 𝑘𝑖𝑟, and a component along 

a, 𝑘𝑖𝑎, on 𝑂𝐶̅̅ ̅̅ . 

Due to the linearity of the model, it is possible to use the superposition principle for the 

gravity compensation analysis. Considering Figure 2(a) the first step is to fix spring 𝑘1 and 

perform the moment equilibrium about pivot C. The only moment contribution of spring 𝑘2 is 
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that due to component, 𝑘2𝑎. The masses m and 𝑚4 can be shifted to point D, and the mass 𝑚3 

parallel to link 2, from 𝐶𝑀3 to 𝐶𝑀3
′ , as shown by the arrows in Figure 2(a). This procedure is 

possible because after shifting the masses, the respective shape of their trajectories remains 

identical and so their potential energy differs only by a constant value. Hence the moment 

equilibrium equation about pivot C, when spring 𝑘1 is fixed, can be written as 

 4 3 3 1 1 2   m mm m gL m gr m gr k ar , (1) 

where 𝑟𝑚1 and 𝑟𝑚3 are the respective distance of the centre of mass 𝐶𝑀1 and 𝐶𝑀3
′ , from 

the pivot C. 

The second step is to release spring 𝑘1 and fix spring 𝑘2, in order to perform the moment 

equilibrium about the point D, as shown in Figure 2(b). The only moment contribution of spring 

𝑘1 is due to its component 𝑘1𝑎, while the masses 𝑚3 and 𝑚2 can be shifted to point E and 𝐶𝑀2
′ , 

respectively, as shown in Figure 2(b), for the same reason as above. Hence the moment 

equilibrium equation is 

4 4 2 2 3 1   m mmgL m gr m gr m gr k ar , (2) 

where 𝑟𝑚2 and 𝑟𝑚4 are the respective distance of the centre of mass 𝐶𝑀2
′  and 𝐶𝑀4 from 

point D. Both (1) and (2) are linear and can be combined into the linear system of equations 

 4 3 3 1 1 2

4 4 2 2 3 1 .

gL g g ar

mgL g g gr ar

    


   

m m

m m

m m m r m r k

m r m r m k
 (3) 

These contain all the geometrical and inertial elements of the mechanism and of the 

springs, that can be varied in order to adjust the gravity balancing behaviour of the device. 
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Analyses reveal that the variation of the linkage parameters is complex to achieve and may 

require a heavy mechanism directly acting on it. Hence, the implementation of mechanisms for 

the adjustment of springs stiffness could be an alternative to the previous ones, but it usually 

requires mechanical systems that lack of precision and accuracy (Herder 2001). To avoid these 

difficult and cumbersome mechanical solutions, a was chosen as the adjustment parameter, and 

this leads to the design of an adjustment system that can be integrated within the lower part of 

the mechanism, without acting directly upon its links, but varying the position of the pivot O, 

relative to C. 

3D CAD Model: Components and Materials 

The 3D CAD model of the orthosis consists of an engineering implementation of the 

gravity balanced linkage analysed in Section 3.1, combined with an interface connection, an 

adjustment system and a structural support. The 3D CAD model shown in Figure 3 has been 

developed using SolidWorks and has in total five d.o.f. divided as follows: Two d.o.f. for the 

interface connection, two d.o.f. for the parallelogram linkage and one d.o.f. for the vertical axis 

of rotation of the mechanism (the fifth revolute joint in Figure 3). The additional d.o.f. permits 

more dexterity to the subject's forearm whilst performing rehabilitation tasks. The range of 

motion of the orthosis is such that it allows the subject to perform typical stroke rehabilitation 

tasks, such as reaching. Indeed it is expected that the end user will mainly perform tasks which 

do not involve a wide abduction rotation of the shoulder. Moreover, the arm support must be able 

to provide gravity balancing to a variety of different subjects, each of whom will have different 

anthropomorphic characteristics, and hence different arm weights. This justifies the design 

requirement of including an adjustable balancing mechanism, while the overall manufacturing 

cost is kept low by the choice of materials and off-the-shelf components. The interface 
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connection between the user's arm and the support is to be made of a folded aluminium sheet 

with two revolute joints, one with a horizontal axis and another with the axis orthogonal to the 

sheet. 

The CCM of the user's arm has to be placed on it, so these two d.o.f. enable more forearm 

dexterity during use of the device. The interface connection will be later improved by covering it 

with molded foam and straps to ensure comfortable, safe and stable contact with the user's 

forearm. Deep groove ball bearings were selected to be mounted in the joints of the device in 

order to reduce friction and so improve the mechanical performance of the overall system. 

Moreover, less friction translates into less effort for the patient when using the device during 

treatment. 

The four links of the parallelogram mechanism are to be made also of aluminium, with 

characteristic dimensions of L and r, as defined in Figure 1. The length L was chosen as 320 mm 

in accordance with the design studies conducted for the Armon Orthosis prototype (Herder et al. 

2006; Mastenbroek et al. 2007), while r was chosen as 50 mm in order to accommodate the 

balancing mechanism and the adjustment system. All the sheets and plates used for the arm 

support were selected to be made of steel. This choice will reduce the overall manufacturing cost 

of the device. 

The lower part of the linkage is connected to the springs via a string-pulley arrangement 

(Ottaviano, Castelli, and Cannella 2008), shown in Figure 4. This solution allows the gravity 

balancing system to have a linear mechanical behaviour, by using normal extension springs, 

rather than zero-free length springs, reducing the manufacturing cost of the device. Examining in 

detail one of the two string-pulley arrangements (one for each d.o.f) in Figure 4, it can be seen 

how one end of the string is connected to the upper hook of the spring, then wrapped around the 
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first pulley placed at the bottom part of the linkage. The same string is wrapped around two more 

pulleys placed on the movable folded metal sheet. This sheet is movable since it is connected to 

the adjustment system, which varies parameter a. 

The adjustment system, shown in Figure 5, is made of a ball screw connected to a 

brushless motor, and a guide. This solution is designed so that it can be later integrated with a 

control system that allows the balancing of the device to be adjusted according to the value of the 

supported mass. At a later stage a hybrid FES controller will be implemented to automatically 

vary the support given to the user's arm based on their rehabilitation progression. Ball screw 

systems were chosen for their high accuracy and precision in positioning, and lower friction. 

The adjustment system allows variation of the parameter a within the range of 0 mm, 

when the mechanism is folded, to 50 mm, when a = r and the system balances the maximum 

value of the mass. This maximum mass of 3 kg was chosen according to studies conducted for 

the design of the Armon orthosis (Herder et al. 2006; Mastenbroek et al. 2007). The string-pulley 

balancing system was designed to perform this adjustment avoiding interference with the links of 

the mechanism. The lower hooks of both springs are connected to the plate, to which the fixed 

part of the ball screw system is attached. This specific plate is connected to a revolute joint with 

a vertical axis that allows the horizontal adduction of the user's shoulder. This means the whole 

mechanism is able to rotate around the vertical axis. This joint is bigger than the others since it 

has to carry all the weight of the mechanism, and fit the brushless motor in its upper flange, 

reducing the overall volume and the inertia about the vertical axis of the system. 

The revolute joint is then connected to a frame, which comprises welded steel squares. 

The purpose of the frame is to carry the load of the whole mechanical system and to provide a 

stiff and steady support during its use. Moreover, four casters with brakes are installed at the 
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bottom part of the frame, in order to make it easier to move and locate the orthosis in different 

environments or rooms. 

An example of how the orthosis is used by a subject is shown In Figure 6, where a 3D 

CAD model of the human arm has been combined with the one of the orthosis for illustrative 

purposes. It is possible to notice how the connection area between the interface connection and 

the human arm involves only the forearm. 

DYNAMIC ANALYSIS OF THE ORTHOSIS 

In this section the dynamic behaviour of the orthosis is analysed. The first study involves 

the linkage. A dynamic analysis was performed in order to evaluate the performance of the 

linkage in the case of using either bushings or bearings in the joints. Then, a dynamic analysis of 

the 3D CAD model of the orthosis was performed in order to assess the gravity balancing 

property under dynamic conditions. 

Dynamic Analysis of the Linkage 

A dynamic analysis of the linkage of the device is now conducted to confirm appropriate 

performance. The model is based on the planar linkage of Figure 1, where an extra d.o.f. has 

been added to describe the rotation around the vertical axis of the overall parallelogram linkage. 

Its detailed view is shown in Figure 7. The general dynamic equation for robotic systems is 

         
¨ ˙

, T

v s esgn g    B q q C q q q F q F q q τ - J q h , (4) 

where, 𝒒, �̇� and �̈� are the (𝑛 x 1) generalized coordinate, velocity and acceleration 

vectors, respectively, 𝑩(𝒒) is the (𝑛 x 𝑛) inertia matrix, 𝑪(𝒒, �̇�) is the (𝑛 x 𝑛) Coriolis matrix, 𝝉 
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is the (𝑛 x 1) vector of the actuation torque at the actuated joints, 𝑭𝑣�̇� and 𝑭𝑠𝑠𝑔𝑛(�̇�) are the 

(𝑛 x 1) vectors of the viscous and static friction torques, respectively, 𝒉𝑒 is the (𝑛 x 1) vector of 

the contact forces and moments acting on the end-effector of the manipulator and 𝑱 is the 

(𝑚 x 𝑛) Jacobian matrix of the mechanism. 

In this specific case the number (𝑛) of active joints of the mechanism is 3, and the 

generalized coordinate vector is [𝜗0 𝜗1′ 𝜗1′′]𝑇 . The overall dynamic analysis of the system 

has been performed using ADAMS (MSC Software). The static gravity balance analysis of 

Section 3.1 was used to calculate the stiffness values of both springs, 𝑘1 = 3869N/mm and 

𝑘2 = 4454N/mm, which were then added to the ADAMS model. 

Then, the problem was analysed for the case where joints are equipped with either 

bushings or bearings, which can be considered as corresponding to the case of either high or low 

friction, respectively. In the case of bushings, using a steel-brass contact model, the static friction 

coefficient is 𝜇𝑠 = 0.35, and the dynamic friction coefficient is 𝜇𝑑 = 0.19. For bearings, they are 

𝜇𝑠 = 0.0024 and 𝜇𝑑 = 0.0012, respectively. The dynamic analysis has been made for three 

different values of mass m: 1, 2 and 3 kg, acting on the end-effector, while the whole mechanism 

is under the action of gravity. This analysis is performed to qualitatively show the possible 

differences in the dynamic performance of the linkage with two different models of joint 

couplings. 

The results in Figure 8 show the position of the center of mass of the end effector during 

a simulation of 10 s, for the two friction cases. In the case of bearings (Figure 8(a), (c) and (e)) 

the system tends to become less oscillatory in response to initial conditions when the mass is 

increased. The reason is that the stiffness of the springs are fixed parameters that are derived 
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from the static gravity balance analysis, and the chosen values are the ones which corresponds to 

m = 3kg. Furthermore, the results in the plots take into account inertia effects. In the case with 

bushings (Figure 8(b), (d) and (f)), the system is less oscillatory for all values of m, but this 

means that the device will not be suitable for weaker patients, since they might not be able to 

perform a rehabilitation task due to the high friction in the joints of the mechanism. Thus the 

solution with bearings is chosen as the optimal one, but the plots of the dynamic simulation of 

the linkage show that a controller must be added in order to vary the parameter a of the springs, 

so that it will adapt its dynamic behaviour to different masses, making it more stable and suitable 

for use by different patients. 

3D CAD Model Dynamic Simulation 

The dynamic simulation of the 3D CAD model is carried out using SolidWorks with the 

Motion Analysis module. The study is performed analysing the displacement of the centre of 

mass of the interface connection, when a specific payload is carried by it. The results are 

presented in terms of coordinate components for the displacement of the centre of mass. The aim 

is to verify that the maximum displacement is less than 10 mm, which represents a tolerable end-

point tracking error for a stroke patient while performing daily living tasks (Brend, Freeman, and 

French 2012). For the sake of simplicity the two d.o.f. of the interface connection are locked 

during the simulations. The device can adapt its balancing behaviour for a range of different 

payloads. Four simulations were performed, where the values of the payload m and the distance 

a have been calculated according to the linear relationship (3). The input parameters for the 

simulation are reported in Table 1. 
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The stiffness of the two springs is calculated by solving (3) which guarantees the gravity 

balancing condition. The calculated spring stiffness values are 𝑘1 = 4048N/mm and 

𝑘2 = 5035N/mm, which are kept constant during all four simulations. Since the joints have been 

designed using bearings, the static friction is 𝜇𝑠 = 0.0024 and the dynamic friction is 

𝜇𝑑 = 0.0012. The simulations are run for a duration of 20 s. The coordinates of the centre of 

mass of the interface connection are shown in Figures 9–11. 

The results show how the dynamic behaviour of the device improves when the payload 

increases. The reason is that the stiffness of the springs is a fixed parameter that has been 

calculated for the case of the maximum payload, m = 3 kg. Moreover the oscillatory trend of the 

centre of mass is due to the lack of damping and to the fact that the stiffness of the springs and 

the parameter a were set using a static gravity balancing analysis. These confirm that the device 

is able to hold a payload and carry its own with a minor level of oscillation, but indicate that a 

controller is required in order to overcome this drawback, as was the case for the dynamic 

analysis results of the linkage in Section 4.1. It should be also taken into account that on the real 

prototype, these oscillations will be mitigated by the additional natural damping introduced by 

the patient's arm. The only case in which the oscillation amplitude is higher than the limits of 

10 mm is the case with zero mass. However, this specific case does not represent a problem, 

since a payload m = 0 kg either implies that no payload is present on the interface connection, 

hence no patient is using the device, or that patients have regained their skills and they do not 

need any support from the device. Hence the dynamic analysis confirms the support and gravity 

balancing objectives of the design. 

CONCLUSION AND FUTURE WORK 
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This paper proposes the mechanical design of the first device to combine an adaptable 

gravity balanced orthosis with FES, in order to facilitate affordable and effective upper limb 

stroke rehabilitation. The details concerning the gravity balancing analysis of the linkage and the 

design embodiment are presented, with a detailed explanation of the 3D CAD model. Then a 

dynamic analysis of the linkage and of the 3D CAD model have been carried out, supported by 

results that confirm the design objectives of the device. This represents a framework for the 

manufacturing of the device and its design validation. 

Future work will comprise manufacturing and testing of the prototype, and will initially 

involve simulation and analysis carried out with the 3D CAD model. The system will then be 

integrated with FES using a hybrid controller which contains both a dynamic model of the 

support mechanism and a dynamic model of the user's arm. Mechanical support and applied FES 

will both be selected to minimise an objective function involving tracking error and control 

effort, enabling optimal real-time adjustment in the levels of mechanical and FES assistance. The 

integrated device will be later tested and evaluated with end-users. 
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Table 1. Values of payload m and distance a for the simulations. 

m [kg] a [mm] 

0 3.5 

1 19 

2 34.5 

3 50 
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Figure 1. Kinematic chain of the arm support. 
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Figure 2. Moment equilibrium analysis. (a) Moment equilibrium analysis when spring 𝑘1 is 

fixed. (b) Moment equilibrium analysis when spring 𝑘2 is fixed. 
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Figure 3. 3D CAD model showing subcomponent labels. 

 

  

D
ow

nl
oa

de
d 

by
 [

W
in

ch
es

te
r 

Sc
ho

ol
 o

f 
A

rt
] 

at
 1

0:
43

 2
1 

O
ct

ob
er

 2
01

5 



 

21 

Figure 4. Detailed views of the gravity balancing mechanism. (a) Upper detailed view. (b) 

Lower detailed view. 
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Figure 5. Detailed view of the adjustment system. 

 

  

D
ow

nl
oa

de
d 

by
 [

W
in

ch
es

te
r 

Sc
ho

ol
 o

f 
A

rt
] 

at
 1

0:
43

 2
1 

O
ct

ob
er

 2
01

5 



 

23 

Figure 6. 3D CAD model of the human arm and the orthosis. 
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Figure 7. ADAMS model for the dynamic analysis. 
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Figure 8. Position of center of mass. (a) With bearings and m = 1 kg. (b) With bushings and 

m = 1 kg. (c) With bearings and m = 2 kg. (d) With bushings and m = 2 kg. (e) With bearings and 

m = 3 kg. (f) With bushings and m = 3 kg. 
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Figure 9. X coordinate of the position of the centre of mass. 
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Figure 10. Y coordinate of the position of the centre of mass. 
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Figure 11. Z coordinate of the position of the centre of mass. 
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